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Abstract. This paper considers—for the first time—the concept of key-
alternating ciphers in a provable security setting. Key-alternating ciphers
can be seen as a generalization of a construction proposed by Even and
Mansour in 1991. This construction builds a block cipher PX from an
n-bit permutation P and two n-bit keys k0 and k1, setting PXk0,k1(x) =
k1 ⊕ P (x ⊕ k0). Here we consider a (natural) extension of the Even-
Mansour construction with t permutations P1, . . . , Pt and t + 1 keys,
k0, . . . , kt. We demonstrate in a formal model that such a cipher is secure
in the sense that an attacker needs to make at least 22n/3 queries to the
underlying permutations to be able to distinguish the construction from
random. We argue further that the bound is tight for t = 2 but there is
a gap in the bounds for t > 2, which is left as an open and interesting
problem. Additionally, in terms of statistical attacks, we show that the
distribution of Fourier coefficients for the cipher over all keys is close to
ideal. Lastly, we define a practical instance of the construction with t = 2
using AES referred to as AES2. Any attack on AES2 with complexity
below 285 will have to make use of AES with a fixed known key in a
non-black box manner. However, we conjecture its security is 2128.

Keywords: Block ciphers, provable security, Even-Mansour construc-
tion, AES

1 Introduction

Block ciphers are one of the fundamental primitives in symmetric cryptography.
Often called the work horses of cryptography, they form the backbone of today’s
secure communication. Therefore, their design has been an important research
focus over the last 20 years, giving rise to different well-established strategies
to prevent large classes of attacks. As typical examples, one can mention the
practical security approach against linear and differential cryptanalysis [22], and



the wide-trail strategy [14] that lead to the design of the AES Rijndael [13].
Another line of research is the so-called provable security approach against sta-
tistical attacks, that served as foundation for the block cipher MISTY [26, 27].
One can also mention the decorrelation theory [32] and the design of the ci-
phers C [1] and KFC [2]. At a high level, the three main design paradigms for
block ciphers are Feistel structures such as DES, Lai-Massey ciphers such as
IDEA [23], and key-alternating ciphers [11,13,14] for which the AES Rijndael is
a prominent representative. State-of-the-art block ciphers are quite well under-
stood and provide security against all known attacks. Though there has recently
been remarkable progress in the cryptanalysis of AES [7], these results are far
from being any threat for the use of AES in practice. Thus, from a practical
point of view, block ciphers in general and key-alternating ciphers in particular
can be seen as a success story.

Given the degree of confidence in properly designed key-alternating ciphers
on the practical side (e.g. with AES approved for the encryption of secret and
top secret data in the USA), it is even more surprising that there has been no
provable setting developed so far for the design of key-alternating ciphers on the
theoretical side. Nobody seems to have even formulated the problem of whether
the key-alternating cipher makes sense from this point of view. Clearly, given the
state of the art, proving AES secure in any strict sense is out of reach. However,
by modeling the round functions as fixed public randomly chosen permutations,
we are able to precisely formulate and—as we shall see—prove the soundness of
the key-alternating cipher design. The cipher we are dealing with is depicted in
Figure 2 and detailed in Section 2.

We note the difference of our setting to that of an idealized Feistel cipher,
often called the Luby-Rackoff construction [25], or to that of similar results
obtained for the Lai-Massey schemes [33]. In these former works, for each key it
is assumed that the function used in the Feistel (resp. Lai-Massey) construction
is chosen at random. Directly adopting this model to the case of a key-alternating
cipher immediately results in an ideal cipher (even for one round). At the same
time, in most key-alternating ciphers including AES, the key is the only part
of the design to define the cipher permutation and all round permutations are
fixed for the entire cipher, not varying from key to key. In other words, working
along the lines of [25] does not elucidate how to mix the key into the state. It is
exactly this point we deal with in the present paper, both at a high-level, i.e. in
a provable setting, as well as at lower-levels, i.e. considering statistical attacks
and as a guideline for actually designing ciphers.

Interestingly, another look at the construction and its properties arises from
the question of how to design the key schedule of a block cipher. This has been an
open problem in symmetric-key cryptography for decades. While some ciphers
are based upon simple linear or nearly linear key schedules [8, 17], a number of
others opt for heavier and often highly nonlinear key schedules, sometimes as
complex as the round functions [3] or the cipher itself [30]. In the prominent case
of AES, for instance, the key schedule is iterative, mainly linear, and provides



relatively slow diffusion in the backward direction. It is precisely these properties
that facilitated the related-key cryptanalysis of the full AES-192 and AES-256,
e.g. [5,6] as well as the recent biclique cryptanalysis of all three full AES versions
in the classical single-key model [7]. In general, these examples emphasize a
relatively weak understanding of key scheduling algorithms, compared to the
design of block cipher rounds. In this context, the results of this paper can be
seen as a case for simple key schedules (or even no key scheduling at all). Hence,
they provide new insights into the design of block ciphers.

1.1 Related Work

An exception from the above-mentioned lack of theoretical studies of key-alternating
block ciphers is the Even-Mansour construction [15] depicted in Figure 1. This

m

k0

P

k1

c

Fig. 1. The Even-Mansour construction

construction can be seen as a one-round variant of a key-alternating cipher.
Informally, Even and Mansour proved that in order to have a reasonable suc-
cess probability in decrypting an (unqueried) message, an attacker has to make
roughly 2n/2 queries to the permutation P . In this setting, the attacker is given
oracle access to P , its inverse, and to an encryption and decryption oracle. Later,
Daemen [10] showed that this bound is actually tight. He presented a differential
attack on the Even-Mansour scheme that allows to successfully recover the key
with a good probability, after 2n/2 evaluations of both the permutation P and
the encryption oracle.

1.2 Our Contribution

Our contributions in this paper are twofold.
On the theoretical side (cf. Section 3), we provide the first treatment of

the concept of key-alternating ciphers in a provable security setting. We prove
below that, for any t-round version of the cipher with randomly drawn and fixed
underlying permutations, t ≥ 2, depicted in Figure 2, an attacker needs to make
at least 22n/3 queries before being able to distinguish the encryption oracle from
a random permutation. Here n is the block size of the cipher. Furthermore, we

provide a simple attack that shows that an attacker, by making 2
t
t+1n queries,

is able to recover the secret key used in the decryption oracle. We do conjecture
that this lower bound — being tight only for t = 2 — is the actual bound. We



leave proving this as an important open question (see also Section 7). Note that
in this setup, we necessarily only consider the query complexity of an attacker,
ignoring the computational complexity. It seems unlikely that an attack with a
comparable computational complexity exists. Such an attack would in particular
imply an attack on e.g. AES-256 with a complexity of around 2120 operations.

On the practical side, we propose to actually use the construction of Figure 2.
Given our theoretical results, the merit of this approach is the following: Any
attack on a key-alternating cipher with complexity below 22n/3 will have to make
use of the round functions in a non-black box manner.

However, and we feel that it is important to make this point explicit even
though it might be obvious, the theoretical result does not carry over to any
efficient instance, as one must consider the round functions as black-boxes—
i.e. objects which the adversary must query to evaluate—in order to meaningfully
discuss the distinguishability of the cipher from a random permutation by an
information-theoretic adversary.

This fact and the fact that, as mentioned above, the theoretical bounds are
likely to be lower than the computational complexity of any attack, motivates
us to study the security of our proposal with respect to such statistical attacks
as linear cryptanalysis (see Section 5).

To capture the difference between the single-round Even-Mansour cipher and
the multiple-round key-alternating construction with respect to linear cryptanal-
ysis, we study the Fourier spectrum of the ciphers. We prove that once the fixed
underlying permutations are close to average (which is the case for randomly
drawn permutations with high probability), the distribution of Fourier coeffi-
cients for the key-alternating cipher over all keys for t ≥ 2 gets close to that
over all permutations — the natural reference point for any block cipher. At
the same time, we demonstrate that this is not the case for the original Even-
Mansour construction with t = 1 where the Fourier coefficients almost do not
change from key to key. It seems therefore unlikely that linear attacks are able
to break the multiple-round key-alternating cipher with t ≥ 2.

Finally, as the crypto community likes targets and we anticipate that having
a concrete proposal is a valuable stimulation for further research, we propose an
actual cipher called AES2 following the 2-round version of the general construc-
tion (see Section 6). Here we replace the random permutations by two instanti-
ations of AES-128 with fixed known keys. Given the new AES instructions on
recent Intel processors, AES2 performs very competitively on those platforms,
with as few as 2.65 cycles per byte required in the counter mode.

We conclude with a section dedicated to open questions and further work
(Section 7), discussing how to possibly improve and extend the research we
consider in the paper.

2 The Construction

The cipher we consider is an idealized model of a key-alternating cipher — the
notion introduced under this name in [13, 14] in connection with the design of



AES and used without being explicitly named even before that [11] in simi-
lar contexts. Such a cipher consists of round functions interleaved with xoring
round keys to the current state. In our idealized model, the round functions
are the public, randomly chosen permutations Pi and the key consists of t + 1
independent round-keys are ki. More precisely, let P1, . . . , Pt be permutations
from {0, 1}n to {0, 1}n, t ≥ 1. Let k0, . . . , kt ∈ {0, 1}n be keys. The block cipher
E = Ek0,...,kt : {0, 1}n → {0, 1}n we consider is defined by

E(x) = Ek0···kt(x) = Pt(. . . P2(P1(x⊕ k0)⊕ k1) . . .)⊕ kt (1)

for x ∈ {0, 1}n. The cipher is shown in Figure 2.
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Fig. 2. A key-alternating cipher

3 Indistinguishability Analysis

Putting N = 2n, we define the PRP security of E against an adversary A
expecting a (t+ 1)-tuple of oracles as

AdvPRP
E,N,t(A) = Pr[k0 · · · kt ← {0, 1}n;AEk0···kt ,P1,...,Pt = 1]−Pr[AQ,P1,...,Pt = 1]

where in each experiment Q,P1, . . . , Pt are independent and uniformly sampled
random permutations. Here A can make inverse queries to each of its oracles.
Thus, an attacker has to tell apart two worlds, depicted below.

