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Abstract

This paper presents a fully secure (adaptive-predicate unforgeable and private) attribute-
based signature (ABS) scheme in the standard model. The security of the proposed ABS
scheme is proven under standard assumptions, the decisional linear (DLIN) assumption and
the existence of collision resistant (CR) hash functions. The admissible predicates of the
proposed ABS scheme are more general than those of the existing ABS schemes, i.e., the
proposed ABS scheme is the first to support general non-monotone predicates, which can
be expressed using NOT gates as well as AND, OR, and Threshold gates, while the existing
ABS schemes only support monotone predicates. The proposed ABS scheme is comparably
as efficient as (several times worse than) one of the most efficient ABS schemes, which is
proven to be secure in the generic group model.

∗An extended abstract of a preliminary version of this paper was presented in [29] at Public Key Cryptography
– PKC 2011. The journal version [30] provides significant technical contributions over [29], e.g., definition of
unforgeability, removing the limitation for “multi-use.” Refer to Sections 1.3, 3.2 (Remark 4), and Appendix E.1.
This is the full version of [30].
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1 Introduction

1.1 Background

The concept of digital signatures was introduced in the seminal paper by Diffie and Hellman
in 1976. In this concept, a pair comprising a secret signing key, sk, and public verification key,
pk, is generated for a signer, and signature σ of message m generated using sk is verified by
the corresponding pk. Hence, the signer of (m,σ) using sk is identified through pk. Although
it is one of the requirements of signatures, there is no flexibility or privacy in the relationship
between signers and claims attested by signatures due to the tight relation between sk and pk.

Recently, versatile and privacy-enhanced variants of digital signatures have been studied,
where the relation between a signing key and verification key is more flexible or sophisticated.
In this class of signatures, the signing key and verification key are parameterized by attribute
x and predicate v, respectively, and signed message (m,σ) generated by the signing key with
parameter x, skx, is correctly verified by public-key pk and parameter v, (pk,v), iff predicate v
accepts attribute x, i.e., v(x) holds. The privacy of signers in this class of signatures requires
that a signature (for predicate v) generated by skx (where v(x) holds) release no information
regarding attribute x except that v(x) holds.

When predicate v is the equality with parameter v (i.e., v(x) holds iff x = v), the class of
signatures for this predicate is identity-based signatures (IBS) [33]. Here note that there is no
room for privacy in IBS, since predicate v uniquely identifies attribute x of the signer’s secret
key, skx, such that x = v.

This class of signatures with more sophisticated predicates, attribute-based signatures (ABS),
has been studied [13, 18, 17, 22, 23, 24, 25, 32, 37], where x for signing key skx is a tuple of
attributes (x1, . . . , xi), and v for verification is a threshold or access structure predicate. The
widest class of predicates in the existing ABS schemes are monotone access structures [24, 25].

An example of such monotone access structure predicate v for ABS is (Institute = Univ.
A) AND (TH2( (Department = Biology), (Gender = Female), (Age = 50’s)) OR (Position
= Professor)), where TH2 means the threshold gate with threshold value 2. Attribute xA of
Alice is ((Institute := Univ. A), (Department := Biology), (Position := Postdoc), (Age :=
30), (Gender := Female))), and attribute xB of Bob is ((Institute := Univ. A), (Department
:= Mathematics), (Position := Professor), (Age := 45) (Gender := Male))). Although their
attributes, xA and xB, are quite different, it is clear that v(xA) and v(xB) hold, and that there
are many other attributes that satisfy v. Hence Alice and Bob can generate a signature on this
predicate, and due to the privacy requirement of ABS, a signature for v releases no information
regarding the attribute or identity of the signer, i.e., Alice or Bob (or other), except that the
attribute of the signer satisfies v.

There are many applications of ABS such as attribute-based messaging (ABM), attribute-
based authentication, trust-negotiation and leaking secrets (see [24, 25] for more details).

The security conditions for ABS are given hereafter (see Section 3.2 for the formal defini-
tions).

Unforgeability: A valid signature should be produced only by a single signer whose attribute
x satisfies the claimed predicate v, not by a collusion of users who pooled their attributes
together. More formally, no poly-time adversary can produce a valid signature for a pair
comprising predicate and message (v,m), even if the adversary adaptively chooses (v,m)
after executing secret-key and signing oracle attacks, provided that x where v(x) holds
is not queried to the secret-key oracle and (v,m) is not queried to the signing oracle
(We simply call this unforgeability “adaptive-predicate unforgeability” or more simply
“unforgeability”).
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We can also define a weaker class of unforgeability, ‘selective-predicate unforgeability,’
where an adversary should choose predicate v for the forgery signature before executing
secret-key and signing oracle attacks.

Privacy: A signature for predicate v generated using secret key skx releases no information
regarding attribute x except that v(x) holds.

More formally, for any pair of attributes (x1,x2), predicate v and message m, for which
v(x1) and v(x2) hold simultaneously, the distributions of two valid signatures σ(m,v, skx1)
and σ(m,v, skx2) are equivalent, where σ(m,v, skx) is a correctly generated signature for
(m,v) using correct secret key skx with attribute x (We simply call this condition “pri-
vacy”).

Full Security: We say that an ABS scheme is fully secure if it satisfies adaptive-predicate
unforgeability and privacy.

Maji et al. [24, 25] presented ABS schemes for the widest class of predicates among the
existing ABS schemes, monotone access structure predicates, which cover threshold predicates
as special cases. The scheme shown in [24] is an efficient and practical ABS scheme, but the
security was only proven in the generic group model. The schemes in [25] and by Escala et
al.[11] are the only existing ABS schemes that were proven to be fully secure in the standard
model. They are, however, much less efficient and more complicated than the scheme in [24]
since it employs the Groth-Sahai NIZK protocols [12] as building blocks.

Herranz et al.[15], Li et al.[22], Li et al.[23], and Shahandashti et al.[32] presented ABS
schemes that are proven to be secure in the standard model. However, the proven security is not
the full security, but a weaker level of security with selective-predicate unforgeability. Moreover,
the admissible predicates in [23] are limited to conjunction or (n, n)-threshold predicates, and
those of [22, 32] are limited to (k, n)-threshold predicates. Guo et al.[13] and Yang et al.[37]
presented ABS schemes for threshold predicates, but their security definitions do not include
the privacy condition of ABS.

Khader [18, 17] presented ABS schemes for monotone access structure predicates. These
schemes, however, do not satisfy the privacy condition of ABS, since they only conceal the
identity of the signer. They also reveal the attributes that the signer used to generate the
signature. In addition, the security is proven in a non-standard model, the random oracle
model.

Based on this background, there are two major problems in the existing ABS schemes.

1. No ABS scheme for non-monotone predicates, which can be expressed using NOT gates
as well as AND, OR and Threshold gates, has been proposed (even in a weaker security
notion or a non-standard model).

2. The only fully secure ABS schemes in the standard model [11, 25] are much less efficient
than the ABS scheme in the generic group model [24].

Non-monotone predicates should be used in many ABS applications. For example, annual
review reports in the Mathematics Department of University A are submitted by reviewers, and
these reports are anonymously signed by the reviewers through ABS with some predicates. The
predicates may be selected freely by them (signers) except that it should be in the following
form: NOT((Institute = Univ. A) AND (Department = Mathematics)) AND (· · · ).

1.2 Our Results

This paper addresses these problems simultaneously.
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• This paper proposes the first fully secure (i.e., adaptive-predicate unforgeable and perfectly
private) ABS scheme for a wide class of predicates, non-monotone access structures, where
x for signing key skx is a tuple of attributes (x1, . . . , xi), non-monotone predicate v is
specified by a span program (SP) (M,ρ) along with a tuple of attributes (v1, . . . , vj), and
v(x) holds iff SP (M,ρ) accepts the truth-value vector of (T(xi1 = v1), . . . ,T(xij = vj)).
Here, T(ψ) := 1 if ψ is true, and T(ψ) := 0 if ψ is false.

Our scheme can be generalized using non-monotone access structures combined with inner-
product relations (see Definition 5 and the remark). More precisely, attribute x for signing
key skx is a tuple of attribute vectors (e.g., (�x1, . . . , �xi) ∈ F

n1+···+ni
q ), and predicate v for

verification is a non-monotone access structure or span program (SP) (M,ρ) along with a
tuple of attribute vectors (e.g., (�v1, . . . , �vj) ∈ F

n1+···+nj
q ), where the component-wise inner-

product relations for attribute vectors (e.g., {�xiι ·�vι = 0 or not }ι∈{1,...,j}) are input to SP
(M,ρ). Namely, v(x) holds iff the truth-value vector of (T(�xi1 ·�v1 = 0), . . . ,T(�xij ·�vj = 0))
is accepted by SP (M,ρ).

Remark: In our scheme (Section 4), attribute x is expressed by the form Γ := {(t, xt) |
t ∈ T ⊆ {1, . . . , d}} in place of just an attribute tuple (x1, . . . , xi), where t identifies a
sub-universe or category of attributes, and xt is an attribute in sub-universe t (examples
of (t, xt) are (Name, Alice) and (Age, 38)). Predicate v is expressed by S := (M,ρ), where
ρ is abused as ρ (defined by SP) combined with {(ti, vi) | i = 1, . . . , �} (see Definitions 4
and 5 for the difference regarding ρ in SP and S).

• The proposed ABS scheme is proven to be fully secure under standard assumptions, the
decisional linear (DLIN) assumption (over prime order pairing groups) and the existence
of collision resistant (CR) hash functions, in the standard model.

• In contrast to the ABS schemes in [11, 25] that employ the Groth-Sahai NIZK protocols,
our ABS scheme is more directly constructed without using any general subprotocols like
NIZK. Our construction is based on the dual pairing vector spaces (DPVS) proposed by
Okamoto and Takashima [26, 27, 20, 28], which can be realized from any type of (e.g.,
symmetric or asymmetric) prime order bilinear pairing groups. See Section 2.1 for the
concept and actual construction of DPVS.

• The efficiency of the proposed ABS scheme is comparable to that of the most efficient
ABS scheme in the generic group model [24], and better than those of the existing fully
secure ABS schemes in the standard model [11, 25]. See Section 4.4 for a comparison.

• This paper also presents an extension, multi-authority (MA) setting, of the proposed
ABS scheme. One of the merits of our MA-ABS scheme is that it is seamlessly extended
from the original (single-authority (SA)) setting, in which the signing and verification
algorithms of the MA-ABS scheme are essentially the same as those of the original ABS
(SA-ABS) scheme.

In MA-ABS, each authority called an attribute authority is responsible for a single (or
multiple) category of attributes, and a user obtains a part of secret key for each attribute
from an attribute authority responsible for the category of the attribute. In our MA-ABS
model, a central trustee in addition to attribute authorities is required but no interac-
tion among attribute authorities (and the trustee) is necessary, and different attribute
authorities may not trust each other, nor even be aware of each other.

We prove that the proposed MA-ABS scheme is fully secure under the DLIN assumption
and CR hash functions in the standard model. Our MA-ABS scheme is almost as efficient
as the original SA-ABS scheme.
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1.3 Key Techniques

The top level strategy of constructing the proposed ABS scheme is based on Naor’s paradigm
of converting IBE to signatures. Our ABS scheme is converted from a ciphertext policy (CP)
functional encryption (FE) scheme [28], which is adaptively payload-hiding. The description of
the CP-FE scheme is given in the full version of [28].

Roughly speaking, in the conversion, a secret signing key, skΓ, with attribute set Γ and
a verification text, �c, with access structure S (for signature verification) in our ABS scheme
correspond to a secret decryption key, skΓ, with Γ and a ciphertext, �c, with S in the CP-FE
scheme, respectively.

Our construction, however, is not straightforward, or still a challenging task, since no coun-
terpart of a signature, �s∗, in the ABS exists in the CP-FE, and the privacy property for signature
�s∗ is specific in ABS.

To tackle the issue, we develop a new technique, re-randomization with specialized delegation,
where signature �s∗ in ABS can be interpreted to be a decryption key specialized to decrypt a
ciphertext with access structure S, that is delegated and re-randomized from secret key skΓ.

As for the security proof, roughly speaking, the adaptive-predicate unforgeability of the ABS
under the KeyGen oracle attacks can be guaranteed by the non-adaptive payload-hiding security
of the CP-FE1. This is because, in the security game, a forged signature implies a decryption key
specified for the challenge ciphertext to break the payload-hiding, and all secret key and signing
queries are made by an adversary before giving a forged signature in the adaptive-predicate
unforgeability of ABS, where all secret key queries are made by an adversary before requesting
a challenge ciphertext in the non-adaptive payload-hiding of FE.

Note that there are many subtleties in the proof of unforgeability for the ABS, e.g., the
unforgeability should be ensured in the ABS even when publishing {B̂∗t }t=1,...,d+1 for the privacy
requirement, while they are secret in the CP-FE. We develop a novel technique to resolve the
difficulty. See Section E for more details.

We now describe a new key technique in this paper, which was not employed in the prelim-
inary version [29] of this paper.

A key technique of proving the (non-)adaptive payload-hiding security of the CP-FE scheme
[28] is pairwise independence lemma (Lemma 3 in [28]) in the dual system encryption methodol-
ogy. A drawback of this technique is that it is directly applicable only when there is a one-to-one
correspondence (so-called “one-use”) between a pair of secret key and ciphertext parts through
a map ρ of policy (access structures S), but in general a ciphertext part corresponds to multiple
secret key parts (so-called “multi-use”). [28] introduced a technique to treat such a multi-
use case by using a generalized pairwise independence lemma, but it costs longer secret keys
and ciphertexts than those in one-use, and the public parameter bounds the maximum degree
of multi-use. The security (unforgeability) proof of the preliminary version [29] is based on
the (generalized) pairwise independence lemma technique and inherits the drawback of this
technique. In this paper, to address the issue we introduce a new technique, one-dimensional
localization of inner-product values, where an unbounded (by the public parameter) number
of inner-product values in multi-use are localized into a certain one-dimensional subspace and
the other subspaces include no information of the inner-product values, while no information
but only a single inner-product value is ensured to be released for a pair of corresponding se-
cret key and ciphertext subspaces in one-use by the pairwise independence lemma. Note that
this techique is available for proving the adaptive-predicate unforgeability of the ABS and the
non-adaptive payload-hiding security of the CP-FE (but not for the adaptive payload-hiding

1Non-adaptive security of CP-FE means that the adversary’s key queries may not depend on the challenge
ciphertext [1].
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security of the CP-FE). For more details, see Section E.

1.4 Related Works

• Ring and mesh signatures: Ring and mesh signatures [31, 6] are related to ABS.

In the ring signatures, the claimed predicate on a signature of message m is that m is
endorsed by one of the users identified by the list of public keys (pk1, pk2, . . .), or the
predicate is a disjunction of a list of public keys. A valid ring signature can be generated
by one of the listed users.

The mesh signatures are an extension of ring signatures, where the predicate is an access
structure on a list of pairs comprising a message and public key (mi, pki), and a valid
mesh signature can be generated by a person who has enough standard signatures σi on
mi, each valid under pki, to satisfy the given access structure.

A crucial difference between mesh signatures and ABS is the security against the collusion
of users. In mesh signatures, several users can collude by pooling their signatures together
and create signatures that none of them could produce individually. That is, such collusion
is considered to be legitimate in mesh signatures. In contrast, the security against collusion
attacks is one of the basic requirements in ABS and MA-ABS, as described in Section 1.1.

• Anonymous credentials (ACs): Another related concept is ACs [3, 4, 7, 8, 9, 10].
The notion of ACs also provides a functionality for users to demonstrate anonymously
possession of attributes, but the goals of ACs and ABS differ in several points.

As mentioned in [25], ACs and ABS aim at different goals: ACs target very strong
anonymity even in the registration phase, whereas under less demanding anonymity re-
quirements in the registration phase, ABS aims to achieve more expressive functionalities,
more efficient constructions and new applications. In addition, ABS is a signature scheme
and a simpler primitive compared with ACs.

1.5 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly selected from
A according to its distribution. When A is a set, y U← A denotes that y is uniformly selected
from A. y := z denotes that y is set, defined or substituted by z. When a is a fixed value,
A(x) → a (e.g., A(x) → 1) denotes the event that machine (algorithm) A outputs a on input
x. A function f : N→ R is negligible in λ, if for every constant c > 0, there exists an integer n
such that f(λ) < λ−c for all λ > n.

We denote the finite field of order q by Fq, and Fq \ {0} by F
×
q . A vector symbol denotes a

vector representation over Fq, e.g., �x denotes (x1, . . . , xn) ∈ F
n
q . For two vectors �x = (x1, . . . , xn)

and �v = (v1, . . . , vn), �x · �v denotes the inner-product
∑n

i=1 xivi. The vector �0 is abused as the
zero vector in F

n
q for any n. XT denotes the transpose of matrixX. A bold face letter denotes an

element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp.
span〈�x1, . . . , �xn〉) denotes the subspace generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases
B := (b1, . . . , bN ) and B

∗ := (b∗1, . . . , b
∗
N ), (x1, . . . , xN )B :=

∑N
i=1 xibi and (y1, . . . , yN )B∗ :=∑N

i=1 yib
∗
i . For a format of attribute vectors �n := (d;n1, . . . , nd) that indicates dimensions of

vector spaces, �et,j denotes the canonical basis vector (

j−1︷ ︸︸ ︷
0 · · · 0, 1,

nt−j︷ ︸︸ ︷
0 · · · 0) ∈ F

nt
q for t = 1, . . . , d and

j = 1, . . . , nt.
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2 Preliminaries

2.1 Dual Pairing Vector Spaces by Direct Product of Symmetric Pairing
Groups

In this paper, for simplicity of description, we will present the proposed schemes on the symmet-
ric version of dual pairing vector spaces (DPVS) [26, 27] constructed using symmetric bilinear
pairing groups given in Definition 1. Owing to the abstraction of DPVS, the presentation and
the security proof of the proposed schemes are essentially the same as those on the asymmetric
version of DPVS, (q,V,V∗,GT ,A,A

∗, e), for which see Appendix A.2. The symmetric version
is a specific (self-dual) case of the asymmetric version, where V = V

∗ and A = A
∗.

Definition 1 “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple of a prime q,
cyclic additive group G and multiplicative group GT of order q, G 	= 0 ∈ G, and a polynomial-
time computable nondegenerate bilinear pairing e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and
e(G,G) 	= 1.

Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear pairing
groups (q,G,GT , G, e) with security parameter λ.

Definition 2 “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct product of sym-
metric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q, canonical basis A := (a1, . . . ,aN ) of V, where

ai := (
i−1︷ ︸︸ ︷

0, . . . , 0, G,
N−i︷ ︸︸ ︷

0, . . . , 0), and pairing e : V× V→ GT .
The pairing is defined by e(x,y) :=

∏N
i=1 e(Gi, Hi) ∈ GT where x := (G1, . . . , GN ) ∈ V

and y := (H1, . . . , HN ) ∈ V. This is nondegenerate bilinear i.e., e(sx, ty) = e(x,y)st and if
e(x,y) = 1 for all y ∈ V, then x = 0. For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if
i = j, and 0 otherwise, and e(G,G) 	= 1 ∈ GT .

DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and outputs a descrip-
tion of paramV := (q,V,GT ,A, e) with security parameter λ and N -dimensional V. It can be
constructed by using Gbpg.

Remark 1 For matrix W := (wi,j)i,j=1,...,N ∈ F
N×N
q and element g := (G1, . . . , GN ) in N -

dimensional V, gW denotes (
∑N

i=1Giwi,1, . . . ,
∑N

i=1Giwi,N ) = (
∑N

i=1wi,1Gi, . . . ,
∑N

i=1wi,NGi)
by a natural multiplication of aN -dim. row vector and a N×N matrix. Thus it holds an associa-
tive law as (gW )W−1 = g(WW−1) = g and a pairing invariance property e(gW,h(W−1)T) =
e(g,h) for any g,h ∈ V.

2.2 Decisional Linear (DLIN) Assumption

Definition 3 (DLIN Assumption) The DLIN problem is to guess β ∈ {0, 1}, given (paramG,

G, ξG, κG, δξG, σκG, Yβ)
R← GDLIN

β (1λ), where

GDLIN
β (1λ) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ),

κ, δ, ξ, σ
U← Fq, Y0 := (δ + σ)G, Y1

U← G,

return (paramG, G, ξG, κG, δξG, σκG, Yβ),

for β U← {0, 1}. For a probabilistic machine E, we define the advantage of E for the DLIN prob-
lem as: AdvDLIN

E (λ) :=
∣∣∣Pr

[
E(1λ, �)→1

∣∣∣ � R←GDLIN
0 (1λ)

]
− Pr

[
E(1λ, �)→1

∣∣∣ � R←GDLIN
1 (1λ)

]∣∣∣ .
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The DLIN assumption is: For any probabilistic polynomial-time adversary E, the advantage
AdvDLIN

E (λ) is negligible in λ.

2.3 Collision Resistant (CR) Hash Functions

Let λ ∈ N be a security parameter. A collision resistant (CR) hash function family, H, associated
with Gbpg and a polynomial, poly(·), specifies two items:

• A family of key spaces indexed by λ. Each such key space is a probability space on
bit strings denoted by KHλ. There must exist a probabilistic polynomial-time algorithm
whose output distribution on input 1λ is equal to KHλ.

• A family of hash functions indexed by λ, hk
R← KHλ and D := {0, 1}poly(λ). Each such

hash function Hλ,Dhk maps an element of D to an element of F
×
q with q that is the first

element of output paramG of Gbpg(1λ). There must exist a deterministic polynomial-time
algorithm that on input 1λ, hk and � ∈ D, outputs Hλ,Dhk (�).

