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Abstract

Computational extractors are efficient procedures that map a source of sufficiently high min-
entropy to an output that is computationally indistinguishable from uniform. By relaxing the
statistical closeness property of traditional randomness extractors one hopes to improve the effi-
ciency and entropy parameters of these extractors, while keeping their utility for cryptographic
applications. In this work we investigate computational extractors and consider questions of
existence and inherent complexity from the theoretical and practical angles, with particular
focus on the relationship to pseudorandomness.

An obvious way to build a computational extractor is via the “extract-then-prg” method:
apply a statistical extractor and use its output to seed a PRG. This approach carries with it the
entropy cost inherent to implementing statistical extractors, namely, the source entropy needs
to be substantially higher than the PRG’s seed length. It also requires a PRG and thus relies
on one-way functions.

We study the necessity of one-way functions in the construction of computational extractors
and determine matching lower and upper bounds on the “black-box efficiency” of generic con-
structions of computational extractors that use a one-way permutation as an oracle. Under this
efficiency measure we prove a direct correspondence between the complexity of computational
extractors and that of pseudorandom generators, showing the optimality of the extract-then-
prg approach for generic constructions of computational extractors and confirming the intuition
that to build a computational extractor via a PRG one needs to make up for the entropy gap
intrinsic to statistical extractors.

On the other hand, we show that with stronger cryptographic primitives one can have more
entropy- and computationally-efficient constructions. In particular, we show a construction of
a very practical computational extractor from any weak PRF without resorting to statistical
extractors.
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1 Introduction

Randomness extractors (or simply ‘extractors’) are algorithms that map sources of sufficient min-
entropy to outputs that are statistically close to uniform. Randomness extraction has become a
central and ubiquitous notion in complexity theory and theoretical computer science with innu-
merable applications and surprising connections to other notions. Cryptography, too, has greatly
benefited from this notion. Cryptographic applications of randomness extractors range from the
construction of pseudorandom generators from one-way functions to the design of cryptographic
functionalities from noisy and weak sources (including applications to quantum cryptography) to
the more recent advances in areas such as leakage- and exposure-resilient cryptography, circular
encryption, lattice-based cryptosystems, and more. Randomness extractors have also found impor-
tant uses in practical applications, particularly for the construction of key derivation functions. In
many of these cryptographic applications, the defining property of randomness extractors, namely,
statistical closeness of their output to a uniform distribution, can often be relaxed and replaced
with computational indistinguishability. Extractors that provide this relaxed guarantee are called
computational extractors, and they are the main object studied in this paper.

Let us review informally some basic facts about statistical extractors and the associated param-
eters n,m, k,0. A function Ext : {0,1}" x {0,1}* — {0,1}™ is a (k,279)-statistical extractor if for
any distribution X on {0, 1}" with min-entropy k, the statistical distance between Ext(X,Uy) and
U, is at most 27, where Uy, U, denote the uniform distribution over {0, 1}, {0,1}™, respectively.
Note that extractors are randomized via the second argument called a seed or key (in our actual
definitions we require the seed to be output, i.e., the so called strong extractor). We are interested
in extractors where the values k and 27 are as small as possible (i.e., we want to minimize the
entropy requirement from the source and get as small as possible statistical distance of the output
to uniform). It is known how to construct statistical extractors that achieve 6 = (k + ¢ — m)/2
[NZ96, HILL99]. Radhakrishnan and Ta-Shma [RTS00] show that this bound on § is optimal, by
showing how to build, for every extractor with parameters as above, a source distribution of min-
entropy k for which the output of the extractor is 2~°-far from uniform for § = (k + ¢ —m)/2. In
the sequel we refer to this as the RT bound.

A major motivation to study computational extractors is that they allow us to go beyond the
RT bound by replacing statistical closeness to uniform with computational indistinguishability. In-
deed, an obvious way to do so is to first use a statistical extractor applied to the source distribution
to obtain a short statistically close-to-uniform string and then use this string as a seed to a pseu-
dorandom generator (PRG) to obtain more bits that are indistinguishable from uniform. We will
refer to this as the extract-then-prg approach.

While the latter is a natural way to build computational extractors, it is not the only one or
necessarily the best one, especially when implemented in practical settings. In particular, this
approach carries with it the entropy limitations of statistical extractors as set by the RT bound, a
serious concern in cases where the entropy of the source is too small to produce (via the statistical
extractor) a sufficiently long key for the PRG. For example, consider the use of an extractor to
convert a 160-bit elliptic curve Diffie-Hellman value (which by the DDH assumption has 160 bits
of computational min-entropy) into a 128-bit seed for an AES-based PRG. Applying a statistical
extractor to the DH value only guarantees a poor indistinguishability bound of 2716 (ie., § =
(160 — 128)/2). If we wanted to preserve, say, 100-bit security we would need § = 100 bringing the
required source entropy to 328 (= 128 4 2 - 100).



One way around this problem is to build dedicated computational extractors based on crypto-
graphic functions. Such an approach is taken in [Kral0, DGH'04], where computational extractors
are built using specific schemes (HMAC and CBC) under assumptions that are specific to these
schemes (and directed to the use of these extractors in the context of key derivation functions)
including random-oracle type assumptions. On the other hand, the recent results of [BDK'11]
show that for some key derivation applications one may relax the entropy requirements dictated by
the RT bound (see more discussion on these issues in Section 7).

In this work, we further investigate computational extractors and consider questions of exis-
tence and inherent complexity from the theoretical and practical angles, with particular focus on
the relationship to pseudorandomness. In particular, we ask how intrinsic is the use of pseudo-
randomness in constructing computational extractors, to what extent can we build computational
extractors without resorting to a statistical extractor, and whether the “entropy penalty” of the
extract-then-prg approach is avoidable.

Our Results

On the existence of computational extractors. The most basic question with respect to computa-
tional extractors is whether they exist at all and if they do under what (if any) assumption. The
trivial answer is affirmative: statistical extractors are also computational. But we are interested
in non-trivial computational extractors that output “more bits” than a statistical one. To capture
this, we define the notion of stretch. For a security parameter p consider an extractor acting on
a k(p)-entropy source: its stretch o is the difference between the extractor’s output length and
its input’s min-entropy, i.e., o(p) = m(p) — k(p) — £(p). Computational extractors with negative
stretches of the form! —w(log p) exist unconditionally since a statistical extractor (that matches the
RT bound) generates an output that is 2—«(ogP)_close to uniform and therefore is computationally
indistinguishable from uniform. Thus, non-trivial computational extractors are those for which the
stretch is at least —O(logp): we call such stretches and their associated extractors proper. The
fact that proper computational extractors can be built on the basis of one-way functions via the
extract-then-prg approach, raises the fundamental question: Are one-way functions necessary for
building proper computational extractors? One would expect the answer to be “of course they are!”.
However, we can only provide a partial answer: We can show this to be the case for proper extrac-
tors of positive stretch. But for stretches in the range between —O(log p) and 0 the question remains
open. Interestingly, however, we can provide an affirmative answer under the assumption that the
RT bound applies to efficiently samplable distributions. We refer to this as the SRT Assumption
(see details in Section 3):

SAMPLABLE RT (SRT) ASSUMPTION. Let Ext : {0,1}" x {0,1}* — {0,1}™ be a poly-time
computable statistical extractor. Then, for k < n there exists a poly-time samplable source X

of min-entropy k such that the statistical distance between the distributions Ext(X,U;) and Uy, is
at least 2~ Ok+t=—m)

In other words, the SRT assumption strengthens the RT bound by requiring it to hold even
if we restrict our attention to efficiently samplable distributions. On the other hand, it weakens
the RT bound by only requiring it to hold for efficient extractors and by reducing the lower bound
requirement to 2-¢* ™) for gny constant ¢ (in the RT bound, ¢ = 1/2). To the best of our
knowledge, the validity of this assumption has not been settled. Interestingly, given our results,

'w(+) stands for any superlinear function (i.e., one that grows faster than any linear function of its argument).



any resolution of the assumption will have significant consequences. Disproving the assumption
would open the door to the possibility of more effective statistical extractors for applications that
are only concerned with efficient sources; e.g., it would mean that extractors based on the Leftover
Hash Lemma may not be the best in practice (a surprising conclusion that may actually indicate
the plausibility that the SRT does hold). And if the SRT assumption does hold, then our work
settles affirmatively the question of existential equivalence of proper computational extractors and
one-way functions.

