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Abstract

This paper proposes the first inner product encryption (IPE) scheme that is adaptively
secure and fully attribute-hiding (attribute-hiding in the sense of the definition by Katz,
Sahai and Waters), while the existing IPE schemes are either fully attribute-hiding but se-
lectively secure or adaptively secure but weakly attribute-hiding. The proposed IPE scheme
is proven to be adaptively secure and fully attribute-hiding under the decisional linear as-
sumption in the standard model. The IPE scheme is comparably as efficient as the existing
attribute-hiding IPE schemes. We also present a variant of the proposed IPE scheme with
the same security that achieves shorter public and secret keys. A hierarchical IPE scheme
can be constructed that is also adaptively secure and fully attribute-hiding under the same
assumption. In this paper, we extend the dual system encryption technique by Waters into
a more general manner, in which new forms of ciphertext and secret keys are employed
and new types of information theoretical tricks are introduced along with several forms of
computational reduction.

∗This is the full version of a paper appearing in EUROCRYPT 2012, the 31st International Conference on
the Theory and Applications of Cryptographic Techniques, April 15–19, 2012, Cambridge, United Kingdom.
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1 Introduction

1.1 Background

Functional encryption (FE) is an advanced class of encryption and it covers identity-based
encryption (IBE)[3, 4, 8, 14], hidden-vector encryption (HVE) [10], inner-product encryption
(IPE) [19], predicate encryption (PE) and attribute-based encryption (ABE) [2, 17, 26, 20, 25,
27, 23]. In FE, there is a relation R(v, x) which determines what a secret key with parameter
v can decrypt a ciphertext encrypted under parameter x. The enhanced functionality and
flexibility provided by FE systems are very appealing for many practical applications.
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For some applications, the parameters for encryption are required to be hidden from cipher-
texts. One of such applications is an advanced notion of PKE with keyword search (PEKS) [7],
which we call PKE with functional search (PEFS) in this paper. In PEFS, a parameter x (not
just a keyword) embedded in a ciphertext is searched (checked) whether R(v, x) holds or not by
using a secret key with parameter v. Here, keyword search is a special case of functional search
R(v, x) when R(v, x) ⇔ [x = v]. Parameter x of a ciphertext is often private information and
should be hidden from ciphertexts in such applications.

To capture the security requirement, Katz, Sahai and Waters [19] introduced attribute-hiding
(based on the same notion for HVE by Boneh and Waters [10]), a security notion for FE that
is stronger than the basic security requirement, payload-hiding. Roughly speaking, attribute-
hiding requires that a ciphertext conceal the associated parameter as well as the plaintext,
while payload-hiding only requires that a ciphertext conceal the plaintext. Attribute-hiding FE
is often called predicate encryption (PE).

The widest class of relations of a FE system in the literature is general non-monotone (span
program) relations, which can be expressed using AND, OR, Threshold and NOT gates [23].
FE systems supporting such a wide class of relations, however, have one limitation in that the
parameter x of the ciphertext should be revealed to users to decrypt. That is, such FE systems
do not satisfy the attribute-hiding security.

To the best of our knowledge, the widest class of relations supported by attribute-hiding
FE systems are inner-product predicates in [19, 20, 23], which we call the KSW08, LOS+10
and OT10 schemes. Parameters of inner-product predicates are expressed as vectors �x (for a
ciphertext) and �v (for a secret key), where R(�v, �x) holds iff �v · �x = 0. (Here, �v · �x denotes the
standard inner-product.) In this paper we call FE for inner-product predicates inner product
encryption (IPE).

Inner-product predicates represent a fairly wide class of relations including equality tests as
the simplest case (i.e., anonymous IBE and HVE are very special classes of attribute-hiding IPE),
disjunctions or conjunctions of equality tests, and, more generally, CNF or DNF formulas. We
note, however, that inner product predicates are less expressive than general (even monotone
span program) relations of FE. To use inner product predicates for such general relations,
formulas must be written in CNF or DNF form, which can cause a super-polynomial blowup in
size for arbitrary formulas.

Among the existing attribute-hiding IPEs, the KSW08 IPE scheme [19] is proven to be
only selectively secure. Although the LOS+10 and OT10 IPE schemes [20, 23] are proven to be
adaptively secure, the achieved attribute-hiding security is limited or weaker than that defined
in [19]. Here, we call the attribute-hiding security defined in [19] fully attribute-hiding and that
achieved in [20, 23] weakly attribute-hiding. In the fully attribute-hiding security definition [19],
adversary A is allowed to ask a key-query for �v such that �v · �x(0) = �v · �x(1) = 0 provided that
m(0) = m(1) (�x(b) and m(b) (b = 0, 1) are for the challenge ciphertext in the security definition),
while in the weakly attribute-hiding security definition [20, 23], A is only allowed to ask a
key-query for �v such that �v · �x(b) �= 0 for all b ∈ {0, 1}.

Let us explain the difference between the fully and weakly attribute-hiding definitions in a
PEFS system. User Alice provides her secret key, sk�v, to proxy server Bob, who checks whether
�v · �x = 0 or not for an incoming ciphertext, ct�x, encrypted with parameter �x. In the weakly
attribute-hiding security, privacy of �x from ct�x is ensured only if �v · �x �= 0, but cannot be
ensured or some privacy on �x may be revealed if �v · �x = 0. Here note that there still exists
(n− 1)-dimensional freedom (or room of privacy) of n-dimensional vector �x, even if �v and the
fact that �v ·�x = 0 is revealed. For example, let �v express formula on an email message attributes,
[[Subject = X] ∨ [Subject = Y ]] ∧ [[Receiver = Alice] ∨ [Receiver = Alice’s secretary]], and �x
express ciphertext attribute (Subject = X,Receiver = Alice). In this case, �v · �x = 0, since the
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ciphertext attribute expressed by �x satisfies the formula expressed by �v. Although Bob knows
sk�v and �v, Bob has no idea which attribute �x is embedded in ct�x except that the ciphertext
attribute satisfies the formula, i.e., �v ·�x = 0, if the fully attribute-hiding security is achieved. On
the other hand, Bob may obtain some additional information on the attribute (e.g., Bob may
know that the subject is X, not Y ), if only the weakly attribute-hiding security is guaranteed.

The KSW08 IPE scheme is fully attribute-hiding but selectively secure, and the LOS+10
and OT10 IPE schemes are adaptively secure but weakly attribute-hiding. Therefore, there
is no IPE scheme that is adaptively secure and fully attribute-hiding simultaneously. As for
a more limited class of schemes, HVE (as mentioned above, HVE is a very special class of
attribute-hiding IPE), an adaptively secure and fully attribute-hiding HVE scheme has been
proposed [13]. For hierarchical IPE (HIPE), the LOS+10 and OT10 HIPE schemes [20, 23] are
adaptively secure but weakly attribute-hiding, i.e., there is no HIPE scheme that is adaptively
secure and fully attribute-hiding simultaneously.

It is a technically challenging task to achieve an adaptively secure and fully attribute-hiding
(H)IPE scheme. Even if we use the powerful dual system encryption technique by Waters, the
main difficulty resides in how to change a (normal) secret key queried with �v to a semi-functional
secret key, without knowing �x(b) (b = 0, 1) for the challenge ciphertext, i.e., without knowing
whether �v · �x(b) = 0 or not, since an adversary may issue key queries with �v before issuing
the challenge ciphertext query with �x(b) (b = 0, 1) and two possible cases, �v · �x(b) = 0 (for all
b ∈ {0, 1}) and �v ·�x(b) �= 0 (for all b ∈ {0, 1}), are allowed in fully attribute-hiding IPE. Note that
in weakly attribute-hiding IPE, it is always required that �v · �x(b) �= 0. At a first glance, it looks
hard to achieve it, since the form of semi-functional secret key may be different (e.g., canceled
or randomized) depending on whether �v ·�x(b) = 0 or not. Another technically challenging target
in this paper is to prove the security under the decisional linear (DLIN) assumption (on prime
order pairing groups) in the standard model.

1.2 Our Results

This paper proposes the first IPE scheme that is adaptively secure and fully attribute-hiding
simultaneously. The proposed IPE scheme is proven to be adaptively secure and fully attribute-
hiding under the DLIN assumption in the standard model (Section 4). We also present a variant
of the proposed IPE scheme with the same security that achieves shorter master public keys
and shorter secret keys (Section 5). A hierarchical IPE (HIPE) scheme can be realized that is
also adaptively secure and fully attribute-hiding under the same assumption. Table 2 in Section
6 compares the proposed IPE schemes with several existing attribute-hiding IPE schemes.