World 1

E(x)
(cf. Eq. 1)

P1 Pt

World 2

Q P1 Pt

We note that one must consider the permutations P1, . . . , Pt as random (or
pseudorandom) black-boxes—i.e. objects which the adversary must query to
evaluate—in order to meaningfully discuss the distinguishability of Ek0,...,kt from
a random permutation by an information-theoretic adversary.

We define
AdvPRP

E,N,t(q) = max
A

AdvPRP
E (A)



where the maximum is taken over all adversaries Amaking at most q queries. (We
note the parameters n and t are elided from both of the notations AdvPRP

E (A)
and AdvPRP

E (q); but it should be understood that AdvPRP
E (q) is a function n

and t as well as of q.)
Our main security result is the following:

Theorem 1. Let N = 2n and let q = N
t
t+1 /Z for some Z ≥ 1. Then, for any

t ≥ 1, and assuming q < N/100, we have

AdvPRP
E,N,t(q) ≤

4.3q3t

N2
+
t+ 1

Zt
.

For t ≥ 2 the limiting term in the above bound is 4q3t/N2, which caps q at
around N2/3. The following corollary is more telling.

Corollary 1. Assume t ≥ 2. Let q = N
2
3 /λ 3
√
t for some λ ≥ 1. Then, assuming

q < N/100,

AdvPRP
E,N,t(q) ≤

4.3

λ3
+

t+ 1

( 3
√
tλ)t

.

We also note that q < N/100 as long as n ≥ 20; this condition is therefore
compatible with practical parameters. We note that Corollary 1’s security of
q ≈ N 2

3 is optimal for t = 2 (cf. Section 3.1) and suboptimal for t > 2, in which

case we conjecture a security of q ≈ N
t
t+1 . Closing this gap might be obtained

by a tightening of Proposition 2 below.
Theorem 1 is proved by a hybrid argument involving an intermediate game. In

order to outline this hybrid argument we start by developing some new notation.
Note firstly that if E is defined as in (1) then, putting P0 = E−1, we have

P0(Pt(· · ·P1(· ⊕ k0) · · · )⊕ kt) = id.

Applying P−10 to both sides and then substituting P0(·) for the input, we find

Pt(· · ·P2(P1(P0(·)⊕ k0)⊕ k1) · · · )⊕ kt = id. (2)

It is easy to see that, for fixed k0, . . . , kt, randomly sampling P1, . . . , Pt, defining
E as in (1) and giving an adversary access to the tuple of oracles (E,P1, . . . , Pt)
(and their inverses) is equivalent to sampling P0, . . . , Pt uniformly at random
from all (t + 1)-tuples of permutations satisfying (2) and giving the adversary
access to (P−10 , P1, . . . , Pt) (and their inverses). Moreover, it is just a notational
change to give the adversary access to (P0, P1, . . . , Pt), since the adversary is
allowed inverse queries anyway (of course, the adversary is alerted to the fact
that its first oracle is now P0 and not P−10 ).

We now formally implement the interface (P0, . . . , Pt) via an oracle O(N, t)
taking k0, . . . , kt as implicit parameters. Rather than sampling P0, . . . , Pt uni-
formly at random from those sequences satisfying (2) at the start of the exper-
iment, O(N, t) implements the permutations P0, . . . , Pt by lazy sampling. More



precisely, P0, . . . , Pt are initially set to be undefined everywhere. When the ad-
versary makes a query Pi(x) or P−1i (y), the adversary defines Pi at the relevant
point using the following procedure, illustrated for the case of a forward query
Pi(x) (the case of a backward query is analogous):

• Let P = P(P0, . . . , Pt) be the set of all (t + 1)-tuples of permutations
(P 0, . . . , P t) such that P i extends the currently defined portion of Pi, and
such that

P t(· · ·P 2(P 1(P 0(·)⊕ k0)⊕ k1) · · · ⊕ kt−1)⊕ kt = id. (3)

Then O(N, t) samples uniformly at random an element (P 0, . . . , P t) from P.
The adversary sets Pi(x) = P i(x) and returns this value.

After the above, the adversary “forgets” about P 0, . . . , P t, and samples these
afresh at the next query. It is clear that this lazy sampling process gives the
same distribution as sampling the tuple (P0, . . . , Pt) at the start of the game.
Thus, giving the adversary oracle access to O(N, t) is equivalent to giving the
adversary oracle access to (E,P1, . . . , Pt), up to the cosmetic change that E is
replaced by E−1. We therefore have:

Proposition 1. With O(N, t) defined as above, we have:

AdvPRP
E,N,t(A) = Pr[k0 · · · kt ← {0, 1}n;AO(N,t) = 1]− Pr[AQ0,Q1,...,Qt = 1]

where Q0, . . . , Qt are independent random permutations.

(We emphasize that k0, . . . , kt are implicit arguments to O(N, t).)
Our hybrid will be an oracle Õ(N, t) (also taking k0, . . . , kt as implicit inputs)

that uses a slightly different lazy sampling procedure to define the permutations
P0, . . . , Pt. Say that a sequence of partially defined permutations is consistent
if P(P0, . . . , Pt) 6= ∅, with P(·) defined as in the description of O(N, t) above.
Initially, Õ(N, t) also sets the permutations P0, . . . , Pt to be undefined every-
where. Upon receiving (say) a forward query Pi(x), Õ(N, t) uses the following
lazy sampling procedure to answer:

• Let U ⊆ {0, 1}n be the set of values y such that defining Pi(x) = y maintains
the consistency of P0, . . . , Pt, besides maintaining the fact that Pi is a per-
mutation. Then Õ(N, t) samples a value y uniformly from U , sets Pi(x) = y,
and returns y.

Inverse queries are lazy sampled the same way. While not immediately apparent,
the above lazy sampling procedure produces a slightly different distribution of
outputs than the first lazy sampling procedure.

Theorem 1 is an direct consequence of Proposition 1 and of the following two
propositions.

Proposition 2. Let q < N/100. With O(N, t) and Õ(N, t) defined as above,

Pr[k0, . . . , kt ← {0, 1}n;AO(N,t) = 1]−Pr[k0, . . . , kt ← {0, 1}n;AÕ(N,t) = 1] ≤ 4.3q3t

N2

for every adversary A making at most q queries.



Proposition 3. Let q = N
t
t+1 /Z for some Z ≥ 1 be such that q < N/3. With

Õ(N, t) defined as above,

Pr[k0, . . . , kt ← {0, 1}n;AÕ(N,t) = 1]− Pr[AQ0,...,Qt = 1] ≤ t+ 1

Zt+1
.

for every adversary A making at most q queries, where Q0, . . . , Qt are indepen-
dent random permutations.

Proposition 2 is the main technical hurdle in our proof. Its proof, however, is
entirely combinatorial, given that we actually show this bound holds even when
A sees the keys k0, . . . , kt. The presence of keys is therefore actually irrelevant
for this proposition1. We refer to Appendix A for more details.

The proof of Proposition 3, on the other hand, is fairly accessible, and also
contains those ingredients that have the most “cryptographic interest”.

Proof (of Proposition 3.). We make the standard assumption that the adversary
never makes a redundant query (querying P±1i (x) twice or querying, e.g., Pi(x)
after obtaining x as an answer to a query P−1i (y)).

We modify Õ(N, t) to use a slightly different lazy sampling method, equiva-
lent to Õ(N, t)’s original sampling method. In this new method, we also maintain
a flag bad which is originally set to false.

Õ(N, t)’s new sampling method is as follows: when faced with a query Pi(x),
Õ(N, t) samples a value y uniformly at random from the remaining range of
Pi(x), that is, uniformly at random from

{0, 1}n\{Pi(x′) : x′ ∈ {0, 1}n, Pi(x′) is defined}.

Õ(N, t) then checks if setting Pi(x) = y would make P0, . . . , Pt inconsistent; if
so, it sets bad = true, and resumes its original sampling method for the rest of
the game (including to answer the last query); otherwise, it sets Pi(x) = y, and
returns y. Inverse queries are treated the same.

We can also define a value for the bad flag when the adversary has oracle
access to the random permutations (Q0, Q1, . . . , Qt). Originally, set bad = false
and select random values k0, . . . , kt. Set Q0, . . . , Qt to be undefined at all points,
and use lazy sampling to define them by simulating the lazy sampling process
for P0, . . . , Pt up until bad = true; after bad = true, simply keep lazy sampling
each permutation Qi while ignoring bad as well as k0, . . . , kt.

Obviously, the probability bad is set to true is equal in both worlds, and the
two worlds behave identically up until bad = true. Thus (a standard argument
shows that) the adversary’s advantage is upper bounded by the probability that
bad is set to true.

For simplicity, we upper bound the probability that bad becomes true when
the adversary has oracle access to Q0, . . . , Qt. In this case, note that it is equiv-
alent to set the bad flag by sampling the values k0, . . . , kt randomly at the end

1 We note that the bound of Proposition 2 is the bottleneck of Theorem 1. A potential
improvement of Proposition 2 might exploit the fact that k0, . . . , kt aren’t known to
the adversary.



of the game, and then checking whether these values are inconsistent with the
partially defined permutations Q0, . . . , Qt. (To recall, k0, . . . , kt are inconsistent
with Q0, . . . , Qt if there exist no permutations Q0, . . . , Qt such that

Qt(· · ·Q2(Q1(Q0(·)⊕ k0)⊕ k1) · · · ⊕ kt−1)⊕ kt = id.)