Black-box constructions of proper extractors from OWPs.  After investigating the relationship
between proper extractors and one-way functions, we examine the question of whether we can have
black-box constructions of proper extractors from OWPs that are more efficient than going through
the extract-then-prg approach. As the measure of efficiency we use “OWP-complexity”, namely,
the number of invocations to the OWP in a black-box construction, following [GGKT05]. We
prove a lower bound on the OWP-complexity of black-box constructions of proper extractors from
OWPs. We show that, under the SRT assumption, the OWP-complexity of the extract-then-prg
construction is optimal by showing a tight lower bound on the number of invocations to the OWP
for any black-box construction of proper extractors from OWPs. Interestingly, this result confirms
the intuition that in order to build a proper computational extractor one needs to make up for the
entropy gap intrinsic to the RT bound (as explained above).

The above result applies to any black-box construction of a proper extractor that has oracle
access to a OWP and it puts no restriction on the security reduction (which efficiently transforms
an extractor-attacker into a OWP-attacker). A more restricted form of black-box constructions,
known as fully black-box, also requires that the reduction between attackers be black-box (i.e., the
reduction cannot access the code of the extractor-attacker). Interestingly, we prove a similar bound
for fully black-box constructions, but unconditionally, i.e. without a need for the SRT assumption.
Thus, we trade the more restricted form of black-box reduction for a lower bound that fully dispenses
with the SRT assumption. (For a thorough treatment of the semi- and fully-black-box notions and
their meanings and implications please refer to [RTV04].)

Constructions based on Stronger Primitives. Next, we investigate the possibility of avoiding the
intrinsic entropy loss in the generic extract-then-prg construction by assuming stronger primitives
as the basis for the construction.

Our first result in this direction shows that given an exponentially-hard OWP, one can build
a proper computational extractor where the OWP is applied directly to the high-entropy source
without having to go through an initial extraction phase, hence avoiding the need to compensate
for the entropy gap of the extractor. In order to achieve this result we replace the standard extract-
then-prg approach with a dual prg-then-extract scheme that exploits the exponential hardness of
the OWP to build a PRG that uses as its seed the very input from the high-entropy source.?

A practical computational extractor based on wPRF. We show a very simple construction of com-
putational extractors based on weak pseudorandom functions (i.e., PRFs whose output is indistin-
guishable from uniform by adversaries that only see values of the function computed on random
independent inputs). For this we resort to a lemma by Pietrzak [Pie09] showing that weak PRFs
retain some of their security even when the keys are chosen from an imperfect source. More specif-

2This construction is somewhat reminiscent of the techniques used by Kalai et al. in [KLRO09] for building two-
source or network extractors, though the context and goals of these constructions are different.



ically, [Pie09] shows that if the original keys are of length n but they are chosen from a source
with min-entropy k& < n then their security degrades roughly by an (optimal) factor of 9~ (n—k),
This allows us to construct (strong) computational extractors where the source distribution is used
to sample a key for the PRF and the extractor’s random seed is used as an input to the PREF.
This results in a very practical construction of computational extractors that fully dispenses with
statistical extractors and perfectly fits the needs of randomness extraction in the context of key
derivation functions (KDF) as studied in [Kral0O] and as extensively used in real-world applica-
tions. In particular, one obtains a very practical KDF for cases where the input to the KDF (the
source of key material) is at most of the size of the wPRF key. The security of the scheme solely
depends on the security of the underlying (weak) PRF and it implies meaningful security bounds
even in constrained cases where the entropy-output gap is small (or even negative). See Section 7
for details.

Relations to work on statistical extractors. While a main theme of our work is the role of pseudo-
random generators in the construction of computational extractors, it is interesting to point out that
pseudorandomness also plays a fundamental role in the development of statistical extractors. Start-
ing with the work of Trevisan [Tre01] it has been realized that constructions of “non-cryptographic”
pseudorandom generators such as [NW88, IW97] can lead to efficient statistical extractors. The no-
tion of pseudorandomness in these works is usually weaker than the traditional cryptographic notion
(that we use in our definition of computational extractors), e.g., they allow for super-polynomial
(on the seed length) running time or consider more limited adversaries. Also the focus on efficiency
in statistical extractors has traditionally been geared towards minimizing the size of the random
seed as this determines the utility of these extractors in derandomization applications. See [Sha02]
for a survey of results in this area. It would be very interesting to find closer relations between
results in the above area and the questions raised by our work. In particular, in spite of the large
body of work on statistical extraction, there seems to be little work that investigates statistical
extractors against (efficiently) samplable sources. The only paper on the subject that we are aware
of is by Trevisan and Vadhan [TV00] who show that if we only care about samplable distributions
we can use deterministic extractors; however, this only works as long as the sampler of the source
is computationally weaker than the extractor itself. Indeed, [TV00] shows that if we allow the
source to depend on the extractor and to have higher computational complexity then deterministic
extraction is not possible. In terms of our SRT assumption, what this shows is that the SRT does
apply to deterministic extractors (for each such extractor there is a samplable source where the
extractor fails). For all we know, the seemingly fundamental question of the entropy bounds that
apply to statistical extractors when acting on samplable sources has not been studied. We hope
that our work will provide motivation to investigate this question.

2 Proper Computational Extractors

We recall the definitions of statistical extractors, define proper computational extractors and give
some of their basic properties. All extractor definitions presented here are stated in an asymptotic
setting; in Section 5 we provide definitions in a concrete-complexity framework.



2.1 Preliminaries

Terminology. A probability ensemble X is an infinite sequence of probability distributions
{X,} indexed by a parameter p. We usually assume that for all p, X, has support in {0, )
where n(-) is a polynomially bounded function. For any integer ¢ we use the symbol U; to de-
note the uniform distribution on {0,1}!. The statistical distance between two probability en-
sembles X,Y with common support ensemble {0,1}"®) is defined as the function A xy(p) =
maxyc o 13n) |Pr[Xp € T] = Pr[Y, € T]|. We say that a distribution X has min-entropy k(p) if for

all z in the support of X, it holds that Pry, [z] < 2-k(®) . For simplicity, in what follows we assume
that the entropies denoted k(p) are positive integers (in case k(p) is not an integer, our results hold
by replacing it with [k(p)]).

Definition 1 An extractor family (or simply extractor) is an infinite family E = {E,}, in-
dexed by a parameter p, of the form E, : {0, 137 % {0,1}4P) — {0,13™®P) where the functions
n(p),£(p), m(p), are all polynomial in p. The extractor family E is called (k(p),e(p))-statistical if
for any probability ensemble X with support in {0,13"P) and min-entropy k(p), it holds that the
statistical distance between (Uyp), Ep(Xp, Uyp))) and Ugp)1m(p) 5 at most e(p).

The probability distribution from which the first input is taken is called the source and the
second input is the seed. This definition of an extractor, requiring the joint distribution of output
and seed to be ¢ statistically-close to uniform, is sometimes referred to in the literature as a strong
extractor. A weaker flavor of this definition, referred to as a weak extractor, is one where one
only considers the distance between the output E,(Xp, Uy)) and the uniform distribution Uy,
(without the seed, which may remain hidden). In this paper, unless otherwise noted, an “extractor”
refers to a strong extractor.

Intuitively, the goal of an extractor is to extract close-to-uniform bits out of a source with
sufficiently high min-entropy, using a “short” uniformly random seed. We require that the output
is longer than the seed,® specifically that m(p) > £(p) + 1.

Ideally, we’d like to extract all the randomness from the input, getting m = k + £ truly uniform
bits (with e = 0). However, this is impossible in general. From the results of [RTS00, NZ96, HILL99]
we have the following lemma (which holds even for weak extractors) showing a tight relationship
between how much of the input entropy k + ¢ can be extracted, and the distance ¢ from uniform.

Lemma 1 (RT Bound [RTSO00]) Let E be a (k(p),e(p))-statistical extractor with parameters

E(p)+e(p)—m(p)+01)

n(p), £(p), m(p) where k(p) < n(p) — O(1)* and e(p) < 1/2. Then e(p) > 2~ 2 . That
is, for every such E there is a probability ensemble X with min-entropy k(p) for which Ey(Xp, Uyp)

k(p)+£(p)—m(p)
2

has statistical distance min{%, 2- } from Uy, py- This bound is tight and achieved, in par-
ticular, by statistical extractors implemented via pairwise independent hash functions.