Let E be a probabilistic polynomial-time machine. For all λ, we define
AdvH,CR

E (λ) := Pr[(�1, �2) ∈ D2 ∧ �1 	= �2 ∧Hλ,Dhk (�1) = Hλ,Dhk (�2)], where D := {0, 1}poly(λ), hk
R←

KHλ, and (�1, �2)
R← E(1λ, hk,D). H is a collision resistant (CR) hash function family if for any

probabilistic polynomial-time adversary E , AdvH,CR
E (λ) is negligible in λ.

3 ABS for Non-monotone Predicates

3.1 Span Programs and Non-monotone Access Structures

Definition 4 (Span Programs [2]) Let {p1, . . . , pn} be a set of variables. A span program
over Fq is a labeled matrix, M̂ := (M,ρ), where M is a (�×r) matrix over Fq and ρ is a labeling
of the rows of M by literals from {p1, . . . , pn,¬p1, . . . , ¬pn} (every row is labeled by one literal),
i.e., ρ : {1, . . . , �} → {p1, . . . , pn,¬p1, . . . , ¬pn}.

A span program accepts or rejects an input by the following criterion. For every input
sequence δ ∈ {0, 1}n define submatrix Mδ of M consisting of those rows whose labels are set
to 1 by the input δ, i.e., either rows labeled by some pi such that δi = 1 or rows labeled by
some by some ¬pi such that δi = 0. (i.e., γ : {1, . . . , �} → {0, 1} is defined by γ(j) = 1 if
[ρ(j) = pi]∧ [δi = 1] or [ρ(j) = ¬pi]∧ [δi = 0], and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where
Mj is the j-th row of M .)

Span program M̂ accepts δ if and only if �1 ∈ span〈Mδ〉, i.e., some linear combination of the
rows of Mδ gives the all one vector, �1. (The row vector has the value 1 in each coordinate.) A
span program computes boolean function f if it accepts exactly those inputs δ where f(δ) = 1.

A span program is called monotone if the labels of the rows are only the positive literals
{p1, . . . , pn}. Monotone span programs compute monotone functions. (So, a span program in
general is “non”-monotone.)

We assume that no row Mi (i = 1, . . . , �) of the matrix M is �0. We now introduce a non-
monotone access structure with evaluating map γ by using the inner-product of attribute vectors
in a general form. Although we will show the notion, security definition and security proof of
the proposed ABS scheme in this general form, we will describe the proposed ABS scheme in a
simpler form in Section 4.2. We will show this simpler form of Definition 5 in the remark.

9



Definition 5 (Inner-Products of Attribute Vectors and Access Structures) Ut (t = 1,
. . . , d and Ut ⊂ {0, 1}∗) is a sub-universe, a set of attributes, each of which is expressed by a pair
of sub-universe id and nt-dimensional vector, i.e., (t, �v), where t ∈ {1, . . . , d} and �v ∈ F

nt
q \{�0}.

We now define such an attribute to be a variable, p, of span program M̂ := (M,ρ) i.e.,
p := (t, �v). Access structure S is span program M̂ := (M,ρ) along with variables p := (t, �v), p′ :=
(t′, �v′), . . ., i.e., S := (M,ρ) such that ρ : {1, . . . , �} → {(t, �v), (t′, �v′), . . ., ¬(t, �v),¬(t′, �v′), . . .}.

Let Γ be a set of attributes, i.e., Γ := {(t, �xt) | �xt ∈ F
nt
q \ {�0}, 1 ≤ t ≤ d}.

When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span program M̂ :=
(M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if [ρ(i) = (t, �vi)] ∧[(t, �xt) ∈ Γ]
∧[�vi · �xt = 0] or [ρ(i) = ¬(t, �vi)] ∧[(t, �xt) ∈ Γ] ∧[�vi · �xt 	= 0]. Set γ(i) = 0 otherwise.

Access structure S := (M,ρ) accepts Γ iff �1 ∈ span〈(Mi)γ(i)=1〉.

Remark 2 The simplest form of the inner-product relations in the above-mentioned access
structures, that is for ABS in Section 4.2, is a special case when nt = 2 for all t ∈ {1, . . . , d},
and �x := (1, x) and �v := (v,−1). Hence, (t, �xt) := (t, (1, xt)) and (t, �vi) := (t, (vi,−1)), but we
often denote them shortly by (t, xt) and (t, vi). Then, S := (M,ρ) such that ρ : {1, . . . , �} →
{(t, v), (t′, v′), . . . ¬(t, v),¬(t′, v′), . . .} (v, v′, . . . ∈ Fq), and Γ := {(t, xt) | xt ∈ Fq, 1 ≤ t ≤ d}.

When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span program
M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if [ρ(i) = (t, vi)] ∧[(t, xt) ∈ Γ]
∧[vi = xt] or [ρ(i) = ¬(t, vi)] ∧[(t, xt) ∈ Γ] ∧[vi 	= xt]. Set γ(i) = 0 otherwise.

Remark 3 When a user has multiple attributes in a sub-universe (category) t, we can employ
dimension nt > 2. For instance, a professor (say Alice) in the science faculty of a university is
also a professor in the engineering faculty of this university. If the attribute authority of this
university manages sub-universe t := “faculties of this university”, Alice obtains a secret key for
(t, �xt := (1,−(a+ b), ab) ∈ Fq

3) with a := “science” and b := “engineering” from the authority.
When a user verifies a signature for an access structure with a single negative attribute ¬(t,
“science”), the verification text is encoded as ¬(t, �vi := (a2, a, 1)) with a := “science”. Since
�xt ·�vi = 0, Alice cannot make a valid signature for an access structure with the negative attribute
¬(t, “science”). For such a case with nt > 2, see Section C with a general form of our ABS
scheme.

We now construct a secret-sharing scheme for a (non-monotone) access structure (span
program).

Definition 6 A secret-sharing scheme for access structure S := (M,ρ) is:

1. Let M be an � × r matrix, and column vector �fT := (f1, . . . , fr)T
U← F

r
q . Then, s0 :=

�1 · �fT =
∑r

k=1 fk is the secret to be shared, and �sT := (s1, . . . , s�)T := M · �fT is the vector
of � shares of secret s0 and share si belongs to ρ(i).

2. If access structure S := (M,ρ) accepts Γ, i.e., �1 ∈ span〈(Mi)γ(i)=1〉 with γ : {1, . . . , �} →
{0, 1}, then there exist constants {αi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ {1, . . . , �} |
γ(i) = 1} and

∑
i∈I αisi = s0. Furthermore, these constants {αi} can be computed in

time polynomial in the size of matrix M .

3.2 Definitions and Security of ABS

Definition 7 (Attribute-Based Signatures : ABS) An attribute-based signature scheme
consists of four algorithms.
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Setup This is a randomized algorithm that takes as input security parameter and format �n :=
(d;n1, . . . , nd) of attributes. It outputs public parameters pk and master key sk.

KeyGen This is a randomized algorithm that takes as input a set of attributes, Γ := {(t, �xt)|�xt
∈ F

nt
q \ {�0}, 1 ≤ t ≤ d}, pk and sk. It outputs signature generation key skΓ.

Sig This is a randomized algorithm that takes as input message m, access structure S := (M,ρ),
signature generation key skΓ, and public parameters pk such that S accepts Γ. It outputs
signature σ.

Ver This takes as input message m, access structure S, signature σ and public parameters pk.
It outputs boolean value accept := 1 or reject := 0.

An ABS scheme should have the following correctness property: for all (sk, pk) R← Setup(1λ,
�n), all messages m, all attribute sets Γ, all signing keys skΓ

R← KeyGen(pk, sk,Γ), all access
structures S such that S accepts Γ, and all signatures σ R← Sig(pk, skΓ,m,S), it holds that
Ver(pk,m,S, σ) = 1 with probability 1.

Definition 8 (Perfect Privacy) An ABS scheme is perfectly private, if, for all (sk, pk) R←
Setup(1λ, �n), all messages m, all attribute sets Γ1 and Γ2, all signing keys skΓ1

R← KeyGen(pk,

sk,Γ1) and skΓ2

R← KeyGen(pk, sk,Γ2), all access structures S such that S accepts Γ1 and S

accepts Γ2, distributions Sig(pk, skΓ1 ,m, S) and Sig(pk, skΓ2 ,m,S) are equal.

Since the correct distribution on signatures can be perfectly simulated without depending
on any specific private information, signatures must not leak any such private information of
the signer.

Definition 9 (Unforgeability) For an adversary, A, we define AdvABS,UF
A (λ) to be the suc-

cess probability in the following experiment for any security parameter λ. An ABS scheme is
existentially unforgeable if the success probability of any polynomial-time adversary is negligible:

1. Run (sk, pk) R← Setup(1λ, �n) and give pk to the adversary.

2. A may adaptively makes a polynomial number of queries of the following type:

• [ Create key ] A asks the challenger to create a signing key for an attribute set Γ.
The challenger creates a key for Γ without giving it to A.

• [ Create signature ] A specifies a key for predicate Γ that has already been created,
and asks the challenger to perform a signing operation to create a signature for a
message m and an access structure S that accepts Γ. The challenger computes the
signature without giving it to the adversary.

• [ Reveal key or signature ] A asks the challenger to reveal an already-created key for
an attribute set Γ, or an already-created signature for an access structure S.

Note that when key or signature creation requests are made, A does not automatically see
the created key or signature. A sees it only when it makes a reveal query.

3. At the end, the adversary outputs (m′,S′, σ′).

We say the adversary succeeds if a correctly-created signature for (m′,S′) was never revealed to
the adversary, S

′ does not accept any Γ queried to the create key and reveal (key) oracles, and
Ver(pk,m′,S′, σ′) = 1.
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Remark 4 Since a signing query in the unforgeability definition in [25, 29] is made only with
an access structure S, the challenger should find an attribute set Γ that satisfies S, and generate
a key skΓ with Γ and a signature with S using (Γ, skΓ). In general, however, the challenger
may not always find a suitable Γ from S in a polynomial time since it includes the problem of
solving the satisfiability for any DNF and CNF formulas with polynomial sizes. In this sense,
the definition of unforgeability in [25, 29] is problematic.

To address this issue, our definition of unforgeability introduces four types of queries, create
and reveal queries for keys and signatures, in a manner similar to the security definition for
key-delegation by Shi and Waters [34]. Here, to obtain a signature for S from the challenger,
the adversary is required to give an attribute set Γ that satisfies S to the challenger in advance
(i.e., the challenger has no need to find a suitable Γ by itself.)

4 Proposed ABS Scheme

4.1 Construction Ideas

As mentioned in Section 1.3, our ABS scheme is constructed on a ciphertext policy (CP) func-
tional encryption (FE) scheme [28]. Therefore, the algorithms of the proposed ABS scheme can
be described in the light of such correspondence to the CP-FE scheme:

Setup Almost the same as that in the CP-FE scheme except that {B̂∗t }t=1,...,d+1 are revealed
as a public parameter in our ABS, while they are secret in the CP-FE scheme. They are
published in our ABS for the signature generation procedure Sig to meet the privacy of
signers (for randomization). This implies an important gap between CP-FE and ABS.

KeyGen Almost the same as that in the CP-FE scheme except that a (7 dimensional) space with
basis B

∗
d+1 is additionally introduced in our ABS and two elements k∗d+1,1 and k∗d+1,2 in this

space are included in a secret signing key in order to embed the hash value, Hλ,Dhk (m ||S),
of message m and access structure S in signature �s∗.

Sig Specific in ABS. To meet the privacy condition for �s∗, a novel technique is employed to
randomly generate a signature from skΓ and {B̂∗t }t=1,...,d+1.

Ver Signature �s∗ in the ABS is an endorsement to message m by a signer with attributes
accepted by access structure S. The signature verification in our ABS checks whether
signature (or specific decryption key) �s∗ works as a decryption key to decrypt a verification
text (or a ciphertext) associated with S and Hλ,Dhk (m ||S).

4.2 Construction

For simplicity, here, we describe our ABS scheme for a specific parameter �n := (d; 2, . . . , 2) (see
the remark of Definition 5). A general form of our ABS scheme is given in Section C.

Setup(1λ, �n := (d; 2, . . . , 2)) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ),

hk
R← KHλ, ψ

U← F
×
q , N0 := 4, Nt := 9 for t = 1, . . . , d+ 1,

for t = 0, . . . , d+ 1, paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := ψ · (X−1

t )T,
bt,i := (χt,i,1, . . . , χt,i,Nt)At , Bt := (bt,1, . . . , bt,Nt),
b∗t,i := (ϑt,i,1, . . . , ϑt,i,Nt)At , B

∗
t := (b∗t,1, . . . , b

∗
t,Nt

),
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gT := e(G,G)ψ, param	n := ({paramVt
}t=0,...,d+1, gT ),

B̂0 := (b0,1, b0,4), B̂t := (bt,1, bt,2, bt,8, bt,9) for t = 1, . . . , d,

B̂d+1 := (bd+1,1, bd+1,2, bd+1,7),

B̂
∗
t := (b∗t,1, b

∗
t,2, b

∗
t,6, b

∗
t,7) for t = 1, . . . , d, B̂

∗
d+1 := (b∗d+1,1, b

∗
d+1,2, b

∗
d+1,5, b

∗
d+1,6),

sk := b∗0,1, pk := (1λ, hk, param	n, {B̂t}t=0,...,d+1, {B̂∗t }t=1,...,d+1, b
∗
0,3).

return sk, pk.

KeyGen(pk, sk, Γ := {(t, xt) | 1 ≤ t ≤ d}) :

δ
U← F
×
q , ϕ0, ϕt,ι, ϕd+1,1,ι, ϕd+1,2,ι

U← Fq for t = 1, . . . , d; ι = 1, 2;
k∗0 := ( δ, 0, ϕ0, 0 )B∗

0
,

k∗t := (δ( 1, xt ), 0, 0, 0, ϕt,1, ϕt,2, 0, 0 )B∗
t

for (t, xt) ∈ Γ,
k∗d+1,1 := ( δ( 1, 0 ), 0, 0, ϕd+1,1,1, ϕd+1,1,2, 0 )B∗

d+1
,

k∗d+1,2 := ( δ( 0, 1 ), 0, 0, ϕd+1,2,1, ϕd+1,2,2, 0 )B∗
d+1
,

T := {0, (d+ 1, 1), (d+ 1, 2)} ∪ {t | 1 ≤ t ≤ d, (t, xt) ∈ Γ},
return skΓ := (Γ, {k∗t }t∈T ).

Sig(pk, skΓ, m, S := (M,ρ)) : If S := (M,ρ) accepts Γ := {(t, xt)},
then compute I and {αi}i∈I such that

∑
i∈I αiMi = �1,

and I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, vi) ∧ (t, xt) ∈ Γ ∧ vi = xt]
∨ [ρ(i) = ¬(t, vi) ∧ (t, xt) ∈ Γ ∧ vi 	= xt] },

ξ
U← F
×
q , (βi)

U← {(β1, . . . , β�) |
∑�

i=1 βiMi = �0},
Remark : If detM 	= 0, the set contains only 0�, i.e., all βi = 0 for i = 1, . . . , �.

s∗0 := ξk∗0 + r∗0, where r∗0
U← span〈b∗0,3〉,

s∗i := γi · ξk∗t +
∑2

ι=1 yi,ι · b∗t,ι + r∗i for 1 ≤ i ≤ �,

where r∗i
U← span〈b∗t,5, b∗t,6〉, and γi, �yi := (yi,1, yi,2) are defined as

if i ∈ I ∧ ρ(i) = (t, vi), γi := αi, �yi := βi(1, vi),

if i ∈ I ∧ ρ(i) = ¬(t, vi), γi :=
αi

vi − xt
, �yi :=

βi
vi − yi

(1, yi),

where yi
U← Fq\{vi},

if i 	∈ I ∧ ρ(i) = (t, vi), γi := 0, �yi := βi(1, vi),

if i 	∈ I ∧ ρ(i) = ¬(t, vi), γi := 0, �yi :=
βi

vi − yi
(1, yi),

where yi
U← Fq\{vi},

s∗�+1 := ξ(k∗d+1,1 + Hλ,Dhk (m ||S) · k∗d+1,2) + r∗�+1,

where r∗�+1
U← span〈b∗d+1,5, b

∗
d+1,6〉,

return �s∗ := (s∗0, . . . , s
∗
�+1).

Ver(pk, m, S := (M,ρ), �s∗) : �f
U← F

r
q , �s

T := (s1, . . . , s�)T := M · �fT,

s0 := �1 · �fT, η0, η�+1, θ�+1, s�+1
U← Fq,

c0 := ( −s0 − s�+1, 0, 0, η0 )B0 ,

for 1 ≤ i ≤ �,
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if ρ(i) = (t, vi), return 0 if s∗i 	∈ Vt, else

ci := ( si + θivi, −θi, 0, 0, 0, 0, 0, ηi,1, ηi,2 )Bt , where θi, ηi,1, ηi,2
U← Fq,

if ρ(i) = ¬(t, vi), return 0 if s∗i 	∈ Vt, else

ci := ( si( vi, −1 ), 0, 0, 0, 0, 0, ηi,1, ηi,2 )Bt , where ηi,1, ηi,2
U← Fq,

c�+1 := ( s�+1 − θ�+1 · Hλ,Dhk (m ||S), θ�+1, 0, 0, 0, 0, η�+1 )Bd+1
,

return 0 if e(b0,1, s
∗
0) = 1,

return 1 if
∏�+1
i=0 e(ci, s

∗
i ) = 1, return 0 otherwise.

[Correctness]∏�+1
i=0 e(ci, s

∗
i ) = e(c0,k

∗
0)
ξ ·

∏
i∈I e(ci,k

∗
t )
γiξ ·

∏�
i=1

∏2
ι=1 e(ci, b

∗
t,ι)

yi,ι · e(c�+1, s
∗
�+1)

= g
ξδ(−s0−s�+1)
T ·

∏
i∈I g

ξδαisi

T ·
∏�
i=1 g

βisi

T · gξδs�+1

T

= g
ξδ(−s0−s�+1)
T · gξδs0T · gξδs�+1

T = 1.

4.3 Security

Theorem 1 The proposed ABS scheme is perfectly private.

Theorem 2 The proposed ABS scheme is unforgeable (adaptive-predicate unforgeable) under
the DLIN assumption and the existence of collision resistant hash functions.

For any adversary A, there exist probabilistic machines E1, E2, E3-1, . . . , E3-4, E5, E6, whose
running times are essentially the same as that of A, such that for any security parameter λ,

AdvABS,UF
A (λ) ≤

∑2
i=1

(
AdvDLIN

E1-i (λ) + AdvDLIN
E2-i (λ)

)
+

∑ν1
h=1

(
AdvDLIN

E3-h-1
(λ) +

∑2
i=1

(
AdvDLIN

E3-h-2-i
(λ) + AdvDLIN

E3-h-3-i
(λ)

)
+ AdvDLIN

E3-h-4
(λ)

)
+

∑ν2
h=1

(
AdvDLIN

E5-h (λ) + AdvH,CR
E6-h (λ)

)
+ ε,

where Eι-i(·) := Eι(i, ·) for ι = 1, 2 (i = 1, 2), Eι-h(·) := Eι(h, ·) for ι = 5, 6 (h = 1, . . . , ν2),
E3-h-ι(·) := E3-ι(h, ·) for ι = 1, 4, E3-h-ι-i(·) := E3-ι(h, i, ·) for ι = 2, 3 (h = 1, . . . , ν1; i = 1, 2),
ν1 is the maximum number of A’s reveal key queries, ν2 is the maximum number of A’s reveal
signature queries, and ε := ((2d+ 16)ν1 + 8ν2 + 2d+ 11)/q.

The proofs of Theorems 1 and 2 (for a general form of our ABS) are given in Appendices D
and E, respectively.

4.4 Performance

In this section, we compare the efficiency and security of the proposed ABS scheme with the
existing ABS schemes in the standard model (two typical instantiations) [25] as well as the
ABS scheme in the generic group model [24] (as a benchmark). Since all of these schemes can
be implemented over a prime order pairing group, the size of a group element can be around
the size of Fq (e.g., 256 bits). In Table 1, � and r represent the size of the underlying access
structure matrix M for a predicate, i.e., M ∈ F

�×r
q . For example, some predicate with 4 AND

and 5 OR gates as well as 10 variables may be expressed by a 10 × 5 matrix, and a predicate
with 49 AND and 50 OR gates as well as 100 variables may be expressed by a 100× 50 matrix
(see the appendix of [21]). λ is the security parameter (e.g., 128).
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Table 1: Comparison with the Existing ABS Schemes

MPR08 [24] MPR10 [25] MPR10 [25] Proposed
(Boneh-Boyen

based)
(Waters
based)

Signature size
(# of group elts)

�+ r + 2 51�+ 2r + 18λ�
36�+ 2r
+9λ+ 12

9�+ 11

Model
generic group

model
standard
model

standard
model

standard
model

Security full full full full

Assumptions CR hash
q-SDH and

DLIN
DLIN

DLIN and
CR hash

Predicates monotone monotone monotone non-monotone
Sig. size example 1

(� = 10, r = 5,
λ = 128)

17 23560 1534 101

Sig. size example 2
(� = 100, r = 50,

λ = 128)
152 282400 4864 911

5 Multi-Authority ABS (MA-ABS)

5.1 Definitions and Security of MA-ABS

Definition 10 (Multi-Authority ABS : MA-ABS) A multi-authority ABS scheme con-
sists of the following algorithms/protocols.

TSetup This is a randomized algorithm. The signature trustee runs algorithm TSetup(1λ) which
outputs trustee public key tpk and trustee secret key tsk.

UserReg This is a randomized algorithm. When a user with user id uid registers with the
signature trustee, the trustee runs UserReg(tpk, tsk, uid) which outputs public user-token
tokenuid. The trustee gives tokenuid to the user.

ASetup This is a randomized algorithm. Attribute authority t (1 ≤ t ≤ d) who wishes to
issue attributes runs ASetup(tpk) which outputs attribute-authority public key apkt and
attribute-authority secret key askt. The attribute authority, t, publishes apkt and stores
askt.