Given the partially defined permutations Q0, . . . , Qt and values k0, . . . , kt
a contradictory path is a sequence of values (x0, y0), . . . , (xt, yt) such that (i)
Qi(xi) = yi for all i and (ii) |{i : yi ⊕ xi+1 = ki, 0 ≤ i ≤ t}| = t, where we put
xt+1 = x0. Because q < N/3, Lemma 3 of Section A implies2 that Q0, . . . , Qt is
consistent with k0, . . . , kt if and only if there exists no contradictory path. Since
each Qi contains at most q defined input-output pairs (xi, yi) at the end of the
game, there are at most qt+1 possible different sequences ((x0, y0), . . . , (xt, yt))
such that Q(xi) = yi for 0 ≤ i ≤ t. For each of these sequences, the probability
that the random selection of k0, . . . , kt creates a contradictory path is upper
bounded by (t+ 1)N−t, since the condition ki = yi ⊕ xi+1 must be satisfied for
all but one value of i, 0 ≤ i ≤ t, and we can union bound over this value of i.
Hence, by a union bound over the (at most) qt+1 possible different sequences,

the probability that bad is set to true is at most (t+1)qt+1

Nt = t+1
Zt as desired.

3.1 An upper bound

For any number of rounds t, there is an (non-adaptive) attack with a query com-

plexity of roughly t2
t
t+1n, thus meeting the bound on the query complexity for

t = 2. Note that this is not an attack in the practical sense, as the computational
cost is higher than brute force. The idea of this attack is to actually construct
(with high probability) a contradictory path for each possible key.

1. Make 2
t
t+1n queries to E and each of the oracles P1 to Pt. Denote the set of

queries to Pi by Pi and queries to Ek by M.

2. For each key candidate (k0, k1, . . . , kt) do:

(a) Find all sequences of values (x1, . . . , xt−1) such that x1 ∈ M and xi ⊕
ki−1 ∈ Pi, ∀1 ≤ i ≤ t and Pi(xi ⊕ ki−1) = xi+1, ∀1 ≤ i ≤ t− 1.

(b) Check if Pt(xt ⊕ kt−1)⊕ kt = E(x1) for all these sequences.

(c) If so, assume (k0, k1, . . . , kt) is the correct value of the key;

(d) otherwise, it is certainly the wrong value of the key.

To get a better reduction on key-candidates, a bit more than t2
t
t+1n queries are

sufficient.

2 More precisely, Lemma 3 is applied by setting the edges of the matching Mi to be
all pairs (xi, yi⊕ki) such that Qi(xi) is defined; that is Mi encodes the permutation
Qi(·)⊕ ki.



4 Attacks

The bounds proved earlier are information-theoretic bounds which take into
account only the number of queries of the random permutations made by an
adversary. Of equal interest are attacks which take the computational complexity
into account. In this section we consider only attacks in the single key-model.
Note that, in the case where all round-keys are independent, related-key attacks
exist trivially. However, the situation might be very different in the case where
all round-keys are identical, see Section 7 for further discussion on this point.

4.1 Daemen’s attack for t = 1

For the original Even-Mansour construction (in our setting, this corresponds to
t = 1), a differential attack has been published by Daemen [10] meeting the
lower bound of 2n/2 evaluations of P proven by Even and Mansour. It can be
described as follows:

1. Choose s plaintext pairs (mi,m
∗
i ), 1 ≤ i ≤ s, with mi ⊕ m∗i = ∆ for any

nonzero constant ∆.
2. Get the encryptions (ci, c

∗
i ) of the s pairs.

3. For 2n/s values v:

(a) Compute w′ := P (v)⊕ P (v ⊕∆).
(b) If w′ = ci⊕c∗i for some i: Output k0 := v⊕m1 and k1 := c1⊕P (m1⊕k0)

and stop.

For a random permutation P , only very few values of v are expected to satisfy
P (v) + P (v + ∆) = ci ⊕ c∗i . The wrong candidates can be easily filtered in
step (3b) by testing them on a few additional encryptions. After encrypting s
plaintext pairs, one has to perform about 2·2n/s evaluations of P . The expression
2(s + 2n/s) is minimal for s = 2n/2. In this case, the time complexity is 2n/2

with a storage requirement of 2n/2 plaintext pairs.

4.2 A meet in the middle attack

There is a meet in the middle attack on the t-permutation construction which
finds the keys in time and space 2tn/2 for t > 1. This is a straight-forward attack
given here for the case t = 2:

1. From a pair of messages (m1,m2), compute and save in a sorted table, T ,
the values P (m1 ⊕ k)⊕ P (m2 ⊕ k) for all possible 2n values of k.

2. Get the encryptions c1 and c2 of m1 respectively m2.
3. For all 2n possible values of k′ compute Q−1(c1⊕k′)⊕Q−1(c2⊕k′) and look

for a match in T .
4. Each match gives candidate values for the three keys, which are tested

against additional encryptions.



5 Statistical Properties

A fundamental cryptographic property of a block cipher is its Fourier spectrum
that completely defines the cipher via the Fourier transform and whose distri-
bution is closely related to the resistance against linear cryptanalysis [9].

To support security claims, block cipher designs usually come with arguments
why these Fourier coefficients cannot take values exploitable by an attacker.
In most cases, however, formal proofs of these properties appear technically
infeasible and designers limit themselves to demonstrating upper bounds on
trail probabilities, that can be seen as summands to obtain the actual Fourier
coefficients. This solution is usually denoted as the practical security approach for
statistical cryptanalysis. Such an approach does not allow an accurate estimation
of the data complexity of statistical attacks, that typically depends on numerous
trails [24, 28].

As opposed to that, we analyze the construction of key alternating cipher
following a provable security approach, by directly investigating its Fourier co-
efficients. In addition, we provide a more informative analysis than for standard
block ciphers, as we study the distribution of the Fourier coefficients for the
cipher over all keys, rather than bounding the mean value of this distribution.
This is made possible by the use of fixed public permutations in our construction.
More precisely, in a key-alternating cipher using t ≥ 2 fixed public permutations,
we study the distribution of the Fourier coefficients over all cipher keys. If these
permutations are close to the average over all permutations, we show that this
distribution turns out to be very close to that over all permutations, suggesting
that the t-round key-alternating construction is theoretically sound from this
perspective. This implies that it behaves well with respect to linear cryptanaly-
sis.

On the contrary, the distribution of Fourier coefficients for a fixed point in
the Fourier spectrum is nearly degenerated for the key-alternating cipher with
t = 1 (the Even-Mansour cipher). This emphasizes the constructive effect of
having 2 and more rounds in the key-alternating cipher.

5.1 Fourier coefficients over all permutations

Here we recall the definitions of Fourier coefficients and Fourier spectrum as
well as the distribution of Fourier coefficients over all permutations. We also
introduce some notations we will be using throughout the section.

Notations. The canonical scalar product of two vectors a, b ∈ {0, 1}n is denoted
by aT b. We denote the normal distribution with mean µ and variance σ2 as
N (µ, σ2). By X ∼v D, we denote a random variable X following a distribution
D taken over all values of v. The expectation of X with respect to v is denoted
by Ev[X], its variance (with respect to v) by Varv[X].



Fourier coefficients and Fourier spectrum. For a permutation P : {0, 1}n →
{0, 1}n, its Fourier coefficient at point (α, β) is defined as

WP
α,β

def
=

∑
x∈{0,1}n

(−1)α
T x+βTP (x).

The collection of Fourier coefficients at all points (α, β) ∈ {0, 1}n × {0, 1}n is
called the Fourier spectrum of P . For a block cipher F , we denote the Fourier
coefficient at point (α, β) as WF

α,β [K] to emphasize its dependency on key K. If

F is the t-round key-alternating cipher, this is denoted by WP1,...,Pt
α,β [K].

The following characterisation for the distribution of Fourier coefficients in a
Boolean permutation has been proven.

Fact 1 ([12, Corollary 4.3, Lemma 4.6]). When n ≥ 5, the distribution of
the Fourier coefficient WP

α0,β0
with α0, β0 6= 0 over all n-bit permutations can be

approximated by the following distribution up to continuity correction:

WP
α0,β0

∼P N (0, 2n). (4)

The distribution of Fact 1 is the reference point throughout the section: A block
cipher cannot have a better distribution of Fourier coefficients than that close
to Fact 1.

5.2 Fourier coefficients in the single-round Even-Mansour cipher

Let F be the basic single-round Even-Mansour cipher, that is, a fixed public
permutation P surrounded by two additions with keys k0 and k1, respectively
(see Figure 1). If WP

β0,β1
is the Fourier coefficient for the underlying permutation

P at point (β0, β1), then the Fourier coefficient for the cipher at this point is

WF
β0,β1

= (−1)β
T
0 k0⊕β

T
1 k1WP

β0,β1
.

Now consider the distribution of WF
β0,β1

with β0 6= 0, β1 6= 0 taken over all keys

(k0, k1). Its support contains exactly two points: WP
β0,β1

and −WP
β0,β1

. Thus, the

value of WF
β0,β1

almost does not vary from key to key. This is crucially different
from the reference point – the distribution over all permutations of Fact 1.

5.3 Fourier coefficients in the t-round key-alternating cipher

Now we state the main result of this section. The proof is given in Appendix B.