2.2 Proper Computational Extractors and Proper Stretch

We start by defining computational extractors, which differ from statistical ones in that the output
is only required to be computationally indistinguishable from uniform rather than statistically close,

3Without this condition, the trivial extractor that outputs its seed works for any source (even with 0 entropy).
“The symbol O(1) represents a specific constant calculated in [RTS00].



the extractor itself needs to be efficient, and it is only required to work on efficiently samplable
distributions.

Definition 2 A family E of extractors is called k(p)-computational if E,, is polynomial-time com-
putable, and for all efficiently-samplable probability ensembles X with min-entropy k(p), the joint
distribution (Uyy, Ep(Xp, Ugpy)) is computationally indistinguishable from Uyp) m p)-

In this definition “efficiently samplable” means samplable by a polynomial-time algorithm and
“computationally indistinguishable” refers to the regular notion of negligible advantage for all
polynomial-time distinguishers. In a non-uniform setting, polynomial-time is be replaced by poly-
size circuits.

Discussion: The defined notion corresponds to a strong extractor (see Section 2.1). A weak compu-
tational extractor is defined similarly but only requiring that the output Ej,(Xp, Uy)) (without the
seed) is indistinguishable from uniform. Although our lower bounds hold even for weak extractors,
we focus our treatment on strong extractors, because in the computational setting, weak extractors
are not very interesting. Indeed, any PRF is, by definition, a weak computational extractor that
works for any source distribution.

We require the output of the computational extractor to be pseudorandom only when the input
is an efficiently samplable distribution. Indeed, for computational uses (where we model feasible
computation as polynomial-time) a hard-to-sample distribution is of little interest. In particular,
we would not want to disqualify a good computational extractor just because it fails on a hard
to compute source. Also, samplable sources allow to use the same seed — as long as it has been
chosen at random and independently of the source — with multiple samples (this is crucial in some
applications, including key derivation as discussed in Section 7).

At the same time, it is worth noting that we could consider a flavor of our definition where
efficient samplability is replaced with oracle access (for the attacker) to an arbitrary distribution.
The lower-bound results from Sections 3 and 4 hold for this definition, while the upper bound from
Lemma 7 holds as long as the OWP is secure against non-uniform attackers (non-uniformity is
necessary to argue that access to a hard-to-compute distribution does not help the attacker break
the OWP or other primitives such as a PRG). Finally, we note that for our results on fully black-
box reductions from Section 5, we do consider the latter setting, namely, arbitrary distributions to
which the attacker gets oracle access.

It is clear that any efficient (k(p),e(p))-statistical extractor for a negligible ¢(p), is also a k(p)-
computational extractor. Thus, the upper bound of Lemma 1 implies the following.

Lemma 2 There exist extractors with parameters n(p),£(p), m(p) that are k(p)-computational for
any k(p) < n(p) — O(1) such that

k(p) = m(p) = £(p) + w(logp) (1)

. . s . _ k(@) +t(p)—m(p)

Proof: Consider any efficient (k(p),e(p))-statistical extractor with £(p) = 2 2 (e.g.,
via pairwise independent hash functions). For k(p) as in Equation (1), e(p) is 27<(°8P) which is
negligible, hence the extractor is k(p)-computational. [ |

Note that the Lemma is unconditional, i.e., computational extractors with parameters as in (1)
exist unconditionally. In this sense, non-trivial computational extractors are those whose parame-



ters beat (1), and in particular have an output that is (indistinguishable from but) statistically far
from uniform. We call such extractors proper, defined as follows.

Definition 3 The stretch o(p) of a k(p)-computational extractor with parameters n(p), £(p), m(p)is
defined as o(p) = m(p) — k(p) — €(p). The stretch o(p) is proper if o(p) > —O(logp) (i.e., there
exists a constant ¢ such that o(p) > —clogp for all p). A k(p)-computational extractor is proper if
its stretch is proper.

Note that the stretch does not only depend on the extractor but also on the input entropy k(p)
(though, for simplicity, we sometimes omit the explicit k(p) notation when talking about proper
extractors). Since, for simplicity, we have assumed that k(p) is integer (or else we consider [k(p)])
then the stretch is integer and can be negative, zero, or positive. Hereafter, when we say “proper
extractor” we mean “proper computational extractor.”

3 The Equivalence of Proper Extractors and One-Way Functions

. c . . . _k(@)+ep)—m(p)
Note that statistical extractors have statistical distance from uniform of at least e(p) = 2 B

which is 1/poly(p) (hence non-negligible) in the case of proper extractors. Thus, statistical extrac-
tors do not immediately yield proper computational extractors.

This raises the question: Do proper computational extractors exist? The following Lemma
answers this in the affirmative, assuming one-way functions exist.

Lemma 3 If one-way functions exist then strong proper computational extractors exist too.

Proof sketch: Let £ = {E,} be a k(p)-computational extractor with parameters n(p), £(p), m(p)
for which equation (1) holds (such an extractor exists for any functions m(p), k(p) as in Lemma 2).
Also assume w(logp) < p. Let {G,} be a pseudorandom generator with seed length m(p) and
output length k(p) + £(p) (assuming OWFs, PRGs exist for some function m(p) and output length
m(p) + p). Construct extractor E’ that first applies E and uses the output to seed the PRG. It is
easy to see that F has parameters n(p), £(p), m’(p) = k(p) +£(p) and its output is indistinguishable
from U,y But m/(p) = k(p) + £(p), thus E’ is proper. [ ]

Somewhat surprisingly we can’t immediately prove equivalence between proper extractors and
one-way functions. The opposite direction of Lemma 3 can be easily proven only for proper com-
putational extractors with positive stretch as shown in the following Lemma.

Lemma 4 From any (even weak) computational extractor with positive stretch one can build a
pseudorandom generator.

Proof sketch: Let E be a k(p)-computational extractor with parameters n(p), £(p), m(p) and
positive stretch o(p), i.e. m(p) > k(p) + £(p). We build a PRG G with random seeds of length
s(p) = k(p) + £(p) and output length m(p) > s(p). G partitions its seed into a k(p)-long value z
and an /(p)-long value y, and calls E on (2, y) where 2’ consists of x padded with n(p) — k(p) zeros.
Clearly, the input distribution to E has entropy k(p), hence its output is pseudorandom. Since G
outputs more bits than its seed then G is a pseudorandom generator. |



The last two lemmas leave the following question: Does the existence of proper computational
extractors, even those with non-positive proper stretch imply the existence of one-way functions?
In particular, is this the case for computational extractors of stretch 09 To provide an affirmative
answer we need to resort to an additional assumption about the RT bound.

Samplable RT (SRT) Assumption. For every polynomial-time computable extractor E with
parameters n(p), £(p), m(p) and every function k such that k(p) < n(p) — O(1), there exists a poly-
time samplable probability ensemble X of min-entropy k such that the statistical distance between
the distributions Ep(Xy, Uyp)) and Uy, is at least min{3, 2~ Ok(p)+e(p)=m(p))}

In other words, we are assuming that if we restrict attention to efficiently samplable sources
then the RT bound still applies. More accurately, we assume a weaker bound where the RT bound
9= 3 (k(P)HP)-m(P)) i replaced with 2¢ k®)+@)=m(p)) for any constant ¢, possibly much larger than
1/2. In addition, we assume this to be the case only for efficient extractors®. This assumption is
not implied by the proof in [RT'S00] which builds a source on which the extractor incurs the claimed
bound but this source may not be efficiently samplable. Quite interestingly, the question raised
by this conjecture does not seem to have been widely researched. Any answer to it, positive or
negative, would be of interest. If true it implies the equivalence of proper computational extractors
and pseudorandom generators (see Theorem 1). If disproven it would open the possibility of building
efficient extractors that beat the RT and Leftover-Hash-Lemma bounds on efficient sources.

Lemma 5 Under the SRT assumption, the existence of a proper extractor implies the existence of
a OWF.