AttrGen This is a randomized algorithm. When attribute authority t issues user uid a secret key
associated with attribute xt, first it obtains (from the user) her user-token tokenuid, and
runs token verification algorithm TokenVerify(tpk, uid, tokenuid). If the token is verified,
then it runs AttrGen(tpk, t, askt, tokenuid, xt) that outputs attribute secret key uskt. The
attribute authority gives uskt to the user.

Sig This is a randomized algorithm. A user signs message m with claim-predicate (access struc-
ture) S := (M,ρ), only if there is a set of attributes Γ such that S accepts Γ, the user
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has obtained a set of keys {uskt | (t, xt) ∈ Γ} from the attribute authorities. Then sig-
nature σ can be generated using Sig(tpk, tokenuid, {apkt, uskt | (t, xt) ∈ Γ},m,S), where
uskt

R← AttrGen(tpk, t, askt, tokenuid, xt).

Ver To verify signature σ on message m with claim-predicate (access structure) S, a user runs
Ver(tpk, {apkt},m,S, σ) which outputs boolean value accept := 1 or reject := 0.

Definition 11 (Perfect Privacy of MA-ABS) A MA-ABS scheme is perfectly private, if,
for all (tsk, tpk) R← TSetup(1λ), all uidι (ι = 1, 2), all tokenuidι

R← UserReg(tpk, tsk, uidι) (ι =
1, 2), all (askt, apkt)

R← ASetup(tpk) (1 ≤ t ≤ d), all messages m, all attribute sets Γι associ-
ated with uidι (ι = 1, 2), all signing keys {uskt,ι

R← AttrGen(tpk, t, askt, tokenuidι , xt,ι)}(t,xt,ι)∈Γι
}

(ι = 1, 2), all access structures S such that S accepts Γ1 and S accepts Γ2, the distribu-
tions Sig(tpk, tokenuid1 , {apkt, uskt,1 | (t, xt,1) ∈ Γ1},m,S) and Sig(tpk, tokenuid2 , {apkt, uskt,2 |
(t, xt,2) ∈ Γ2},m,S) are equal.

Let T be the set of authorities. We assume each attribute is assigned to one authority.

Definition 12 (Unforgeability of MA-ABS) For an adversary, we define AdvMA-ABS,UF
A (λ)

to be the success probability in the following experiment for any security parameter λ. A MA-
ABS scheme is existentially unforgeable if the success probability of any polynomial-time adver-
sary is negligible:

1. The challenger gives a trustee public key tpk to adversary A, where (tpk, tsk) R← TSetup(1λ).
Adversary A specifies a set Tbad ⊆ T := {1, . . . , d} of corrupt attribute authorities (and
good (non-corrupt) authorities Tgood := T \ Tbad). For good authorities t ∈ Tgood, The

challenger runs (askt, apkt)
R← ASetup(tpk) for authority t ∈ Tgood and gives {apkt}t∈Tgood

to A.

2. A may adaptively makes a polynomial number of queries of the following type:

• [ Create and reveal token ] A asks the challenger to create a token for user id, uid.
The challenger creates a token tokenuid

R← UserReg(tpk, tsk, uid) and gives it to A.

• [ Create key ] A sends a token tokenuid that has already been created for uid (which
is correctly verified), and asks the challenger to create a signing key for an attribute,
(t, xt), for good t ∈ Tgood. The challenger creates an attribute secret key uskuid,(t,xt)

R←
AttrGen(tpk, t, askt, tokenuid, xt) without giving it to A.

• [ Create signature ] A asks the challenger to perform a signing operation to create
a signature for a message m, user id uid, and an access structure S that accepts
Γ: For that, A sends a token tokenuid and keys uskuid,(t,xt) that has already been
created for uid and attributes (t, xt) with good t ∈ Tgood ∧ (t, xt) ∈ Γ, and provides
corrupted authority public keys apkt and attribute secret keys uskuid,(t,xt) for corrupt
t ∈ Tbad ∧ (t, xt) ∈ Γ. Using the above key {uskuid,(t,xt)}(t,xt)∈Γ, the challenger

computes the signature σ R← Sig(tpk, tokenuid, {apkt, uskuid,(t,xt)}(t,xt)∈Γ,m,S) without
giving it to the adversary.

• [ Reveal key or signature ] A asks the challenger to reveal an already-created key for
a user id uid and an attribute (t, xt), or an already-created signature for a user id
uid, attributes Γ := {(t, xt)} and an access structure S (where Γ satisfies S).
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Note that when key or signature creation requests are made, A does not automatically see
the created key or signature. A sees it only when it makes a reveal query.

3. At the end, the adversary outputs (m′,S′, σ′) and corrupted authority public keys {apkt}t∈Tbad
.

Let Γuidi
:= {(t, xt)} (i = 1, . . . , ν1) be attributes under uidi that have been revealed to the

adversary, and Γ0 := {(t, ∗)}t∈Tbad
, where ∗ denotes a wild card (an arbitrary value). We say

the adversary succeeds, if a signature for (m′,S′) was never revealed to the adversary, S
′ does

not accept Γuidi ∪ Γ0 for any uidi (i = 1, . . . , ν1), and Ver(gparam, {apkt},m′,S′, σ′) = 1.

5.2 Construction

The key idea of our construction of MA-ABS scheme is to share Guid := δG1 as well as G0 and
G1 among attribute authorities to generate δb∗t,i by each authority t. Hence, G0 and G1 are
included in tpk and Guid := δG1 is shared with attribute authorities through the user’s token
tokenuid.

For matrixX := (χi,j)i,j=1,...,N ∈ F
N×N
q and element v in N -dimensional V, vX denotes ma-

trix multiplication of v and X (Remark 1 in Section 2.1). It holds then that e(xX,y(X−1)T) =
e(x,y) for any x,y ∈ V.

Moreover, (GSIG,S,V) is a (conventional) unforgeable signature scheme.

TSetup(1λ) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ),

hk
R← KHλ, (verk, sigk) R← GSIG(1λ) N0 := 4, Nd+1 := 7, κ, ξ

U← F
×
q ,

for t = 0, d+ 1, paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := (X−1

t )T,
bt,i := κ(χt,i,1, . . . , χt,i,Nt)At , Bt := (bt,1, . . . , bt,Nt),
b∗t,i := ξ(ϑt,i,1, . . . , ϑt,i,Nt)At , B

∗
t := (b∗t,1, . . . , b

∗
t,Nt

),

G0 := κG, G1 := ξG, gT := e(G,G)κξ,
B̂0 := (b0,1, b0,4), B̂d+1 := (bd+1,1, bd+1,2, bd+1,7),

B̂
∗
d+1 := (b∗d+1,1, b

∗
d+1,2, b

∗
d+1,5, b

∗
d+1,6),

tsk := (b∗0,1, sigk),

tpk := (1λ, hk, {paramVt
, B̂t}t=0,d+1, b

∗
0,3, B̂

∗
d+1, gT , G0, G1, verk),

return (tsk, tpk).

UserReg(tpk, tsk, uid) : δ U← F
×
q , ϕ0, ϕd+1,1,ι, ϕd+1,2,ι

U← Fq, Guid := δG1,

k∗0 := ( δ, 0, ϕ0, 0 )B∗
0
,

k∗d+1,1 := ( δ(1, 0), 0, 0, ϕd+1,1,1, ϕd+1,1,2, 0 )B∗
d+1
,

k∗d+1,2 := ( δ(0, 1), 0, 0, ϕd+1,2,1, ϕd+1,2,2, 0 )B∗
d+1
,

usk0 := (k∗0,k
∗
d+1,1,k

∗
d+1,2), σuid := S(sigk, (uid, Guid)),

return tokenuid := (uid, Guid, σuid, usk0).

ASetup(tpk) : uj,i := (0i−1, Gj , 09−i) for j=0, 1; i=1, .., 9, Xt
U← GL(9,Fq),

Bt := (bt,i)i=1,...,9 := (u0,1Xt, . . . ,u0,9Xt),
B
∗
t := (b∗t,i)i=1,...,9 := (u1,1(X−1

t )T, . . . ,u1,9(X−1
t )T),

B̂t := (bt,1, bt,2, bt,8, bt,9), B̂
∗
t := (b∗t,1, b

∗
t,2, b

∗
t,6, b

∗
t,7),

return (askt := Xt, apkt := (B̂t, B̂∗t )).
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TokenVerify(tpk, uid, tokenuid) holds iff V(verk, (uid, Guid), σuid) = 1.

AttrGen(tpk, t, askt, tokenuid, xt ∈ Fq) : ϕt,1, ϕt,2
U← Fq,

k∗t := ( Guid, xtGuid, 0, 0, 0, ϕt,1G1, ϕt,2G1, 0, 0 )(X−1
t )T,

that is, k∗t = ( δ, δxt, 0, 0, 0, ϕt,1, ϕt,2, 0, 0 )B∗
t
,

return uskt := k∗t .

Sig(tpk, tokenuid, {apkt, uskt
R← AttrGen(tpk, t, askt, tokenuid, xt) | (t, xt) ∈ Γ},

m,S := (M,ρ)) and Ver(tpk, {apkt}t=1,...,d, m, S := (M,ρ), �s∗) are
essentially the same as those in Section 4.2.

5.3 Security

Theorem 3 The proposed MA-ABS scheme is perfectly private.

Theorem 4 The proposed MA-ABS scheme is unforgeable (adaptive-predicate unforgeable) un-
der the DLIN assumption and the existence of collision resistant hash functions.

For any adversary A, there exist probabilistic machines E1, E2, E3-1, . . . , E3-4, E5, E6, whose
running times are essentially the same as that of A, such that for any security parameter λ,

AdvMA-ABS,UF
A (λ) ≤

∑2
i=1

(
AdvDLIN

E1-i (λ) + AdvDLIN
E2-i (λ)

)
+

∑ν1
h=1

(
AdvDLIN

E3-h-1
(λ) +

∑2
i=1

(
AdvDLIN

E3-h-2-i
(λ) + AdvDLIN

E3-h-3-i
(λ)

)
+ AdvDLIN

E3-h-4
(λ)

)
+

∑ν2
h=1

(
AdvDLIN

E5-h (λ) + AdvH,CR
E6-h (λ)

)
+ ε,

where Eι-i(·) := Eι(i, ·) for ι = 1, 2 (i = 1, 2), Eι-h(·) := Eι(h, ·) for ι = 5, 6 (h = 1, . . . , ν2),
E3-h-ι(·) := E3-ι(h, ·) for ι = 1, 4, E3-h-ι-i(·) := E3-ι(h, i, ·) for ι = 2, 3 (h = 1, . . . , ν1; i = 1, 2), ν1

is the maximum number of A’s token queries, ν2 is the maximum number of A’s reveal signature
queries, and ε := ((2d+ 16)ν1 + 8ν2 + 2d+ 11)/q.

The proofs of Theorems 3 and 4 are given in Appendix F.
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A Dual Pairing Vector Spaces (DPVS)

A.1 Summary

We now briefly explain our approach, DPVS, constructed on symmetric pairing groups (q,G,
GT , G, e), where q is a prime, G and GT are cyclic groups of order q, G is a generator of G,
e : G × G → GT is a non-degenerate bilinear pairing operation, and e(G,G) 	= 1. Here we
denote the group operation of G by addition and GT by multiplication, respectively. Note that
this construction also works on asymmetric pairing groups (in this paper, we use symmetric
pairing groups for simplicity of description).

Vector space V: V :=

N︷ ︸︸ ︷
G× · · · ×G, whose element is expressed by N -dimensional vector,

x := (x1G, . . . , xNG) (xi ∈ Fq for i = 1, . . . , N).

Canonical base A: A := (a1, . . . ,aN ) of V, where a1 := (G, 0, . . . , 0), a2 := (0, G, 0, . . . , 0),
. . . ,aN := (0, . . . , 0, G).

Pairing operation: e(x,y) :=
∏N
i=1 e(xiG, yiG) = e(G,G)

PN
i=1 xiyi = e(G,G)	x·	y ∈ GT ,

where x := (x1G, . . . , xNG) = x1a1 + · · · + xNaN ∈ V, y := (y1G, . . . , yNG) = y1a1 +
· · · + yNaN ∈ V, �x := (x1, . . . , xN ) and �y := (y1, . . . , yN ). Here, x and y can be ex-
pressed by coefficient vector over basis A such that (x1, . . . , xN )A = (�x)A := x and
(y1, . . . , yN )A = (�y)A := y.

Base change: Canonical basis A is changed to basis B := (b1, . . . , bN ) of V using a uni-
formly chosen (regular) linear transformation, X := (χi,j)

U← GL(N,Fq), such that
bi =

∑N
j=1 χi,jaj , (i = 1, . . . , N). A is also changed to basis B

∗ := (b∗1, . . . , b
∗
N ) of V,

such that (ϑi,j) := (XT )−1, b∗i =
∑N

j=1 ϑi,jaj , (i = 1, . . . , N). We see that e(bi, b∗j ) =
e(G,G)δi,j , (δi,j = 1 if i = j, and δi,j = 0 if i 	= j) i.e., B and B

∗ are dual orthonormal
bases of V.

Here, x := x1b1 + · · ·+ xNbN ∈ V and y := y1b
∗
1 + · · ·+ yNb∗N ∈ V can be expressed by

coefficient vectors over B and B
∗ such that (x1, . . . , xN )B = (�x)B := x and (y1, . . . , yN )B∗ =

(�y)B∗ := y, and e(x,y) = e(G,G)
PN

i=1 xiyi = e(G,G)	x·	y ∈ GT .

Intractable problem: One of the most natural decisional problems in this approach is the
decisional subspace problem [26]. It is to tell v := vN2+1bN2+1 + · · · + vN1bN1 (=
(0, . . . , 0, vN2+1, . . . , vN1)B), from u := v1b1 + · · · + vN1bN1 (= (v1, . . . , vN1)B), where
(v1, . . . , vN1)

U← Fq
N1 and N2 + 1 < N1.
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Trapdoor: Although the decisional subspace problem is assumed to be intractable, it can be
efficiently solved by using trapdoor t∗ ∈ span〈b∗1, . . . , b∗N2

〉. Given v := vN2+1bN2+1 + · · ·+
vN1bN1 or u := v1b1 + · · ·+ vN1bN1 , we can tell v from u using t∗ since e(v, t∗) = 1 and
e(u, t∗) 	= 1 with high probability.

Advantage of this approach: Higher dimensional vector treatment of bilinear pairing groups
have been already employed in literature especially in the areas of IBE, ABE and BE
(e.g., [5, 12]). For example, in a typical vector treatment, two vector forms of P :=
(x1G, . . . , xNG) and Q := (y1G, . . . , yNG) are set and pairing for P and Q is operated as
e(P,Q) :=

∏N
i=1 e(xiG, yiG). Such treatment can be rephrased in this approach such that

P = x1a1 + · · ·+ xNaN (= (x1, . . . , xN )A), and Q = y1a1 + · · ·+ yNaN (= (y1, . . . , yN )A)
over canonical basis A.

The major drawback of this approach is the easily decomposable property over A (i.e., the
decisional subspace problem is easily solved). That is, it is easy to decompose xiai =
(0, . . . , 0, xiG, 0, . . . , 0) from P := x1a1 + · · ·xNaN = (x1G, . . . , xNG).

In contrast, our approach employs basis B, which is linearly transformed from A using a
secret random matrix X ∈ Fq

n×n. A remarkable property over B is that it seems hard to
decompose xibi from P ′ := x1b1 + · · ·xNbN (and the decisional subspace problem seems
intractable). In addition, the secret matrix X (and the dual orthonormal basis B

∗ of V)
can be used as a source of the trapdoors to the decomposability (and distinguishability for
the decisional subspace problem through the pairing operation over B and B

∗ as mentioned
above). The hard decomposability (and indistinguishability) and its trapdoors are ones of
the key tricks in this paper. Note that composite order pairing groups are often employed
with similar tricks such as hard decomposability (and indistinguishability) of a composite
order group to the prime order subgroups and its trapdoors through factoring (e.g., [16,
34]).

A.2 Dual Pairing Vector Spaces by Direct Product of Asymmetric Pairing
Groups

Definition 13 “Asymmetric bilinear pairing groups” (q,G1,G2,GT , G1, G2, e) are a tuple of
a prime q, cyclic additive groups G1,G2 and multiplicative group GT of order q, G1 	= 0 ∈
G1, G2 	= 0 ∈ G2, and a polynomial-time computable nondegenerate bilinear pairing e : G1 ×
G2 → GT i.e., e(sG1, tG2) = e(G1, G2)st and e(G1, G2) 	= 1.

Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear pairing
groups paramG := (q,G1,G2,GT , G1, G2, e) with security parameter λ.

Definition 14 “Dual pairing vector spaces (DPVS)” (q,V,V∗,GT ,A,A
∗, e) by direct product of

asymmetric pairing groups paramG := (q,G1,G2,GT , G1, G2, e) are a tuple of a prime q, two N -

dimensional vector spaces V :=

N︷ ︸︸ ︷
G1 × · · · ×G1 and V

∗ :=

N︷ ︸︸ ︷
G2 × · · · ×G2 over Fq, a cyclic group

GT of order q, and their canonical bases i.e., A := (a1, . . . ,aN ) of V and A
∗ := (a∗1, . . . ,a

∗
N )

of V
∗, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G1,

N−i︷ ︸︸ ︷
0, . . . , 0) and a∗i := (

i−1︷ ︸︸ ︷
0, . . . , 0, G2,

N−i︷ ︸︸ ︷
0, . . . , 0), and pairing e :

V× V
∗ → GT .

The pairing is defined by e(x,y) :=
∏N
i=1 e(Di, Hi) ∈ GT where x := (D1, . . . , DN ) ∈ V

and y := (H1, . . . , HN ) ∈ V
∗. This is nondegenerate bilinear i.e., e(sx, ty) = e(x,y)st and if

e(x,y) = 1 for all y ∈ V, then x = 0. For all i and j, e(ai,a∗j ) = g
δi,j
T where δi,j = 1 if i = j,

and 0 otherwise, and e(G1, G2) 	= 1 ∈ GT .
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DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N), N ∈ N and a description of
bilinear pairing groups paramG, and outputs a description of paramV := (q,V,V∗,GT ,A,A

∗, e)
constructed above with security parameter λ and N -dimensional (V,V∗).

Right multiplication by W ∈ GL(N,Fq) is defined as in Remark 1 in Section 2.1.

B Anonymous Credentials

The notion of anonymous credentials (ACs) [3, 4, 7, 8, 9, 10] provides a functionality for users
to demonstrate anonymously possession of attributes, but the goals of ACs and ABS differ in
several points.

First of all, ABS is a class of signatures, which are non-interactive primitives and can be used
as transferable digital evidence, while ACs are typically (non-transferable) interactive protocols
to prove the possession of credentials. Nevertheless, chosen-message-attack secure signatures
can be employed to construct an interactive protocol by signing a random number challenge
from a verifier, and non-interactive ACs [4] have been proposed. So, we will focus on the other
properties of ABS and ACs rather than the difference in signatures and interactive protocols.

Although the basic ABS is in the single-authority setting, we often consider a multi-authority
(MA) setting of ABS (see the last item of Section 1.2 and Section 5), and AC also considers
multiple authorities. So in this comparison we will use the MA settings of ABS and AC.

The first difference between ABS and ACs is the number of attributes for which an attribute
authority is responsible. In MA-ABS, each authority can issue credentials (or keys) to users
for an unbounded number of attributes (e.g., q = O(2λ) many attributes, where λ is the secu-
rity parameter), and a user reveals only a predicate on the attributes that the user possesses,
rather than the individual attributes themselves. In contrast, an authority in ACs is typically
considered to be responsible for only a single attribute. Therefore, the public key size increases
linearly with the number of attributes in ACs, while the size in MA-ABS increases with the
number of authorities. Camenisch and Groß [7] introduce an AC system with an unbounded
number of attributes for an authority, but the admissible predicates are limited to a single
level of disjunctions or conjunctions of attributes, whereas more general predicates are typically
available in ABS.

The second difference is the anonymity when a user registers with multiple authorities (or
requests multiple authorities to issue credentials/keys with attributes). In ACs the multiple
registrations of a user cannot be linked to each other, while they can be linked in MA-ABS
schemes. For example, in the MA-ABS in Section 5, a user provides a token (a kind of identity
for a user) to multiple authorities. However, this information in the registration stage is the
only information that MA-ABS leaks, and no privacy is revealed after the registration stage,
e.g., even colluding authorities cannot identify the user when a user proves some predicate on
the credentials in MA-ABS. This provides sufficient anonymity in many applications.

As a summary, ACs and ABS aim at different goals: ACs target very strong anonymity even
in the registration phase, whereas under less demanding anonymity requirements in the regis-
tration phase, ABS aims to achieve more expressive functionalities, more efficient constructions
and new applications. In addition, ABS is a signature scheme and a simpler primitive compared
with ACs.

C General Form of the Proposed ABS Scheme

This section provides a general form description of the proposed ABS scheme, while Section 4
describes a simpler form of the ABS scheme.
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The security proof of the proposed ABS scheme will be given in this appendix for the general
form of the ABS scheme.

In the description of the scheme, we assume that an input vector, �xt := (xt,1, . . . , xt,nt),
is normalized such that xt,1 := 1. (If �xt is not normalized, change it to a normalized one
by (1/xt,1) · �xt, assuming that xt,1 is non-zero). In addition, we assume that input vector
�vi := (vi,1, . . . , vi,nt) satisfies that vi,nt 	= 0. We refer to Section 1.5 for notations on DPVS.

We describe random dual orthonormal basis generator Gob below, which is used as a sub-
routine in the proposed ABS scheme.