Theorem 2. Fix a point (β0, βt) with β0, βt 6= 0 in the Fourier spectrum of the
t-round key-alternating n-bit block cipher with round permutations P1, . . . , Pt
for t ≥ 2 and sufficiently high n. Then the distribution of the Fourier coefficient
WP1,...,Pt
β0,βt

at this point over all keys K is approximated by:

WP1,...,Pt
β0,βt

[K] ∼K N (0, (1 + ε)

(
2n − 1

2n

)t−1
2n), (5)



assuming that the distributions over points of the Fourier spectra of the permu-
tations Pi, 1 ≤ i ≤ t, have variances satisfying

Var
(βi−1,βi)

[
WPi
βi−1,βi

]
≥ 2n/2, (6)

and that for any given key K, the signs of the Fourier coefficients behave in-
dependently for different points. The deviation of the permutations Pi from the
mean over all permutations Qi is quantified by factor (1 + ε):

∑
(β1,...,βt−1)

(
WP1

β0,β1
· · ·WPt

βt−1,βt

)2
= (1 + ε) ·EQ1,...,Qt

[∑
(β1,...,βt−1)

(
WQ1

β0,β1
· · ·WQt

βt−1,βt

)2]
.

(7)

Interestingly, the latter deviation ε from the mean in (7) is small for most
choices of the Pi. For instance, in case t = 2, it can be shown that over all
permutations, mean and variance of each summand in (7) are 22n and 24n+2,
respectively. The whole sum then approximately follows a normal distribution
N (23n− 22n, 25n+2− 24n+2). This means that for randomly drawn permutations

P1, P2, the sum
∑
β1

(
WP1

β0,β1
WP2

β1,β2

)2
will be within d standard deviations from

its mean with probability erf
(
d/
√

2
)
. Notably, this implies Pr(|ε| ≤ 2−n/2+3) ≈

0.9999, i.e. |ε| only very rarely exceeds 2−n/2+3.
Theorem 2 gives the distribution over all keys of the Fourier coefficient

WP1,...,Pt
β0,βt

individually for each nontrivial point (β0, βt). Appropriate choices for
the Pi should have distributions close to N (0, 2n) for each nontrivial point, not
only for some of them. Conversely, the distribution of the Fourier coefficient at
the (trivial) point (β0, 0) differs from (5) for any choice of the Pi, since it is
constant over the keys.

Note also that the result of Theorem 2 does not require the underlying per-
mutations to be different. Moreover, it does not require the permutations Pi to
be randomly drawn from the set of all permutations, but holds for any fixed
choice of permutations satisfying (6). To obtain a distribution close to ideal,
however, the set of underlying permutations has to ensure a small deviation ε
in (7). As argued above, drawing the underlying permutations at random from
the set of all permutations is highly likely to result in a very small deviation ε
from the average.

Summarising, the results of Theorem 2 suggest that once the small number
of t ≥ 2 underlying permutations are carefully chosen and fixed, the t-round key-
alternating cipher for each secret key is likely to be statistically sound which rules
out some crucial cryptanalytic distinguishers. More precisely, the distributions
of the Fourier coefficients for the t-round key-alternating cipher over all keys
become close to those over all permutations.

Note that, in contrast to the reference point, it is possible to identify large
but efficiently representable subsets of keys where the distribution is again de-
generated, as in the case for t = 1. Examples of such sets are sets of keys where



one fixes all keys k1 up to kt−1. For any point (β0, β1) the value of WP1,...,Pt
β0,βt

takes on only two possible values - over all possible sub-keys k0, kt. However, it
seems unlikely that this can be used in an attack.

6 Practical constructions

In this section, we discuss possible practical realisations of the t-round key-
alternating cipher.

A natural approach to building a practical cipher following the t-permutation
construction is to base the t fixed permutations on a block cipher by fixing some
keys. With t = 1, this corresponds to the original Even-Mansour construction, so
the security level is limited to 2n/2 operations with n denoting the cipher’s block
length. With a 128-bit block cipher such as the AES, we therefore only obtain a
security level of 264 in terms of computational complexity, so it is advisable to
choose t > 1.

In the following we describe a sample construction with t = 2, that is, we
consider the 2-round key alternating construction with permutations P1 and P2

and the keys k0, k1, k2.

6.1 AES2: a block cipher proposal based on AES

The construction is defined by fixing two randomly chosen 128-bit AES-128
keys, which specifies the permutations P1 and P2. The key is comprised by three
independently chosen 128-bit secret keys k0, k1, k2.

Let AES[k] denote the (10-round) AES-128 algorithm with the 128-bit key
k and the 128-bit quantities π1, π2 be defined based on the first 256 bits of the
binary digit expansion of π = 3.1415 . . . :

π1 := 0x243f6a8885a308d313198a2e03707344 and

π2 := 0xa4093822299f31d0082efa98ec4e6c89.

Then we denote the resulting 2-permutation construction by AES2[k0, k1, k2].
Its action on the 128-bit plaintext m is defined as:

AES2[k0, k1, k2](m) := AES[π2](AES[π1](m⊕ k0)⊕ k1)⊕ k2. (8)

Security. Any attack on AES2 in the single secret-key model with complexity
below 285 will have to make use of AES with a fixed known key in a non-black
box manner. On the other hand, we are aware of no attack with a computational
complexity of less than 2128. Moreover, if the distribution of Fourier coefficients
for AES[π1] and AES[π2] meets the assumption of average behaviour, Theo-
rem 2 suggests that the Fourier coefficients for AES2 are distributed close to
ideal which implies resistance against basic linear cryptanalysis and some of its
variants. Intuitively, this construction can be seen to arguably transfer the secu-
rity properties for AES with a single randomly fixed key to the entire cipher as a
set of permutations. For AES2, we explicitly do not claim any related-, known-
or chosen-key security.



Performance. AES2 can be implemented very efficiently in software on general-
purpose processors. The two AES keys π1 and π2 are fixed and, therefore, the
round keys for the two AES transformations can be precomputed, so there is no
need to implement the key scheduling algorithm of AES. This ensures high key
agility of AES2.

On the Westmere architecture generation of Intel general-purpose proces-
sors, AES2 can be implemented using the AES-NI instruction set [18]. As the
AES round instructions are pipelined, we fully utilise the pipeline by processing
four independent plaintext blocks in parallel implementing the basic electronic
codebook mode (ECB) and counter mode (CTR). The performance of these im-
plementations on recent processors is demonstrated and compared to two con-
ventional implementations of AES-128 (i.e. without AES-NI instructions) – the
bitsliced implementation of [20] and the OpenSSL 1.0.0e implementation based
on lookup tables. All numbers are given in cycles per byte (cpb).

Intel Xeon X5670 Intel Core i7 640M
2.93 GHz, 12 MB L3 cache 2.8 GHz, 4 MB L3 cache

AES2, AES-NI, ECB 2.54 cpb 2.69 cpb
AES2, AES-NI, CTR 2.65 cpb 2.76 cpb

AES-128, AES-NI, ECB 1.18 cpb 1.25 cpb
AES-128, AES-NI, CTR 1.32 cpb 1.36 cpb
AES-128, bitsliced, CTR 7.08 cpb 7.84 cpb
AES-128, OpenSSL, CTR 15.73 cpb 16.76 cpb

It turns out that on both platforms, the performance of AES2 is almost equal
to half that of AES, indicating that the overhead is very low. Compared to the
best implementations of the AES which are in widespread use now on standard
platforms, AES2 provides a performance improvement of almost factor three and
higher with the AES-NI instruction set.

7 Conclusion, Open Problems and Future Work

In this paper we gave the first formal treatment of the key-alternating cipher in a
provable setting. For two or more rounds an attacker needs to query the oracles
at least 22n/3 times for having a reasonable success probability. Furthermore,
we studied the security of the construction with respect to statistical attacks,
arguing that even for t = 2 linear attacks do not seem to be applicable. Finally
we gave a concrete proposal mimicking the construction for t = 2. There are
several lines of future work and open problems we like to mention.

On the theoretical side, it seems unlikely that the bounds given here are
tight. Thus, improving them is an important open problem. We actually con-
jecture that the correct bound on the query complexity is roughly 2t/(t+1)n. As
a first step, deriving bounds that increase with the number of rounds is a goal
worth aiming for. Secondly, for now, we have to assume that all round keys are



independent. For aesthetical reasons, but also from a practical point of view (see
below) it would be nice to prove bounds for the case that all round keys are
identical.

On the practical side, mainly for efficiency reasons but also due to resistance
against related-key attacks, several variants for t = 2 are worth studying. First
of all, since the security level is at most 2n, due to the meet in the middle
attack, one could be tempted to derive three n-bit keys k0, k1, and k2 from one
n-bit word. The simplest case here is to have all three keys identical. Taking P
and Q different, we are not aware of any attack with computational complexity
below 2n. Furthermore, it seems reasonable to assume that such a construction
provides some security against certain types of related-key attacks as well. The
best attacks we are aware of in such a setting has birthday complexity 2n/2. See
Appendix C for the details.

Eventually, it is an interesting open problem to determine whether the results
in this work can be used as directions for alternative block cipher designs, e.g.
with minimum key scheduling algorithms. As a typical example, one could con-
sider the possibility to generate public permutations from a variant of the AES,
where the round keys would be replaced with simple constants. In general, such
an approach could lead to efficient lightweight designs. Interestingly, it is also
the direction taken, to a certain extent, by the recently proposed block cipher
LED [19]. In its 64-bit version, this cipher just iterates blocks made of 4 rounds
and the addition of the master key.

Another tempting way, in order to increase efficiency, is to choose Q = P .
Similarly, it may be advantageous to have Q = P−1, which has the further
advantage that the decryption and encryption operations are similar, except for
using the keys in reverse order. However, with Q = P−1 there is an attack which
finds the value of k0 ⊕ k2 using 2n/2 queries and similar time. After k0 ⊕ k2
is known the cipher is easily distinguishable from a random permutation. Also,
with Q = P but now assuming that k0 ⊕ k2 is known, one finds the secret keys
using 2n/2 queries and similar time.
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A Proof of Proposition 2

In this section we provide a proof of Proposition 2, which constitutes the most
technical part of our paper. The argument is structured as follows: Firstly, we
allow the adversary A to see the values k0, . . . , kt (in fact, we even allow A
to choose these values); obviously, such an adversary can only perform better
than an adversary without knowledge of k0, . . . , kt. Secondly, we argue that the
ki’s can be set to 0n without any loss in advantage. The problem then reduces
to upper bounding the adversary’s advantage at distinguishing two different
methods of lazy sampling permutations P0, . . . , Pt such that

Pt(· · ·P2(P1(·)) · · · ) = id.