1.3 Key Techniques

To overcome the above-mentioned difficulty, we extend the dual system encryption technique
into a more general manner, in which various forms of ciphertext and secret keys are introduced
(‘normal’, ‘temporal 0’, ‘temporal 1’, ‘temporal 2’ and ‘unbiased’ forms for a ciphertext, and
‘normal’, ‘temporal 1’ and ‘temporal 2’ forms for a secret key), and new types (Types 1, 2, 3)
of information theoretical tricks are employed with several forms of computational reduction
(the security of Problems 1, 2 and 3 to DLIN). See Table 1 and Figure 1 in Section 4.3.2 for
the outline.

In our approach, all forms (‘normal’, ‘temporal 1’ and ‘temporal 2’) of a secret key do not
depend on whether �v · �x(b) = 0 or not. Although the aim of a ‘semi-functional’ secret key in
the original dual system encryption method is to randomize the semi-functional part, the aim
of these forms of a secret-key in our approach is just to encode �v in a (hidden) subspace for a
secret-key.
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Another key point in our approach is that we transform a challenge ciphertext to an ‘un-
biased’ ciphertext whose advantage is 0 in the final game, and �x(b) is randomized to a random
vector in a two-dimensional subspace, span〈�x(0), �x(1)〉. In contrast, �x(b) is randomized to a ran-
dom vector in the n-dimensional whole space, F

n
q , in [20, 23] for weakly attribute-hiding IPE

based on the original dual system encryption technique.
Therefore, in our approach, only �v is encoded in a (hidden) subspace of the temporal forms

of a secret-key, and a random vector in span〈�x(0), �x(1)〉 is encoded in the corresponding (hidden)
subspace for the temporal and unbiased forms of a ciphertext.

To realize this approach, our construction is based on the dual pairing vector spaces (DPVS)
(Section 2) [20, 23]. A nice property of DPVS is that we can set a hidden linear subspace by
concealing the basis of a subspace from the public key. Typically, a pair of dual (or orthonormal)
bases, B and B

∗, are randomly generated using random linear transformation, and a part of B

(say B̂) is used as a public key and the corresponding part of B
∗ (say B̂

∗) is used as a secret
key or trapdoor. Therefore, the basis, B− B̂, is information theoretically concealed against an
adversary, i.e., even an infinite power adversary has no idea on which basis is selected as B− B̂

when B̂ is published. It provides a framework for information theoretical tricks in the public-key
setting.

In the proposed (basic) IPE scheme, span〈B〉 and span〈B∗〉, are (4n+2)-dimensional (where
the dimension of inner-product vectors is n), and, as for public parameter B̂, span〈B̂〉 is (2n+2)-
dimensional, i.e., the basis for the remaining 2n-dimensional space is information theoretically
concealed (ambiguous). We use the 2n-dimensional hidden subspace to realize the various forms
of ciphertext and secret keys and make elaborate game transformations over these forms towards
the final goal, the ‘unbiased’ ciphertext.

The game transformations are alternating over computational and conceptual (information
theoretical), and the combinations of three types of information theoretical tricks and three
computational tricks (Problems 1, 2 and 3) play a central role in our approach, as shown in
Figure 1. Type 1 is a (conceptual) linear transformation inside a (hidden) subspace for a
ciphertext, Type 2 is a (conceptual) linear transformation inside a (hidden) subspace for a
ciphertext with preserving the corresponding secret key value, and Type 3 is a (conceptual)
linear transformation across (hidden and partially public) subspaces. The security of Problems
1, 2 and 3 is reduced to the DLIN assumption.

See Section 4.3.2 for the details of our techniques, in which the game transformations as
well as the form changes of ciphertext and secret keys are summarized in Table 1 and Figure 1.

1.4 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly selected from
A according to its distribution. When A is a set, y U← A denotes that y is uniformly selected
from A. y := z denotes that y is set, defined or substituted by z. When a is a fixed value,
A(x) → a (e.g., A(x) → 1) denotes the event that machine (algorithm) A outputs a on input
x. A function f : N→ R is negligible in λ, if for every constant c > 0, there exists an integer n
such that f(λ) < λ−c for all λ > n.

We denote the finite field of order q by Fq, and Fq \ {0} by F
×
q . A vector symbol denotes a

vector representation over Fq, e.g., �x denotes (x1, . . . , xn) ∈ F
n
q . For two vectors �v = (v1, . . . , vn)

and �x = (x1, . . . , xn), �v · �x denotes the inner-product
∑n

i=1 xivi. The vector �0 is abused as the
zero vector in F

n
q for any n. XT denotes the transpose of matrix X. I� denotes the � × �

identity matrix. A bold face letter denotes an element of vector space V, e.g., x ∈ V. When
bi ∈ V (i = 1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉) denotes the subspace
generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases B := (b1, . . . , bN ) and B

∗ := (b∗1, . . . , b∗N ),
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(x1, . . . , xN )B :=
∑N

i=1 xibi and (v1, . . . , vN )B∗ :=
∑N

i=1 vib
∗
i . GL(n,Fq) denotes the general

linear group of degree n over Fq.

2 Dual Pairing Vector Spaces (DPVS) and the Decisional Lin-
ear (DLIN) Assumption

Definition 1 “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple of a prime q,
cyclic additive group G and multiplicative group GT of order q, G �= 0 ∈ G, and a polynomial-
time computable nondegenerate bilinear pairing e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and
e(G,G) �= 1. Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear
pairing groups (q,G,GT , G, e) with security parameter λ.

In this paper, we concentrate on the symmetric version of dual pairing vector spaces [21, 22].
constructed by using symmetric bilinear pairing groups given in Definition 1. For the asymmetric
version of DPVS, (q,V,V∗,GT ,A,A

∗, e), see Appendix A.2. The following symmetric version is
obtained by identifying V = V

∗ and A = A
∗ in the asymmetric version.

Definition 2 “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct product of sym-
metric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q, canonical basis A := (a1, . . . ,aN ) of V,

where ai := (
i−1︷ ︸︸ ︷

0, . . . , 0, G,
N−i︷ ︸︸ ︷

0, . . . , 0), and pairing e : V × V → GT . The pairing is defined by
e(x,y) :=

∏N
i=1 e(Gi, Hi) ∈ GT where x := (G1, . . . , GN ) ∈ V and y := (H1, . . . , HN ) ∈ V.

This is nondegenerate bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then
x = 0. For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise, and
e(G,G) �= 1 ∈ GT .

DPVS also has linear transformations φi,j on V s.t.φi,j(aj) = ai and φi,j(ak) = 0 if k �= j,

which can be easily achieved by φi,j(x) := (
i−1︷ ︸︸ ︷

0, . . . , 0, Gj ,
N−i︷ ︸︸ ︷

0, . . . , 0) where x := (G1, . . . , GN ).
We call φi,j “canonical maps”. DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and
N ∈ N, and outputs a description of param′

V
:= (q,V,GT ,A, e) with security parameter λ and

N -dimensional V. It can be constructed by using Gbpg.

Definition 3 (DLIN: Decisional Linear Assumption [6]) The DLIN problem is to guess
β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Yβ)

R← GDLIN
β (1λ), where GDLIN

β (1λ) : paramG :=

(q,G,GT , G, e)
R← Gbpg(1λ), κ, δ, ξ, σ

U← Fq, Y0 := (δ + σ)G,Y1
U← G, return (paramG, G, ξG, κG,

δξG, σκG, Yβ), for β U← {0, 1}. For a probabilistic machine E, we define the advantage of E for

the DLIN problem as: AdvDLIN
E (λ) :=

∣∣∣Pr
[
E(1λ, �)→1

∣∣∣� R←GDLIN
0 (1λ)

]
−Pr
[
E(1λ, �)→1

∣∣∣� R←
GDLIN

1 (1λ)
]∣∣ . The DLIN assumption is: For any probabilistic polynomial-time adversary E, the

advantage AdvDLIN
E (λ) is negligible in λ.

3 Definitions of (Hierarchical) Inner Product Encryption

3.1 Definition of Inner-Product Encryption (IPE)

This section defines predicate encryption (PE) for the class of inner-product predicates, i.e.,
inner product encryption (IPE) and its security.
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An attribute of inner-product predicates is expressed as a vector �x ∈ F
n
q \{�0} and a predicate

f�v is associated with a vector �v, where f�v(�x) = 1 iff �v · �x = 0. Let Σ := F
n
q \ {�0}, i.e., the set of

the attributes, and F := {f�v|�v ∈ F
n
q \ {�0}} i.e., the set of the predicates.

Definition 4 An inner product encryption scheme (for predicates F and attributes Σ) consists
of probabilistic polynomial-time algorithms Setup,KeyGen, Enc and Dec. They are given as
follows:

• Setup takes as input security parameter 1λ outputs (master) public key pk and (master)
secret key sk.