Gob(1λ, �n := (d;n1, . . . , nd)) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ), ψ

U← F
×
q ,

N0 := 4, Nt := 3nt + 3 for t = 1, . . . , d, Nd+1 := 7,
for t = 0, . . . , d+ 1, paramVt

:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := ψ · (XT

t )−1,

bt,i := (χt,i,1, . . . , χt,i,Nt)At =
∑Nt

j=1 χt,i,jat,j , Bt := (bt,1, . . . , bt,Nt),

b∗t,i := (ϑt,i,1, . . . , ϑt,i,Nt)At =
∑Nt

j=1 ϑt,i,jat,j , B
∗
t := (b∗t,1, . . . , b

∗
t,Nt

),

gT := e(G,G)ψ, param	n := ({paramVt
}t=0,...,d+1, gT )

return (param	n, {Bt,B∗t }t=0,...,d+1).

We note that gT = e(bt,i, b∗t,i) for t = 0, . . . , d+ 1; i = 1, . . . , Nt.

Setup(1λ, �n := (d;n1, . . . , nd)) :

hk
R← KHλ, (param	n, {Bt,B∗t }t=0,...,d+1)

R← Gob(1λ, �n),

B̂0 := (b0,1, b0,4), B̂t := (bt,1, . . . , bt,nt , bt,3nt+2, bt,3nt+3) for t = 1, . . . , d,

B̂d+1 := (bd+1,1, bd+1,2, bd+1,7),

B̂
∗
t := (b∗t,1, . . . , b

∗
t,nt

, b∗t,2nt+2, . . . , b
∗
t,3nt+1) for t = 1, . . . , d,

B̂
∗
d+1 := (b∗d+1,1, b

∗
d+1,2, b

∗
d+1,5, b

∗
d+1,6),

return sk := b∗0,1, pk := (1λ, hk, param	n, {B̂t}t=0,...,d+1, {B̂∗t }t=1,...,d+1, b
∗
0,3).

KeyGen(pk, sk, Γ := {(t, �xt := (xt,1, . . . , xt,nt) ∈ Fq
nt) | 1 ≤ t ≤ d}) :

δ
U← F
×
q , ϕ0, ϕt,ι, ϕd+1,1,ι, ϕd+1,2,ι

U← Fq for t = 1, . . . , d; ι = 1, . . . , nt;
k∗0 := (δ, 0, ϕ0, 0)B∗

0
,

nt︷ ︸︸ ︷ nt+1︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷︸︸︷
k∗t := ( δ(xt,1, . . . , xt,nt), 0nt+1, ϕt,1, . . . , ϕt,nt , 02 )B∗

t
for (t, �xt) ∈ Γ,

k∗d+1,1 := (δ(1, 0), 0, 0, ϕd+1,1,1, ϕd+1,1,2, 0)B∗
d+1
,

k∗d+1,2 := (δ(0, 1), 0, 0, ϕd+1,2,1, ϕd+1,2,2, 0)B∗
d+1
,

T := {0, (d+ 1, 1), (d+ 1, 2)} ∪ {t | 1 ≤ t ≤ d, (t, �xt) ∈ Γ},
return skΓ := (Γ, {k∗t }t∈T ).

Sig(pk, skΓ, m, S := (M,ρ)) : If S := (M,ρ) accepts Γ := {(t, �xt)},
then compute I and {αi}i∈I such that

∑
i∈I αiMi = �1,

and I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt = 0]
∨ [ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt 	= 0] },

ξ
U← F
×
q , (βi)

U← {(β1, . . . , β�) |
∑�

i=1 βiMi = �0},
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s∗0 := ξk∗0 + r∗0, where r∗0
U← span〈b∗0,3〉,

s∗i := γi · ξk∗t +
∑nt

ι=1 yi,ι · b∗t,ι + r∗i , for 1 ≤ i ≤ �,

where r∗i
U← span〈b∗t,2nt+2, . . . , b

∗
t,3nt+1〉, and γi, �yi := (yi,1, . . . , yi,nt) are defined as

if i ∈ I ∧ ρ(i) = (t, �vi), γi := αi, �yi
U← {�yi | �yi · �vi = 0 ∧ yi,1 = βi},

if i ∈ I ∧ ρ(i) = ¬(t, �vi), γi := αi/(�vi · �xt), �yi
U← {�yi | �yi · �vi = βi},

if i 	∈ I ∧ ρ(i) = (t, �vi), γi := 0, �yi
U← {�yi | �yi · �vi = 0 ∧ yi,1 = βi},

if i 	∈ I ∧ ρ(i) = ¬(t, �vi), γi := 0, �yi
U← {�yi | �yi · �vi = βi},

s∗�+1 := ξ(k∗d+1,1 + Hλ,Dhk (m ||S) · k∗d+1,2) + r∗�+1, where r∗�+1
U← span〈b∗d+1,5, b

∗
d+1,6〉,

return �s∗ := (s∗0, . . . , s
∗
�+1).

Ver(pk, m, S := (M,ρ), �s∗) :

�f
R← Fq

r, �sT := (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT, η0, η�+1, θ�+1, s�+1
U← Fq,

c0 := (−s0 − s�+1, 0, 0, η0)B0 ,

for 1 ≤ i ≤ �,
if ρ(i) = (t, �vi := (vi,1, . . . , vi,nt) ∈ Fq

nt),

return 0 if s∗i 	∈ Vt, else θi, ηi,1, ηi,2
U← Fq,

nt︷ ︸︸ ︷ nt+1︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷
ci := ( si + θivi,1, θivi,2, . . . , θivi,nt , 0nt+1, 0nt , ηi,1, ηi,2 )Bt ,

if ρ(i) = ¬(t, �vi),

return 0 if s∗i 	∈ Vt, else ηi,1, ηi,2
U← Fq,

nt︷ ︸︸ ︷ nt+1︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷
ci := ( si(vi,1, . . . , vi,nt), 0nt+1, 0nt , ηi,1, ηi,2 )Bt ,

c�+1 := (s�+1 − θ�+1 · Hλ,Dhk (m ||S), θ�+1, 0, 0, 0, 0, η�+1)Bd+1
,

return 0 if e(b0,1, s
∗
0) = 1,

return 1 if
∏�+1
i=0 e(ci, s

∗
i ) = 1, return 0 otherwise.

[Correctness]∏�+1
i=0 e(ci, s

∗
i ) = e(c0,k

∗
0)
ξ ·

∏
i∈I e(ci,k

∗
i )
γiξ ·

∏�
i=1

∏nt
ι=1 e(ci, b

∗
t,ι)

yi,ι · e(c�+1,k
∗
�+1)

= g
ξδ(−s0+s�+1)
T ·

∏
i∈I g

ξδαisi

T

∏�
i=1 g

βisi

T · g−ξδs�+1

T = g
ξδ(−s0+s�+1)
T · gξδs0T · g−ξδs�+1

T = 1.

D Proof of Theorem 1

Theorem 1 The proposed ABS scheme is perfectly private.

Proof. Before starting the proof, we first define function AltSig specified in the proposed ABS
scheme as follows:

AltSig(pk, sk, m, S) : δ̃
U← F
×
q , σ0

U← Fq,

if Z := {(ζ1, . . . , ζ�) |
∑�

i=1 ζiMi = �1} = ∅, then return ⊥,

otherwise, (ζi)
U← Z, s∗0 := (δ̃, 0, σ0, 0)B∗

0
,

for i = 1, . . . , �,

25



if ρ(i) = (t, �vi), then �zi
U← {�zi := (zi,1, .., zi,nt) | �zi · �vi = 0, zi,1 = δ̃ζi},

if ρ(i) = ¬(t, �vi), then �zi
U← {�zi := (zi,1, .., zi,nt) | �zi · �vi = δ̃ζi}.

}
(1)

nt︷ ︸︸ ︷ nt+1︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷︸︸︷
s∗i := ( zi,1, .., zi,nt , 0nt+1, σi,1, .., σi,nt , 02 )B∗

t
where σi,ι

U← Fq for ι = 1, .., nt,

s∗�+1 := (δ̃(1,Hλ,Dhk (m ||S)), 0, 0, σ�+1,1, σ�+1,2, 0)B∗
d+1

where σ�+1,1, σ�+1,2
U← Fq,

return �s∗ := (s∗0, . . . , s
∗
�+1).

Remark: Even when there exist no attributes Γ that satisfy an access structure S, AltSig
taking S as input can generate a correctly verifiable signature �s∗. The signature �s∗ with no
matching Γ cannot be generated in the real world and in the unforgeability definition (Definition
9), hence, is considered as only a virtual one.

We now start the proof. This theorem is true if the following statement is true, where AltSig
is defined above:

For all (sk, pk) R← Setup(1λ, �n), all messages m, all attribute sets Γ, all signing keys
skΓ

R← KeyGen(pk, sk,Γ), all access structures S such that S accepts Γ, the distributions of
Sig(pk, skΓ,m,S) and AltSig(pk, sk,m,S) are equal.

In the proposed ABS scheme, (s∗0, . . . , s
∗
�+1)

R← Sig(pk, skΓ,m,S) are expressed by

s∗0 := (�z0, 0, σ0, 0)B∗
0
, s∗�+1 := (�z�+1, 0, 0, σ�+1,1, σ�+1,2, 0)B∗

d+1

s∗i := (zi,1, . . . , zi,nt , 0
nt+1, σi,1, . . . , σi,nt , 0

2)B∗
t

(i = 1, . . . , �),

where �zi := (zi,1, . . . , zi,nt) and �z0 := (ξδ), �z�+1 := ξδ(1,Hλ,Dhk (m ||S)),
for 1 ≤ i ≤ �,

if i ∈ I ∧ ρ(i) = (t, �vi), �zi = αiξδ�xt + �yi

where �yi
U← {�yi | �yi · �vi = 0 ∧ yi,1 = βi},

if i ∈ I ∧ ρ(i) = ¬(t, �vi), �zi = (αi/(�vi · �xt))ξδ�xt + �yi

where �yi
U← {�yi | �yi · �vi = βi},

if i 	∈ I ∧ ρ(i) = (t, �vi), �zi = �yi where �yi
U← {�yi | �yi · �vi = 0 ∧ yi,1 = βi},

if i 	∈ I ∧ ρ(i) = ¬(t, �vi), �zi = �yi where �yi
U← {�yi | �yi · �vi = βi}.

Let �α′ := (α′1, . . . , α
′
�+1) such that α′i := αi if i ∈ I and α′i := 0 if i 	∈ I, then it can be rephrased

by

�z0 := (ξδ), �z�+1 := ξδ(1,Hλ,Dhk (m ||S)),
for 1 ≤ i ≤ �,
�zi

U← {�zi | �zi · �vi = 0 ∧ zi,1 = ξδα′i + βi} if ρ(i) = (t, �vi),

�zi
U← {�zi | �zi · �vi = ξδα′i + βi} if ρ(i) = ¬(t, �vi),

On the other hand, (s∗0, . . . , s
∗
�+1)

R← AltSig(pk, sk,m,S) are expressed by

s∗i := (zi,1, . . . , zi,nt , 0
nt , σi,1, . . . , σi,nt , 0)B∗

t
(i = 0, . . . , �+ 1), where

�z0 := (δ̃), �z�+1 := δ̃(1,Hλ,Dhk (m ||S)),
for 1 ≤ i ≤ �,
�zi

U← {�zi | �zi · �vi = 0 ∧ zi,1 = δ̃ζi} if ρ(i) = (t, �vi),

�zi
U← {�zi | �zi · �vi = δ̃ζi} if ρ(i) = ¬(t, �vi),
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For any {α′i} such that
∑�

i=1 α
′
iMi = �1, the distributions of

(ξδ, ξδα′1 + β1, . . . , ξδα
′
� + β�) s.t. ξ, δ

U← F
×
q , (βi)

U← {(βi) |
∑�

i=1 βiMi = �0} and

(δ̃, δ̃ζ1, . . . , δ̃ζ�) s.t. δ̃
U← F
×
q , (ζi)

U← {(ζi) |
∑�

i=1 ζiMi = �1}

are equivalent. Therefore, distributions Sig(pk, skΓ,m,S) and AltSig(pk, sk,m,S) are equivalent.
��

E Proof of Theorem 2

Theorem 2 (for General Form ABS) The proposed ABS scheme is unforgeable (adaptive-
predicate unforgeable) under the DLIN assumption and the existence of collision resistance (CR)
hash functions.

For any adversary A, there exist probabilistic machines E1, E2, E3-1, . . . , E3-4, E5, E6, whose
running times are essentially the same as that of A, such that for any security parameter λ,

AdvABS,UF
A (λ) ≤

∑nmax
i=1

(
AdvDLIN

E1-i (λ) + AdvDLIN
E2-i (λ)

)
+

∑ν1
h=1

(
AdvDLIN

E3-h-1
(λ) +

∑nmax
i=1

(
AdvDLIN

E3-h-2-i
(λ) + AdvDLIN

E3-h-3-i
(λ)

)
+ AdvDLIN

E3-h-4
(λ)

)
+

∑ν2
h=1

(
AdvDLIN

E5-h (λ) + AdvH,CR
E6-h (λ)

)
+ ε,

where Eι-i(·) := Eι(i, ·) for ι = 1, 2 (i = 1, . . . , nmax), Eι-h(·) := Eι(h, ·) for ι = 5, 6 (h =
1, . . . , ν2), E3-h-ι(·) := E3-ι(h, ·) for ι = 1, 4, E3-h-ι-i(·) := E3-ι(h, i, ·) for ι = 2, 3 (h = 1, . . . , ν1; i =
1, . . . , nmax), nmax is the maximum of dimensions nt (t = 1, . . . , d), ν1 is the maximum number
of A’s reveal key queries, ν2 is the maximum number of A’s reveal signature queries, and
ε := ((2d+ 16)ν1 + 8ν2 + 2d+ 11)/q.

E.1 Key Techniques

In the security proof of ABS, we use several key ingredients for removing the limitation for multi-
use: special matrix transformation, unbounded randomness injection, and one-dimensional lo-
calization of inner-product values.

Let �v ′i := (si�et,1 + θi�vi, 0) ∈ F
nt+1
q if ρ(i) = (t, �vi), �v ′i := (si�vi, 0) ∈ F

nt+1
q if ρ(i) = ¬(t, �vi),

and �x ′t := (�xt, 0) ∈ F
nt+1
q where si, θi are defined in algorithm Ver and �et,1 := (1, 0, . . . , 1) ∈ F

nt
q .

Security of previous functional cryptosystems based on DPVS are proven based on pairwise
independence lemma (Lemma 3 in [28]), i.e., with random matrix pair Zt

U← GL(nt+1,Fq), Ut :=
(Z−1

t )T for randomizing vector pair (�x ′t , �v
′
i ) except for the inner product value �x ′t ·�v ′i . However,

the method is not applicable to the general, i.e., multi-use, situation when multiple vectors
{�v ′i }i=1,2,.. are considered for the same vector �x ′t .

Namely, for �x ′ := �x ′1, �v
′
1 and (Z,U) := (Z1, U1) as above, then (�x ′ · Z,�v ′1 · U) is distributed

as a pair of random vectors with inner-product equals �x ′ ·�v ′1. However, if we also consider �v ′2 ·U
for �v ′2 = 2�v ′1, the distribution (�x ′ · Z, �v ′1 · U, �v ′2 · U) is not equivalent to the uniform one on
T := {(�r, �w1, �w2) |�r · �w1 = p, �r · �w2 = 2p, with p := �x ′ · �v ′1} since �w1 and �w2 are not parallel for
(�r, �w1, �w2) ∈ T in general, but �v ′1 ·U and �v ′2 ·U are clearly parallel. So, since information except
for the inner product values may be leaked, the previous information-theoretical argument does
not hold. For overcoming the problem, we introduce a new computational technique using a
special matrix transformation depending on �x ′.

If we insert a special matrix Z such that �x ′ · Z = (0, . . . , 0, 1), then �v ′1 · U = (∗, . . . , ∗, �x ′ ·
�v ′1), �v

′
2 ·U = (∗, . . . , ∗, �x ′ ·�v ′2), i.e., the last coordinate values of {�v ′i ·U}i=1,2,.. are inner product
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Figure 1: Structure of Reductions

values {�x ′ · �v ′i }i=1,2,... While the rest of the first nt coordinate values of {�v ′i · U}i=1,2,.. have
additional information, we can computationally change these values to uniformly random since
the corresponding nt coordinate values of �x ′ · Z are zero, i.e., �x ′ · Z = (0, . . . , 0, 1). The
special matrix transformation and the unbounded randomness injection technique achieve one-
dimensional localization of inner-product values in the last one-dimensional subspace without
leaking any additional information. While the special matrix Zt such that �x ′t ·Zt = (0, . . . , 0, 1)
should be used instead of random Zt, these matrices are determined when the target key query
is issued.

Games 3-h-2 and 3-h-3 (h = 1, .., ν1) in the proof below reflect the above techniques.

E.2 Proof Outline

As mentioned in Section 4.1, secret signing keys and verification texts in our ABS are the
counterparts of secret decryption keys and ciphertexts in CP-FE. Based on this correspondence,
we follow the dual system encryption methodology proposed by Waters [36], at the top level of
strategy of the unforgeability proof.
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Table 2: Forms of verification texts, keys, and signatures

normal
1-st

temp.
2-nd
temp.

3-rd
temp.

4-th
temp.

semi-
func.

non-
func.

Keys
Eqs. (2),
(3), (4)

Eqs. (13),
(14), (4)

Eqs. (13),
(15), (4)

Eqs. (18),
(15), (4)

Eqs. (18),
(14), (4)

Eqs. (18),
(3), (4)

—

Signatures
Eqs. (5),
(6), (7)

— — — —
Eqs. (6),

(20)
—

Verification
text

Eq. (8)
Eqs. (9),
(10), (11)

Eqs. (9),
(12), (11)

Eqs. (9), (16),
(12), (11)

Eqs. (9),
(17), (11)

Eqs. (19),
(12), (11)

Eqs. (21),
(12), (11)

In the methodology, verification texts (ciphertexts), secret keys and signatures have two
forms, normal and semi-functional. In our proof, we also introduce other forms, temporary forms
for verification texts and secret keys (Table 2). (Moreover, verification texts have final, random
form.) The real system uses only normal verification texts, normal secret keys and normal
signatures, and semi-functional/temporary forms of verification texts, keys and signatures are
used only in a sequence of security games for the unforgeability proof.

To prove this theorem, we employ Game 0 (original unforgeability game) through Game 6.
We first Game 0 to Game 0’, where queried keys and signatures are calculated and sent to the
adversary when corresponding reveal queries are issued. In particular, a queried signature is
calculated by AltSig in the proof of Theorem 1. When at most ν1 secret key (KeyGen) reveal
queries are issued by an adversary, there are 7ν1 game changes from Game 2 (Game 3-0-7),
Game 3-1-1, through Game 3-ν1-6, Game 3-ν1-7. When at most ν2 signature reveal queries
are issued by an adversary, there are ν2 game changes from Game 4 (Game 5-0), Game 5-1
through Game 5-ν2. The final game, Game 6, is changed from Game 5-ν2. Since the coefficient
of b∗0,1 of c0 in the verification text is uniformly randomized in Game 6, the probability that
any signature output by an adversary is correctly verified by using the randomized verification
text is negligible in Game 6. As usual, we prove that the advantage gaps between neighboring
games are negligible.

In Figure 1, an equality between neighboring games indicates that the left-hand game can
be conceptually (information-theoretically) changed to the right-hand game. An approximate
equality between them indicates that the gap between them is upper-bounded by the advantage
of the problem indicated. The DLIN Problem is defined in Definition 3. Problems 1–3 are de-
fined in Definitions 15–17, respectively. We have shown that the intractability of (complicated)
Problems 1–3 is reduced to that of the DLIN Problem through several intermediate steps, or
intermediate problems, as in [28]. The vertical reductions are also indicated in Figure 1.

A normal secret key, sk norm
Γ (with attribute set Γ), is a correct form of the secret key of the

proposed ABS scheme. Similarly, a normal verification text is denoted by �c norm
S

:= (c0, . . . , c�+1)
(with access structure S), and a normal signature is �s ∗ norm. These are given by formulas
indicated in Table 2.

A semi-functional secret key, sk semi
Γ , a semi-functional and non-functional verification text,

�c semi
S

, �c non-f
S

, and temporary forms, sk temp-1
Γ , . . . , sk temp-4

Γ , �c temp-1
S

, . . . , �c temp-4
S

, are also given as
indicated in Table 2. A semi-functional signature is denoted by �s ∗ semi, and is given as in Table
2.

We summarize changes of the forms in Table 3, where shaded parts indicate the verification
text or queried key(s), signature(s), which were changed in a game from the previous game.
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Table 3: Outline of Game Descriptions

Game Verification Queried keys Queried sigs
text 1 · · · h · · · ν1 1 · · · ν2

0, 0’ normal normal
1 1-st temp. normal
2 2-nd temp. normal

3-1-1 2-nd temp. 1-st temp. normal
3-1-2 3-rd temp. 2-rd temp. normal
3-1-3 4-th temp. 2-rd temp. normal
3-1-4 4-th temp. 3-rd temp. normal
3-1-5 3-rd temp. 3-rd temp. normal
3-1-6 2-nd temp. 4-th temp. normal
3-1-7 2-nd temp. semi-func. normal

...
3-h-1 2-nd temp. semi-func. 1-st temp. normal
3-h-2 3-rd temp. semi-func. 2-nd temp. normal
3-h-3 4-th temp. semi-func. 2-nd temp. normal
3-h-4 4-th temp. semi-func. 3-rd temp. normal
3-h-5 3-rd temp. semi-func. 3-rd temp. normal
3-h-6 2-nd temp. semi-func. 4-th temp. normal
3-h-7 2-nd temp. semi-func. semi-func. normal

...
3-ν1-7 2-nd temp. semi-func. semi-func. normal

4 semi func. semi-func. normal
5-1 semi-func. semi-func. semi-func. normal

...
5-ν2 semi-func. semi-func. semi func.