Proof sketch: Let E be a proper k(p)-computational extractor and let X be a polynomial-time
samplable ensemble of min-entropy k(p), then the output of E on X induces a polynomial-time
samplable distribution that is statistically far from uniform but computationally indistinguishable.
Thus, the pair of distributions (Ep(Xp, Uyp)), Un(p)) are efficiently samplable, have statistical dis-
tance greater than 1/poly(p) for some polynomial and are computationally indistinguishable. Using
the results of [Gol90, HILL99], constructing such a pair of distributions is sufficient to construct

pseudorandom generators (PRG). This in turn implies the existence of OWF. [ |

From Lemmas 3 and 5 we get:

Theorem 1 Under the SRT assumption, proper computational extractors exist if and only if one-
way functions exist.

4 The Cost of Black-Box Constructions of Proper Extractors from
OWPs

In this section we follow the methodology from [GGKTO05] for quantifying the cost, as a number
of OWP invocations, of (semi) black-box constructions of proper computational extractors from
OWPs. We show a lower bound on the number of calls to the OWP that depends on the strength of

5Tt is most likely (using a counting argument) that the conjecture does not hold for super-polynomial extractors,
namely, there may be inefficient extractors that beat the RT bound on all efficiently samplable distributions.



the OWP and the stretch of the extractor. This result reflects the intuition that in order to build a
computational extractor one needs to first make up for the entropy gap intrinsic to the RT bound.
Indeed, the result shows that it is not enough to call the OWP just to generate as many bits as the
extractor’s stretch but one needs to generate w(log p) additional bits to cover for the loss of entropy.
Comparing with the corresponding results of [GGKTO05] about pseudorandom generators, we see
that making up for this entropy gap is the only intrinsic difference between proper extractors and
PRGs (under this black-box complexity measure). We also prove that the lower bound is tight.

Remark: Our lower bounds deal with constructions of computational extractors from one-way
permutations. However, we note that our results extend to the case of one-way functions since our
lower bounds are proven using random permutations which are not efficiently distinguishable from
one-way functions. However we do not know if for the case of OWF our bounds are tight (i.e. the
currently known constructions based on OWEF have a larger number of queries).

In Section 3 we showed that proper extractors are equivalent to one-way functions. Here we
formalize a notion of black-box constructions for computational extractors: such constructions access
a one-way function as an oracle, rather than having access to the code of an algorithm computing
it.

We start by developing an analogue of the treatment from [GGKTO05] to the asymptotic setting
of our analysis. For any integers t,n, t < n, we denote by IL, the set of all permutations over
{0,1}"™ and by II;,, the set of permutations in II,, that arbitrarily permute the first ¢ bits of input
while leaving the remaining n — t bits fixed.

For a security parameter p denote with n(p),k(p),£(p), m(p) and t(p) integer functions that
grow polynomially in p. Assume also that ¢(p) < n(p) and k(p) < n(p) — O(1) for all p. Consider
an infinite family of permutations Il = {m,}>°, where m, is chosen in II,(). We say that II is
T'(p)-hard if for sufficiently large p, any attacker running in time 7'(p) succeeds in inverting m, with
probability less than 1/7'(p). We say that II is one-way if it is T'(p)-hard for every polynomial T'(-).

With IT* we denote such a family IT* = {r;}7°; where each permutation 7, is chosen at random
from the set IT;(,) n(p)- The following Lemma (based on [IR89]) proves that for any hardness T'(p),
if we choose t(p) = 3log T'(p) (and an additional technical condition that t(p) > 6logp), then this

family is T'(p)-hard with probability 1.

Lemma 6 Let t(p) > 6logp. Then with probability 1, II* constructed as above is T (p)-hard for
T(p) = 2'P)/3,

Proof: Let A be an adversary that runs time T'(p) and attempts to invert IT*. On expectation,
over the choice of 7, A succeeds in inverting with probability T'(p)/ 21P) = 1/T2(p), namely:

E, Pr [A(r(z)) = a]] = 1/T°(p).

O RN |
t(p),n(p) e~Up(p)

Using Markov’s inequality we have that the probability over the choice of 7, that A inverts suc-
cessfully with probability better than T'(p) - 1/T?(p) is at most 1/T(p):

Pr [ Pr [A(n(z)) =] 2 T(p) - 1/T%(p)] < 1/T(p). (2)

T () n(p) 2~Un(p)

Since by choice of ¢(p) > 6log p we have 1/T(p) < 1/p? we get that the sum > psoo 1/T(p) is finite.
The convergence of this sum allows us to apply the Borel-Cantelli Lemma to (2) which implies that
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with probability 1 over the choice of II* the inequality Pry~v,, [A(m;(2)) = x| < 1/T(p) (where
A is assumed to run time 7'(p)) holds for all but a finite number of p’s. In other words, with

probability 1 over the choice of IT*, the resultant family IT* is T'(p)-hard. |

Definition 4 An oracle extractor construction (from a one-way permutation) is a family of oracle
procedures £0) = {E,g') : {0,131 x {0,1}®) — {0,1}™P)} such that EI({) expects as an oracle
a permutation m, € Il and EI(,') is computable in time polynomial in p. We say that ) has

black-boz access to a family 11 = {m,}>2, (and denote it as EM ) if EZ(;') uses m, € II as its oracle.

We say that £ is a k(p)-computational oracle extractor if for every one-way family 11 the
family EW s q k(p)-computational extractor according to Definition 2

Another way to restate the above definition is that there must be an efficient reduction from
distinguishing the output of the extractor from uniform to inverting the permutation family. In
other words, any distinguishing adversary can be used to construct an inverter for the permutation
family. Note that the above definition formalizes the notion of semi black-box construction in
which the construction (the extractor) has oracle access to the underlying primitive (the one-way
permutation), but no restriction is made on the reduction (in particular, the reduction might be able
to access the code of the adversary). The more restricted notion of fully black-box constructions
(in which additionally the security reduction only has oracle access to the adversary breaking the
construction) will be discussed in Section 5.

We now state the main theorem in this section. It shows that under the SRT assumption, proving
a semi-black-box construction of a computational extractor for which ¢(p) - t(p) — o(p) = O(logp)
is at least as hard as proving that OWF's exist (or, equivalently, proving such a construction is at
least as hard as proving that the SRT assumption implies OWF).

Theorem 2 Let £ be a proper k(p)-computational oracle extractor according to Definition 4,
which has access to a T(p)-hard family where T'(p) is super-polynomial. Let t(p) = 3logT(p) =
w(logp). Assuming SRT, if E," has proper stretch o(p) and it calls the oracle m, a total of q(p)
times, then q(p) - t(p) — o(p) = w(logp) or else one-way functions exist. This lower bound on q(p)
18 tight.

Proof: Let £0) be a proper k(p)-computational oracle extractor with parameters (n(p), £(p), m(p))
and proper stretch o(p) = m(p) — k(p) — £(p). By assumption £ is k(p)-computational whenever
the oracle IT is implemented with one-way permutation family, i.e. II is T'(p)-hard where T'(p) is a
function growing faster than any polynomial. In particular, by Lemma 6 this is the case (with prob-
ability 1) when II is implemented by the family IT* with parameter ¢(p) = 3log T'(p) = w(logp). We
will show that if Eg” calls m, € IT* a total of ¢(p) times, we can construct a computational extrac-
tor I, with parameters (n(p), ¢’ (p) = £(p) + q(p)t(p), m(p)) (and no oracle calls) such that for any
distribution X, with min-entropy k(p), the output distributions E,(Xp, Up () and E;; (Xp: Urpy)
are ¢%(p)/2!P)-statistically close, and since the latter distribution is pseudorandom so is the for-
mer (here we use the fact that ¢(p)/2!® is negligible since ¢(p) is polynomial and 2/P) = T3(p)
super-polynomial).

More specifically, we construct £, : {0, 137(0) % {0,1}'®) — {0,1}™P) | where ¢ (p) = £(p)+q(p)-
t(p), in the following way: Let x, 2’ denote the input to E,,. The string 2 and the first £(p) bits of 2’

11



are used by E, to define the input (z, 2) to EY) and the remaining bits of 2’ are used to select g(p)

distinct elements y1, . . ., yq(p) € {0, 1}4P) | We then define: EL(x, 2,915 5 Yg(p) def Egl""’yq(” (z,2),

namely, when E;()') presents its i-th query to its oracle, call it w;, we return as response the string
y; followed by the last n(p) — t(p) bits of w;.