• KeyGen takes as input the master public key pk, secret key sk, and predicate vector �v. It
outputs a corresponding secret key sk�v.

• Enc takes as input the master public key pk, plaintext m in some associated plaintext space,
msg, and attribute vector �x. It returns ciphertext ct�x.

• Dec takes as input the master public key pk, secret key sk�v and ciphertext ct�x. It outputs
either plaintext m or the distinguished symbol ⊥.

An IPE scheme should have the following correctness property: for all (pk, sk) R← Setup(1λ, n),
all f�v ∈ F and �x ∈ Σ, all sk�v

R← KeyGen(pk, sk, �v), all messages m, all ciphertext ct�x
R←

Enc(pk,m, �x), it holds that m = Dec(pk, sk�v, ct�x) if f�v(�x) = 1. Otherwise, it holds with negligi-
ble probability.

We then define the security notion of IPE, that was called “adaptively secure and fully
attribute-hiding” in Abstract and Section 1. Since we will deal with only this security notion
hereafter, we shortly call it “adaptively attribute-hiding.”

Definition 5 The model for defining the adaptively attribute-hiding security of IPE against
adversary A (under chosen plaintext attacks) is given as follows:

1. Setup is run to generate keys pk and sk, and pk is given to A.

2. A may adaptively make a polynomial number of key queries for predicate vectors, �v. In
response, A is given the corresponding key sk�v

R← KeyGen(pk, sk, �v).

3. A outputs challenge attribute vector (�x(0), �x(1)) and challenge plaintexts (m(0), m(1)), sub-
ject to the following restrictions:

• �v · �x(0) �= 0 and �v · �x(1) �= 0 for all the key queried predicate vectors, �v.

• Two challenge plaintexts are equal, i.e., m(0) = m(1), and any key query �v satisfies
f�v(�x(0)) = f�v(�x(1)), i.e., one of the following conditions.

– �v · �x(0) = 0 and �v · �x(1) = 0,
– �v · �x(0) �= 0 and �v · �x(1) �= 0,

4. A random bit b is chosen. A is given ct�x(b)
R← Enc(pk,m(b), �x(b)).

5. The adversary may continue to issue key queries for additional predicate vectors, �v, subject
to the restriction given in step 3. A is given the corresponding key sk�v

R← KeyGen(pk, sk, �v).

6. A outputs a bit b′, and wins if b′ = b.
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The advantage of A in the above game is defined as AdvIPE,AH
A (λ) := Pr[A wins ]− 1/2 for any

security parameter λ. An IPE scheme is adaptively attribute-hiding (AH) against chosen plaintext
attacks if all probabilistic polynomial-time adversaries A have at most negligible advantage in
the above game.

For each run of the game, the variable s is defined as s := 0 if m(0) �= m(1) for challenge
plaintexts m(0) and m(1), and s := 1 otherwise.

3.2 Definition of Hierarchical Inner-Product Encryption (HIPE)

This section defines hierarchical inner product encryption (HIPE) and its security.
In a delegation system, it is required that a user who has a capability can delegate to another

user a more restrictive capability. In addition to this requirement, our hierarchical inner-product
encryption introduces a format of hierarchy �n to define common delegation structure in a system.

We call a tuple of positive integers �n := (d;n1, . . . , nd) a format of hierarchy of depth d
attribute spaces. Let Σ� (� = 1, . . . , d) be the sets of attributes, where each Σ� := F

n�
q \{�0}. Let

the hierarchical attributes Σ := ∪d�=1(Σ1× . . .×Σ�), where the union is a disjoint union. Then,
for �vi ∈ F

ni
q \{�0}, the hierarchical predicate f(�v1,...,�v�) on hierarchical attributes (�x1, . . . , �xh) ∈ Σ

is defined as follows: f(�v1,...,�v�)(�x1, . . . , �xh) = 1 iff � ≤ h and �xi · �vi = 0 for all i s.t. 1 ≤ i ≤ �.
Let the space of hierarchical predicates F := {f(�v1,...,�v�) | �vi ∈ F

ni
q \ {�0}}. We call h (resp. �)

the level of (�x1, . . . , �xh) (resp. (�v1, . . . , �v�)).

Definition 6 Let �n := (d;n1, . . . , nd) be a format of hierarchy of depth d attribute spaces. A
hierarchical inner product encryption (HIPE) scheme for the class of hierarchical predicates
F over the set of hierarchical attributes Σ consists of probabilistic polynomial-time algorithms
Setup,KeyGen,Enc,Dec, and Delegate� for � = 1, . . . , d− 1. They are given as follows:

• Setup takes as input security parameter 1λ and format of hierarchy �n, and outputs (master)
public key pk and (master) secret key sk.

• KeyGen takes as input the master public key pk, secret key sk, and predicate vectors
(�v1, . . . , �v�). It outputs a corresponding secret key sk(�v1,...,�v�).

• Enc takes as input the master public key pk, attribute vectors (�x1, . . . , �xh), where 1 ≤ h ≤
d, and plaintext m in some associated plaintext space, msg. It returns ciphertext c.

• Dec takes as input the master public key pk, secret key sk(�v1,...,�v�), where 1 ≤ � ≤ d, and
ciphertext c. It outputs either plaintext m or the distinguished symbol ⊥.

• Delegate� takes as input the master public key pk, �-th level secret key sk(�v1,...,�v�), and
(�+ 1)-th level predicate vector �v�+1. It returns (�+ 1)-th level secret key sk(�v1,...,�v�+1).

A HIPE scheme should have the following correctness property: for all correctly generated
pk and sk(�v1,...,�v�), generate c

R← Enc(pk,m, (�x1, . . . , �xh)) and m′ := Dec(pk, sk(�v1,...,�v�), c). If
f(�v1,...,�v�)(�x1, . . . , �xh) = 1, then m′ = m. Otherwise, m′ �= m except for negligible probability.

For f and f ′ in F , we denote f ′ ≤ f if the predicate vector for f is a prefix of that for f ′.
For the following definition for key queries, see [28].

Definition 7 The model for defining the adaptively attribute-hiding security of HIPE against
adversary A (under chosen plaintext attacks) is given as follows:

1. Setup is run to generate keys pk and sk, and pk is given to A.
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2. A may adaptively makes a polynomial number of queries of the following type:

• [ Create key ] A asks the challenger to create a secret key for a predicate f ∈ F . The
challenger creates a key for f without giving it to A.

• [ Create delegated key ] A specifies a key for predicate f that has already been created,
and asks the challenger to perform a delegation operation to create a child key for
f ′ ≤ f . The challenger computes the child key without giving it to the adversary.

• [ Reveal key ] A asks the challenger to reveal an already-created key for predicate f .

Note that when key creation requests are made, A does not automatically see the created
key. A sees a key only when it makes a reveal key query.

3. A outputs challenge attribute vectors X (0) := (�x(0)
1 , . . . , �x

(0)

h(0)),X (1) := (�x(1)
1 , . . . , �x

(1)

h(1)) and
challenge plaintexts m(0),m(1), subject to the following restrictions:

• f(X (0)) = f(X (1)) = 0 for all the reveal key queried predicate f .

• Two challenge plaintexts are equal, i.e., m(0) = m(1) and reveal key queried predicate
f satisfies f(X (0)) = f(X (1)), i.e., one of the following conditions.

– f(X (0)) = f(X (1)) = 1,
– f(X (0)) = f(X (1)) = 0.

4. A random bit b is chosen. A is given c(b)
R← Enc(pk,m(b),X (b)).

5. The adversary may continue to request keys for additional predicate vectors subject to the
restriction given in step 3. A is given a reply as in step 2.

6. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A in the above game is defined as AdvHIPE,AH
A (λ) := Pr [b′ = b] − 1/2 for any

security parameter λ. A HIPE scheme is adaptively attribute-hiding (AH) against chosen plaintext
attacks if all probabilistic polynomial-time adversaries A have at most negligible advantage in
the above game.

For each run of the game, the variable s is defined as s := 0 if m(0) �= m(1) for challenge
plaintexts m(0) and m(1), and s := 1 otherwise.

Remark 1 In the definition, the levels h(0) and h(1) of the two challenge vectors given by
an adversary, (�x(0)

i )i=1,...,h(0) and (�x(1)
i )i=1,...,h(1) , can be different, i.e., h(0) �= h(1) is allowed.