6 non-func. semi func.

To prove that the advantage gap between Games 0’ and 1 is bounded by the advantage of
Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the challenger of Game 0 (or 1)
(against an adversary A) by using an instance with β

U← {0, 1} of Problem 1. We then show
that the distribution of the secret keys and verification texts replied by the simulator is almost
equivalent to those of Game 0 when β = 0 and Game 1 when β = 1. That is, the advantage of
Problem 1 is almost equivalent to the advantage gap between Games 0 and 1 (Lemma 6). The
advantage of Problem 1 is proven to be bounded by that of the DLIN assumption with ignoring
a negligible factor (Lemma 1). The advantage gap between Games 1 and 2 is bounded by that
of Problem 1 (then DLIN) in a similar manner (Lemma 7).

The advantage gap between Games 3-(h− 1)-7 and 3-h-1 is similarly shown to be bounded
by the advantage of Problem 2 (i.e., of the DLIN assumption) with ignoring a negligible factor
(Lemmas 8 and 2). The next two steps are tricky parts in our game transformation. We then
show that Game 3-h-1 can be conceptually changed to Game 3-h-2 (Lemma 9), by using the fact
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that parts of bases, (bn+1, . . . , b2n+1) and (b∗n+1, . . . , b
∗
2n+1), are unknown to the adversary. In

Game 3-h-2, the semi-functional part of the h-th queried key is encoded as (0nt , δ′) with common
δ′

U← Fq for any t. Hence, in the next change, we can mask the first nt-components in the semi-
functional part of the verification text by using Problem 1, and the coefficient vector is given as
random �ri

U← F
nt
q in the first nt-dimension and inner-product value (s′i�et,1+θ′i�ri)·�xt = s′i+θ

′
i�ri ·�xt

(or s′i�ri ·�xt) in the last (nt+1)-th component (Lemma 10). Here, s′0 in the semi-functional part
of verification text c0, is independently distributed from the other variables when S does not
accept Γ (shown in proof of Lemma 11). That is, the joint distribution of h-th queried sk temp-2

Γ

and �c temp-4
S

is equivalent to that of sk temp-3
Γ and �c temp-4

S
when S does not accept Γ, which is the

distribution in Game 3-h-4.
The advantage gaps between Games 3-h-4 and 3-h-5 is similarly shown to be bounded by

the advantage of Problem 1 (i.e., of the DLIN assumption) with ignoring a negligible factor
(Lemmas 12 and 1). Then, Game 3-h-5 is conceptually changed to Game 3-h-6 (Lemma 13).
And, the gap between Game 3-h-6 and 3-h-7 is bounded by that of Problem 2 as before (Lemma
14). Here, the h-th queried key is in semi-functional form, and game change continues for the
next (h+ 1)-th queried key.

After the sequence of games, Game 3-ν1-7 is conceptually changed to Game 4 (Lemma 15),
where the verification text is in semi-functional form.

Then, the advantage gap between Games 5-(h−1) and 5-h is similarly shown to be bounded
by the advantage of Problem 3 (i.e., of the DLIN assumption) and the CR hash function with
ignoring a negligible factor (Lemmas 16 and 3).

Finally we show that Game 5-ν2 can be conceptually changed to Game 6 with a negligible
error probability (Lemma 17).

E.3 Main Part of the Proof

To prove Theorem 2, we consider the following (7ν1 +ν2 +6) games. In Game 0’, a part framed
by a box indicates coefficients to be changed in a subsequent game. In the other games, a part
framed by a box indicates coefficients which were changed in a game from the previous game.

Game 0 : Original game (Definition 9).

Game 0’ : Game 0’ is the same as Game 0 except the following procedures.

1. When a create key query is issued by A, challenger C only records the specified
attributes, and when a create signature query is issued, C only records the specified
attributes (for key) and access structure. In this step, C just records, but creates no
corresponding keys or signatures.

2. When a reveal key query is issued for attributes Γ which has been already recorded,
C creates the queried key by using KeyGen(pk, sk,Γ). And, when a reveal signa-
ture query is issued for (attributes Γ and) access structure S which has been already
recorded with Γ satisfying S, C creates the queried signature by using AltSig(pk, sk,m,S)
in the proof of Theorem 1.

That is, the reply to a KeyGen reveal query for Γ := {(t, �xt)} are:

k∗0 := ( δ, 0 , ϕ0, 0 )B∗
0
, (2)

k∗t := ( δ�xt, 0nt+1 , �ϕt, 02 )B∗
t

for (t, �xt) ∈ Γ, (3)

k∗d+1,1 := ( δ(1, 0), 02, �ϕd+1,1, 0 )B∗
d+1
,

k∗d+1,2 := ( δ(0, 1), 02, �ϕd+1,2, 0 )B∗
d+1
,

}
(4)

31



where δ U← F
×
q , ϕ0

U← Fq, �ϕt
U← F

nt
q for (t, �xt) ∈ Γ, �ϕd+1,1, �ϕd+1,2

U← F
2
q . The reply to an

signature (Sig) reveal query for (m,S) with S := (M,ρ) are:

s∗0 := ( δ̃, 0 , σ0, 0 )B∗
0
, (5)

s∗i := ( �zi, 0nt+1, �σi, 02 )B∗
t

for i = 1, . . . , �, (6)

s∗�+1 := ( δ̃(1,Hλ,Dhk (m ||S)), 02 , �σ�+1, 0 )B∗
d+1
, (7)

where, δ̃ U← F
×
q , σ0

U← Fq, �σi
U← F

nt
q , �σd+1

U← F
2
q , (ζi)

U← {(ζi) |
∑�

i=1 ζiMi = �1}, and for

i = 1, . . . , �, if ρ(i) = (t, �vi), then �zi
U← {�zi | �zi · �vi = 0, zi,1 = δ̃ζi}, if ρ(i) = ¬(t, �vi), then

�zi
U← {�zi | �zi · �vi = δ̃ζi}.

The components c0, . . . , c�+1 (verification text) for (m′,S′) with S
′ := (M,ρ) generated in

Ver for verifying the output of the adversary are:

c0 := ( −s0 − s�+1, 0 , 0, η0 )B0 ,

for 1 ≤ i ≤ �,
if ρ(i) = (t, �vi), ci := ( si�et,1 + θi�vi, 0nt+1 , 0nt , �ηi )Bt ,

if ρ(i) = ¬(t, �vi), ci := ( si�vi, 0nt+1 , 0nt , �ηi )Bt ,

c�+1 := ( s�+1�e1 + θ�+1(−Hλ,Dhk (m′ ||S′), 1), 02 , 02, η�+1 )Bd+1
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(8)

where �f
R← Fq

r, �sT := (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT, �et,1 := (1, 0. . . . , 0) ∈
F
nt
q , �ηi

U← F
2
q , η0, η�+1, θi, s�+1

U← Fq (i = 1, . . . , �+ 1).

Game 1 : Same as Game 0’ except that the verification text (c0, . . . , c�+1) for (m′,S′) with
S
′ := (M,ρ) generated in Ver for verifying the output of the adversary are:

c0 := ( −s0 − s�+1, w0 , 0, η0 )B0 , (9)

for 1 ≤ i ≤ �,
if ρ(i) = (t, �vi), ci := ( si�et,1 + θi�vi, �wi , 0, 0nt , �ηi )Bt ,

if ρ(i) = ¬(t, �vi), ci := ( si�vi, �wi , 0, 0nt , �ηi )Bt ,

⎫⎪⎪⎬⎪⎪⎭ (10)

c�+1 := ( s�+1�e1 + θ�+1(−Hλ,Dhk (m′ ||S′), 1), �w�+1 , 02, η�+1 )Bd+1
, (11)

where w0
U← Fq, �wi

U← F
nt
q (i = 1, . . . , �), �w�+1

U← F
2
q , and all the other variables are

generated as in Game 0’.

Game 2 : Same as Game 1 except that the verification text (c0, . . . , c�+1) for (m′,S′) with
S
′ := (M,ρ) generated in Ver for verifying the output of the adversary are:

c0 := ( −s0 − s�+1, −s′0 , 0, η0 )B0 ,

for 1 ≤ i ≤ �,
if ρ(i) = (t, �vi), ci := ( si�et,1 + θi�vi, s′i�et,1 + θ′i�vi , 0, 0nt , �ηi )Bt ,

if ρ(i) = ¬(t, �vi), ci := ( si�vi, s′i�vi , 0, 0nt , �ηi )Bt ,

⎫⎪⎪⎬⎪⎪⎭ (12)

where �f ′ U← Fq
r, (�s′)T := (s′1, . . . , s

′
�)

T := M · (�f ′)T, s′0 := �1 · (�f ′)T, θ′i
U← Fq (i = 1, . . . , �),

and all the other variables are generated as in Game 1.
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Game 3-h-1 (h = 1, . . . , ν1) : Game 3-0-1 is Game 2. Game 3-h-1 is the same as Game
3-(h− 1)-7 except that k∗t for t = 0 and (t, �xt) ∈ Γ of the reply to the h-th KeyGen query
is:

k∗0 := ( δ, δ′ , ϕ0, 0 )B∗
0
, (13)

k∗t := ( δ�xt, δ′�xt , 0, �ϕt, 02 )B∗
t

for (t, �xt) ∈ Γ, (14)

where δ′ U← Fq, and all the other variables are generated as in Game 3-(h− 1)-7.

Game 3-h-2 (h = 1, . . . , ν1) : Game 3-h-2 is the same as Game 3-h-1 except that k∗t for
(t, �xt) ∈ Γ of the reply to the h-th KeyGen query and (c1, . . . , c�) of the verification text
for (m′,S′) with S

′ := (M,ρ) generated in Ver for verifying the output of the adversary
are:

k∗t := ( δ�xt, 0nt , δ′ , �ϕt, 02 )B∗
t

for (t, �xt) ∈ Γ, (15)

for 1 ≤ i ≤ �,
if ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ,

ci := ( si�et,1 + θi�vi, (s′i�et,1 + θ′i�vi, 0) · Zt , 0nt , �ηi )Bt ,

if ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ, ci := ( si�vi, (s′i�vi, 0) · Zt , 0nt , �ηi )Bt ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(16)

where �et,1 := (1, 0, . . . , 0) ∈ F
nt
q , Zt

U← {Zt ∈ GL(nt + 1,Fq) | (0nt , 1) = (�xt, 0) · (Z−1
t )T},

and all the other variables are generated as in Game 3-h-1. We note that the last ((nt+1)-
th) coordinate of (s′i�et,1 +θ′i�vi, 0) ·Zt ∈ F

nt+1
q (resp. (s′i�vi, 0) ·Zt ∈ F

nt+1
q ) is inner-product

value (s′i�et,1 + θ′i�vi) · �xt = s′i + θ′i�vi · �xt (resp. s′i�vi · �xt).

Game 3-h-3 (h = 1, . . . , ν1) : Game 3-h-3 is the same as Game 3-h-2 except that (c1, . . . , c�)
of the verification text for (m′,S′) with S

′ := (M,ρ) generated in Ver for verifying the out-
put of the adversary are:

for 1 ≤ i ≤ �,
if ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ,

ci := ( si�et,1 + θi�vi, �wi , s
′
i + θ′i�vi · �xt, 0nt , �ηi )Bt ,

if ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ, ci := ( si�vi, �wi , s
′
i�vi · �xt, 0nt , �ηi )Bt ,

if ρ(i) = (t, �vi) ∧ (t, �xt) 	∈ Γ, ci := ( si�et,1 + θi�vi, �wi , 0, 0nt , �ηi )Bt ,

if ρ(i) = ¬(t, �vi) ∧ (t, �xt) 	∈ Γ, ci := ( si�vi, �wi , 0, 0nt , �ηi )Bt ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(17)

where, �wi
U← F

nt
q for i = 1, . . . , �, and all the other variables are generated as in Game

3-h-2.

Game 3-h-4 (h = 1, . . . , ν1) : Game 3-h-4 is the same as Game 3-h-3 except that k∗0 of the
reply to the h-th KeyGen query is:

k∗0 := ( δ, r0 , ϕ0, 0 )B∗
0
, (18)

where r0
U← Fq, which is independent from δ′

U← Fq in Eq. (15), and all the other variables
are generated as in Game 3-h-3.
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Game 3-h-5 (h = 1, . . . , ν1) : Game 3-h-5 is the same as Game 3-h-4 except that (c1, . . . , c�)
of the verification text for (m′,S′) with S

′ := (M,ρ) generated in Ver for verifying the out-
put of the adversary are given as in Eq. (16), where Zt

U← {Zt ∈ GL(nt+1,Fq) | (0nt , 1) =
(�xt, 0) · (Z−1

t )T}, and all the other variables are generated as in Game 3-h-4.

Game 3-h-6 (h = 1, . . . , ν1) : Game 3-h-6 is the same as Game 3-h-5 except that k∗t for
(t, �xt) ∈ Γ of the reply to the h-th KeyGen query are given as in Eq. (14) with δ′

U← Fq

(independent from r0
U← Fq in Eq. (18)) and (c1, . . . , c�) of the verification text for (m′,S′)

with S
′ := (M,ρ) generated in Ver for verifying the output of the adversary are given as

in Eq. (12).

Game 3-h-7 (h = 1, . . . , ν1) : Game 3-h-7 is the same as Game 3-h-6 except that k∗t for
(t, �xt) ∈ Γ of the reply to the h-th KeyGen query are given as in Eq. (3).

Game 4 : Same as Game 3-ν1-7 except that the verification text (c0, . . . , c�+1) for (m′,S′) with
S
′ := (M,ρ) generated in Ver for verifying the output of the adversary are:

c0 := ( −s0 − s�+1, w0 , 0, η0 )B0 , (19)

where w0
U← Fq, and all the other variables are generated as in Game 3-ν1-7.

Game 5-h (h = 1, . . . , ν2) : Game 5-0 is Game 4. Game 5-h is the same as Game 5-(h− 1)
except that s∗0, s

∗
�+1 of the reply to the h-th signature reveal query for (m,S) are:

s∗0 := ( δ̃, r̃0 , σ0, 0 )B∗
0
,

s∗�+1 := ( δ̃(1,Hλ,Dhk (m ||S)), �̃r�+1 , �σ�+1, 0 )B∗
d+1
,

⎫⎬⎭ (20)

where r̃0
U← Fq, �̃r�+1

U← Fq
2, and all the other variables are generated as in Game 5-(h−1).

Game 6 : Same as Game 5-ν2 except that c0 generated in Ver for verifying the output of the
adversary is:

c0 := ( s̃0 , w0, 0, η0 )B0 , (21)

where s̃0
U← Fq (i.e., independent from all the other variables).

Let Adv
(0)
A (λ) (= Adv

(0′)
A (λ) by Lemma 5) be AdvABS,UF

A (λ) in Game 0, and Adv
(1)
A (λ),Adv

(2)
A (λ),

Adv
(3-h-ι)
A (λ), . . . ,Adv

(6)
A (λ) be the advantage of A in Game 1, 2, 3-h-ι, . . . , 6, respectively. It is

obtained that Adv
(6)
A (λ) = 1/q by Lemma 18.

We will show twelve lemmas (Lemmas 6–17) that evaluate the gaps between pairs of neigh-
boring games. From these lemmas and Lemmas 1–3, we obtain

AdvABS,UF
A (λ) = Adv

(0)
A (λ) ≤

∣∣∣Adv
(0)
A (λ)− Adv

(1)
A (λ)

∣∣∣ +
∣∣∣Adv

(1)
A (λ)− Adv

(2)
A (λ)

∣∣∣ +∑ν1
h=1

∑7
ι=1

∣∣∣Adv
(3-h-(ι−1))
A (λ)− Adv

(3-h-ι)
A (λ)

∣∣∣ +
∣∣∣Adv

(3-ν1-7)
A (λ)− Adv

(4)
A (λ)

∣∣∣ +∑ν2
h=1

∣∣∣Adv
(5-(h−1))
A (λ)− Adv

(5-h)
A (λ)

∣∣∣ +
∣∣∣Adv

(5-ν2)
A (λ)− Adv

(6)
A (λ)

∣∣∣ + Adv
(6)
A (λ)

≤
∑nmax

i=1

(
AdvDLIN

E1-i (λ) + AdvDLIN
E2-i (λ)

)
+

∑ν1
h=1

(
AdvDLIN

E3-h-1
(λ) +

∑nmax
i=1

(
AdvDLIN

E3-h-2-i
(λ) + AdvDLIN

E3-h-3-i
(λ)

)
+ AdvDLIN

E3-h-4
(λ)

)
+

∑ν2
h=1

(
AdvDLIN

E5-h (λ) + AdvH,CR
E6-h (λ)

)
+ ε,
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where Game 3-h-0 is Game 3-(h − 1)-7. ε := ((2d + 22)ν1 + 8ν2 + 2d + 15)/q. This completes
the proof of Theorem 2. ��

E.4 Problems 1–3 and Their Security

Definition 15 (Problem 1) Problem 1 is to guess β ∈ {0, 1}, given (param	n, {Bt, B̂∗t }t=0,...,d+1,

fβ,0, {eβ,t,i}t=1,...,d;i=1,...,nt ,fβ,d+1,fd+1,2)
R← GP1

β (1λ, �n), where

GP1
β (1λ, �n) : (param	n, {Bt,B∗t }t=0,...,d+1)

R← Gob(1λ, �n), B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4),

B̂
∗
t := (b∗t,1, . . . , b

∗
t,nt

, b∗t,2nt+1, . . . , b
∗
t,3nt+3) for t = 1, . . . , d,

B̂
∗
d+1 := (b∗d+1,1, b

∗
d+1,2, b

∗
d+1,5, . . . , b

∗
d+1,7),

ω, z0, γ0, γd+1
U← Fq, �zd+1

U← F
2
q , f0,0 := (ω, 0, 0, γ0)B0 , f1,0 := (ω, z0, 0, γ0)B0 ,

f0,d+1 := (ω, 0, 02, 02, γd+1)Bd+1
, f1,d+1 := (ω, 0, �zd+1, 02, γd+1)Bd+1

,

for t = 1, . . . , d; i = 1, . . . , nt; �et,i := (0i−1, 1, 0nt−i) ∈ F
nt
q , zt,i, γt,i,1, γt,i,2

U← Fq,

nt︷ ︸︸ ︷ nt+1︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷
e0,t,i := ( 0nt , 0nt+1, 0nt , γt,i,1, γt,i,2 )Bt ,
e1,t,i := ( 0nt , zt,i�et,i, 0, 0nt , γt,i,1, γt,i,2 )Bt ,

ft,i := ωbt,i,

return (param	n, {Bt, B̂∗t }t=0,...,d+1,fβ,0, {eβ,t,i,ft,i}t=1,...,d;i=1,...,nt ,fβ,d+1).

for β U← {0, 1}. For a probabilistic machine B, we define the advantage of B as the quantity

AdvP1
B (λ) :=

∣∣∣Pr
[
B(1λ, �)→1

∣∣∣ � R←GP1
0 (1λ, �n)

]
−Pr

[
B(1λ, �)→1

∣∣∣ � R←GP1
1 (1λ, �n)

]∣∣∣ .
Lemma 1 For any adversary B, there are probabilistic machine Ei, whose running time is es-
sentially the same as that of B, such that for any security parameter λ, AdvP1

B (λ) ≤
∑nmax

i=1 AdvDLIN
Ei (λ)+

5nmax/q, where nmax is the maximum of dimensions nt for t = 1, . . . , d.

Proof. We first define hybrid experiments Exp1-j (j = 0, . . . , nmax) as the adversary B is given

an instance (param	n, {Bt, B̂∗t }t=0,...,d+1,f0,0, {e0,t,i,ft,i}t=1,...,d;i=1,...,nt ,f0,d+1) if j = 0, or

an instance (param	n, {Bt, B̂∗t }t=0,...,d+1,f1,0, {e1,t,i}t=1,...,d;i=1,...,j , {e0,t,i}t=1,...,d;i=j+1,...,nt ,

{ft,i}t=1,...,d;i=1,...,nt ,f1,d+1) if j > 0,

where all elements are generated as in the Problem 1 generator GP1
β , and B outputs a bit

β′. Then, an instance in Exp1-0 (resp. Exp1-nmax) has the same distribution of output of
GP1

0 (1λ, �n) (resp.GP1
1 (1λ, �n)), i.e., AdvP1

B (λ) =
∣∣Pr

[
Exp10

B(1
λ)→ 1

]
− Pr

[
Exp1nmax

B (1λ)→ 1
]∣∣ ,

where Exp1jB(1
λ) is the output of B in the experiment Exp1-j for j = 0, . . . , nmax. Therefore,

AdvP1
B (λ) ≤

∑nmax
j=1

∣∣∣Pr
[
Exp1j−1

B (1λ)→ 1
]
− Pr

[
Exp1jB(1

λ)→ 1
]∣∣∣ .