We then directly argue (by “low-level” combinatorics) that, for any given
query, the statistical distance between the two types of sampling is small. In order
to facilitate the application of this statistical distance bound on a single query
to the general q-query setting, we introduce another abstraction (of potential
interest on its own) that we call sample distinguishability. As it applies to our



setting, the sample distinguishability game lets the adversary “set up” each of its
queries as it wants; namely, it can partially define the permutations P0, . . . , Pt on
at most q points each (subject to the consistency constraint), and then request
its oracle—which is either O(N, t) or Õ(N, t)—to answer a query of its choice,
for that choice of P0, . . . , Pt; at its next query, the adversay can set up P0, . . . , Pt
again from scratch, and so on. Clearly such an adversary with “set-up power” has
advantage at least that of a standard adversary. We then combine the statistical
distance bound for a single query (Lemma 2 below) with a simple lemma relating
sampling distinguishability to single-sample statistical distance (Lemma 1 below)
to obtain the final result (restated as Lemma 5 below, that is equivalent to
Proposition 2).

Define

AdvOÕN,t(A) = Pr[A→ k0, . . . , kt;A
O(N,t) = 1]− Pr[A→ k0, . . . , kt;A

Õ(N,t) = 1]

and

AdvOÕ;0n

N,t (A) = Pr[k0 = · · · = kt = 0n;AO(N,t) = 1]−Pr[k0 = · · · = kt = 0n;AÕ(N,t) = 1].

Obviously, it suffices to show that AdvOÕN,t(A) ≤ 4.3q3t/N2 for all A making
at most q < N/100 queries in order to prove Proposition 2. (Indeed A is free
to choose k0, . . . , kt randomly and then forget about these values.) Our first

proposition shows that, in fact, it is sufficient to upper bound AdvOÕ;0n

N,t (·).

Proposition 4. For every q-query adversary A there exists a q-query adversary
A′ such that

AdvOÕ;0n

N,t (A′) = AdvOÕN,t(A).

Proof. A′ simulates A; let k0, . . . , kt be the keys chosen by A. When A makes
a query Pi(x), A′ queries Pi(x) and returns Pi(x) ⊕ ki to A; when A queries
P−1i (x), A′ queries P−1i (x ⊕ ki). It is easy to check that when A′’s oracle is
O(N, t) (resp. Õ(N, t)), then A′ provides A with a perfect simulation of O(N, t)
(resp. Õ(N, t)) on keys k0, . . . , kt. It follows that A′’s advantage is exactly A’s.

The rest of our effort focuses on upper bounding AdvOÕ;0n

N,t (A) for a q-query ad-

versary A; namely, by Proposition 4, it is sufficient to show that AdvOÕ;0n

N,t (A) <

4.3q3t/N2 when q < N/100. The latter upper bound is finally established in
Corollary 2 below.

We now abstract the problem of distinguishing the oracles O(N, t), Õ(N, t)
into a more general type of game (that is also more generous to the adversary).
This game is the “sample distinguishability” game referred to above.

Let (Xα)α∈B be a sequence of random variables indexed by some finite set
B, where each Xα takes values in some finite set S. We write A(Xα)α∈B to mean
an adversary A with oracle access to a sequence of random variables indexed by
the elements of B. More precisely, the adversary’s query sequence has the form
(α1, α2, . . . , αq), where each αi ∈ B; such a query sequence is answered by sam-
pling Xα1

, . . . , Xαq , and returning these values to the adversary. Every sample is



taken independently of previous samples; in particular, if the adversary queries
the same Xα twice, then Xα is sampled twice independently. The adversary is
adaptive, and can query its oracles in any order it wishes.

We next define the notion of (adaptive) sample distinguishability.

Definition 1. Let (Xα, Yα)α∈B denote a family of pairs of random variables
indexed by a finite set B, where each random variable takes values in the same
finite range S. We define

Advsamp−dist
(Xα,Yα)α∈B

(A) = Pr[A(Xα)α∈B = 1]− Pr[A(Yα)α∈B = 1]

with the probabilities being taken over the randomness of the distributions and
over the adversary’s coins, if any. We also define

Advsamp−dist
(Xα,Yα)α∈B

(q) = max
A

Advsamp−dist
(Xα,Yα)α∈B

(A)

where the maximum is taken over all adversaries A making at most q queries.

We note that non-adaptive sample distinguishability—in which case the adver-
sary must announce its sequence of queries (α1, . . . , αq) before receiving any
answers—reduces to upper bounding the maximum statistical distance of the
form

∆((Xαi)
q
i=1, (Yαi)

q
i=1)

where (Xαi)
q
i=1 is the product distribution3 (Xα1

, . . . , Xαq ) and likewise for
(Yαi)

q
i=1, and with this maximum being taken over all possible sequences (α1, . . . , αq).

Since all samples are taken independently (in the adaptive as well as in the non-
adaptive game), it might intuitively seem that adapativity doesn’t help, but,
surprisingly, it does. (An example appears at the end of this section.)

Lemma 1. Let (Xα, Yα)α∈B be a set of pairs of random variables indexed by
the finite set B. Then

Advsamp−dist
(Xα,Yα)α∈B

(q) ≤ q ·max
α∈B

∆(Xα, Yα).

Proof. We use a coupling argument. For each α ∈ B, let (X̃α, Ỹα) be a maximal
coupling ofXα and Yα; this means X̃α and Ỹα are defined on the same probability
space, such that

Pr[X̃α 6= Ỹα] = ∆(Xα, Yα)

and such that X̃α is equidistributed to Xα and Ỹα is equidistributed to Yα. (That
such distributions X̃α, Ỹα exist is a standard fact.) When we sample X̃α we thus
“automatically” sample Ỹα, and vice-versa. When an adversary A interacts with
oracle (X̃α)α∈B , let bad be the event that, for one of the queries α asked by A,
X̃α 6= Ỹα (note that only X̃α is returned to A). We likewise define bad when the

3 An r.v. X of the form X = (X1, . . . , Xq) is a product distribution when the Xi’s are
independent.



adversary interacts with oracle (Ỹα)α∈B . Note that as long as bad = false, the two
oracles are equidistributed. (Indeed, the entity performing the queries is “doing
the same thing” in either world: namely, sampling the required pair (X̃α, Ỹα)
and returning the common value of this pair.) The adversary’s advantage is at
most the probability of setting bad = true which, by a union over the q queries,
is at most

q ·max
α

Pr[X̃α 6= Ỹα] = q ·max
α

∆(Xα, Yα).

Note: We believe Lemma 1 is far from tight. Moreover, it currently constitutes
the main “bottleneck” in our security bound. One could improve Lemma 1 by
showing, for example, that the advantage of an adaptive sample distinguisha-
bility adversary is upper bounded by a constant (e.g., 2) times the advantage
of a non-adaptive adversary, but we do not know of such a bound. See also the
example relating adaptivity to non-adaptivity at the end of this section.
To state our main technical result we need to define the family of pairs (Xα, Yα)a∈B
that we are interested in applying Lemma 1 to. Parameters for this family will be

N , q and t. Recall that upper bounding AdvOÕ;0n

N,t (A) for a q-query adversary A
means upper bounding A’s distinguishing advantage between two different lazy
sampling methods for a sequence of permutations P0, . . . , Pt such that

Pt(· · ·P1(P0(·)) · · · ) = id. (9)

In the following, we model the (partially defined) permutations by their associ-
ated (partial) matchings. That is, a partially defined permutation on {0, 1}n is
defined by a matching with left vertex set {0, 1}n and right vertex set {0, 1}n,
in the natural way. Composing sevaral permutations corresponds to gluing the
associated matchings side by side.

Let V0, . . . , Vt, Vt+1 be sets of vertices with |Vi| = N , and where we identify
Vt+1 with V0 (i.e., Vt+1 and V0 are two different names for the same set).

A sequence of matchings M = (M0, . . . ,M t+1) where M i is a perfect match-
ing between Vi and Vi+1 is called circular if every path starting at a vertex v ∈ V0
following the edges in M0, . . . ,M t ends at the same vertex v ∈ Vt+1 = V0. Thus,
circularity is the matching equivalent of (9).

Given a sequence M = (M0, . . . ,Mt) where each Mi is a partial matching
between Vi and Vi+1, we let

M(M)

be the set of all circular sequences M extending M , i.e. the set of all sequences
M = (M0, . . . ,M t) such that M i extends Mi for each i and such that M is
circular. We say M is consistent ifM(M) 6= ∅. (This fits our previous definition
of consistency, restricted to the case k0 = . . . = kt = 0n.)

Let a q-configuration be a pair (v0,M) such that (i) M = (M0, . . . ,Mt) is a
consistent sequence of partial matchings such that |Mi| ≤ q for all i, (ii) v0 ∈ V0
is nonadjacent to M0. Our index set B for the family of pairs (Xα, Yα)α∈B will
be exactly the set of all q-configurations. That is,

B = {(v0,M) : (v0,M) is a q-configuration}.