The proposed HIPE scheme only satisfies the security definition under the restriction that
h(0) = h(1). Here, this restricted security ensures the anonymity of attributes of a ciphertext but
with revealing the number of levels of attributes, while the above security definition ensures the
anonymity of attributes as well as the number of levels. (The HIPE scheme in [20] satisfies the
unrestricted security.) Our HIPE scheme can be modified to satisfy the unrestricted security as:
when generating a ciphertext in Enc, input vectors (�xi)i=1,...,� are padded with random vectors
(�xi)i=�+1,...,d for a maximum level d, in the same manner as the HIPE in [20].

4 Proposed (Basic) IPE Scheme

4.1 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GIPE
ob below, which is used as a subroutine

in the proposed IPE scheme.
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GIPE
ob (1λ, N) : param′

V := (q,V,GT ,A, e)
R← Gdpvs(1λ, N), ψ U← F

×
q , gT := e(G,G)ψ,

X := (χi,j)
U← GL(N,Fq), (ϑi,j) := ψ · (XT)−1, paramV := (param′

V, gT ),

bi :=
∑N

j=1 χi,jaj ,B := (b1, . . . , bN ), b∗i :=
∑N

j=1 ϑi,jaj ,B
∗ := (b∗1, . . . , b∗N ),

return (paramV,B,B
∗).

4.2 Construction

In the description of the scheme, we assume that the first coordinate, x1, of input vector,
�x := (x1, . . . , xn), is nonzero. Random dual basis generator GIPE

ob (1λ, N) is defined at the end of
Section 2. We refer to Section 1.4 for notations on DPVS.

Setup(1λ, n) :

(paramV,B := (b0, . . . , b4n+1),B∗ := (b∗0, . . . , b
∗
4n+1))

R← GIPE
ob (1λ, 4n+ 2),

B̂ := (b0, . . . , bn, b4n+1), B̂
∗ := (b∗0, . . . , b

∗
n, b

∗
3n+1, . . . , b

∗
4n),

return pk := (1λ, paramV, B̂), sk := B̂
∗.

KeyGen(pk, sk, �v ∈ F
n
q \ {�0}) : σ

U← Fq, �η
U← F

n
q ,

1︷︸︸︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷
k∗ := ( 1, σ�v, 02n, �η, 0 )B∗ ,

return sk�v := k∗.

Enc(pk, m, �x ∈ F
n
q \ {�0}) : ω, ϕ, ζ

U← Fq,

1︷︸︸︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷
c1 := ( ζ, ω�x, 02n, 0n, ϕ )B, c2 := gζTm,

return ct�x := (c1, c2).
Dec(pk, sk�v := k∗, ct�x := (c1, c2)) : m′ := c2/e(c1,k

∗), return m′.

[Correctness] If �v · �x = 0, then e(c1,k
∗) = gζ+ωσ�v·�xT = gζT .

4.3 Security

4.3.1 Main Theorem (Theorem 1) and Main Lemma (Lemma 1)

Theorem 1 The proposed IPE scheme is adaptively attribute-hiding against chosen plaintext
attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines E0-1, E0-2, E1-1, E1-2-1 and E1-2-2, whose
running times are essentially the same as that of A, such that for any security parameter λ,

AdvIPE,AH
A (λ) ≤ AdvDLIN

E0-1
(λ) + AdvDLIN

E1-1
(λ)

+
ν∑
h=1

(
AdvDLIN

E0-2-h
(λ) + AdvDLIN

E1-2-h-1
(λ) + AdvDLIN

E1-2-h-2
(λ)
)

+ ε,

where E0-2-h(·) := E0-2(h, ·), E1-2-h-1(·) := E1-2-1(h, ·), E1-2-h-2(·) := E1-2-2(h, ·), ν is the maximum
number of A’s key queries and ε := (29ν + 17)/q.
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Proof. First, we execute a preliminary game transformation from Game 0 (original security
game in Definition 5) to Game 0’, which is the same as Game 0 except that flip a coin t U← {0, 1}
before setup, and the game is aborted in step 3 if t �= s. We define that A wins with probability
1/2 when the game is aborted (and the advantage in Game 0’ is Pr[A wins ] − 1/2 as well).
Since t is independent from s, the game is aborted with probability 1/2. Hence, the advantage
in Game 0’ is a half of that in Game 0, i.e., AdvIPE,AH,0′

A (λ) = 1/2 · AdvIPE,AH
A (λ). Moreover,

Pr[A wins] = 1/2 · (Pr[A wins | t = 0] + Pr[A wins | t = 1]) in Game 0’ since t is uniformly and
independently generated.

As for the conditional probability with t = 0, it holds that, for any adversary A, there exist
probabilistic machines E1 and E2, whose running times are essentially the same as that of A,
such that for any security parameter λ, in Game 0’,

Pr[A wins | t = 0]− 1/2 ≤ AdvDLIN
E1

(λ) +
∑ν

h=1 AdvDLIN
E2-h

(λ) + ε,

where E2-h(·) := E2(h, ·) and ν is the maximum number of A’s key queries and ε := (6ν + 5)/q.
This is obtained in the same manner as the weakly attribute-hiding security of the OT10 IPE
in the full version of [23]: Since the difference between our IPE and the OT10 IPE is only the
dimension of the hidden subspaces, i.e., the former has 2n and the latter has n, the weakly
attribute-hiding security of the OT10 IPE implies the security with t = 0 of our IPE.

As for the conditional probability with t = 1, i.e., Pr[A wins | t = 1], Lemma 1 (Eq. (1))
holds. Therefore,

AdvIPE,AH
A (λ) = 2 · AdvIPE,AH,0′

A (λ) = Pr[A wins | t = 0] + Pr[A wins | t = 1]− 1
= (Pr[A wins | t = 0]− 1/2) + (Pr[A wins | t = 1]− 1/2)
≤ AdvDLIN

E0-1
(λ) +

∑ν
h=1 AdvDLIN

E0-2-h
(λ) + AdvDLIN

E1-1
(λ)

+
∑ν

h=1

(
AdvDLIN

E1-2-h-1
(λ) + AdvDLIN

E1-2-h-2
(λ)
)

+ ε, where ε := (29ν + 17)/q. ��
Lemma 1 (Main Lemma) For any adversary A, there exist probabilistic machines E1, E2-1
and E2-2, whose running times are essentially the same as that of A, such that for any security
parameter λ, in Game 0’ (described in the proof of Theorem 1),

Pr[A wins | t = 1]− 1/2

≤ AdvDLIN
E1

(λ) +
ν∑
h=1

(
AdvDLIN

E2-h-1
(λ) + AdvDLIN

E2-h-2
(λ)
)

+ ε, (1)

where E2-h-1(·) := E2-1(h, ·), E2-h-2(·) := E2-2(h, ·), ν is the maximum number of A’s key queries
and ε := (23ν + 12)/q.

4.3.2 Proof Outline of Lemma 1

At the top level strategy of the security proof, an extended form of the dual system encryption by
Waters [29] is employed, where ciphertexts and secret keys have three forms, normal, temporal
1 and temporal 2. The real system uses only normal ciphertexts and normal secret keys, and
temporal 1 and 2 ciphertexts and keys are used only in a sequence of security games for the
security proof. (Additionally, ciphertexts have temporal 0 and unbiased forms. See below.)

To prove this lemma, we only consider the t = 1 case. We employ Game 0’ (described in
the proof of Theorem 1) through Game 3. In Game 1, the challenge ciphertext is changed to
temporal 0 form. When at most ν secret key queries are issued by an adversary, there are 4ν
game changes from Game 1 (Game 2-0-4), Game 2-1-1, Game 2-1-2, Game 2-1-3, Game 2-1-4
through Game 2-ν-1, Game 2-ν-2, Game 2-ν-3, Game 2-ν-4.
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Table 1: Outline of Game Descriptions

Game Challenge Queried keys
ciphertext 1 · · · h− 1 h h+ 1 · · · ν

0’ normal normal
1 temporal 0 normal

2-1-1 temporal 1 normal
2-1-2 temporal 1 temporal 1 normal
2-1-3 temporal 2 temporal 1 normal
2-1-4 temporal 2 temporal 2 normal

...
2-h-1 temporal 1 temporal 2 normal
2-h-2 temporal 1 temporal 2 temporal 1 normal
2-h-3 temporal 2 temporal 2 temporal 1 normal
2-h-4 temporal 2 temporal 2 temporal 2 normal

...
2-ν-4 temporal 2 temporal 2 temporal 2

3 unbiased temporal 2

In Game 2-h-1, the challenge ciphertext is changed to temporal 1 form, and the first h− 1
keys are temporal 2 form, while the remaining keys are normal. In Game 2-h-2, the h-th key is
changed to temporal 1 form while the remaining keys and the challenge ciphertext is the same
as in Game 2-h-1. In Game 2-h-3, the challenge ciphertext is changed to temporal 2 form while
all the queried keys are the same as in Game 2-h-2. In Game 2-h-4, the h-th key is changed to
temporal 2 form while the remaining keys and the challenge ciphertext is the same as in Game
2-h-3. At the end of the Game 2 sequence, in Game 2-ν-4, all the queried keys are temporal
2 forms (and the challenge ciphertext is temporal 2 form), which allows the next conceptual
change to Game 3. In Game 3, the challenge ciphertext is changed to unbiased form (while all
the queried keys are temporal 2 form). In the final game, advantage of the adversary is zero.