Note that as long as all the y;’s are different the output distributions E;)(XP’UZ’(]))) and

E;,r; (Xp, Ugp) are identical. The probability of a repeated y; is ¢*(p)/24?) and therefore the actual
statistical distance between these distributions is negligible. In particular, we have that the output
from Ez’, is indistinguishable from random and therefore E;/> is a k(p)-computational extractor which
makes no oracle calls. Moreover, its stretch o/(p) equals

a'(p) = m(p) — k(p) — £'(p) = m(p) — k(p) — £(p) — a(p)t(p) = a(p) — a(p)t(p).

If, for the sake of contradiction, we assume that ¢(p)t(p) < o(p)+clogp for some constant ¢ then we
would get o’/ (p) > —clog p meaning that Ell, is a regular (non-oracle) proper computational extractor
from which, using Lemma 5 and the SRT assumption, we can construct a one-way function. This
proves the theorem (the tightness of the bound on ¢(p) is proven in Lemma 7 below). [ |

Lemma 7 The bound of Theorem 2 is tight: For any function o(p), polynomial in p, and any
function W (p) that grows as w(logp) there is a black-box construction of a strong proper extractor
from OWP that attains stretch o(p) and calls the OWP q(p) times such that q(p)t(p) < o(p)+W (p).

Proof sketch: We start by noting that there are black-box constructions of pseudorandom genera-
tors from OWPs that for any PRG-stretch function o/(p) (defined as the length of the PRG output
less the length of PRG seed) call the OWP o’(p)/t(p) times where ¢(p) is defined as in Theorem 2.
This is the case, in particular, for the Blum-Micali construction using Goldreich-Levin hard-core
bits. Therefore, to prove the Lemma, it suffices to show how to build a proper extractor of stretch
o(p) using a PRG of stretch o(p) + W(p) for any W (p) that grow as w(logp).

Let G = {G)p}, be a PRG family, indexed by a parameter p, with seed length s(p) and output size
r(p) = s(p) + o(p) + W(p), for a given (polynomial in p) function o(p). Assume G is (T'(p),e(p))-
secure (where £(p) is negligible in p). Let E be a strong statistical extractor (e.g., based on
pairwise independent hash functions) with parameters n(p), £(p), m(p) = s(p) + £(p) that on input

distributions of min-entropy k(p) outputs a distribution that is Q_M%—CIOSG to Upy(p)- Using
both G and E we build a proper computational extractor E’ with parameters n(p), ¢(p), m'(p) =
r(p) + £(p). On input (z,z2), E’ calls FE on (z,z) and uses the s(p)-bit output from E as the seed
to G to produce an output of bit length r(p) = s(p) + o(p) + W(p). This, plus the £(p)-bit input
salt, are the outputs from E’.

Note that on distributions of min-entropy k(p) = r(p) — o(p), E’ has stretch o(p); moreover,
we claim that the output from E’ is (T'(p), €' (p))-indistinguishable from uniform where £’(p) equals
g(p) plus a negligible term 2-Wp)/2 = 9-w(logr)  Indeed, the only loss of security with respect
to G is in the derivation of the seed z € {0,1}%() that is chosen from a distribution that is
2~ (k(p)=s(p))/2 = 9=W(p)/2 — 9-w(logp)_¢loge to Us@p)- Thus E’ is a proper computational extractor
with stretch o(p) built on the basis of a PRG of stretch o(p) + W (p) which, as said, implies the
tightness of the bound. |
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Note. The Blum-Micali construction with a randomized hardcore like Goldreich-Levin [GL], re-
quires extra perfect but non-secret randomness. Hence this auxiliary randomness can be supplied
by the extractor’s seed and be output as part of the strong extractor’s output.

5 Unconditional Fully Black-Box Lower Bound

Next, we pose the question of what can be shown without assuming SRT. We show that by restricting
our attention to fully black box constructions, not only can we get rid of the SRT but actually can
show an unconditional lower bound on the number of OWP invocations.

We first show an analogous lower bound to the semi black-box case (though unconditional) in the
asymptotic, uniform setting. We then show a tighter concrete-complexity result in the non-uniform
setting.

To begin, we review the notion of fully black box construction/reduction.

Definition 5 A fully black-box reduction from a primitive Q to a primitive P is a pair of oracle
PPT Turing machines (G('), S("')) such that the following two properties hold:

Correctness: For every implementation f of primitive P, g = Gf implements Q.

Security: For every implementation f of primitive P, and every adversary A, if A breaks GI (as
an implementation of Q) then SA breaks f. (Thus, if f is “secure”, then so is Gf.)

Notice that in a full black-box reduction, the adversary is only accessed as an oracle. One con-
sequence of this fact is that the adversary does not have to be efficient. We remark that an
implementation of a primitive is any specific scheme that meets the requirements of that primi-
tive (e.g., an implementation of a public-key encryption scheme provides samplability of key pairs,
encryption with the public-key, and decryption with the private key).

5.1 Unconditional Lower Bound in the Asymptotic, Uniform Setting

In this section we show an analogue of the lower bound in Theorem 2 for the fully black-box setting.
While the bound on the number of queries is the same as in Theorem 2, this result can be proven
unconditionally (i.e., without requiring the SRT and without concluding that a construction that
violates the bound implies a proof of the existence of one-way functions). However, Theorem 3
holds only when we consider a slightly modified definition of computational extractors where the
output of the extractor is required to be computationally indistinguishable from uniform for every
input probability ensemble X of min-entropy k. Observe that the construction outlined in Lemma 7
satisfies this stronger notion of security.

Theorem 3 Let ) be a proper k(p)-computational fully black box extractor construction, which
has access to a T(p)-hard family where T(p) is super-polynomial. Further assume that such ex-
tractor remains proper k(p)-computational on any k(p)-entropy source, including those that are not
efficiently samplable. Let t(p) = 3logT(p) = w(logp). If E,” has proper stretch o(p) and it calls
the oracle m, a total of q(p) times, then q(p) - t(p) — o(p) = w(logp).
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Proof sketch: As in the proof of Theorem 2 we use £) to construct a new extractor £’ which
does not make any oracle queries and its output is statistically close to the output of £. Therefore
the output of E’ is computationally indistinguishable from uniform on all distributions of high min-
entropy (since the output of £ also is). However, on the (possibly non-samplable) high min-entropy
distribution given by the RT lower bound, the output of E’ is also statistically far from uniform
(since &€ is a proper extractor). Thus, when X, is chosen to be the RT lower bound distribution,
there exists an unbounded adversary A, which makes no oracle queries, and distinguishes the output
of E},(Xp, Up(py) from uniform with probability 1/poly(p). This means that with probability at least
1/poly(p) over m drawn from Ily(,) ¢, A distinguishes the output of EJ (X, Uy (y)) from uniform
with probability at least 1/poly(p) and thus A breaks the security of £. Because € is a fully black-
box construction this means that there exists an efficient reduction S() such that with oracle
access to m and A, S™4 inverts 7 with probability 1/poly(p). However, if A makes no oracle
queries, the efficient reduction S™4 makes at most poly(p) number of oracle queries to w. But by
the the analysis in Lemma 6 we have that with probability 1 over the choice of 7, any (unbounded)
adversary making a polynomial number of queries to 7, including S™#, can invert 7 with only
negligible probability®. This leads to a contradiction and so the theorem is proven. |

Next, we present a stronger version of this result. It will be a tighter concrete (rather than
asymptotic) lower bound, for non-uniform fully black-box constructions of proper extractors from
OWP. In order to do that, we need to revisit definitions and preliminary Lemmas in a concrete,
non-uniform context.

5.2 Unconditional Lower Bounds in the Concrete, Non-Uniform Setting

We start by adapting the definition of (oracle) computational extractors to the non-uniform and
concrete (i.e., non-asymptotic) complexity setting.

We say that a permutation 7 over {0,1}" is S-hard if no circuit of size < S and oracle access
to m can invert 7w with probability better than 1/S. Additionally, we say that two distributions
are (5, ¢)-indistinguishable if no circuit of size < S can distinguish between them with probability
better than ¢.

Definition 6 E: {0,1}" x {0,1}¢ — {0,1}™ is a (k, S,27°)-computational extractor (CompEXT)
if for any distribution X on {0,1}" with Hs(X) > k, we have that (E(X,Uy),Us) and Uy,yp are
(S, 2*5)-indz’stmguishable (where indistinguishability holds even for circuits given oracle access to a
Sampler which samples from distribution X ).