We now describe, for a given α = (v0,M) ∈ B, the distributions Xα and Yα.
Let α = (v0,M) be a q-configuration, M = (M0, . . . ,Mt). For any vertex

u ∈ V1 nonadjacent to M0, we write M ∪ {(v0, u)} for the sequence of partial
matchings (M0∪{(v0, u)},M1, . . . ,Mt). Let U ⊆ V1 be the set of vertices u such
that M ∪ {(v0, u)} is consistent. We define

Pr[Xα = u] :=
M(M ∪ {(v0, u)})

M(M)
.

We note that Xα is a probability distribution on U , and that Xα is equidis-
tributed to O(N, t) queried at P0(v0) with keys k0 = . . . = kt = 0n and with
P0, . . . , Pt defined such that Pi(x) = y ⇐⇒ (x, y) ∈ Mi. As for Yα, it is sim-
ply the uniform distribution on U . Thus Yα is equidistributed to Õ(N, t) under
the same correspondence. (Note the restriction to queries of the form P0(·) is
without loss of generality, since the adversary can “set up” the matchings as its
wants in the sample distinguishability game.)

The crux of our proof is the following lemma:

Lemma 2. Let q < N/100 and let t ≥ 1. Then for any q-configuration α =
(v0,M), we have

∆(Xα, Yα) ≤ 2qρ

N − 2q
.

where ρ = 2.05qt/N , with Xα and Yα defined as above.

We need two more small results before giving the proof of Lemma 2. For a
sequence of partial matchings M = (M0, . . . ,Mt), a path of length t + 1 us-
ing edges from the partial matchings M0, . . . ,Mt (possibly “wrapping around”
through V0 = Vt+1) is contradictory if it contains t+ 2 vertices (i.e., if it is not
a cycle—this is also a restatement of our previous definition of a contradictory
path, restricted to the case where the ki’s are 0n). Obviously, if a partial match-
ing contains a contradictory path it cannot be consistent. The next lemma gives
a partial converse.

Lemma 3. Let q ≤ N/3. Then a partial sequence of matchings M = (M0, . . . ,Mt)
where each Mi has at most q edges each is consistent if and only if it contains
no contradictory path.

Proof. We show that M can be extended to a circular sequence of perfect match-
ings M . The extension follows three steps: (i) for each edge in M0, if such an edge
is not already in a path of length t + 1, then we complete a non-contradictory
path of length t+1 containing that edge; (ii) we arbitrarily extend the matchings
M1, . . . ,Mt to perfect matchings M1, . . . ,Mt; (iii) we complete the matching M0

to a perfect matching M0 in the unique way that will make M = (M0, . . . ,M t)
circular.

Steps (ii) and (iii) can obviously carried out if step (i) succeeds, so it remains
to prove that step (i) is possible.

In the process of carrying out step (i), let (v0, v1) be an edge in M0 that is
not yet in a cycle, v0 ∈ V0, v1 ∈ V1. Say that a node is “free” if it is adjacent to



no edges (note that to start with, there are at least N/3 free nodes in each Vi).
Let

(v`, v`+1, . . . , vt, vt+1 = v0, v1, . . . , vk)

be the maximal path containing (v0, v1), where vi ∈ Vi, where ` ≤ t + 1 and
k ≥ 1. By assumption that there are no contradictory paths, k < `. If k = `− 1
then we can simply connect vk and v` by an edge. Otherwise, as long as there are
free nodes left in each of the layers Vk+1, . . . , V`−1, we can use these to connect
vk to v` by a path. However, we start with at least N/3 free nodes in each layer,
and we have only at most N/3 paths to create (one for each of M0). Hence such
free nodes will always exist.

The following is an elementary observation that trusting readers can take for
granted.

Lemma 4. Let a set U be the disjoint union of sets R, T , and let ρ ∈ [0, 12 ]. Let
Y be the uniform distribution over U and let X be a random variable such that
Pr[X = u1] = Pr[X = u2] for all u1, u2 ∈ R and such that

Pr[X = u1] ∈ [(1− ρ) Pr[X = u2], (1− ρ)−1 Pr[X = u2]] (10)

for all u1, u2 ∈ U . Then

∆(X,Y ) ≤ 2ρ|T |
|U |

.

Proof. We start by noting that since there must exist some u1 ∈ U such that
Pr[X = u1] ≤ 1/|U |, and also some u2 ∈ U such that Pr[X = u2] ≥ 1/|U |, the
second condition implies that

Pr[X = s] ∈ [(1− ρ)/|U |, (1− ρ)−1/|U |]

for all s ∈ U . We also note that ρ ∈ [0, 12 ] implies (1 − ρ)−1 ≤ 1 + 2ρ. Since
|Pr[X = s] − Pr[Y = s]| ≤ 2ρ/|U | for all s, the lemma obviously holds when
|T | = |U |. We can therefore assume R 6= ∅.

Let p be the probability Pr[X = u] for some u ∈ R (where by assumption
this probability does not depend on the choice of u ∈ R). We consider two cases
according to whether p ≥ 1/|U | or p ≤ 1/|U |. Assume first that p ≤ 1/|U |. Then
Pr[X = s] ≤ Pr[Y = s] for all s ∈ R, so

∆(X,Y ) = max
S⊆U

∑
s∈S

Pr[X = s]− Pr[Y = s]

= max
S⊆T

Pr[X = s]− Pr[Y = s]

≤
∑
s∈T

(1− ρ)−1 Pr[Y = s]− Pr[Y = s]

≤ |T |2ρ/|U |



as desired. If p ≥ 1/|U | then Pr[X = s] ≥ Pr[Y = s] for all s ∈ R, so

∆(X,Y ) = max
S⊆U

∑
s∈S

Pr[Y = s]− Pr[X = s]

= max
S⊆T

Pr[Y = s]− Pr[X = s]

≤
∑
s∈T

Pr[Y = s]− (1− ρ) Pr[Y = s]

≤ |T |ρ/|U |.

Proof (Proof of Lemma 2). Assume first there is a path in M1, . . . ,Mt ending
at v0 ∈ Vt+1 = V0. Then, obviously, |U | = 1 and ∆(Xα, Yα) = 0. Thus, we can
assume there is no such path.

In view of applying Lemma 4, let R ⊆ U be the set of free nodes in V1 (as
defined in the proof of Lemma 3), and let T = V1\R ≤ q. Because q < N/100 <
N/3, Lemma 3 implies that R in fact consists of all free nodes in V1. Thus
|U | ≥ |R| ≥ N − 2q, and

2ρ|T |
|U |

≤ 2qρ

N − 2q
. (11)

Put X = Xα. It is easy to check that Pr[X = u1] = Pr[X = u2] for all
u1, u2 ∈ R. Indeed, an easy path-switching argument shows that when u1, u2 ∈ R
there is a bijection betweenM(M ∪{(v0, u1)}) andM(M ∪{(v0, u2)}). In order
to apply Lemma 4 and conclude the proof it thus only remains to show that

Pr[X = u1]

Pr[X = u2]
≥ 1− ρ

for all u1, u2 ∈ U . (Note this indeed implies (10).) By definition of Pr[X = u],
this is equivalent to showing

M(M ∪ {(v0, u1)})
M(M ∪ {(v0, u2)})

≥ 1− ρ (12)

for all u1, u2 ∈ U .
For every circular matching sequence M ∈ M(M), let C(M) be the consis-

tent sequence of partial matchings obtained by restricting M to edges that are
either in M or else in a path that contains an edge in M0. Note that each partial
matching in C(M) has size at most 2q, and that the matching from V0 to V1 in
C(M) coincides with M0. Moreover, let

C(M) = {C(M) : M ∈M(M)}

be the set of all such sequences of partial matchings. We note that every element
ofM(M) extends some (in fact, exactly one) element of C(M). (Though several
elements of M(M) may extend the same element of C(M).)



Note that

|M(M ∪ {(v0, u1)})| =
∑

K∈C(M)

M(K ∪ {(v0, u1)})

|M(M ∪ {(v0, u2)})| =
∑

K∈C(M)

M(K ∪ {(v0, u2)})

Also note that neither v0 nor u1 nor u2 are endpoints of an edge in the first
matching of any K ∈ C(M), since the first matching of K is M0.

We will show (12) by showing, more strongly, that

|M(K ∪ {(v0, u1)})|
|M(K ∪ {(v0, u2)})|

≥ 1− ρ (13)

for any K ∈ C(M). The fact that K∪{(v0, u1)} and K∪{(v0, u2)} are consistent
follows from the fact that K∪{(v0, u1)}, K∪{(v0, u2)} contain no contradictory
path (completing cycles cannot add a contradictory path) and that K has at
most 2q < N/3 edges per matching.