We summarize these changes in Table 1, where shaded parts indicate the challenge ciphertext
or queried key(s) which were changed in a game from the previous game

As usual, we prove that the advantage gaps between neighboring games are negligible.
For ct�x := (c1, c2), we focus on c1, and ignore the other part of ct�x, i.e., c2, (and call c1

ciphertext) in this proof outline. In addition, we ignore a negligible factor in the (informal)
descriptions of this proof outline. For example, we say “A is bounded by B” when A ≤ B+ε(λ)
where ε(λ) is negligible in security parameter λ.

A normal secret key, k∗ norm (with vector �v), is the correct form of the secret key of the
proposed IPE scheme, and is expressed by Eq. (2). Similarly, a normal ciphertext (with vector
�x), c norm

1 , is expressed by Eq. (3). A temporal 0 ciphertext is expressed by Eq. (4). A temporal
1 ciphertext, c temp1

1 , is expressed by Eq. (5) and a temporal 1 secret key, k∗ temp1, is expressed
by Eq. (6). A temporal 2 ciphertext, c temp2

1 , is expressed by Eq. (7) and a temporal 2 secret key,
k∗ temp2, is expressed by Eq. (8). An unbiased ciphertext, c unbias

1 , is expressed by Eq. (9).
To prove that the advantage gap between Games 0’ and 1 is bounded by the advantage of

Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the challenger of Game 0’ (or 1)
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Figure 1: Structure of Reductions

(against an adversary A) by using an instance with β
U← {0, 1} of Problem 1. We then show

that the distribution of the secret keys and challenge ciphertext replied by the simulator is
equivalent to those of Game 0’ when β = 0 and those of Game 1 when β = 1. That is, the
advantage of Problem 1 is equivalent to the advantage gap between Games 0’ and 1 (Lemma
6). The advantage of Problem 1 is proven to be equivalent to that of the DLIN assumption
(Lemma 2).

We then show that Game 2-(h− 1)-4 can be conceptually changed to Game 2-h-1 (Lemma
7), by using the fact that parts of bases, (bn+1, . . . , b2n) and (b∗n+1, . . . , b

∗
2n), are unknown to

the adversary. In particular, when h = 1, it means that Game 1 can be conceptually changed
to Game 2-1-1. When h ≥ 2, we notice that temporal 2 key and temporal 1 challenge cipher-
text, (k∗ temp2, ctemp1

1 ), are equivalent to temporal 2 key and temporal 2 challenge ciphertext,

(k∗ temp2, ctemp2
1 ), except that �x(b) is used in ctemp1

1 instead of ω′
0�x

(0) +ω′
1�x

(1) (with ω′
0, ω

′
1

U← Fq)
for some coefficient vector in ctemp2

1 . This change of coefficient vectors can be done conceptually
since zero vector 0n is used for the corresponding part in k∗ temp2.

The advantage gap between Games 2-h-1 and 2-h-2 is shown to be bounded by the advantage
of Problem 2, i.e., advantage of the DLIN assumption (Lemmas 8 and 3).

We then show that Game 2-h-2 can be conceptually changed to Game 2-h-3 (Lemma 9),
again by using the fact that parts of bases, (bn+1, . . . , b2n) and (b∗n+1, . . . , b

∗
2n), are unknown

to the adversary. In this conceptual change, we use the fact that all key queries �v satisfy
�v · �x(0) = �v · �x(1) = 0 or �v · �x(0) �= 0 and �v · �x(1) �= 0. Here, we notice that temporal 1 key and
temporal 1 challenge ciphertext, (k∗ temp1, ctemp1

1 ), are equivalent to temporal 1 key and temporal
2 challenge ciphertext, (k∗ temp1, ctemp2

1 ), except that random linear combination ω′
0�x

(0) +ω′
1�x

(1)

(with ω′
0, ω

′
1

U← Fq) is used in ctemp2
1 instead of �x(b) for some coefficient vector in ctemp1

1 . This
conceptual change is proved by using Lemma 5.

The advantage gap between Games 2-h-3 and 2-h-4 is similarly shown to be bounded by the
advantage of Problem 3, i.e., advantage of the DLIN assumption (Lemmas 10 and 4).

We then show that Game 2-ν-4 can be conceptually changed to Game 3 (Lemma 11) by using
the fact that parts of bases, (bn+1, . . . , b3n) and (b∗1, . . . , b∗2n), are unknown to the adversary.

Figure 1 shows the structure of the security reduction, where the security of the scheme is
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hierarchically reduced to the intractability of the DLIN problem. The reduction steps indicated
by dotted arrows can be shown in the same manner as that in (the full version of) [23].

4.3.3 Proof of Lemma 1

To prove Lemma 1, we consider the following 4ν + 3 games when t = 1. In Game 0’, a part
framed by a box indicates coefficients to be changed in a subsequent game. In the other games,
a part framed by a box indicates coefficients which were changed in a game from the previous
game.

Game 0’ : Same as Game 0 except that flip a coin t
U← {0, 1} before setup, and the game is

aborted in step 3 if t �= s. In order to prove Lemma 1, we consider the case with t = 1.
The reply to a key query for �v is:

k∗ := ( 1, σ�v, 0n , 0n , �η, 0 )B∗ , (2)

where σ U← Fq and �η U← F
n
q . The challenge ciphertext for challenge plaintext m := m(0) =

m(1) and vectors (�x(0), �x(1)) is:

c1 := ( ζ, ω�x(b) , 0n , 0n , 0n, ϕ )B, c2 := gζTm, (3)

where b U← {0, 1} and ζ, ω, ϕ U← Fq. Here, we note that c2 is independent from bit b.

Game 1 : Game 1 is the same as Game 0’ except that c1 of the challenge ciphertext for
(challenge plaintext m := m(0) = m(1) and) vectors (�x(0), �x(1)) is:

c1 := ( ζ, ω�x(b), zx
(b)
1 , 0n−1 , 0n, 0n, ϕ )B, (4)

where x
(b)
1 �= 0 is the first coordinate of �x(b), z U← Fq and all the other variables are

generated as in Game 0’.

Game 2-h-1 (h = 1, . . . , ν) : Game 2-0-4 is Game 1. Game 2-h-1 is the same as Game 2-
(h− 1)-4 except that c1 of the challenge ciphertext for (challenge plaintext m := m(0) =
m(1) and) vectors (�x(0), �x(1)) is:

c1 := ( ζ, ω�x(b), ω′�x(b) , ω′′
0�x

(0) + ω′′
1�x

(1) , 0n, ϕ )B, (5)

where ω′, ω′′
0 , ω

′′
1

U← Fq and all the other variables are generated as in Game 2-(h− 1)-4.

Game 2-h-2 (h = 1, . . . , ν) : Game 2-h-2 is the same as Game 2-h-1 except that the reply
to the h-th key query for �v is:

k∗ := ( 1, σ�v, σ′�v , 0n, �η, 0 )B∗ , (6)

where σ′ U← Fq and all the other variables are generated as in Game 2-h-1.

Game 2-h-3 (h = 1, . . . , ν) : Game 2-h-3 is the same as Game 2-h-2 except that c1 of the
challenge ciphertext for (challenge plaintexts m := m(0) = m(1) and) vectors (�x(0), �x(1))
is:

c1 := ( ζ, ω�x(b), ω′
0�x

(0) + ω′
1�x

(1) , ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ )B, (7)

where ω′
0, ω

′
1

U← Fq and all the other variables are generated as in Game 2-h-2.
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Game 2-h-4 (h = 1, . . . , ν) : Game 2-h-4 is the same as Game 2-h-3 except that the reply
to the h-th key query for �v is:

k∗ := ( 1, σ�v, 0n , σ′′�v , �η, 0 )B∗ , (8)

where σ′′ U← Fq and all the other variables are generated as in Game 2-h-3.

Game 3 : Game 3 is the same as Game 2-ν-4 except that c1 of the challenge ciphertext for
(challenge plaintexts m := m(0) = m(1) and) vectors (�x(0), �x(1)) is:

c1 :=( ζ, ω0�x
(0) + ω1�x

(1) , ω′
0�x

(0) + ω′
1�x

(1), ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ )B, (9)

where ω0, ω1
U← Fq and all the other variables are generated as in Game 2-ν-4. Here, we

note that c1 is independent from bit b U← {0, 1}.