Definition 7 An oracle computational extractor (OCompEXT ) construction (from a one-way per-
mutation) is an oracle procedure EC) : {0,1}" x {0,1}* — {0,1}™ that expects as an oracle a
permutation 7 € II,,. We are interested in constructions where EC) is computable in time polyno-
maal in n.

We say that EC) is is an (k, Sz, Sg,279)-0CompEXT construction from OWP if for every per-
mutation 7 that is Sy-hard, E™ is an (k, Sg,27%)-secure CompEXT (where indistinguishability holds
even for circuits given oracle access to both Sampler and 7).

SThis follows from a strengthening of Lemma 6 which says that with probability 1, an (unbounded) adversary
making at most T'(p) queries inverts II* with probability at most 1/7'(p).
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Using a standard averaging argument, the existence of a non-uniform attacker that succeeds
in inverting a OWP with the help of such an oracle implies the existence of another attacker (of
slightly larger size) that inverts the OWP without access to the oracle (just wire-in into the attacker
circuit the source samples that maximize the attacker’s inverting probability).

The following Theorem constitutes the main result in this section, namely, a lower bound on
the number of queries to the OWP by a fully black box construction of a computational extractor.

Theorem 4 Let EC) be a fully black-box construction of a (k, Sx, Sg,27%) proper oracle extractor
which expects an Sp-hard one-way permutation ® over n bits. Assume that EC) makes ¢ < Sy
queries to its oracle and that Sg < Sy and 27° > 1/Sy. If EY) has proper stretch o then EC) must
call the one-way permutation q times, where ¢ > (26 + o0 — C)/(5log S;) for some constant C.

The proof of the theorem is presented below after stating several auxiliary lemmas.

The following lemma is a re-statement of the lower bound of Radhakrishnan and Ta-Shma
[RT'S00] on the entropy loss of statistical extractors (which was given in Lemma 1 for the asymptotic,
uniform setting).

Lemma 8 ([RTS00]) Let B : {0,1}" x{0,1}* — {0,1}™ be a statistical extractor. Then, for any
k < n—C" there exists a distribution X of min-entropy k such that the two distributions E'(X,Uy)
and Uy, are statistically min{%, 2*((k+5/*m+c)/2)}—far, where C and C' are universal constants.

As in the previous Section, let II; denote the set of all permutations over {0,1}!. For t < n, let
IT; ,, denote the set of permutations in II,, that randomly permute the first ¢ bits of input, while
leaving the remaining n — ¢ bits fixed. The following lemma concerning the non-uniform hardness
of a random permutation was proved by Gennaro and Trevisan [GT00]:

Lemma 9 ([GTO00]) Let A be a circuit that makes q queries to a permutation 7 : {0,1}* — {0,1}¢,
and for which Pry[A™(y) = 7~ (y)] > e. Then 7 can be described using at most

2log (2t) +log ((2' — a)!)

a

bits (given a description of A), where a = e2'/(q+ 1).

Lemma 10 Let EC) be a construction of a (k, Sz, Sg,27%) computational extractor with stretch o
that makes ¢ < Sy queries to an oracle = € II,,. Assume 279 > 1/Sx. Define t = 5log S;. Then
there exists a computational extractor E' with stretch o — (qt) of size at most O(qt) 4+ |EC)| (where
\E(')\ denotes the size of E(')) which makes no oracle queries and such that for every distribution
X of min-entropy k we have that:

ARE (2, 2') Y onx 2t {F (2, 2) Yty o X 2mty) < 012270
Proof: Let E) : {0,1}" x {0,1}¢ — {0,1}™ be a construction of a (k, Sy, Sg,2~%) computational

extractor with proper stretch o that has black-box access to a OWP 7 that is Sp-hard. Let
t = 5log Sr.
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We now construct E’ : {0,1}" x {0,1}¥ — {0,1}™ where ¢ = ¢ + qt. Note that E’ has stretch
o —qt. Let x, 2’ denote the input to E’. = and the first £ bits of 2’ are used by E’ to define the input

(x,z) to E and the remaining bits of 2’ are used to select ¢ distinct elements v, ..., y, € {0, 1}t

We then define: E'(x,z,y1,...,Yq) el gyr.a (z,2).

Now we prove that for any distribution X over {0, 1}" of min-entropy k:
A{E (z,2)} {E™ (2, 2)}rem,,) < 0.1-27°

This is due to the following: Note that as long as all the y;’s are different the output distributions
E'(X,Up) and {E™(X,Up)rem,,, ; are, in fact, identical. The probability of a repeated y; is upper-
bounded by ¢2/2/?) = ¢%/S% and therefore since ¢ < Sy and 2% > 1/S,, we have that the actual
statistical distance between these distributions is at most S2/S2 = 1/52 <2739 < 0.1-279.

Finally, it is not hard to verify that E’ can be described using O(qt) 4+ |[E()| number of bits. M

Proof: of Theorem 4. Towards contradiction, let EC) : {0,1}" x {0,1} — {0,1}", where
m =k + £+ o be a fully black-box construction of a (k, Sy, Sg,27%) computational extractor from
OWP that makes ¢ < (20+0—C)/(5log S;) queries to an oracle 7 € IT,, (and ¢ < S;). This implies
that there exists a reduction R of size at most Sg < S; such that for every implementation 7 of a
one-way permutation and every (unbounded) adversary A breaking the security of E™, R Sampler,A
inverts 7 with probability at least 1/S;. We will show that for every candidate construction EO)
making ¢ < (26 + o — C)/(5log Sy) queries to an oracle 7 € II,,, and every reduction R()():() of
size at most S, there exists a one way permutation 7 and an adversary A such that R™Sampler,4
inverts 7 with probability less than 1/S;, achieving our contradiction.

We begin by applying Lemma 10 to show that the existence of a (k, Sy, Sg,27°) computational
extractor E() with stretch o that makes ¢ < (26 + ¢ — C)/(5log Sy) queries to an oracle 7 € II,,,
implies the existence of a computational extractor E’ : {0,1}" x {0,1}* — {0,1}™ (with ¢ <
{+ 20+ 0 —C — 1) without access to an oracle such that for every distribution X of min-entropy
k we have that:

A ({El(x, z/)}.’L'NX,Z/NU[/7 {E”(x, z)}weﬂt,n,mva,z’NUé/) S 0.1- 2_6
where ¢t = 5log 5.

Next, by applying Lemma 8, we have that since (k+¢") —m > 26 — C'— 1, there must exist some
distribution X* with min-entropy %k such that statistical distance between E'(X* Uy) and U, is
at least 2700=5) = /2.279 > 1.4.279 Moreover, we will choose a distribution X* satisfying the
above which can be described in |E’| + ¢/ number of bits (where |E’| denotes the size of the circuit
of the extractor E' and ¢’ is a constant). For this, we rely on a result from [CG88] that implies that
there exists a set S C {0, 1}" of size 2¥ such that the uniform distribution over the set S induces a
distribution where the RT lower bound of Lemma 8 is achieved. Therefore, a description E’ of an
extractor induces a list of sets S of size 2* that achieve the RT lower bound for extractor E’ and
we then choose the distribution X* to be the uniform distribution over the lexicographically first
such set. Note that the distribution X* can be described in |E’| + ¢ number of bits, where ¢ is
a constant denoting the size of a Turing Machine M that, given the description of E’, selects the
distribution X* as described above.

Now, by Lemma 10 we have that for every distribution X of min-entropy k, the output distri-
butions of E'(X,Up) and E™(X, Up)rer,,, are 0.1-27%-close. Therefore, it must be that

A({Eﬂ-(X*? Ué}weﬂt,nv Um) >13- 270, (3)
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Thus, there exists a computationally unbounded adversary A that distinguishes the output of
{E™(X*,Us}ren,,, } from uniform with advantage at least 1.3-27°. Moreover, the adversary A can
be fully described by specifying a Turing Machine M of constant size ¢ as well as the inputs to the
Turing Machine. More specifically, let M be the following machine:

Input: Circuit of an oracle extractor E(), Description of a distribution X* of min-entropy k,
String y € {0, 1}™.

Computation: If Pryx .~v, rem, . [E™ (2, 2) = y] > 1/2™ then output 1; Otherwise output 0.

It is not hard to see that M distinguishes {E™(X™, Us}rer,,, from uniform with advantage exactly
1.3-279 and so A(y) can be implemented by running the machine M on inputs (E(), X*, y). Thus,
A can be specified using |[EC)| + | E'| + ¢ bits.