Fix therefore K ∈ C(M) and let L1 := K ∪ {(v0, u1)}, L2 := K ∪ {(v0, u2)}.
Note that

L1 = (M0 ∪ {(v0, u1)},K1, . . . ,Kt)

L2 = (M0 ∪ {(v0, u2)},K1, . . . ,Kt)

since K = (K0 = M0,K1, . . . ,Kt). Note there is a bijection between elements of
M(Lj) and tuples (K1, . . . ,Kt) such that Ki is a complete matching extending
Ki and such that uj ∈ V1 is connected to v0 ∈ Vt+1 by a path of edges from
K1, . . . ,Kt. (This uses the fact that K is picked from C(M).) Letting Kj be the
set of such sequences (K1, . . . ,Kt) for j = 1, 2, it therefore suffices to show that

|K1|/|K2| ≥ 1− ρ. (14)

Note that any element of Kj can be “built” the following way: first we extend
each Ki, i ≥ 1, to a partial matching K ′i by adding at most one edge to Ki, such
that uj is connected by a path of edges in K ′1, . . . ,K

′
t to v0 ∈ Vt+1, and such that

each edge in K ′i\Ki (if any) is an edge on this path; second, we complete each K ′i
to a complete matching Ki, arbitrarily for each i. Furthermore, we can construct
the partial matchings K ′1, . . . ,K

′
t by the following process. We choose a path

from uj ∈ V1 to v0 ∈ Vt+1 that is compatible with the matchings K1, . . . ,Kt,
and augment these matchings by the edges on that path. More specifically, let
w1 = uj . Let t′ ≥ 1 be the smallest value such that there exists a path from
v0 ∈ Vt+1 to a vertex in Vt′ by edges in Kt,Kt−1, . . . ,Kt′ , and let wt′ ∈ Vt′ be
the endpoint of this path. (Possibly, t′ = t+ 1 and wt′ = v0.) In fact, t′ ≥ 2, as
follows from the fact that M1 and M2 are both consistent. For 1 ≤ i ≤ t′−1, we
construct wi+1 ∈ Vi+1 from wi ∈ Vi as follows: if wi is incident to an edge of the
matching Ki, let wi+1 be the other endpoint of this edge; otherwise, let wi+1

be any vertex in Vi+1 that does not lie on a path of edges in Ki+1, . . . ,Kt′−1



whose endpoint in Vt′ is not wt′ (i.e., either a path of length t′ − i − 1 starting
at wi+1 does not exist in Ki+1, . . . ,Kt′−1, or else the endpoint of this path is
wt′). It is easy to see that such a wi+1 always exists by the consistency of Mj .
Furthermore, we note for future use that wi+1 can always be chosen to be any
free vertex in Vi+1, if such a vertex exists, as long as i+ 1 < t′. Once w1, . . . , wt′

are defined, we add to Ki the edge (wi, wi+1) (if this edge is not already present)
for i = 1, . . . , t′−1, and we leave Kt′ , . . . ,Kt untouched, resulting in the sequence
of partial matchings (K ′1, . . . ,K

′
t). There is obviously, by construction, a path

from uj ∈ V1 to v0 ∈ Vt+1 using edges in K ′1, . . . ,K
′
t, and K ′i differs from Ki

only, if at all, by an edge in this path. Furthermore, any sequence of partial
matchings (K ′1, . . . ,K

′
t) can be obtained by this process.

We have described a two-stage construction of an element of Kj , whereby
the matchings K ′1, . . . ,K

′
t are first constructed (i.e., a path from uj to v0 is

first constructed, using the process described above), followed by an arbitrary
extension of these matchings to full matchings K1, . . . ,Kt. We now make a
cosmetic change to this process which will help us count the size of Kj . We will
first construct K1, then K2, etc. Let t′ and wt′ be as above; also let w1 = uj as
above. For i = 1 to t′−1 we do the following: (i) choose wi+1 as described above,
and add the edge (wi, wi+1) to Ki−1 to form K ′i; (ii) extend K ′i arbitrarily to
a full matching Ki. Finally, for i = t′ to t, let K ′i = Ki and extend K ′i to an
arbitrary full matching Ki.

The above sequence of choices determining K1, . . . ,Kt can be viewed as a
tree of depth t, whereby the i-th level of the tree corresponds to the construction
of Kt. The number of leaves in this tree is |Kj |. To upper and lower bound |Kj |
we will upper and lower bound the degree of each non-leaf node.

Let ei = |Ki| be the number of edges in Ki for 1 ≤ i ≤ t. Consider a node
r at level i of the tree (where the root has level 1). Say, first, that i < t′ − 1.
This node r specifies (among others) a choice of w1, . . . , wi, since the first i− 1
levels of the tree determine K1, . . . ,Ki−1. We distinguish two cases: when wi
is incident to an edge in Ki, and when it is not. If wi is incident to an edge in
Ki then there is a single choice for wi+1 and exactly (N − ei)! ways completing
the matching Ki, since the number of ways to complete the matching Ki is the
number of permutations on N − ei points. In this case, therefore, r has degree
(N − ei)!. In the second case, when wi is not incident to an edge in Ki, then
there are at least N − ei− ei+1 choices for wi+1, by the observation made above
that wi+1 can be any free node in Vi+1. Once wi+1 is chosen, determining K ′i,
there are (N − ei − 1)! ways to extend K ′i to Ki. Thus altogether, r has degree
at least (N − ei − ei+1)(N − ei − 1)! and at most (N − ei)!, in this case. Nextly,
when i = t′−1, we note that by construction of t′ and wt′ , wi cannot be adjacent
to an edge of Ki; in this case, therefore, r has degree (N − ei − 1)! (since there
is a unique choice for wi+1 = wt′). Finally, when i ≥ t′, r has degree (N − ei)!
since we just need to extend K ′i = Ki to Ki.



Altogether, therefore, a lower bound for the number of leaves in the tree
(i.e. a lower bound for |Kj |) is

(N − et′−1 − 1)! ·
t′−2∏
i=1

(N − ei − ei+1)(N − ei − 1)! ·
t∏

i=t′

(N − ei)!

and an upper bound for the number of leaves is

(N − et′−1 − 1)! ·
t′−2∏
i=1

(N − ei)! ·
t∏

i=t′

(N − ei)!.

Since t′ ≤ t+ 1, dividing the lower bound by the upper bound gives

t′−2∏
i=1

N − ei − ei+1

N − ei
=

t′−2∏
i=1

(
1− ei+1

N − ei
)
≥
(
1− 2q

N − 2q

)t−1 ≥ 1− 2qt

N − 2q
.

Therefore,

|K1|
|K2|

≥ 1− 2qt

N − 2q
. (15)

Since q < N/100, N − 2q > 49
50N , and therefore (2qt)/(N − 2q) < 2.05qt/N = ρ.

Thus (15) implies (14), which concludes the proof.

Lemmas 1 and 2 immediately imply:

Lemma 5. Let (Xα, Yα)α∈B be the family of random variable pairs described
before the statement of Lemma 2 (parameters for which are N, t and q), with
q < N/100. Then

Advsamp−dist
(Xα,Yα)α∈B

(q) ≤ 2q2ρ

N − 2q
≤ 2.05q2ρ

N
≤ 4.3q3t

N2

(where ρ = 2.05qt/N).

A sampling distinguishing adversary for (Xα, Yα)α∈B can obviously simu-
late a “standard” adversary for the O(N, t)-Õ(N, t) distinguishing with keys
k0, . . . , kt = 0n, with equal advantage (see the remarks before Lemma 2). Thus,
we obtain the following corollary, that completes the proof of Proposition 2.

Corollary 2. For q < N/100, we have AdvOÕ;0n

N,t (A) ≤ 4.3q3t
N2 .

An example where adaptivity helps for sample distinguishability. We
conclude by showing, for general interest, an example for which adaptivity helps
in the sample distinguishability game.

We use only two pairs of random variables (X1, Y1), (X2, Y2) taking values
in a range S = {a, b, c}. Let ε, ε′, δ > 0 with ε′ < ε. Define:

Pr[X1 = a] = 1− δ Pr[X1 = b] = 0 Pr[X1 = c] = δ
Pr[Y1 = a] = 1− δ − ε′ Pr[Y1 = b] = ε′ Pr[Y1 = c] = δ



and
Pr[X2 = a] = 1

2 + ε Pr[X2 = b] = 1
2 − ε Pr[X2 = c] = 0

Pr[Y2 = a] = 1
2 − ε Pr[Y2 = b] = 1

2 + ε Pr[Y2 = c] = 0.

We put ε small (so that ε2 is negligible) and put ε′ = 1.99ε. We also put δ =
0.1ε2. For ε sufficiently small, we have that ε′+δ = ∆(X1, Y1) < ∆(X2, Y2) = 2ε.

We give the adversary two queries. The best non-adaptive strategy is then
for the adversary to query (X1, Y1) twice, even though ∆(X1, Y1) < ∆(X2, Y2).
Indeed, ∆(X2

1 , Y
2
1 ) ≈ 4ε′ whereas ∆(X2

2 , Y
2
2 ) ≈ 4ε < 4ε′ and ∆(X1X2, Y1Y2) ≈

6ε < 4ε′.
On the other hand, choosing (X1, Y1) twice can be improved upon with an

adaptive strategy, since if the adversary sees c after its first query to (X1, Y1) it
is better for the adversary to query (X2, Y2), given that ∆(X1, Y1) < ∆(X2, Y2)
and that Pr[X1 = c] = Pr[Y1 = c].

B Proof of Theorem 2

Consider a fixed point (β0, βt), β0, βt 6= 0, in the Fourier spectrum for the t-round
key-alternating cipher with keys K := (k0, . . . , kt). Denote by βi, 1 ≤ i < t, the
intermediate selection pattern at the addition of ki, and set β := (β1, . . . , βt−1)
and Γ := (β0, . . . , βt). By the theorem of trail composition (Theorem 7.8.1
in [13]), we have

WP1,...,Pt
β0,βt

[K] = 2n(1−t)
∑
β

WP1

β0,β1
· · ·WPt

βt−1,βt
· (−1)Γ

TK , (16)

with WPi
βi−1,βi

denoting the Fourier coefficient of Pi at point (βi−1, βi). For each
β 6= 0, define the random variable Xβ as

Xβ := WP1

β0,β1
· · ·WPt

βt−1,βt
· (−1)Γ

TK , (17)

so that
WP1,...,Pt
β0,βt

[K] =
∑
β

Xβ . (18)

If, for any given key K, the quantities ΓTK behave independently over different
β, as assumed in the claim of the theorem, we have that

Xβ ∼K WP1

β0,β1
· · ·WPt

βt−1,βt
· (−1)r, (19)

with r ∼ Bern( 1
2 ), where the distribution is taken over the keys, and Bern(p)

denotes the Bernoulli distribution with success probability p.
Note that E[Xβ ] = 1

2 (WP1

β0,β1
· · ·WPt

βt−1,βt
− WP1

β0,β1
· · ·WPt

βt−1,βt
) = 0. The

variance of Xβ is given by

Var[Xβ ] =
1

2

(
WP1

β0,β1
· · ·WPt

βt−1,βt

)2
+

1

2

(
−WP1

β0,β1
· · ·WPt

βt−1,βt

)2
=
(
WP1

β0,β1
· · ·WPt

βt−1,βt

)2
.