Let Adv
(0′)
A (λ),Adv

(1)
A (λ),Adv

(2-h-1)
A (λ), . . . ,Adv

(2-h-4)
A (λ) and Adv

(3)
A (λ) be the advantage of A

in Game 0′, 1, 2-h-1, . . . , 2-h-4 and 3 when t = 1, respectively. Adv
(0′)
A (λ) is equivalent to the left-

hand side of Eq. (1). We will show six lemmas (Lemmas 6–11) that evaluate the gaps between
pairs of neighboring games. From these lemmas and Lemmas 2–4, we obtain Adv

(0′)
A (λ) ≤∣∣∣Adv

(0′)
A (λ)− Adv

(1)
A (λ)

∣∣∣+∑ν
h=1

(∣∣∣Adv
(2-h-4)
A (λ)− Adv

(2-h-1)
A (λ)

∣∣∣+∑4
ι=2

∣∣∣Adv
(2-h-(ι−1))
A (λ)−

Adv
(2-h-ι)
A (λ)

∣∣∣) +
∣∣∣Adv

(2-ν-4)
A (λ)− Adv

(3)
A (λ)

∣∣∣ + Adv
(3)
A (λ) ≤ AdvP1

B1
(λ) +

∑ν
h=1

(
AdvP2

B2-h-1
(λ)+

AdvP3
B2-h-2

(λ)
)
+(4ν+1)/q ≤ AdvDLIN

E1
(λ)+

∑ν
h=1

(
AdvDLIN

E2-h-1
(λ) + AdvDLIN

E2-h-2
(λ)
)
+(23ν+12)/q. ��

4.3.4 Lemmas 2–12

Definition 8 (Problem 1) Problem 1 is to guess β, given (paramV,B, B̂
∗, eβ,1, {ei}i=2,...,n)

R←
GP1
β (1λ, n), where

GP1
β (1λ, n) : (paramV,B,B

∗) R← GIPE
ob (1λ, 4n+ 2),

B̂
∗ := (b∗0, . . . , b

∗
n, b

∗
3n+1, . . . , b

∗
4n+1), ω, γ, z

U← Fq,

1︷︸︸︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷
e0,1 := ( 0, ω�e1, 02n, 0n, γ )B,
e1,1 := ( 0, ω�e1, z�e1, 0n, 0n, γ )B,

ei := ωbi for i = 2, . . . , n,
return (paramV,B, B̂

∗, eβ,1, {ei}i=2,...,n),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 1 as: AdvP1
B (λ) :=∣∣∣Pr

[
B(1λ, �)→1

∣∣∣ � R←GP1
0 (1λ, n)

]
−Pr
[
B(1λ, �)→1

∣∣∣ � R←GP1
1 (1λ, n)

]∣∣∣ .
Lemma 2 For any adversary B, there is a probabilistic machine E, whose running time is es-
sentially the same as that of B, such that for any security parameter λ, AdvP1

B (λ) ≤ AdvDLIN
E (λ)+

6/q.

Proof. Problem 1 is essentially same as Basic Problem 1 in [23], where the intractability of the
problem is reduced to that of DLIN. Therefore, Lemma 2 is proven in a similar manner as the
reduction lemmas in [23]. ��
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Definition 9 (Problem 2) Problem 2 is to guess β, given (paramV, B̂,B
∗, {h∗

β,i, ei}i=1,...,n)
R←

GP2
β (1λ, n), where

GP2
β (1λ, n) : (paramV,B,B

∗) R← GIPE
ob (1λ, 4n+ 2),

B̂ := (b0, . . . , bn, b2n+1, . . . , b4n+1), δ, τ, δ0, ω, σ
U← Fq,

for i = 1, . . . , n;
1︷︸︸︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷

h∗
0,i := ( 0, δ�ei, 0n, 0n, δ0�ei, 0 )B∗

h∗
1,i := ( 0, δ�ei, τ�ei, 0n, δ0�ei, 0 )B∗

ei := ( 0, ω�ei, σ�ei, 0n, 0n, 0 )B,

return (paramV, B̂,B
∗, {h∗

β,i, ei}i=1,...,n),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 2, AdvP2
B (λ), is

similarly defined as in Definition 8.

Lemma 3 For any adversary B, there is a probabilistic machine E, whose running time is es-
sentially the same as that of B, such that for any security parameter λ, AdvP2

B (λ) ≤ AdvDLIN
E (λ)+

5/q.

Proof. Problem 2 is essentially same as Basic Problem 2 in [23], where the intractability of the
problem is reduced to that of DLIN. Therefore, Lemma 3 is proven in a similar manner as the
reduction lemmas in [23]. ��

Definition 10 (Problem 3) Problem 3 is to guess β, given (paramV, B̂, B̂
∗, {h∗

β,i, ei,fi}i=1,...,n)
R← GP3

β (1λ, n), where

GP3
β (1λ, n) : (paramV,B,B

∗) R← GIPE
ob (1λ, 4n+ 2),

B̂ := (b0, . . . , bn, b3n+1, . . . , b4n+1), B̂
∗ := (b∗0, . . . , b

∗
n, b

∗
2n+1, . . . , b

∗
4n+1),

τ, δ0, ω
′, ω′′, κ′, κ′′ U← Fq,

for i = 1, . . . , n;
n+1︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷

h∗
0,i := ( 0n+1, τ�ei, 0n, δ0�ei, 0 )B∗

h∗
1,i := ( 0n+1, 0n, τ�ei, δ0�ei, 0 )B∗

ei := ( 0n+1, ω′�ei, ω′′�ei, 0n, 0 )B,
fi := ( 0n+1, κ′�ei, κ′′�ei, 0n, 0 )B,

return (paramV, B̂, B̂
∗, {h∗

β,i, ei,fi}i=1,...,n),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 3, AdvP3
B (λ), is

similarly defined as in Definition 8.

Lemma 4 For any adversary B, there is a probabilistic machine E, whose running time is es-
sentially the same as that of B, such that for any security parameter λ, AdvP3

B (λ) ≤ AdvDLIN
E (λ)+

8/q.
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Lemma 5 (Lemma 3 in [23]) For p ∈ Fq, let Cp := {(�x,�v)|�x · �v = p} ⊂ V × V ∗ where
V is n-dimensional vector space F

n
q , and V ∗ its dual. For all (�x,�v) ∈ Cp, for all (�r, �w) ∈

Cp, Pr [�xU = �r ∧ �vZ = �w] = Pr [�xZ = �r ∧ �vU = �w] = 1
/
� Cp, where Z U← GL(n,Fq), U :=

(Z−1)T.

Lemma 6 For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0′)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP1

B1
(λ).

Lemma 7 For any adversary A, |Adv
(2-(h−1)-4)
A (λ)− Adv

(2-h-1)
A (λ)| ≤ 2/q.

Lemma 8 For any adversary A, there exists a probabilistic machine B2-1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-1)
A (λ) −

Adv
(2-h-2)
A (λ)| ≤ AdvP2

B2-h-1
(λ), where B2-h-1(·) := B2-1(h, ·).

Lemma 9 For any adversary A, |Adv
(2-h-2)
A (λ)− Adv

(2-h-3)
A (λ)| ≤ 8/q.

Lemma 10 For any adversary A, there exists a probabilistic machine B2-2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-3)
A (λ) −

Adv
(2-h-4)
A (λ)| ≤ AdvP3

B2-h-2
(λ), where B2-h-2(·) := B2-2(h, ·).

Lemma 11 For any adversary A, |Adv
(2-ν-4)
A (λ)− Adv

(3)
A (λ)| ≤ 1/q.

Lemma 12 For any adversary A, Adv
(3)
A (λ) = 0.

Proof. The value of b is independent from A’s view in Game 3. Hence, Adv
(3)
A (λ) = 0. ��

The proofs of Lemmas 4, 6–11 are given in Appendix B.

5 A Variant for Achieving Shorter Public and Secret Keys

A variant of the proposed (basic) IPE scheme with the same security, that achieves a shorter
(O(n)-size) master public key and shorter (O(1)-size) secret keys (excluding the description of
�v), can be constructed by combining with the techniques in [24], where n is the dimension of
vectors of the IPE scheme. This variant also enjoys more efficient decryption. Here, we show
this variant. See the security proof of this scheme in the full version of [24].