From Claim 1, we have AdvP1
B (λ) ≤

∑nmax
i=1 AdvDLIN

Ei (λ) + 5nmax/q. ��

Claim 1 There are probabilistic machines Ei, whose running time are essentially the same as
that of B, such that for any security parameter λ,

∣∣∣Pr
[
Exp1j−1

B (1λ)→ 1
]
− Pr

[
Exp1jB(1

λ)→ 1
]∣∣∣ ≤

AdvDLIN
Ej (λ) + 5/q for j = 1, . . . , nmax.
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Proof. First, we show the relation of Claim 1 and Basic Problem 1 in [28]. The problem asks
to distinguish two sets of d′ vectors {f ′0,t := δdt,1 + σdt,3}t=0,...,d′ and {f ′1,t := δdt,1 + ρdt,2 +
σdt,3}t=0,...,d′ with three dimensional basis {dt,1,dt,2,dt,3} ⊂ Bt as well as several auxiliary
elements. We denote the problem of distinguishing an instance of Exp1j−1 and that of Exp1j

given in Claim 1 by Probj . Probj has a similar form as Basic Problem 1 (BP1) for j = 1, . . . , nmax.
Namely, for j = 1, Prob1 is to distinguish

(f0,0 := ωb0,1 + γ0b0,4, {e0,t,1 := γt,1,1bt,3nt+2 + γt,1,2bt,3nt+3}t=1,...,d,

f0,d+1 := ωbd+1,1 + γd+1bd+1,7)

and

(f1,0 := ωb0,1 + z0b0,2 + γ0b0,4, {e1,t,1 := γt,1,1bt,3nt+2 + zt,1bt,nt+1 + γt,1,2bt,3nt+3}t=1,...,d,

f1,d+1 := ωbd+1,1 + zd+1,1bd+1,3 + zd+1,2bd+1,4 + γd+1bd+1,7)

with other auxiliary elements. The elements (fβ,0, {eβ,t,1}t=1,...,d,fβ,d+1) have the similar form
as the above three dimensional subspace problem instance of BP1 except that the first coefficient
γt,1,1 in e0,t,1 (and e1,t,1) is not ω, which is commonly used in f0,0 (and f1,0) and f0,d+1 (and
f1,d+1), that f1,d+1 has two dimensional semi-functional part zd+1,1bd+1,3 + zd+1,2bd+1,4, and
that all semi-functional coefficients, i.e., z0, {zt,1}t=1,...,d, zd+1,1, zd+1,2, are different from each
other.

Based on the similarity, we construct a (probabilistic) machine C1 against BP1 (on the
same spaces span〈Bt〉t=0,...,d+1 of Prob1 and three dimensional subspaces {dt,1,dt,2,dt,3} are
defined in the same manner as in Prob1, that is, d0,1 := b0,1,d0,2 := b0,2,d0,3 := b0,4, dt,1 :=
bt,3nt+2,dt,2 := bt,nt+1,dt,3 := bt,3nt+3 for t = 1, . . . , d, and dd+1,1 := bd+1,1,dd+1,2 := bd+1,3,
dd+1,3 := bd+1,7) by using an adversary B against Prob1. C1 takes {f ′β,t}t=0,...,d+1 and other
auxiliary elements as input of BP1. Then, C1 calculates

f̃β,0 := f ′β,0 + γ̃0b0,4, {ẽβ,t,1 := f ′β,t + γ̃t,1,1bt,3nt+2 + γ̃t,1,2bt,3nt+3}t=1,...,d,

f̃β,d+1 := f ′β,d+1 + γ̃d+1bd+1,7

where γ̃0, γ̃t,1,1, γ̃t,1,2, γ̃d+1
U← Fq and other elements {e0,t,i}t=1,...,d;i=2,...,nt , {ft,i}t=1,...,d;i=1,...,nt

are generated using {Bt}t=1,...,d, ft,i in BP1, and freshly generated {γt,i,1, γt,i,2 U← Fq}t=1,...,d;i=2,...,nt .
C1 also generates a part of semi-functional space basis as: b̃0,2 := r0b0,2, b̃t,nt+1 := rtbt,nt+1 for

t = 1, . . . , d, (b̃d+1,3, b̃d+1,4) := (bd+1,3, bd+1,4) ·Rd+1 where rt
U← Fq for t = 0, . . . , d and Rd+1

U←
GL(2,Fq). C1 then sets new bases B̃0 := (b0,1, b̃0,2, b0,3, b0,4), B̃t := (bt,1, . . . , bt,nt , b̃t,nt+1,

bt,nt+2, . . . , bt,3nt+3) for t = 1, . . . , d, and B̃d+1 := (bd+1,1, bd+1,2, b̃d+1,3, b̃d+1,4, bd+1,5, . . . , bd+1,7).
Note that new basis B̃t is compatible with B̂

∗
t for t = 0, . . . , d+1, since B̂

∗
t has no basis vectors for

the semi-functional part. C1 gives a Prob1 instance � := (param	n, {B̃t, B̂∗t }t=0,...,d+1, f̃β,0, {ẽβ,t,1,
e0,t,i}t=1,...,d;i=2,...,nt , {ft,i}t=1,...,d;i=1,...,nt , f̃β,d+1) to B. If B finally outputs β′, then C1 outputs
β′. Since the distribution of � is equivalent to that of the output of Exp10 (resp. Exp11) when
β = 0 (resp.β = 1), we have AdvProb1

B (λ) ≤ AdvBP1
C1 (λ).

For j = 2, . . . , nmax, Probj is to distinguish

e0,t,j := γt,j,1bt,3nt+2 + γt,j,2bt,3nt+3 for t ∈ {1, . . . , d} such that j ≤ nt,

and

e1,t,j := γt,j,1bt,3nt+2 + zt,jbt,nt+j + γt,j,2bt,3nt+3 for t ∈ {1, . . . , d} such that j ≤ nt,
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with other auxiliary elements. The elements {eβ,t,j}t∈{1,...,d} s.t. j≤nt
have the similar form as

the above three dimensional subspace problem instance of BP1 except that the coefficients
γt,j,1, γt,j,2, zt,j in e0,t,j (and e1,t,j) are independently and uniformly distributed.

Based on the similarity, we construct a (probabilistic) machine Cj against BP1 (on the
same spaces span〈Bt〉t=0,...,d+1 of Probj and three dimensional subspaces {dt,1,dt,2,dt,3} are
defined in the same manner as in Probj , that is, dt,1 := bt,3nt+2,dt,2 := bt,nt+j ,dt,3 := bt,3nt+3

for t = 1, . . . , d) by using an adversary B against Probj . Cj takes {f ′β,t}t=0,...,d+1 and other
auxiliary elements as input of BP1. Then, Cj calculates

ẽβ,t,j := f ′β,t + γ̃t,j,1bt,3nt+2 + γ̃t,j,2bt,3nt+3 for t such that j ≤ nt,

where γ̃t,j,1, γ̃t,j,2
U← Fq and other elements f1,0, {e1,t,i}t=1,...,d;i=1,...,j−1, {e0,t,i}t=1,...,d;i=j+1,...,nt ,

{ft,i}t=1,...,d;i=1,...,nt ,f1,d+1 are generated using {Bt}t=0,...,d and freshly generated ω, z0, γ0
U←

Fq, {zt,i, γt,i,1, γt,i,2 U← Fq}t=1,...,d;i=1,...,j−1, {γt,i,1, γt,i,2
U← Fq}t=1,...,d;i=j+1,...,nt , �zd+1

U← F
2
q , γd+1

U←
Fq. Cj also generates a part of semi-functional space basis as: b̃t,nt+j := rtbt,nt+j for t = 1, . . . , d

where rt
U← Fq for t = 1, . . . , d. Cj then sets new bases B̃t := (bt,1, . . . , bt,nt+j−1, b̃t,nt+j , bt,nt+j+1,

. . . , bt,3nt+3) for t = 1, . . . , d. Note that new basis B̃t is compatible with B̂
∗
t for t = 1, . . . , d,

since B̂
∗
t has no basis vectors for the semi-functional part. Cj gives a Probj instance � :=

(param	n, {Bt, B̂∗t }t=0,d+1, {B̃t, B̂∗t }t=1,...,d,f1,0, {e1,t,i}t=1,...,d;i=1,...,j−1, ẽβ,t,j , {e0,t,i}t=1,...,d;i=j+1,...,nt ,
{ft,i}t=1,...,d;i=1,...,nt ,f1,d+1) to B. If B finally outputs β′, then Cj outputs β′. Since the distribu-
tion of � is equivalent to that of the output of Exp1j−1 (resp. Exp1j) when β = 0 (resp.β = 1),
we have AdvProbj

B (λ) ≤ AdvBP1
Cj (λ).

By combining Lemmas 15 and 16 in [28], we obtain that, for any Cj , there exists Ej such
that AdvBP1

Cj (λ) ≤ AdvDLIN
Ej (λ) + 5/q. Therefore, there are probabilistic machines Ej , whose

running times are essentially the same as that of B, such that for any security parameter λ,
AdvProbj

B (λ) :=
∣∣∣Pr

[
Exp1j−1

B (1λ)→ 1
]
− Pr

[
Exp1jB(1

λ)→ 1
]∣∣∣ ≤ AdvBP1

Cj (λ) ≤ AdvDLIN
Ej (λ) + 5/q

for j = 1, . . . , nmax. This completes the proof of Claim 1. ��

Definition 16 (Problem 2) Problem 2 is to guess β ∈ {0, 1}, given (param	n, {B̂t,B∗t }t=0,..,d,

Bd+1,B
∗
d+1,h

∗
β,0, e0, {h∗β,t,i, et,i}t=1,..,d;i=1,..,nt , {h∗d+1,i}i=1,2)

R← GP2
β (1λ, �n), where

GP2
β (1λ, �n) : (param	n, {Bt,B∗t }t=0,...,d+1)

R← Gob(1λ, �n),

B̂0 := (b0,1, b0,3, b0,4), B̂t := (bt,1, . . . , bt,nt , bt,2nt+1, . . . , bt,3nt+2) for t = 1, . . . , d,

σ, τ
U← F
×
q , ω, δ, δ0

U← Fq, h∗0,0 := (δ, 0, δ0, 0)B∗
0
, h∗1,0 := (δ, σ, δ0, 0)B∗

0
, e0 := (ω, τ, 0, 0)B0 ,

h∗d+1,i := δb∗d+1,i for i = 1, 2,

for t = 1, . . . , d; i = 1, . . . , nt; �et,i := (0i−1, 1, 0nt−i) ∈ F
nt
q , �δt,i

U← F
nt
q ,

nt︷ ︸︸ ︷ nt+1︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2︷ ︸︸ ︷
h∗0,t,i := ( δ�et,i, 0nt+1, �δt,i, 02 )B∗

t
,

h∗1,t,i := ( δ�et,i, σ�et,i, 0, �δt,i, 02 )B∗
t
,

et,i := ( ω�et,i, τ�et,i, 0, 0nt , 02 )Bt

return (param	n, {B̂t,B∗t }t=0,..,d,Bd+1,B
∗
d+1,h

∗
β,0, e0, {h∗β,t,i, et,i}t=1,..,d;i=1,..,nt , {h∗d+1,i}i=1,2).

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 2, AdvP2
B (λ), is

similarly defined as in Definition 15.
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Lemma 2 For any adversary B, there exists a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP2

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

Proof. Lemma 2 is proven in a similar manner to the combination of Lemmas 15 and 18 in
[28]. These lemmas prove the security of Basic Problem 2 in [28], i.e., for any adversary B, there
exists a probabilistic machine E , whose running time is essentially the same as that of B, such
that for any security parameter λ, AdvBP2

B (λ) ≤ AdvDLIN
E (λ) + 5/q. Basic Problem 2 in [28] is

the same as Problem 2 in this paper except for the total dimensions of the spaces and forms of
vectors in randomness space span〈b∗t,2nt+2, . . . , b

∗
t,3nt+1〉 in h∗β,t,i (i.e., random coefficient vectors

�δt,i are used in h∗β,t,i of Problem 2 while δ0�et,i are used in y∗β,t,i of Basic Problem 2), which are
not essentially related to the proofs of Lemmas 15 and 18 in [28]. This implies that the proof
of Lemma 2 is given as the same manner as the combination of the proofs of Lemmas 15 and
18 in [28]. ��

Definition 17 (Problem 3) Problem 3 is to guess β ∈ {0, 1}, given (param	n, {B̂t,B∗t }t=0,d+1,

{Bt,B∗t }t=1,..,d,h
∗
β,0, e0, {h∗t,i}t=1,..,d;i=1,..,nt , {h∗β,d+1,i, ed+1,i}i=1,2)

R← GP3
β (1λ, �n), where

GP3
β (1λ, �n) : (param	n, {Bt,B∗t }t=0,...,d+1)

R← Gob(1λ, �n),

B̂0 := (b0,1, b0,3, b0,4), B̂d+1 := (bd+1,1, bd+1,2, bd+1,5, . . . , bd+1,7),

σ, τ
U← F
×
q , ω, δ, δ0

U← Fq, h∗0,0 := (δ, 0, δ0, 0)B∗
0
, h∗1,0 := (δ, σ, δ0, 0)B∗

0
, e0 := (ω, τ, 0, 0)B0 ,

h∗t,i := δb∗t,i for t = 1, . . . , d; i = 1, . . . , nt, Ud+1
U← GL(2,Fq), Zd+1 := (U−1

d+1)
T,

for i = 1, 2; �ed+1,i := (0i−1, 1, 02−i), �δd+1,i
U← F

2
q ,

h∗0,d+1,i := ( δ�ed+1,i, 02 �δd+1,i, 0 )B∗
d+1
,

h∗1,d+1,i := ( δ�ed+1,i, σ�ed+1,iUd+1, �δd+1,i, 0 )B∗
d+1
,

ed+1,i := ( ω�ed+1,i, τ�ed+1,iZd+1, 02, 0 )Bd+1
,

return (param	n, {B̂t,B∗t }t=0,d+1, {Bt,B∗t }t=1,..,d,

h∗β,0, e0, {h∗t,i}t=1,..,d;i=1,..,nt , {h∗β,d+1,i, ed+1,i}i=1,2),

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 3, AdvP3
B (λ), is

similarly defined as in Definition 15.

Lemma 3 For any adversary B, there is a probabilistic machine E, whose running time is es-
sentially the same as that of B, such that for any security parameter λ, AdvP3

B (λ) ≤ AdvDLIN
E (λ)+

5/q.

Proof. Lemma 3 is proven in a similar manner to Lemmas 2 in [28]. The lemma proves the
security of Problem 2 in [28], i.e., for any adversary B, there exists a probabilistic machine E ,
whose running time is essentially the same as that of B, such that for any security parameter
λ, AdvP2

B (λ) ≤ AdvDLIN
E (λ) + 5/q. Problem 2 in [28] is the same as Problem 3 in this paper

except for the total dimensions of the spaces and the number of vector elements, which are not
essentially related to the proofs of Lemma 2 in [28]. This implies that the proof of Lemma 3 is
given as the same manner as the proof of Lemmas 2 in [28]. ��
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Lemma 4 (Lemma 3 in [28]) For p ∈ Fq, let Cp := {(�x,�v)|�x · �v = p} ⊂ V × V ∗ where V is
n-dimensional vector space Fq

n, and V ∗ its dual. For all (�x,�v) ∈ Cp, for all (�r, �w) ∈ Cp,

Pr
Z

U← GL(n,Fq),

[�xU = �r ∧ �vZ = �w] =
1
� Cp

,

where U := (Z−1)T.

E.5 Lemmas for Evaluating Advantage Gaps

Lemma 5 For any adversary A, Adv
(0)
A (λ) = Adv

(0′)
A (λ).

Lemma 5 follows from Theorem 1. ��

Lemma 6 For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0′)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP1

B1
(λ) + (d+ 1)/q.

Proof. In order to prove Lemma 6, we construct a probabilistic machine B1 against Problem
1 by using any adversary A in a security game (Game 0’ or 1) as a black box as follows:

1. B1 is given Problem 1 instance (param	n, {Bt, B̂∗t }t=0,...,d+1,fβ,0, {eβ,t,i,ft,i}t=1,...,d;i=1,...,nt ,
fβ,d+1).

2. B1 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B1 sets B̂0 := (b0,1, b0,4), B̂t := (bt,1, . . . , bt,nt , bt,3nt+2,

bt,3nt+3) for t = 1, . . . , d, B̂d+1 := (bd+1,1, bd+1,2, bd+1,7), B̂
′∗
t := (b∗t,1, . . . , b

∗
t,nt

, b∗t,2nt+2,

. . . , b∗t,3nt+1) for t = 1, . . . , d, B̂
∗
d+1 := (b∗d+1,1, b

∗
d+1,2, b

∗
d+1,5, b

∗
d+1,6). B1 obtains B̂t and B̂

′∗
t

from Bt and B̂
∗
t in the Problem 1 instance, and returns pk := (1λ, hk, param	n, {B̂t}t=0,..,d+1,

{B̂∗t }t=1,..,d+1, b
∗
0,3) to A, where hk

R← KHλ.

4. When a KeyGen reveal query is issued for attribute set Γ, B1 answers a correct secret key
(Eqs. (2), (3), (4)) computed by using {B̂∗t }t=0,..,d+1, i.e., normal key. When a signature
reveal query is issued for access structure S, B1 answers a correct signature (Eqs. (5), (6),
(7)) computed by using {B̂∗t }t=0,..,d+1, i.e., normal signature.

5. When B1 receives an output (m′,S′, �s′∗) from A (where S
′ := (M,ρ)), B1 calculates veri-

fication text (c0, . . . , c�+1) as follows:

c0 := (−s0 − s�+1)fβ,0 + η0b0,4,

for i = 1, . . . , �,
if ρ(i) = (t, �vi), ci := sift,1 + θi

∑nt
j=1 vi,jbt,j +

∑nt
j=1 πi,jeβ,t,j +

∑2
j=1 ηi,jbt,3n+1+j ,

if ρ(i) = ¬(t, �vi), ci := si
∑nt

j=1 vi,jft,j +
∑nt

j=1 πi,jeβ,t,j +
∑2

j=1 ηi,jbt,3n+1+j ,

c�+1 := s�+1fβ,d+1 + θ�+1

(
−Hλ,Dhk (m′ ||S′)bd+1,1 + bd+1,2

)
+ η�+1bd+1,7,

where �f
R← Fq

r, (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT, η0, θi
U← F
×
q , �η�+1

U← Fq
2 \�0, {πi,j U←

Fq}j=1,...,nt , {ηi,j
U← Fq}j=1,2 for i = 1, . . . , �+ 1, and fβ,0, eβ,t,j ,ft,j ,fβ,d+1 (j = 1, . . . , nt)

are from the Problem 1 instance. B1 verifies the signature (m′,S′, �s′∗) using Ver with the
above (c0, . . . , c�+1), and outputs β′ := 1 if the verification succeeds, β′ := 0 otherwise.
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When β = 0, it is straightforward that the distribution by B1’s simulation is equivalent to that
in Game 0’. When β = 1, the distribution by B1’s simulation is equivalent to that in Game 1
except for the case that ω = 0 or (�γi,j)i,j ∈ F

2×2
q \GL(2,Fq) for some i = 1, . . . , d, i.e., except

with probability (d+ 1)/q. ��

Lemma 7 For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(1)
A (λ) −

Adv
(2)
A (λ)| ≤ AdvP1

B2
(λ) + (d+ 1)/q.

Proof. In order to prove Lemma 7, we construct a probabilistic machine B2 against Problem
1 by using any adversary A in a security game (Game 1 or 2) as a black box.

The simulation is very similar to that of a machine B1 in the proof of Lemma 6. Steps 1 –
4 of B2 are the same as those of B1. The last step is:

5. When B2 receives an output (m′,S′, �s′∗) from A (where S
′ := (M,ρ)), B2 calculates veri-

fication text (c0, . . . , c�+1) as follows:

c0 := ( −s0 − s�+1, −s′0, 0, η0 )B0 ,

for i = 1, . . . , �,
if ρ(i) = (t, �vi), ci := ( si�et,1 + θi�vi, s

′
i�et,1 + θ′i�vi, 0, 0nt , �ηi )Bt +

∑nt
j=1 πi,jeβ,t,j ,

if ρ(i) = ¬(t, �vi), ci := ( si�vi, s′i�vi, 0, 0nt , �ηi )Bt +
∑nt

j=1 πi,jeβ,t,j ,

c�+1 := ( s�+1 − θ�+1H
λ,D
hk (m′ ||S′), θ�+1, �w�+1, 02, η�+1 )Bd+1

,

where �f, �f ′
R← Fq

r, (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT, (s′1, . . . , s
′
�)

T := M · �f ′T, s′0 :=
�1 · �f ′T, s�+1, θi, θ

′
i, θ�+1, πi,j

U← Fq, �ηi, �w�+1
U← F

2
q , η�+1

U← Fq for i = 1, . . . , �; j = 1, . . . , nt,
and eβ,t,j (j = 1, . . . , nt) are from the Problem 1 instance. B2 verifies the signature
(m′,S′, �s′∗) using Ver with the above (c0, . . . , c�+1), and outputs β′ := 0 if the verification
succeeds, β′ := 1 otherwise.

We note that c0 in Game 1 is conceptually changed to that in Game 2 since b∗0,2 is hidden
from the adversary (in both games). As in the proof of 6, when β = 0, it is straightforward
that the distribution by B2’s simulation is equivalent to that in Game 1. When β = 1, the
distribution by B2’s simulation is equivalent to that in Game 2 except for the case that ω = 0
or (�γi,j)i,j ∈ F

2
q \GL(2,Fq) for some i = 1, . . . , d, i.e., except with probability (d+ 1)/q. ��

Lemma 8 For any adversary A, there exists a probabilistic machine B3-1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(3-(h−1)-7)
A (λ)−

Adv
(3-h-1)
A (λ)| ≤ AdvP2

B3-h-1
(λ) + 2/q, where B3-h-1(·) := B3-1(h, ·).

Proof. In order to prove Lemma 8, we construct a probabilistic machine B3-1 against Problem
2 by using an adversary A in a security game (Game 3-(h− 1)-7 or 3-h-1) as a black box.

The simulation is very similar to that of a machine B2 in [28]. We summarize below:
First, B3-1 is given an integer h and a Problem 2 instance. B3-1 plays a role of the challenger

in the security game against adversary A. At the first step of the game, B3-1 provides A a public
key pk of Game 3-(h− 1)-7 (and 3-h-1), which is calculated from the Problem 2 instance.