Next, note that the fact that A that distinguishes well over all possible choices of 7 € II; ,, as in
(3) means that with probability at least 0.1-27% over choice of a fixed 7 ~ Tl 5, it is the case that

Pr[A(E™(X*,U;)) = 1] — Pr[A(Uy,)) = 1] > 1.2-27°. (4)

To conclude, assume as above that there exists a fully-black box reduction (F ), R(""')) from the
security of E™ to the security of 7, where R(+») is an oracle circuit of size at most S < Sy = 2t/5
that gets oracle access to 7, a sampling oracle Sampler for X* and the breaking adversary A. Then
it must be the case that for every fixed = € II;, such that

Pr[A(E™, E™ (2, 2) s x+ 2nv,) = 1] — PrA(E™,Up,)) = 1] > 27°

we have that R™S2mPler4 inverts 7 with probability at least 1/S,. However, note that since Sampler
and A never query 7, we have that the number ¢ of queries made by R™2™Plen4 6 7 must be
bounded by ¢ < Sg < Sp. Moreover, since the distribution X* can be described in |E’| + ¢
number of bits, the adversary A can be described in |[EC)| + |E’| + ¢ number of bits where |E'| =
O(qt) + |EV)| < Syt + |EV)|. Assuming WLOG that |E)| < S, tlog Sy, we have that the oracle
machine R™52mPlenA can be described by at most O(Sytlog Sy ) number of bits. Thus, by Lemma, 9,
if R™SamplenA inyverts 1 with probability 1 /Sx then, for sufficiently large S, m must have description

of size at most .

2
c-SﬂtlogS,TJrQlog(
a

> +log ((2* —a)!),

for some constant ¢, where a = £2!/(g+1). Letting N = 2! and substituting ¢ = 2t/% into the above,

we have at most a 26NV 108 N/5 . 9=N*/3/2 fraction of permutations 7 over t bits have description
2

of the above size. Note that 2¢N'/°1log? N/5  9=N*/5/2 o o=N'/2 ¢4 sufficiently large N and that

2-N'? << 0.1.279. Thus, by (4) there must exist some permutation = € II;,, such that

Pr[A(E™, E™(x, 2)gnx* zov,) = 1] — Pr[A(E™, Up)) = 1] > 1.2-27°,

but R™S2mPlerA inverts 7 with probability less than 1/S,, which leads to a contradiction. |
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6 Construction from Exponentially-Hard One-Way Permutations

The results from Sections 4 and 5 indicate the optimality of the “extract-then-prg” approach when
all we are interested in is minimizing the number of calls to a OWP in a black-box construction.
However, a significant cost of this approach is that in order to use an n-bit OWP we need to start
with an input distribution whose entropy is noticeably larger than n so we can apply the extraction
part of the construction to it and still get n bits that are close to uniform and serve as input to
the OWP. Here we show that one can make up for the entropy gap if the OWP has exponential
hardness. In this case, we show a black-box construction based on such a OWP where one applies
the OWP directly on the entropy source without an intermediate extractor step. For this we
reverse the extract-then-prg approach and use instead an “prg-then-extract” construction where
the OWP is applied first to expand (pseudo) entropy and then a statistical extractor is applied on
this expanded entropy to generate a close-to-uniform output.”

The Construction. Given an (S,,279/2"~*)-hard OWP, 7, we present a construction of a k-entropy
strong computational extractor

F:{0,1}" x {0, 1}20F0)n+l _y 0 1}k+@ite)nttio

with proper stretch o in Figure 1.

On input (2,2’ = (ro,...,72540-1,2)), where z € {0,1}", r; € {0,1}", z € {0,1}", the extractor F
does the following:

Step 1:
e Compute (wy,ws) = ((7725+U(9:), (rosso—1, 0T 1(z)), ..., (1o, x>) (725 to—1y- s 7"0))
Step 2:

o Let F/ : {0,1}7129%9 » {0,1}¢ — {0,1}*t4+9 be a statistical (k 4+ 26 4+ 0,27%) strong
extractor.

e Compute (v,z) = F'(wy, 2).

Step 3: F outputs (v, z,wsy) € {0, 1}F+20+a)ntltao

Figure 1: STRONG COMPUTATIONAL EXTRACTOR FROM EXPONENTIALLY-HARD OWP

The proof of Lemma 12 that F' is indeed a strong extractor when 7 is an exponentially-hard
OWP uses the following lemma showing that exponentially-hard OWP’s are “hard to invert” on
arbitrary distributions of sufficiently high min-entropy.

Lemma 11 Let w: {0,1}"™ — {0,1}" be an (S, e)-one way permutation and let X be a distribution
over {0,1}" of min-entropy k where k = n — . Then for all adversaries A of size at most S it is
the case that:

xlzg([A(ﬂ(x)) =zx] <e-2%

7[BDKlel] also uses the prg-then-extract approach for constructing an extractor; in their case, however, the prg

is used to expand the seed rather than for increasing the computational entropy of the source as in our case.
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Proof: Note that if X has min-entropy k then the support of X, denoted by ) must have size at
least 2%. For any subset S of {0,1}", let Xg denote the uniform distribution over S. Let A be some
adversary and let Q' be the subset of Q of size 2* that contains the inputs = with the 2* highest
values of Pr[A(mw(z) = z]. For such @', it is not hard to see that:

JBr [AGr(@) =2 2 PrIAG() ==

Thus, assume there is an adversary A of size S such that Pr,.x[A(7m(z)) = x] > € - 2% then this
means that also Pry.x,, [A(7(z)) = 2] > - 2% We will use A to construct an adversary A’ of size
S such that Pr,y, [A'(7(2)) = 2] > ¢ which is a contradiction to the (S, e)-one wayness of m. We
now describe the adversary A’. A’ will simply do the following: On input y = w(z), A’ forwards y
to A and returns whatever A returns. Now we have that

Pr [A(r(x))=2] > Pr [A(r(z))=2] - Pr [ze]

x~{0,1}" z~ X x~Up
= Pr [An(z))=2a]-27¢
z~ Xy
= Pr [A(n(z))=2]-27¢
z~X g1
> g-2%.27¢
€.

Lemma 12 The construction of F' from Figure 1 is a black-box construction of a (k, Sz /poly(n), poly(n)-
2-90))_strong CompEXT with proper stretch o from any (Sy,27%/2""%)-OWP .

Proof sketch: Denote by (Wi, Ws) the distribution of values (wi,wsz) as generated by F in
Step 1. The distribution Wi|(W2 = ws) has entropy k since x, and therefore the permutation
72019 (), has such entropy and the remaining bits of w; are all determined by 7277 (z) and ws.
On the other hand, this distribution is (Sy/poly(n), poly(n) - 2-9©))-indistinguishable from the
distribution W{|(W2 = wg) where W] is same as W) except that the last 2§ 4+ o bits of wy are
replaced by 26 + ¢ independent random bits. This indistinguishability follows from the Goldreich-
Levin Lemma [GL89] and the fact, shown in Lemma 11, that 7 is (S, 27%)-hard to invert on inputs
of min-entropy k.

Thus W1|(Ws2 = ws) has pseudo-entropy k + 20 + o and the application of the (k + 26 +
0,27%)-statistical extractor F' on w; produces an output distribution (V,Z)|(Wa = ws) that is
(S, /poly(n), poly(n) - 2~°@))-indistinguishable from Uy ¢y. Thus, the same indistinguishability
holds between the output distribution (V, Z, W2) of F and Up 4 (2510)n-+t+o-

|
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7 Practical Computational Extractors from Weak PRF

In this section we explore a connection between computational extractors and pseudo-random
functions. We show a very efficient construction of a strong computational extractor using any
PRF, and demonstrate its practical utility in the context of key derivation functions. Actually, we
do not need the full security of a PRF; it suffices that the PRF is secure against attackers that
do not choose inputs to the function but only see pairs of (input, output) where the inputs are
chosen uniformly at random. Such PRFs are referred to as weak PRF (wPRF) (note that in our
application ‘weak’ is stronger). The proof of our scheme follows directly from recent results by
Pietrzak [Pie09] about leakage-resilient wPRF's.