5.1 Key Ideas in Constructing the Proposed IPE Scheme

We will explain key ideas in constructing the efficient IPE scheme.
First, we will show how short secret-keys and efficient decryption can be achieved in our

scheme. Here, we will use a simplified (or toy) version of the proposed IPE scheme, for which
the security is no more ensured in the standard model under the DLIN assumption. A cipher-
text in the simplified IPE scheme consists of one vector element, c1 ∈ G

n+1, and c2 ∈ GT .
A secret-key consists of one vector element, k∗ ∈ G

n+1. Therefore, to achieve constant-size
secret-keys, we have to compress k∗ ∈ G

n+1 to a constant size in n (as long as the descrip-
tion of the vector �v is not considered a part of the secret-key). We now employ a special
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form of basis generation matrix, X :=

⎛
⎜⎜⎜⎜⎜⎝

χ0 μ′0
χ1 μ μ′1
...

. . .
...

μ μ′n−1

χn μ′n

⎞
⎟⎟⎟⎟⎟⎠

for a master secret-key,

where μ, μ′i, χi
U← Fq (i = 0, . . . , n) and a blank in the matrix denotes 0 ∈ Fq. The mas-

ter secret-key is B
∗ :=

⎛
⎜⎜⎜⎝

b∗0
...

b∗n

⎞
⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎜⎜⎝

χ0G μ′0G
χ1G μG μ′1G

...
. . .

...
μG μ′n−1G

χnG μ′nG

⎞
⎟⎟⎟⎟⎟⎠

. Let a secret-key as-

sociated with �v := (v1, . . . , vn) be k∗ := (1, σ�v)B∗ = b∗0 + σ(v1b∗1 + · · · + vnb
∗
n) = ((χ0 +

σ(
∑n

i=1 viχi))G, v1σμG, . . . , vn−1σμG, (μ′0 + σ(
∑n

i=1 viμ
′
i))G), where σ U← Fq. Then, k∗ can

be compressed to only three group elements (K∗
0 := (χ0 + σ(

∑n
i=1 viχi))G, K

∗
1 := σμG, K∗

2 :=
(μ′0 + σ(

∑n
i=1 viμ

′
i))G) as well as �v, since k∗ can be obtained by (K∗

0 , v1K
∗
1 , . . . , vn−1K

∗
1 , K

∗
2 )

(note that viK∗
1 = viσμG for i = 1, . . . , n − 1). That is, a secret-key (excluding �v) can be

just three group elements, or the size is constant in n. Let B := (bi) be the dual orthonormal
basis of B

∗ := (b∗i ), and B be the (master) public key in the simplified IPE scheme. We also
set a ciphertext for �x as c1 := (ζ, ω�x)B = ζb0 + ω(x1b1 + · · · + xnbn) and c2 := gζTm ∈ GT .
From the dual orthonormality of B and B

∗, it then holds that e(c1,k
∗) = g

ζ+ωσ(�x·�v)
T . Hence, a

decryptor can compute gζT if and only if �x ·�v = 0, i.e., can obtain plaintext m by c2 ·e(c1,k
∗)−1.

Since k∗ is expressed as (K∗
0 , v1K

∗
1 , . . . , vn−1K

∗
1 ,K

∗
2 ) ∈ G

n+1 and c1 is parsed as a (n + 1)-
tuple (C0, . . . , Cn) ∈ G

n+1, the value of e(c1,k
∗) is e(C0,K

∗
0 ) ·∏n−1

i=1 e(Ci, viK
∗
1 ) · e(Cn,K∗

2 ) =
e(C0,K

∗
0 ) ·∏n−1

i=1 e(viCi,K
∗
1 ) · e(Cn,K∗

2 ) = e(C0,K
∗
0 ) · e(∑n−1

i=1 viCi,K
∗
1 ) · e(Cn,K∗

2 ). That is,
n−1 scalar multiplications in G and three pairing operations are enough for computing e(c1,k

∗).
Therefore, only a small number of pairing operations are required for decryption.

We then explain how our full IPE scheme is constructed on the above-mentioned simplified
IPE scheme. The target of designing the full IPE scheme is to achieve the adaptively and fully
attribute-hiding security under the DLIN assumption. Here, we adopt a strategy similar to
that of Section 4, in which the extended dual system encryption methodology is employed in a
modular or hierarchical manner. That is, two top level assumptions, the security of Problems
1, 2, and 3 are directly used in the dual system encryption methodology and these assumptions
are reduced to a primitive assumption, the DLIN assumption.

To meet the requirements for applying to the extended dual system encryption methodology
and reducing to the DLIN assumption, the underlying vector space as well as the basis generator
matrix X is (almost) five times greater than that of the above-mentioned simplified scheme.
For example, k∗ := ( 1, σ�v, 02n, η�v, 0n )B∗ , c1 = ( ζ, ω�x, 02n, 0n, �ϕ )B, and

X :=

⎛
⎜⎜⎜⎝

χ0,0 χ0,1�en · · · χ0,5�en
�χT

1,0 X1,1 · · · X1,5
...

...
...

�χT
5,0 X5,1 · · · X5,5

⎞
⎟⎟⎟⎠ where χι,l

U← Fq and eachXi,j is of the same form as a n×n

submatrix

⎛
⎜⎜⎜⎝

μ μ′1
. . .

...
μ μ′n−1

μ′n

⎞
⎟⎟⎟⎠ of X in the simplified scheme with μ, μ′i

U← Fq (i = 1, . . . , n).

Using a similar technique as above, k∗ can be compressed to 11 (= 1 + 2× 5) group elements,
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and 5(n − 1) scalar multiplications in G and 11 pairing operations are enough for computing
e(c1,k

∗) in decryption.

5.2 Construction and Security

Let N := 5n+ 1 and

H(n,Fq) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

μ μ′1
. . .

...
μ μ′n−1

μ′n

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
μ, μ′l ∈ Fq for l = 1, . . . , n,
a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (10)

L+(5, n,Fq) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
X :=

⎛
⎜⎜⎜⎝

χ0,0 χ0,1�en · · · χ0,5�en
�χT

1,0 X1,1 · · · X1,5

...
...

...
�χT

5,0 X5,1 · · · X5,5

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣

Xi,j ∈ H(n,Fq),
�χi,0 := (χi,0,l)l=1,...,n ∈ F

n
q ,

χ0,0, χ0,j ∈ Fq

for i, j = 1, . . . , 5

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⋂
GL(N,Fq). (11)

We note that L+(5, n,Fq) is a subgroup ofGL(N,Fq). Random dual orthonormal basis generator
GZIPE,SK

ob below is used as a subroutine in the proposed IPE.

GZIPE,SK
ob (1λ, 5, n) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), N := 5n+ 1,

ψ
U← F

×
q , gT := e(G,G)ψ, paramV := (q,V,GT ,A, e) := Gdpvs(1λ, N, paramG),

paramn := (paramV, gT ), X U← L+(5, n,Fq), (ϑi,j)i,j=0,...,5n := ψ · (XT)−1,

hereafter, {χ0,0, χ0,j , χi,0,l, μi,j , μ
′
i,j,l}i,j=1,...5;l=1,...,n denotes non-zero

entries of X, where {μi,j , μ′i,j,l} are non-zero entries of submatrices Xi,j of
X as given in Eqs. (11) and (10),
bi := (ϑi,0, . . . , ϑi,5n)A =

∑5n
j=0 ϑi,jaj for i = 0, . . . , 5n, B := (b0, . . . , b5n),

B∗
0,0 := χ0,0G,B

∗
0,j := χ0,jG,B

∗
i,0,l := χi,0,lG,B

∗
i,j := μi,jG,B

′∗
i,j,l := μ′i,j,lG

for i, j = 1, . . . , 5; l = 1, . . . , n,
return (paramn,B, {B∗

0,0, B
∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′∗
i,j,l}i,j=1,...,5;l=1,...,n).

Remark 2 Let b∗0 := ( B∗
0,0, 0n−1, B∗

0,1, . . . , 0
n−1, B∗

0,5 ),

⎛
⎜⎜⎝

b∗(i−1)n+1
...

b∗in

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎜⎜⎝

B∗
i,0,1 B∗

i,1 B′∗
i,1,1

...
. . .

...
B∗
i,0,n−1 B∗

i,1 B′∗
i,1,n−1

B∗
i,0,n B′∗

i,1,n

· · ·

B∗
i,5 B′∗

i,5,1
. . .

...
B∗
i,5 B′∗

i,5,n−1

B′∗
i,5,n

⎞
⎟⎟⎟⎟⎠

for i = 1, . . . , 5, and B
∗ := (b∗0, . . . , b∗5n), where a blank element in the matrix denotes 0 ∈ G.

B
∗ is the dual orthonormal basis of B, i.e., e(bi, b∗i ) = gT and e(bi, b∗j ) = 1 for 0 ≤ i �= j ≤ 5n.
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Here, we assume that input vector, �v := (v1, . . . , vn), has an index l (1 ≤ l ≤ n − 1) with
vl �= 0, and that input vector, �x := (x1, . . . , xn), satisfies xn �= 0.