When the ι-th key query is issued (for attribute Γ := {(t, �xt := (xt,1, . . . , xt,nt))}), B3-1

answers a semi-functional key as in Eqs. (18), (3), (4) when 1 ≤ ι < h, the following key

k∗0 := h∗β,0, k∗t :=
∑nt

j=1 xt,jh
∗
β,t,j for (t, �xt) ∈ Γ,

k∗d+1,j := h∗d+1,j + r∗d+1,j where r∗d+1,j
U← span〈b∗d+1,5, b

∗
d+1,6〉 for j = 1, 2,

40



when ι = h, a normal key as in Eqs. (2), (3), (4) when h ≤ ι.
When a signature reveal query is issued, B3-1 calculates a normal signature as in Eqs. (5),

(6), (7).
When B3-1 receives an output (m′,S′, �s′∗) from A (where S

′ := (M,ρ)), B3-1 calculates a 2-nd
temporary form of verification text (c0, . . . , c�+1) as in Eqs. (9), (12), (11) using the Problem
2 instance. B3-1 verifies the signature (m′,S′, �s′∗) using Ver with the above (c0, . . . , c�+1), and
outputs β′ := 1 if the verification succeeds, β′ := 0 otherwise, except when ω = 0 or δ = 0, i.e.,
except with probability 2/q. ��

Lemma 9 For any adversary A, Adv
(3-h-1)
A (λ) = Adv

(3-h-2)
A (λ).

Proof. To prove Lemma 9, we will show distribution (param	n, {B̂t}t=0,..,d, {sk(j)∗
Γ }j=1,..,ν1 , �c) in

Game 3-h-1 and that in Game 3-h-2 are equivalent, where sk
(j)∗
Γ is the answer to the j-th key

query, and �c is the verification text (c0, . . . , c�+1). By the definition of these games, we only
need to consider elements in {Vt}t=1,..,d. We define new dual orthonormal bases Dt and D

∗
t of Vt

as follows: We generate Zt
U← {Zt ∈ GL(nt,Fq) | (0nt−1, 1) = �x

(h)
t · (Z−1

t )T} for (t, �x(h)
t ) ∈ Γ(h)

with the h-th key query Γ(h), and set⎛⎜⎝ dt,nt+1
...

dt,2nt+1

⎞⎟⎠ := Z−1
t ·

⎛⎜⎝ bt,nt+1
...

bt,2nt+1

⎞⎟⎠ ,

⎛⎜⎝ d∗t,nt+1
...

d∗t,2nt+1

⎞⎟⎠ := ZT
t ·

⎛⎜⎝ b∗t,nt+1
...

b∗t,2nt+1

⎞⎟⎠ ,

Dt := (bt,1, . . . , bt,nt ,dt,nt+1, . . . ,dt,2nt+1, bt,2nt+2, . . . , bt,3nt+3),

D
∗
t := (b∗t,1, . . . , b

∗
t,nt

,d∗t,nt+1, . . . ,d
∗
t,2nt+1, b

∗
t,2nt+2, . . . , b

∗
t,3nt+3) for (t, �x(h)

t ) ∈ Γ(h).

Then, Dt and D
∗
t are dual orthonormal, and are distributed the same as the original bases, Bt

and B
∗
t .

The j-th queried keys {k(j)∗
t }

j=1,...,ν1; (t,	x
(j)
t )∈Γ(j) , and verification text {ci}i=1,...,� in Game

3-h-1 are expressed over bases Bt and B
∗
t as

if j 	= h, k
(j)∗
t = ( δ(j)�x(j)

t , 0nt+1, �ϕ(j), 02 )B∗
t

= ( δ(j)�x(j)
t , 0nt+1, �ϕ(j), 02 )D∗

t
for (t, �x(j)

t ) ∈ Γ(j),

if j = h, k
(h)∗
t = ( δ(h)�x(h)

t , δ′(h)�x(h)
t , 0, �ϕ(h), 02 )B∗

t

= ( δ(h)�x(h)
t , (δ′(h)�x(h)

t , 0) · (Z−1
t )T, �ϕ(h), 02 )B∗

t

= ( δ(h)�x(h)
t , 0nt , δ′(h), �ϕ(h), 02 )D∗

t
for (t, �x(h)

t ) ∈ Γ(h),

since (0nt , 1) = (�x(h)
t , 0) · (Z−1

t )T, and

if ρ(i) = (t, �vi) ∧ (t, �x(h)
t ) ∈ Γ(h), ct = ( si�et,1 + θi�vi, s

′
i�et,1 + θ′i�vi, 0, 0nt , �ηi )Bt

= ( si�et,1 + θi�vi, (s′i�et,1 + θ′i�vi, 0) · Zt, 0nt , �ηi )Dt

if ρ(i) = ¬(t, �vi) ∧ (t, �x(h)
t ) ∈ Γ(h), ct = ( si�vi, s′i�vi, 0, 0nt , �ηi )Bt

= ( si�vi, (s′i�vi, 0) · Zt, 0nt , �ηi )Dt ,

if ρ(i) = (t, �vi) ∧ (t, �x(h)
t ) 	∈ Γ(h), ct = ( si�et,1 + θi�vi, s

′
i�et,1 + θ′i�vi, 0, 0nt , �ηi )Bt

if ρ(i) = ¬(t, �vi) ∧ (t, �x(h)
t ) 	∈ Γ(h), ct = ( si�vi, s′i�vi, 0, 0nt , �ηi )Bt .

In the light of the adversary’s view, both (Bt,B∗t ) and (Dt,D
∗
t ) are consistent with public key

pk := (1λ, param	n, {B̂t}t=0,...,d). Therefore, {sk(j)∗
Γ }j=1,...,ν1 and �c can be expressed as keys, and
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verification text in two ways, in Game 3-h-1 over bases {Bt,B∗t }t=0,...,d and in Game 3-h-2 over
bases B0,B

∗
0, {Dt,D

∗
t }(t,	x(h))∈Γ(h) , {Bt,B∗t }(t,	x(h)) �∈Γ(h) . Thus, Game 3-h-1 can be conceptually

changed to Game 3-h-2. ��

Lemma 10 For any adversary A, there exists a probabilistic machine B3-2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(3-h-2)
A (λ) −

Adv
(3-h-3)
A (λ)| ≤ AdvP1

B3-h-2
(λ) + d/q, where B3-h-2(·) := B3-2(h, ·).

Proof. In order to prove Lemma 10, we construct a probabilistic machine B3-2 against Problem
1 by using any adversary A in a security game (Game 3-h-2 or 3-h-3) as a black box as follows:

1. B3-2 is given an integer h and a Problem 1 instance

(param	n, {Bt, B̂∗t }t=0,...,d+1,fβ,0, {eβ,t,i,ft,i}t=1,...,d;i=1,...,nt , fβ,d+1).

2. B3-2 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B3-2 sets B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, . . . , bt,nt , bt,3nt+2,

bt,3nt+3) for t = 1, . . . , d. B1 obtains B̂t from Bt in the Problem 3 instance, and returns
pk := (1λ, param	n, {B̂t}t=0,..,d) to A.

4. When the ι-th KeyGen query is issued for attribute set Γ, B3-2 answers as follows:

(a) when 1 ≤ ι < h, B3-2 calculates a semi-functional secret key (Eqs. (18), (3)) by using
B
∗
0, {B̂∗t }t=1,..,d.

(b) when ι = h, B3-2 calculates a pre-semi-functional secret key (Eqs. (13), (15)) by using
B
∗
0, {B̂∗t }t=1,..,d.

(c) when h < ι, B3-2 calculates a normal secret key (Eqs. (2), (3)) by using B
∗
0, {B̂∗t }t=1,..,d.

5. When B3-2 receives an output (m′,S′, �s′∗) from A (where S
′ := (M,ρ)), B3-2 calculates

verification text (c0, . . . , c�+1) as follows:

c0 := ( −s0, −s′0, ζ, 0, η0 )B0 ,

for i = 1, . . . , �,
if ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ,

ci := ( si�et,1 + θi�vi, (s′i�et,1 + θ′i�vi, 0) · Zt, 0nt , �ηi )Bt +
∑nt

j=1 πi,jeβ,t,j ,

if ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ,
ci := ( si�vi, (s′i�vi, 0) · Zt, 0nt , �ηi )Bt +

∑nt
j=1 πi,jeβ,t,j ,

if ρ(i) = (t, �vi) ∧ (t, �xt) 	∈ Γ,
ci := ( si�et,1 + θi�vi, s

′
i�et,1 + θ′i�vi, 0, 0nt , �ηi )Bt +

∑nt
j=1 πi,jeβ,t,j ,

if ρ(i) = ¬(t, �vi) ∧ (t, �xt) 	∈ Γ,
ci := ( si�vi, s′i�vi, 0, 0nt , �ηi )Bt +

∑nt
j=1 πi,jeβ,t,j ,

c�+1 := ( s�+1 − θ�+1H
λ,D
hk (m′ ||S′), θ�+1, �w�+1, 02, η�+1 )Bd+1

,

where �f, �f ′
R← Fq

r, (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT, (s′1, . . . , s
′
�)

T := M · �f ′T, s′0 :=
�1 · �f ′T, ζ, θi, θ′i, πi,j

U← Fq for i = 1, . . . , �; j = 1, . . . , nt, b
U← {0, 1}, Zt U← {Zt ∈ GL(nt +

1,Fq) | (0nt , 1) = (�xt, 0) · (Z−1
t )T} for (t, �xt) ∈ Γ with the h-th queried Γ and eβ,t,j (j =

1, . . . , nt) are from the Problem 1 instance. B3-2 verifies the signature (m′,S′, �s′∗) using
Ver with the above (c0, . . . , c�+1), and outputs β′ := 1 if the verification succeeds, β′ := 0
otherwise.
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When β = 0, it is straightforward that the distribution by B3-2’s simulation is equivalent to
that in Game 3-h-2. When β = 1, the distribution by B3-2’s simulation is equivalent to that in
Game 3-h-3 except for the case that (�γi,j)i,j ∈ F

2
q \GL(2,Fq) for some i = 1, . . . , d, i.e., except

with probability d/q. ��

Lemma 11 For any adversary A, Adv
(3-h-3)
A (λ) = Adv

(3-h-4)
A (λ).

Proof. It is clear that the distribution of the public-key and the ι-th key query’s answer for
ι 	= h in Game 3-h-3 and Game 3-h-4 are exactly the same. Therefore, to prove this lemma we
will show that the joint distribution of the h-th key query’s answer and the challenge ciphertext
in Game 3-h-3 and Game 3-h-4 are equivalent.

Therefore, we will show that s′0 in Eq. (9) is uniformly and independently distributed from
the other variables in the joint distribution of adversary A’s view. s′0 := �1 · �f ′T is only related
to (s′1, . . . , s

′
�)

T := M · �f ′T in Eq. (17). With respect to the joint distribution of these variables,
there are five cases for each i ∈ {1, . . . , �}. Map γ(i) is defined in Definition 4.

1. γ(i) = 1 and [ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt = 0]. Then, s′i + θ′i�vi · �xt = s′i.

2. γ(i) = 1 and [ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt 	= 0]. Then, s′i�vi · �xt with �vi · �xt 	= 0.

3. γ(i) = 0 and [ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ] (i.e., �vi · �xt 	= 0). Then, s′i + θ′i�vi · �xt ∈ Fq is
uniformly and independently distributed from the other variables.

4. γ(i) = 0 and [ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ] (i.e., �vi · �xt = 0). Then, s′i�vi · �xt = 0.

5. [ρ(i) = (t, �vi) ∧ (t, �xt) 	∈ Γ] or [ρ(i) = ¬(t, �vi) ∧ (t, �xt) 	∈ Γ]. Then, no s′i.

We then observe the joint distribution (or relation) of s′0 and the above inner-product values.
Those in cases 3-5 are obviously independent from s′0. Due to the restriction of adversaryA’s key
queries, �1 	∈ span〈(Mi)γ(i)=1〉. Therefore, s′0 := �1 · �f ′T is independent from the joint distribution
of {s′i := Mi · �f ′T | γ(i) = 1} (over the random selection of �f ′), which can be given in case 1 and
in case 2. Thus, s′0 is uniformly and independently distributed from the other variables in the
joint distribution. Therefore, the view of adversary A in the Game 3-h-3 is the same as that in
Game 3-h-4.

This completes the proof of Lemma 11. ��

Lemma 12 For any adversary A, there exists a probabilistic machine B3-3, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(3-h-4)
A (λ) −

Adv
(3-h-5)
A (λ)| ≤ AdvP1

B3-h-3
(λ) + d/q, where B3-h-3(·) := B3-3(h, ·).

Proof. Lemma 12 is proven in a similar manner to that of Lemma 10. ��

Lemma 13 For any adversary A, Adv
(3-h-5)
A (λ) = Adv

(3-h-6)
A (λ).

Proof. Lemma 13 is proven in a similar manner to that of Lemma 9. ��

Lemma 14 For any adversary A, there exists a probabilistic machine B3-4, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(3-h-6)
A (λ) −

Adv
(3-h-7)
A (λ)| ≤ AdvP2

B3-h-4
(λ) + 2/q, where B3-h-4(·) := B3-4(h, ·).

Proof. Lemma 14 is proven in a similar manner to that of Lemma 8. ��
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Lemma 15 For any adversary A, |Adv
(3-ν1-7)
A (λ)− Adv

(4)
A (λ)| ≤ 1/q.

Proof. To prove Lemma 15, we will show distribution (pk, {sk(j)
Γ }j=1,..,ν1 , {�s

(j)∗
S
}j=1,..,ν2 , �c) in

Game 3-ν1-7 and that in Game 4 are equivalent, where sk
(j)
Γ is the answer to the j-th key query,

�s
(j)∗
S

is the answer to the j-th signature query, and �c is the verification text (c0, . . . , c�+1).
By the definition of these games, we only need to consider elements in V0. We define new
dual orthonormal bases D0 and D

∗
0 of V0 as follows: We generate θ U← F

×
q , and set d0,2 :=

θb0,2, d∗0,2 := θ−1b∗0,2 Then, D0 := (b0,1,d0,2, b0,3, b0,4) and D
∗
0 := (b∗0,1,d

∗
0,2, b

∗
0,3, b

∗
0,4) are dual

orthonormal, and are distributed the same as the original bases, B0 and B
∗
0.

We note that, since all queried signatures �s(j)∗
S

are of normal form, they are not affected by
this base change.

The V0 components {k(j)∗
0 }j=1,...,ν1 in keys, and challenge ciphertext c0 in Game 3-ν1-7 are

expressed over bases B0 and B
∗
0 as k

(j)∗
0 = (δ(j), r(j)0 , ϕ

(j)
0 , 0)B∗

0
and c0 = (−s0−s�+1,−s′0, 0, η0)B0 .

Then,

k
(j)∗
0 = (δ(j), r(j)0 , ϕ

(j)
0 , 0)B∗

0
= (δ(j), r(j)0 θ, ϕ

(j)
0 , 0)D∗

0
= (δ(j), r̃(j), ϕ(j)

0 , 0)D∗
0
,

where r̃(j) := r
(j)
0 θ which are uniformly, independently distributed since r(j)0

U← Fq, and

c0 = (−s0 − s�+1,−s′0, 0, η0)B0 = (−s0 − s�+1,−s′0θ−1, 0, η0)D0 = (−s0 − s�+1, s̃
′
0, 0, η0)D0

where s̃′0 := −s′0θ−1 which is uniformly, independently distributed since θ U← F
×
q if s′0 	= 0.

In the light of the adversary’s view, both (B0,B
∗
0) and (D0,D

∗
0) are consistent with public key

pk. Therefore, {sk(j)
Γ }j=1,...,ν1 and �c can be expressed as keys and verification text in two ways,

in Game 3-ν1-7 over bases {Bt,B∗t }t=0,...,d+1 and in Game 4 over bases D0,D
∗
0, {Bt,B∗t }t=1,...,d+1.

Thus, Game 3-ν1-7 can be conceptually changed to Game 4 if s′0 	= 0, i.e., except with probability
1/q. ��

Lemma 16 For any adversary A, there exist probabilistic machines B5 and E6, whose run-
ning time are essentially the same as that of A, such that for any security parameter λ,
|Adv

(5-(h−1))
A (λ) − Adv

(5-h)
A (λ)| ≤ AdvP3

B5-h
(λ) + AdvH,CR

E6-h (λ) + 3/q, where B5-h(·) := B5(h, ·) and
E6-h(·) := E6(h, ·).

Proof. In order to prove Lemma 16, we construct a probabilistic machine B5 against Problem
3 by using any adversary A in a security game (Game 5-(h−1) or 5-h) as a black box as follows:

1. B5 is given an integer h and a Problem 3 instance,

(param	n, {B̂t,B∗t }t=0,d+1, {Bt,B∗t }t=1,..,d,h
∗
β,0, e0, {h∗t,j}t=1,..,d;j=1,..,nt , {h∗β,d+1,j , ed+1,j}j=1,2).

2. B5 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B5 providesA a public key pk := (1λ, hk, param	n, {B̂′t}t=0,...,d+1,

{B̂∗t }t=1,...,d+1, b
∗
0,3) of Game 5-(h − 1) (and 5-h), where hk

R← KHλ, B̂
′
t := (bt,1, . . . , bt,nt ,

bt,3nt+1), and B̂
∗
t := (b∗t,1, . . . , b

∗
t,nt

, b∗t,2nt+1, . . . , b
∗
t,3nt

), that are obtained from the Problem
3 instance.

4. When KeyGen query is issued for attribute Γ := {(t, �xt)}, B5 answers semi-functional key
{k∗t }t∈T where T := {0, (d+1, 1), (d+1, 2)}∪{t | 1 ≤ t ≤ d, (t, �xt) ∈ Γ}, with Eqs. (18),
(3), (4), that is computed by using {B∗t }t=0,...,d+1 of the Problem 3 instance.
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5. When the ι-th signature reveal query is issued for attribute S := (M,ρ), B5 answers as
follows:

(a) When 1 ≤ ι ≤ h− 1, B5 answers semi-functional signature �s∗ with Eqs. (6) and (20),
that is computed by using {B∗t }t=0,...,d+1 of the Problem 3 instance.

(b) When ι = h, B5 calculates �s∗ := (s∗0, .., s
∗
�+1) by using {B̂∗t }t=0,..,d+1,h

∗
β,0,

{h∗t,j}t=1,..,d;j=1,..,nt , {h∗β,d+1,j}j=1,2 of the Problem 3 instance as follows:

s∗0 := h∗β,0, s∗i :=
∑n

j=1 zjh
∗
t,j + r∗i for i = 1, . . . , �,

s∗�+1 := h∗β,d+1,1 + Hλ,Dhk (m ||S) · h∗β,d+1,2,

where (ζi)
U← {(ζi) |

∑�
i=1 ζiMi = �1}, and if ρ(i) = (t, �vi), then �zi

U← {�zi |
�zi · �vi = 0, zi,1 = ζi}, if ρ(i) = ¬(t, �vi), then �zi

U← {�zi | �zi · �vi = ζi}, and

r∗i
U← span〈b∗t,2nt+1, . . . , b

∗
t,3nt
〉 with t := ρ̃(i) for i = 1, . . . , �.

(c) When ι ≥ h+ 1, B5 answers normal signature �s∗ with Eqs. (5), (6), and (7), that is
computed by using {B∗t }t=0,...,�+1 of the Problem 3 instance.

6. When B5 receives an output (m′,S′, �s′∗) from A, B5 calculates semi-functional verifica-
tion text �c := (c0, . . . , c�+1) with Eqs. (19), (12), (11) as follows: ci for i = 1, . . . , � are
calculated as Eq. (12) by using bases {Bt}t=1,...,d, and using the coefficient s0 :=

∑r
k=1 fk,

αl, α̃l
U← Fq for l = 1, 2, f̃0 := α̃1e0 + α̃2b0,1,

fd+1,j := α1ed+1,j + α2bd+1,j , f̃d+1,j := α̃1ed+1,j + α̃2bd+1,j for j = 1, 2;

c0 := −s0b0,1 − f̃0 + q0, c�+1 := f̃d+1,1 − Hλ,Dhk (m′ ||S′) · fd+1,1 + fd+1,2 + q�+1,

where q0
U← span〈b0,4〉, q�+1

U← span〈bd+1,7〉, and b0,1, e0, bd+1,j , ed+1,j for j = 1, 2 are
from the Problem 3 instance. B5 verifies the signature (m′,S′, �s′∗) using Ver with the
above (c0, . . . , c�+1), and outputs β′ := 1 if the verification succeeds, β′ := 0 otherwise.

Claim 2 The pair of signature �s∗ generated in case (b) of step 5 and verification text �c generated
in step 6 has the same distribution as that in Game 5-(h − 1) (resp.Game 5-h) when β = 0
(resp.β = 1) except with probability 1/q (resp.AdvH,CR

E6-h (λ) + 2/q for a probabilistic machine E6
with essentially same running time as that of A, where E6-h(·) := E6(h, ·)).

Proof. We consider the joint distribution of �c and �s∗. Clearly, a part of verification text,
c1, . . . , c�, and a part of signature, s∗1, . . . , s

∗
� , are the same as those in Game 5-(h − 1) and

Game 5-h. Hence, we only consider c0, c�+1, s
∗
0, and s∗�+1.

When β = 0, it is straightforward the joint distribution of c0, c�+1, s
∗
0, and s∗�+1 are the

same as those in Game 5-(h − 1) except that δ defined in Problem 3 is zero, i.e., except with
probability 1/q.

When β = 1, we need to check that w0 in c0 (given in Eq. (19)), �w�+1 in c�+1 (given in
Eq. (11)), r̃0 in s∗0 and �̃r�+1 in s∗�+1 (given in Eq. (20)) are distributed as in those in Game 5-h,
i.e., these are uniformly and independently distributed (with negligible probability). These are
given as

w0 = −u−1
0 s̃�+1, �w�+1 =

(
s̃�+1 − θ̃�+1 · Hλ,Dhk (m′ ||S′), θ̃�+1

)
· Zd+1,

r̃0 = u0, �̃r�+1 =
(
1,Hλ,Dhk (m ||S)

)
· Ud+1,
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where u0
U← F

×
q , θ̃�+1, s̃�+1

U← Fq, which are independent from all the other variables and

Ud+1
U← GL(2,Fq), Zd+1 := (U−1

d+1)
T. Since (m,S) 	= (m′,S′), �w�+1 · �̃r�+1 = αθ̃�+1 + s̃�+1 with

nonzero α
(
:= Hλ,Dhk (m ||S)− Hλ,Dhk (m′ ||S′)

)
except with probability AdvH,CR

E6-h (λ) for a probabilis-
tic machine E6-h with essentially same running time as that of A.