Furthermore, with b := 2tn + 1, we have

lim
m→∞

Pr(|Xm| < b) = 1, (20)

as each of the t multiplicands WPi
βi−1,βi

of Xm are bounded by 2n. On the other

hand, the variance of all partial sums is unbounded by assumption (6) that

Varβi−1,βi

[
WPi
βi−1,βi

]
≥ 2n/2 and a standard comparison test:

lim
m→∞

m∑
i=1

2n/2 =∞ =⇒ lim
m→∞

Var

[
m∑
i=1

Xi

]
= lim
m→∞

m∑
i=1

Var [Xi] =∞. (21)

A sequence of independent (one can consider the Xβ as independent since the
signs are independent) random variables fulfilling (20) and (21) obeys the Lin-
deberg formulation of the central limit theorem [31, p. 488] (note that though
we operate with finite numbers of summands, the conditions at infinity have
to be checked for any application of the central limit theorem). Therefore, we
have the following approximation, since the number of summands is high (it is
exponential in n and in all interesting cases n ≥ 32):∑

β

Xβ ∼K N (0, s2) (22)

with s2 :=
∑
β Var[Xβ ]. The mean of s2 over all permutations Q1, . . . , Qt can

now be determined as EQ1,...,Qt [s
2] = EQ1,...,Qt

[∑
β

(
WQ1

β0,β1
· · ·WQt

βt−1,βt

)2]
=∑

β EQ1,...,Qt

[(
WQ1

β0,β1
· · ·WQt

βt−1,βt

)2]
=
∑
β VarQ1,...,Qt

[
WQ1

β0,β1
· · ·WQt

βt−1,βt

]
+(

EQ1,...,Qt

[
WQ1

β0,β1
· · ·WQt

βt−1,βt

])2
by linearity of expectation and definition of

variance. By Fact 1,WQi
βi−1,βi

∼Qi N (0, 2n) = 2n/2N (0, 1) for each i, soWQ1

β0,β1
· · ·WQt

βt−1,βt
∼

2t(n/2)N (0, 1) · · · N (0, 1), where the product is over t standard normal distribu-
tions. The mean of this distribution is zero, and the variance of the product
of two independent standard normal distributions Z := N (0, 1)N (0, 1) can be
calculated via its moment-generating function

MZ(y) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−
1
2x

2
1− 1

2x
2
2eyx1x2 dx1 dx2 =

1√
1− y2

.

Expanding the logarithm of MZ(y) in a power series in y, we find

ln(MZ(y)) =

∞∑
n=0

mn
yn

n!
=

∞∑
k=1

1

2k
y2k =

1

2
y2 +

1

4
y4 + · · · ,

and therefore Var[Z] = 1. The same applies to t > 2. Consequently, VarQ1,...,Qt

[
WQ1

β0,β1
· · ·WQt

βt−1,βt

]
=

(2t(n/2))
2 · 1 = 2tn for each β. Note that we have (2n− 1)t−1 values of β with no

βi = 0, so E[s2] = (2n − 1)t−12nt.



Recall from (7) that for the t-round cipher with the permutations P1, . . . , Pt,
we have that s2 =

∑
β Var[Xβ ] = (1 + ε) EQ1,...,Qt [s

2]. The distribution of

WP1,...,Pt
β0,βt

over all keys is therefore given by

WP1,...,Pt
β0,βt

∼K 2n(1−t)N (0, (1 + ε)(2n − 1)t−12nt)

= N (0, (1 + ε)

(
2n − 1

2n

)t−1
2n),

as claimed. ut
We require condition (6) essentially to ensures that we sum over sufficiently

many possible selection patterns for β such that we can invoke the central limit
theorem. This in particular excludes the trivial case where all Pi are linear, in
which their variances would be zero, and the sum in (16) would only have one
summand.

C Attacks on the variants of the double construction

C.1 Attack on variant with Q = P and k0 ⊕ k2 = α known

This variant succumbs to a (variant of the) slide attack. The assumptions of the
attack are that P = Q and that k0 ⊕ k2 = α is known.

Slide attacks consider slid pairs. A slid pair is a pair of encryptions such that
an intermediate value in one encryption equals the plaintext value of the other
encryption.

In our case a slid pair is two encryptions (m, c) and (m̃, c̃) such that

P (m⊕ k0) = m̃⊕ k0 ⊕ k1 (23)

P (c⊕ k1 ⊕ k2) = c̃⊕ k2. (24)

Since P is bijective this is the same as

P (m⊕ k0) = m̃⊕ k0 ⊕ k1 (25)

P−1(c̃⊕ k2) = c⊕ k1 ⊕ k2. (26)

This implies that for a slid pair it holds that

P (m⊕ k0)⊕ P−1(c̃⊕ k2) = c⊕ m̃⊕ α (27)

In an attack one tries to identify a slid pair, which gives candidate values for
the secret key. The attack proceeds as follows.

1. Compute a sorted table T consisting of the elements bi = P (ai) ⊕ P−1(ai)
for i = 1, . . . , 2n/2, where ai are randomly chosen values.

2. Get the encryptions ci for 2n/2 arbitrary messages mi for i = 1, . . . , 2n/2.
3. Get the decryptions m̃i for ciphertexts c̃i, where c̃i = mi ⊕ α for i =

1, . . . , 2n/2.



4. Find pairs (i, j) such that ci ⊕ m̃i ⊕ α = bj .
5. For each match:

(a) Set k′2 = c̃j ⊕ ai;
(b) Set k′0 = mj ⊕ ai;
(c) From one encryption (m′, c′), compute k′1 from (k′0, k

′
2), i.e., k′1 = P (m′⊕

k′0)⊕ P−1(c′ ⊕ k′2);
(d) Test the computed values (k′0, k

′
1, k
′
2) one additional encryptions.

We expect to get one slid pair in the above collection of known and chosen texts.
There may be other matches but they are easily discarded in a test on additional
encryptions.

This is a chosen ciphertext attack of complexity roughly 2n/2. (There is a
similar attack which uses chosen plaintexts instead of chosen ciphertexts.)

C.2 Attack on variant with Q = P−1

Note that this variant has a key size of 3n. A meet in the middle attack has
complexity 2n.

Here is an attack which finds n bits of the key using 2n/2 encryptions. After
that, one can easily distinguish the cipher from random.

Set k0 ⊕ k2 = α. Let (m, c) and (m′, c′) be two arbitrary encryptions, where
m 6= m′. It follows that if m ⊕ c′ = α, then this implies that m′ ⊕ c = α. In a
chosen plaintext-ciphertext attack, one can find α using 2n/2 queries.

1. Choose 2n/2 messages, mi = (i | m0), where i = 1, . . . , 2n/2 and m0 is an
(n/2)-bit constant. Get the corresponding encryptions ci.

2. Choose 2n/2 ciphertexts, c′j = (c0 | i), where i = 1, . . . , 2n/2 and c0 is an
(n/2)-bit constant. Get the corresponding messages m′j .

3. Find a match (i, j) such that mi ⊕ ci = m′j ⊕ c′j . For each match compute a
candidate value of k0 ⊕ k2 = mi ⊕ c′j .

4. Note that α will appear as one of the candidate values in the previous step.
Repeat the attack, until only one candidate value, namely α, remains.

When the value of α is found, the cipher is easily distinguished from the
ideal cipher. Let m be a message and c the corresponding ciphertext. Then the
message c⊕ α will be encrypted to m⊕ α.

C.3 Related-key attacks

In certain scenarios one considers also related-key attacks where the adversary is
allowed to get encryptions under several related keys. In the case where all round-
keys are independent, related-key attacks exist trivially. Thus, we here focus on
the case of identical round-keys. Furthermore, we restrict to the case of t = 2,
as this is the case which is most relevant for practical purposes. The following
attack requires that an attacker can get encryptions under a key k = (k0, k0, k0)
and under a key k̃ = (k0 ⊕ α, k0 ⊕ α, k0 ⊕ α) for a known value of α.



1. Assume that attacker can get encryptions under k and under k̃ for a known
and fixed value of α.

2. Compute a sorted table T with entries P (x)⊕ P (x⊕ α)⊕ α for 2a distinct,
randomly chosen values of x.

3. Choose 2b messages mi and get the corresponding encryptions ci under k.
4. Choose 2b messages m̃i = mi ⊕ α0 and get corresponding encryptions c̃i

under k̃.
5. Find a match between the values ci ⊕ c̃i and the values in T .
6. For each match, find potential values of the key and test these values on

further encryptions.

Following the birthday bound, using roughly a = b = n/2 one gets a probability
of success of about one half.

D Implementation of AES2 with AES-NI

On the Westmere architecture generation of Intel general-purpose processors,
AES2 can be implemented using the AES-NI instruction set [18]. Since the key
schedule for the 22 AES round keys can be precomputed, the cipher basically
only consists of 18 aesenc and 2 aesenclast instructions, bracketed by 5 XORs
with the three keys k0, k1, k2 and the two (constant) first AES subkeys. The
AES round instructions are pipelined, with a documented latency of 6 cycles
and throughtput 2. Practical measurements using recent Westmere processors
indicate an actual latency of 4. Therefore, we can fully utilise the pipeline by pro-
cessing multiple independent plaintext blocks in parallel in the basic electronic
codebook mode (ECB) and counter mode (CTR).

All performance figures were obtained by using one core, with hyperthreading
and Turbo Boost disabled to ensure fair comparison.