Weak PRF. A pseudo-random function family is a family of functions F = {f, : {0,1}* —
{0,1}™}4eq0,1)» with the property that if a is chosen uniformly at random in {0,1}", then the
function f, is computationally indistinguishable from a random function from {0,1}¢ to {0,1}™.
More specifically, no efficient algorithm which has oracle access to either f, or to a random function,
can decide which is the case. If the oracle access is restricted to query the function on randomly
chosen inputs, one obtains the notion of weak PRF (wPRF). We quantify this notion by saying
that F is a (5, ¢, ¢)-wPRF family if no circuit of size S can distinguish between f, (for a chosen
uniformly at random) and a random function with advantage better than ¢ when seeing the value
of the function on ¢ random inputs.

The main contribution in this section is in presenting the following construction of a simple
computational extractor from any wPRF and demonstrating its practical security.

wPRF-based computational extractor. Let F = {fq : {0,1}* = {0,1}™},(0,1}» be a wPRF family.
We define the extractor F : {0,1}" x {0,1}* — {0,1}"*+ as F(a,s) = (fa(s), 5).

Theorem 5 If F = {f, : {0,1}* — {0, 13} oeqo1yn @5 (S, q,€)-weak PRF with ¢* < e2+1 ) then
for k < n the extractor F defined above is a (k,S’,€") strong (and proper®) computational extractor
with e’ ~e-2""% and §' = S -€'.

Proof sketch: We start by recalling the following Lemma from [Pie09] from which the Theorem
will follow.

Lemma 13 [Pie09] Let F = {fo : {0,1}* — {0,1}"}se0.1} be a (S,q,€)-wPRF family. Let
F' denote the same family but where the keys a are selected from a distribution over {0,1}" of
min-entropy k < n. Denoting o = n — k we have that for every integer t, F is a (S',¢,e")-wPRF

family where S > S"-t, q> ¢ -t, and e < 25% — 22% _9. e;ﬂp(_tzg&).

To prove Theorem 5 using Lemma 13, we first set ¢ such that the expression 2 - exp(—tng) in

the Lemma’s bound is of the order of the term 555+ (recall that o = n — k). This is obtained by

setting t ~ 1/¢/. (More accurately, we need ¢ = 1/¢’ - \/8(In1/¢’ + a + 3) which we approximate
by 1/¢’ given the small (relative to 1/¢’) size of the dominating \/« factor.) In addition, since in

8We assume m > n; if this is not the case in the given family F we can achieve it using standard range expansion
techniques to increase m, possibly at the cost of somewhat strengthening the weak PRF requirement.
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our application we apply the wPRF on a single input? we have ¢’ = 1 hence ¢ ~ 1/¢’. The term
¢ /21 is taken care by the requirement ¢? < £2¢*! (note that ¢ can be made as large as desired
by expanding the wPRF domain). With these choices we can set ¢/ ~ 2% and S' = S/t~ S -¢'.

The lemma thus implies that with these parameters (and with ¢ & 1), the application of the
wPRF F to a random input (the seed of the extractor in the construction of F') results in an output
that is €’-indistinguishable from uniform by circuits of size S’ even when the key to F is taken from
a distribution of min-entropy k& = n — a and the seed is known. Combining this with the above
parameters the theorem follows. |

7.1 Application to Key Derivation

A main application of a strong computational extractor in cryptography is for key derivation
[KralO]. In this case, the source distribution is some key material, derived from some statisti-
cal process or a key agreement protocol, that has some significant amount of min-entropy but is
not uniformly random as needed to key cryptographic functions. Thus, we need a way to produce
a cryptographic key (random or pseudorandom) out of this key material. This is where our com-
putational extractor is useful. One restriction is that if we use a wPRF whose key size is n we need
to consider sources of key material whose length is at most n. In this case, we simply use the key
material (without any processing, except maybe for padding to n bits) as the key to the wPRF
and choose as the input to the wPRF a random value of length £. The latter is the seed of the
extractor and is assumed that the application provides such random but public “salt” (see [Kral0]
for discussions on this issue). Next we show concrete examples of the applicability of this method
when the key material is derived from a Diffie-Hellman value (as is common in the settings of key
exchange and ElGamal encryption).

We are given (5, ¢,¢)-wPRF and consider the ratio S/e as its measure of security (here S is
a function of ¢ and ¢). Assume that the wPRF has full security, i.e. for a key of size n we have
S/e = 2™. In this case, Theorem 5 guarantees that the extractor F' (the KDF in our application)
has parameters (S’, &) such that:

e 2" Fand 8/~ 8. =27 g &~ 2k?

As a concrete example, consider the case of a wPRF with a 256-bit key and security S/e = 22°¢
(this would apply, given current knowledge, to a PRF based on SHA-256, especially that we only
consider attacks where the attacker cannot chose any inputs — it only sees the function applied to
a set of random values). Assume now that the key, instead of being sampled uniformly at random,
follows a distribution with min-entropy k = 160; this is the case, for example, when the key material
is a Diffie-Hellman value computed over an elliptic curve of size 2'69 [GKR04]. In this case we have
that to distinguish the 256-bit output of the extractor from random with advantage ¢’ ~ 2749 we
must invest S’ ~ 280, If we want to double the advantage ¢’ we need to invest four times more work
(circuit size). For example, to obtain &’ = 2720 we need to work S’ = 229 and for ¢ = 0.001 one
needs S’ = 2140, Even if we consider a less-perfect function, say S/c = 22°0 one still gets S’ = 264
for ¢ = 2720 and S’ = 28* for ¢/ = 0.001. Note that in all these cases we are outputting more
pseudorandom bits (256) than the source entropy (160).

9For typical cryptographic applications we do not need to extract more than the size of a seed for a PRG or a key
to a PRF. Thus, most often we will have ¢’ = 1 or possibly ¢’ = 2 if we need to slightly extend the PRF’s range.
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In comparison, if we were applying a statistical extractor to the key material of min-entropy 160
to obtain a key of size 256, we could not claim any security at all (this is the case even if we only
needed a 160-bit of output, and we would get security of only 2716 if were outputting a 128-bit key).
In comparing with statistical extractors another main advantage of our PRF-based computational
extractor is the fact that PRF's are already available in practical cryptographic protocols for other
uses (including key expansion as often needed in the context of key derivation) and hence do not
require of additional mechanisms such as a statistical extractor.

Related Schemes. It is worth noting the duality between the above KDF construction and the
HKDF scheme from [Kral(O]. In our case, the imperfect key material is used to key the (weak)
PRF and the seed is used as an input to the KDF. In HKDF these roles are reversed. This gives
HKDF the advantage of being appropriate for input distributions of arbitrary length while in our
scheme we are limited to the key size. On the other hand, the very non-standard use of a known
value (the seed) as a key to a PRF in the HKDF scheme, makes the latter much more restricted
on the type of PRFs one can use (actually, the known analysis of HKDF is for particular PRFs,
mainly HMAC, and under dedicated assumptions). In contrast, our scheme can use any PRF and
even any wPRF.

The recent work of Barak et al. [BDK™11] builds a computational extractor in the traditional
way, namely, using a statistical extractor to get a close-to-uniform key and using a PRG or PRF to
get additional pseudorandom bits as needed. The novelty of that work, however, is that they show
that if the output from the statistical extractor (implemented via a suitable hash function) is used as
a key to a wPRF and this wPRF is applied to a random point then the best possible distinguishing
advantage against the output of this scheme is the wPRF’s best distinguishing advantage plus
2=(k=m) " This is an improvement over the generic analysis using statistical extractors where the
latter term would be 2= =m)/2 " Thig relaxes the entropy requirement from the source and is
significant in cases as those considered above (e.g. when generating keys from Diffie-Hellman
protocols of relative small order). Moreover, depending on the security parameters, the analysis
from [BDK'11] can sometimes be used, as in our case, to generate keys that are even larger than
the available entropy. The crucial difference with our construction, however, is that [BDK'11]
requires the implementation of a statistical extractor (with its corresponding seed) in addition
to the wPRF. In contrast, our scheme re-uses the PRF already available in most cryptographic
implementations without requiring extra machinery (which may seem a minor issue considering
the relative simplicity of statistical extractors but represents a significant barrier for adoption into
standardized protocols, particularly those requiring hardware support). On the downside, our
scheme is limited to situations where the source of key material produces values that are no longer
than the key of the wPRF, while [BDK"11, KralO] have no such length restrictions.
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