Then, coefficients u0 and r̃0 are uniformly and independently distributed, which are inde-
pendent from �w�+1 · �̃r�+1 = αθ̃�+1 + s̃�+1 since u0

U← F
×
q , s̃�+1, θ̃�+1

U← Fq and α 	= 0. Moreover,
from Lemma 4, pair (�̃r�+1, �w�+1) is uniformly distributed in C

	w�+1·	er�+1
= C

αeθ�+1+es�+1
. Therefore,

the joint distribution of c0, c�+1, s
∗
0, and s∗�+1 are the same as those in Game 5-h except that δ

defined in Problem 3 is zero or �w�+1 · �̃r�+1 = 0 i.e., except with probability AdvH,CR
E6-h (λ) + 2/q.

This completes the proof of Claim 2.
Therefore, |Adv

(5-(h−1))
A (λ)−Adv

(5-h)
A (λ)| ≤ AdvP3

B5-h
(λ)+AdvH,CR

E6-h (λ)+1/q+2/q = AdvP3
B5-h

(λ)+

AdvH,CR
E6-h (λ) + 3/q from Shoup’s difference lemma. This completes the proof of Lemma 16. ��

Lemma 17 For any adversary A, |Adv
(5-ν2)
A (λ)− Adv

(6)
A (λ)| ≤ 1/q.

Proof. To prove Lemma 17, we will show distribution (param	n, {B̂t}t=0,..,d+1, {B̂∗t }t=1,..,d+1, b
∗
0,3,

{sk(j)
Γ }j=1,..,ν1 , {�s(j)∗}j=1,..,ν2 , c) in Game 5-ν2 and that in Game 6 are equivalent, where sk

(j)
Γ is

the answer to the j-th key query, �s(j)∗ is that to the j-th signature query, and �c is the verification
text (c0, . . . , c�+1). By the definition of these games, we only need to consider elements in V0.
We define new dual orthonormal bases D0 and D

∗
0 of V0 as follows: We generate θ U← Fq, and

set

d0,2 := (θ, 1, 0, 0)B = θb0,1 + b0,2, d∗0,1 := (1,−θ, 0, 0)B = b∗0,1 − θb∗0,2.

Let D0 := (b0,1,d0,2, b0,3, b0,4) and D
∗
0 := (d∗0,1, b

∗
0,2, b

∗
0,3, b

∗
0,4). Then, D0 and D

∗
0 are dual

orthonormal, and are distributed the same as the original bases, B0 and B
∗
0.

The V0 components {k(j)∗
0 }j=1,...,ν1 in keys, {s(j)∗

0 }j=1,...,ν2 in signatures, and verification
text c0 in Game 5-ν2 are expressed over bases B0 and B

∗
0 as k

(j)∗
0 = (δ(j), r(j)0 , ϕ

(j)
0 , 0)B∗

0
, s

(j)∗
0 =

(δ̃(j), r̃(j)0 , σ
(j)
0 , 0)B∗

0
and c0 = (−s0 − s�+1, w0, 0, η0)B0 . Then,

k
(j)∗
0 = (δ(j), r(j)0 , ϕ

(j)
0 , 0)B∗

0
= (δ(j), r(j)0 + θδ(j), ϕ

(j)
0 , 0)D∗

0
= (δ(j), ϑ(j), ϕ

(j)
0 , 0)D∗

0
,

where ϑ(j) := r
(j)
0 + θδ(j) which are uniformly, independently distributed since r(j)0

U← Fq,

s
(j)∗
0 = (δ̃(j), r̃(j)0 , σ

(j)
0 , 0)B∗

0
= (δ̃(j), r̃(j)0 + θδ̃(j), σ

(j)
0 , 0)D∗

0
= (δ̃(j), ϑ̃(j), σ

(j)
0 , 0)D∗

0

where ϑ̃(j) := r̃
(j)
0 + θδ̃(j) which are uniformly, independently distributed since r̃(j)0

U← Fq, and

c0 = (−s0 − s�+1, w0, 0, η0)B0 = (−s0 − s�+1 − θw0, w0, 0, η0)D0 = (s̃0, w0, 0, η0)D0

where s̃0 := −s0 − s�+1 − θw0 which is uniformly, independently distributed since θ U← Fq if
w0 	= 0.

In the light of the adversary’s view, both (B0,B
∗
0) and (D0,D

∗
0) are consistent with public key

pk := (1λ, param	n, {B̂t}t=0,...,d+1, {B̂∗t }t=1,...,d+1, b
∗
0,3). Therefore, {sk(j)

Γ }j=1,...,ν1 , {�s(j)∗}j=1,...,ν2 ,
and �c can be expressed as keys, signatures, and verification text in two ways, in Game 5-ν2 over
bases {Bt,B∗t }t=0,...,d+1 and in Game 6 over bases D0,D

∗
0, {Bt,B∗t }t=1,...,d+1. Thus, Game 5-ν2

can be conceptually changed to Game 6 if w0 	= 0, i.e., except with probability 1/q. ��
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Lemma 18 For any adversary A, Adv
(6)
A (λ) = 1/q.

Proof. Let (s′∗0 , . . . , s
′∗
�+1) be signature A outputs. If e(b0,1, s

′∗
0 ) = 1, the verification fails

by the definition of Ver. Otherwise, the verification fails except with negligible probability
regardless of the output of the adversary since coefficient s̃0 of b0,1 in c0 (Eq. (21)) is uniform
and independent from all the other variables, and coefficient of b∗0,1 in s′∗0 is nonzero. Hence,

Adv
(6)
A (λ) = 1/q. ��

F Proofs of Theorems 3 and 4

Theorem 3 The proposed MA-ABS scheme is perfectly private.

The proof is essentially equivalent to that for Theorem 1. ��
We will give a proof sketch for Theorem 4 for general form MA-ABS similarly to Theorem

2.

Theorem 4 (for General Form MA-ABS) The proposed MA-ABS scheme is unforge-
able (adaptive-predicate unforgeable) under the DLIN assumption and the existence of collision
resistance hash functions.

For any adversary A, there exist probabilistic machines E1, E2, E3-1, . . . , E3-4, E5, E6, whose
running times are essentially the same as that of A, such that for any security parameter λ,

AdvMA-ABS,UF
A (λ) ≤

∑nmax
i=1

(
AdvDLIN

E1-i (λ) + AdvDLIN
E2-i (λ)

)
+

∑ν1
h=1

(
AdvDLIN

E3-h-1
(λ) +

∑nmax
i=1

(
AdvDLIN

E3-h-2-i
(λ) + AdvDLIN

E3-h-3-i
(λ)

)
+ AdvDLIN

E3-h-4
(λ)

)
+

∑ν2
h=1

(
AdvDLIN

E5-h (λ) + AdvH,CR
E6-h (λ)

)
+ ε, (22)

where Eι-i(·) := Eι(i, ·) for ι = 1, 2 (i = 1, . . . , nmax), Eι-h(·) := Eι(h, ·) for ι = 5, 6 (h =
1, . . . , ν2), E3-h-ι(·) := E3-ι(h, ·) for ι = 1, 4, E3-h-ι-i(·) := E3-ι(h, i, ·) for ι = 2, 3 (h = 1, . . . , ν1; i =
1, . . . , nmax), nmax is the maximum of dimensions nt (t = 1, . . . , d), ν1 is the maximum number
of A’s token queries, ν2 is the maximum number of A’s reveal signature queries, and ε :=
((2d+ 16)ν1 + 8ν2 + 2d+ 11)/q.

Proof. (Sketch) The proof of this theorem is equivalent to that of Theorem 2 except the
following:

1. Components of keys or verification texts for corrupt authority t ∈ Tbad cannot be used for
simulation of various types of keys or verification texts. Therefore, in the semi-functional
subspace, parameters can be embedded only for honest authority t ∈ Tgood, in particular,
secret sharing system over just those t ∈ Tgood is used for any simulation in the security
games. (The original idea is given in [19].)

2. Problems 1, 2 and 3 that do not include parameters G0, G1 (and δG1 for Problem 2)
cannot be used to simulate the security games of the MA-ABS scheme, because G0, G1

and δG1 are employed in the security games. Therefore, modified problems, Problems
1’, 2’ and 3’, where G0, G1 and δG1 are included, are introduced and employed in the
simulation of the security games of the MA-ABS scheme.

To prove Theorem 4, we consider the following games. In the games, a part framed by a box
indicates coefficients which were changed in a game from the previous game, and a shadowed
part indicates what was changed from the corresponding games for the (single-authority) ABS.
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Game 0 : Original game (Definition 12).

Game 0’ : Game 0’ is the same as Game 0’ for (single-authority) ABS.

Game 1 : Same as Game 0’ except that the verification text (c0, . . . , c�+1) for (m′,S′) with
S
′ := (M,ρ) generated in Ver for verifying the output of the adversary are:

c0 := ( −s0 − s�+1, w0 , 0, η0 )B0 , (23)

for 1 ≤ i ≤ �,
if ρ(i) = (t, �vi) ∧ t ∈ Tgood , ci := ( si�et,1 + θi�vi, �wi , 0, 0nt , �ηi )Bt ,

if ρ(i) = ¬(t, �vi) ∧ t ∈ Tgood , ci := ( si�vi, �wi , 0, 0nt , �ηi )Bt ,

⎫⎪⎪⎬⎪⎪⎭(24)

c�+1 := ( s�+1�e1 + θ�+1(−Hλ,Dhk (m′ ||S′), 1), �w�+1 , 02, η�+1 )Bd+1
, (25)

where w0
U← Fq, �wi

U← F
nt
q (i = 1, . . . , �), �w�+1

U← F
2
q , and all the other variables are

generated as in Game 0’.

Game 2 : Same as Game 1 except that the verification text (c0, . . . , c�+1) for (m′,S′) with
S
′ := (M,ρ) generated in Ver for verifying the output of the adversary are:

c0 := ( −s0 − s�+1, −s′0 , 0, η0 )B0 ,

for 1 ≤ i ≤ �,
if ρ(i) = (t, �vi) ∧ t ∈ Tgood ,

ci := ( si�et,1 + θi�vi, s′i�et,1 + θ′i�vi , 0, 0nt , �ηi )Bt ,

if ρ(i) = ¬(t, �vi) ∧ t ∈ Tgood , ci := ( si�vi, s′i�vi , 0, 0nt , �ηi )Bt ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(26)

where �f ′
U← {�f ′ ∈ Fq

r |Mi · �f ′ = 0 for ∀i s.t. ρ̃(i) ∈ Tbad} , (�s′)T := (s′1, . . . , s
′
�)

T := M ·

(�f ′)T, s′0 := �1 · (�f ′)T, θ′i
U← Fq (i = 1, . . . , �), and all the other variables are generated as

in Game 1.

Game 3-h-1 (h = 1, . . . , ν1) : Game 3-0-1 is Game 2. Game 3-h-1 is the same as Game
3-(h − 1)-7 except that k∗t for t = 0 and (t, �xt) ∈ Γ ∧ t ∈ Tgood of the reply to UserReg

and AttrGen reveal queries for the h-th user identity uid is:

k∗0 := ( δ, δ′ , ϕ0, 0 )B∗
0
, (27)

k∗t := ( δ�xt, δ′�xt , 0, �ϕt, 02 )B∗
t

for (t, �xt) ∈ Γ ∧ t ∈ Tgood , (28)

where δ′ U← Fq, and all the other variables are generated as in Game 3-(h− 1)-7.

Game 3-h-2 (h = 1, . . . , ν1) : Game 3-h-2 is the same as Game 3-h-1 except that k∗t for
(t, �xt) ∈ Γ ∧ t ∈ Tgood of the reply to AttrGen reveal queries for the h-th uid, and
(c1, . . . , c�) of the verification text for (m′,S′) with S

′ := (M,ρ) generated in Ver for
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verifying the output of the adversary are:

k∗t := ( δ�xt, 0nt , δ′ , , �ϕt, 02 )B∗
t

for (t, �xt) ∈ Γ ∧ t ∈ Tgood , (29)

for 1 ≤ i ≤ �,
if ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ ∧ t ∈ Tgood ,

ci := ( si�et,1 + θi�vi, (s′i�et,1 + θ′i�vi, 0) · Zt , 0nt , �ηi )Bt ,

if ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ ∧ t ∈ Tgood ,

ci := ( si�vi, (s′i�vi, 0) · Zt , 0nt , �ηi )Bt ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(30)

where �et,1 := (1, 0, . . . , 0) ∈ F
nt
q , Zt

U← {Zt ∈ GL(nt + 1,Fq) | (0nt , 1) = (�xt, 0) · (Z−1
t )T},

and all the other variables are generated as in Game 3-h-1. We note that the last ((nt+1)-
th) coordinate of (s′i�et,1 +θ′i�vi, 0) ·Zt ∈ F

nt+1
q (resp. (s′i�vi, 0) ·Zt ∈ F

nt+1
q ) is inner-product

value (s′i�et,1 + θ′i�vi) · �xt = s′i + θ′i�vi · �xt (resp. s′i�vi · �xt).

Game 3-h-3 (h = 1, . . . , ν1) : Game 3-h-3 is the same as Game 3-h-2 except that (c1, . . . , c�)
of the verification text for (m′,S′) with S

′ := (M,ρ) generated in Ver for verifying the out-
put of the adversary are:

for 1 ≤ i ≤ �,
if ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ ∧ t ∈ Tgood ,

ci := ( si�et,1 + θi�vi, �wi , s
′
i + θ′i�vi · �xt, 0nt , �ηi )Bt ,

if ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ ∧ t ∈ Tgood ,

ci := ( si�vi, �wi , s
′
i�vi · �xt, 0nt , �ηi )Bt ,

if ρ(i) = (t, �vi) ∧ (t, �xt) 	∈ Γ ∧ t ∈ Tgood ,

ci := ( si�et,1 + θi�vi, �wi , 0, 0nt , �ηi )Bt ,

if ρ(i) = ¬(t, �vi) ∧ (t, �xt) 	∈ Γ ∧ t ∈ Tgood ,

ci := ( si�vi, �wi , 0, 0nt , �ηi )Bt ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(31)

where, �wi
U← F

nt
q for i = 1, . . . , �, and all the other variables are generated as in Game

3-h-2.

Game 3-h-4 (h = 1, . . . , ν1) : Game 3-h-4 is the same as Game 3-h-3 except that k∗0 of the
reply to the h-th UserReg query is:

k∗0 := ( δ, r0 , ϕ0, 0 )B∗
0
, (32)

where r0
U← Fq, which is independent from δ′

U← Fq in Eq. (29), and all the other variables
are generated as in Game 3-h-3.

Game 3-h-5 (h = 1, . . . , ν1) : Game 3-h-5 is the same as Game 3-h-4 except that (c1, . . . , c�)
of the verification text for (m′,S′) with S

′ := (M,ρ) generated in Ver for verifying the
output of the adversary are given as in Eq. (30) (for t ∈ Tgood ), where Zt

U← {Zt ∈
GL(nt + 1,Fq) | (0nt , 1) = (�xt, 0) · (Z−1

t )T}, and all the other variables are generated as
in Game 3-h-4.
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Game 3-h-6 (h = 1, . . . , ν1) : Game 3-h-6 is the same as Game 3-h-5 except that k∗t for
(t, �xt) ∈ Γ ∧ t ∈ Tgood of the reply to AttrGen reveal queries for the h-th uid are given as

in Eq. (28) with δ′
U← Fq (independent from r0

U← Fq in Eq. (32)) and (c1, . . . , c�) of the
verification text for (m′,S′) with S

′ := (M,ρ) generated in Ver for verifying the output of
the adversary are given as in Eq. (26).

Game 3-h-7 (h = 1, . . . , ν1) : Game 3-h-7 is the same as Game 3-h-6 except that k∗t for
(t, �xt) ∈ Γ ∧ t ∈ Tgood of the reply to AttrGen reveal queries for the h-th uid are given as
a normal key component.

Game 4, Game 5-h (h = 1, . . . , ν2), Game 6 are given in a similar manner to those for
the (single-authority) ABS.

We obtain the inequality (22) in a similar manner to that of (single-authority) ABS using
Problem 1’, 2’, and 3’. This completes the proof of Theorem 4. ��

Problems 1’, 2’, 3’ and the related lemmas

We show Problems 1’, 2’, 3’ and the related lemmas below. We describe random dual
orthonormal basis generator Gob

′ below, which is used as a subroutine in Problems 1’ and 2’.

Gob
′(1λ, �n) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ),

N0 := 4, Nt := 3nt + 3 for t = 1, . . . , d, Nd+1 := 7, κ, ξ
U← F
×
q ,

for t = 0, . . . , d+ 1, paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := (XT

t )−1,

bt,i := κ(χt,i,1, . . . , χt,i,Nt)At = κ
∑Nt

j=1 χt,i,jat,j , Bt := (bt,1, . . . , bt,Nt),

b∗t,i := ξ(ϑt,i,1, . . . , ϑt,i,Nt)At = ξ
∑Nt

j=1 ϑt,i,jat,j , B
∗
t := (b∗t,1, . . . , b

∗
t,Nt

),

G0 := κG, G1 := ξG, gT := e(G,G)κξ,
param	n := ({paramVt

}t=0,...,d+1, gT ),
return (param	n, {Bt,B∗t }t=0,...,d+1, G0, G1).

Definition 18 (Problem 1’) Problem 1’ is to guess β ∈ {0, 1}, given (param	n, {Bt, B̂∗t }t=0,...,d+1,

fβ,0, {eβ,t,i}t=1,...,d;i=1,...,nt ,fβ,d+1,fd+1,2, G0, G1)
R← GP1′

β (1λ, �n), where

GP1′
β (1λ, �n) : (param	n, {Bt,B∗t }t=0,...,d+1, G0, G1)

R← Gob
′(1λ, �n),

({B̂∗t }t=0,...,d+1,fβ,0, {eβ,t,i}t=1,...,d;i=1,...,nt ,fβ,d+1,fd+1,2) are generated as in GP1
β .

using {Bt,B∗t }t=0,...,d+1, and random ω, τ, γ0, {zt,i, �γt,i}t=1,...,d; i=1,...,nt , γd+1, �zd+1,

return (param	n, {Bt, B̂∗t }t=0,...,d+1,fβ,0, {eβ,t,i}t=1,...,d;i=1,...,nt ,fβ,d+1,fd+1,2 G0, G1).

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 1’, AdvP1′
B (λ), is

similarly defined as in Definition 15.

Lemma 19 For any adversary B, there are probabilistic machine Ei, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP1′

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

Lemma 19 is proven similarly to Lemma 1. ��
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Definition 19 (Problem 2’) Problem 2’ is to guess β ∈ {0, 1}, given (param	n, {B̂t,B∗t }t=0,..,d,

Bd+1,B
∗
d+1,h

∗
β,0, e0, {h∗β,t,i, et,i}t=1,..,d;i=1,..,nt , {h∗d+1,i}i=1,2, G0, G1)

R← GP2′
β (1λ, �n), where

GP2′
β (1λ, �n) : (param	n, {Bt,B∗t }t=0,...,d+1, G0, G1)

R← Gob
′(1λ, �n),

({B̂t}t=0,..,d,h
∗
β,0, e0, {h∗β,t,i, et,i}t=1,..,d;i=1,..,nt , {h∗d+1,i}i=1,2) are generated as in GP2

β .

using {Bt,B∗t }t=0,...,d+1, and random σ, τ, ω, δ, δ0, {�δt,i}t=1,...,d; i=1,...,nt ,

return (param	n, {B̂t,B∗t }t=0,..,d,Bd+1,B
∗
d+1,h

∗
β,0, e0, {h∗β,t,i, et,i}t=1,..,d;i=1,..,nt ,

{h∗d+1,i}i=1,2, G0, G1, δG1).

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 2’, AdvP2′
B (λ), is

similarly defined as in Definition 15.

Lemma 20 For any adversary B, there exists a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP2′

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

Lemma 20 is proven similarly to Lemma 2. ��

Definition 20 (Problem 3’) Problem 3’ is to guess β ∈ {0, 1}, given (param	n, {B̂t,B∗t }t=0,d+1,

{Bt,B∗t }t=1,..,d,h
∗
β,0, e0, {h∗t,i}t=1,..,d;i=1,..,nt , {h∗β,d+1,i, ed+1,i}i=1,2, G0, G1)

R← GP3′
β (1λ, �n), where

GP3′
β (1λ, �n) : (param	n, {Bt,B∗t }t=0,...,d+1)

R← Gob(1λ, �n),

({B̂t}t=0,d+1,h
∗
β,0, e0, {h∗t,i}t=1,..,d;i=1,..,nt , {h∗β,d+1,i, ed+1,i}i=1,2) are generated as in GP3

β .

using {Bt,B∗t }t=0,...,d+1, and random σ, τ, ω, δ, δ0, Ud+1, Zd+1, {�δd+1,i}i=1,2,

return (param	n, {B̂t,B∗t }t=0,d+1, {Bt,B∗t }t=1,..,d,

h∗β,0, e0, {h∗t,i}t=1,..,d;i=1,..,nt , {h∗β,d+1,i, ed+1,i}i=1,2, G0, G1),

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 3’, AdvP3′
B (λ), is

similarly defined as in Definition 15.

Lemma 21 For any adversary B, there is a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP3′

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

Lemma 21 is proven similarly to Lemma 3. ��
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