Setup(1λ, n) :

(paramn,B, {B∗
0,0, B

∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i,j=1,...,5;l=1,...,n)

R← GZIPE,SK
ob (1λ, 5, n),

B̂ := (b0, . . . , bn, b4n+1, . . . , b5n),
return pk :=(1λ, paramn, B̂), sk :={B∗

0,0, B
∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,4;j=1,..,5;l=1,..,n.

KeyGen(pk, sk, �v) : σ, η
U← Fq, K∗

0 := B∗
0,0 +

∑n
l=1 vl(σB

∗
1,0,l + ηB∗

4,0,l),
K∗

1,j := σB∗
1,j + ηB∗

4,j , K
∗
2,j := B∗

0,j +
∑n

l=1 vl(σB
′ ∗
1,j,l + ηB′ ∗

4,j,l) for j = 1, .., 5,
return sk�v := (�v,K∗

0 , {K∗
1,j ,K

∗
2,j}j=1,...,5).

Enc(pk, m, �x) : ω, ζ
U← Fq, �ϕ

U← F
n
q , c1 := ( ζ,

n︷︸︸︷
ω�x ,

2n︷ ︸︸ ︷
02n ,

n︷︸︸︷
0n ,

n︷︸︸︷
�ϕ )B,

c2 := gζTm, return ct�x := (c1, c2).
Dec(pk, sk�v := (�v,K∗

0 , {K∗
1,j ,K

∗
2,j}j=1,...,5), ct�x := (c1, c2)) :

Parse c1 as a (5n+ 1)-tuple (C0, . . . , C5n) ∈ G
5n+1,

Dj :=
∑n−1

l=1 vlC(j−1)n+l for j = 1, . . . , 5,

F := e(C0,K
∗
0 ) ·∏5

j=1

(
e(Dj ,K

∗
1,j) · e(Cjn,K∗

2,j)
)
, return m′ := c2/F.

Remark 3 A part of output of Setup(1λ, n), {B∗
0,0, B

∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,4;j=1,...,5;l=1,...,n,

can be identified with B̂
∗ := (b∗0, . . . , b∗n, b∗3n+1, . . . , b

∗
4n), while B

∗ := (b∗0, . . . , b∗5n) is identified
with {B∗

0,0, B
∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,...,5;j=1,...,5;l=1,...,n in Remark 2. Decryption Dec can be

alternatively described as:

Dec′(pk, sk�v := (�v,K∗
0 , {K∗

1,j ,K
∗
2,j}j=1,...,5), ct�x := (c1, c2)) :

k∗ := (

n︷ ︸︸ ︷
K∗

0 , v1K
∗
1,1, .., vn−1K

∗
1,1,K

∗
2,1, . . . ,

n︷ ︸︸ ︷
v1K

∗
1,5, .., vn−1K

∗
1,5,K

∗
2,5 ),

that is, k∗ = (1,

n︷ ︸︸ ︷
σ�v,

2n︷ ︸︸ ︷
02n,

n︷︸︸︷
η�v

n︷︸︸︷
0n )B∗ , F := e(c1,k

∗),
return m′ := c2/F.

Theorem 2 The proposed IPE scheme is adaptively attribute-hiding against chosen plaintext
attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines E0-1, E0-2, E1-1, E1-2-1 and E1-2-2, whose
running times are essentially the same as that of A, such that for any security parameter λ,

AdvIPE,AH
A (λ) ≤ AdvDLIN

E0-1
(λ) + AdvDLIN

E1-1
(λ)

+
ν∑
h=1

(
AdvDLIN

E0-2-h
(λ) + AdvDLIN

E1-2-h-1
(λ) + AdvDLIN

E1-2-h-2
(λ)
)

+ ε,

where E0-2-h(·) := E0-2(h, ·), E1-2-h-1(·) := E1-2-1(h, ·), E1-2-h-2(·) := E1-2-2(h, ·), ν is the maximum
number of A’s key queries and ε := (29ν + 17)/q.

6 Comparison

Table 2 compares the proposed IPE schemes in Sections 4 and 5 with existing attribute-hiding
IPE schemes in [19, 22, 20, 23].

20



Table 2: Comparison with IPE schemes in [19, 22, 20, 23], where |G| and |GT | represent size of
an element of G and that of GT , respectively. AH, PK, SK, CT, GSD, DSP and eDDH stand
for attribute-hiding, master public key, secret key, ciphertext, general subgroup decision [1],
decisional subspace problem [22], and extended decisional Diffie-Hellman [20], respectively.

KSW08 [19] OT09 [22] LOS+10 [20] OT10 [23]
Proposed
(basic)

Proposed
(variant)

Security
selective &
fully-AH

selective &
weakly-AH

adaptive &
weakly-AH

adaptive &
weakly-AH

adaptive &
fully-AH

adaptive &
fully-AH

Order
of G

composite prime prime prime prime prime

Assump.
2 variants
of GSD

2 variants
of DSP

n-eDDH DLIN DLIN DLIN

PK size O(n)|G| O(n2)|G| O(n2)|G| O(n2)|G| O(n2)|G| O(n)|G|
SK size (2n+ 1)|G| (n+ 3)|G| (2n+ 3)|G| (3n+ 2)|G| (4n+ 2)|G| 11|G|
CT size

(2n+ 1)|G|
+ |GT |

(n+ 3)|G|
+ |GT |

(2n+ 3)|G|
+ |GT |

(3n+ 2)|G|
+ |GT |

(4n+ 2)|G|
+ |GT |

(5n+ 1)|G|
+ |GT |

7 Extension to HIPE

The proposed IPE scheme is extended to a hierarchical IPE (HIPE) scheme by applying the
similar construction given in Appendix H.4 in the full version of [23].

7.1 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GHIPE
ob below, which is used as a subroutine

in the proposed HIPE scheme.

GHIPE
ob (1λ, �n := (d;n1, . . . , nd)) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), ψ
U← F

×
q ,

N0 := 5, Nt := 4nt + 1 for t = 1, . . . , d,
for t = 0, . . . , d,

paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt :=

⎛
⎜⎝

�χt,1
...

�χt,Nt

⎞
⎟⎠ := (χt,i,j)i,j

U← GL(Nt,Fq),

⎛
⎜⎝

�ϑt,1
...

�ϑt,Nt

⎞
⎟⎠ := (ϑt,i,j)i,j := ψ · (XT

t )−1,

bt,i := (�χt,i)At =
∑Nt

j=1 χt,i,jat,j for i = 1, . . . , Nt, Bt := (bt,1, . . . , bt,Nt),

b∗t,i := (�ϑt,i)At =
∑Nt

j=1 ϑt,i,jat,j for i = 1, . . . , Nt, B
∗
t := (b∗t,1, . . . , b∗t,Nt

),

gT := e(G,G)ψ, param�n := ({paramVt
}t=0,...,d, gT )

return (param�n, {Bt,B∗
t }t=0,...,d).

We note that gT = e(bt,i, b∗t,i) for t = 0, . . . , d; i = 1, . . . , Nt.

7.2 Special Notations for the Proposed HIPE

To express our delegation mechanisms in the HIPE compactly, we will use the same notation
as in [23].
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Since we use dual orthonormal basis generator GHIPE
ob , X0

U← GL(5,Fq) and Xt
U← GL(4nt +

1,Fq) for t = 1, . . . , d. By arranging the matrices X0, X1, . . . Xd diagonally and other off-
diagonal parts are zero, we consider a special from of bases generation matrix X ∈ F

N×N
q with

N := 5 +
∑d

t=1(4nt + 1), where

X :=

⎛
⎜⎜⎜⎝

X0

X1

. . .
Xd

⎞
⎟⎟⎟⎠ ,

and our HIPEs are constructed on the one vector space V (∼= G
N ) with special bases induced

by X. In other words, the matrix X gives direct sum decomposition V ∼= V0 ⊕ V1 ⊕ · · · ⊕ Vd

(resp. V∗ ∼= V
∗
0 ⊕ V

∗
1 ⊕ · · · ⊕ V

∗
d), where Vt := span〈Bt〉 (resp. V∗

t := span〈B∗
t 〉) for t = 0, . . . , d.

Based on this isomorphism, i.e., embedding of Vt (resp. V∗
t ) in V (resp. V∗), we define the

following notations as:

((�x0)B0 , . . . , (�xd)Bd
) + ((�y0)B0 , . . . , (�yd)Bd

) := ((�x0 + �y0)B0 , . . . , (�xd + �yd)Bd
)

where ((�x0)B0 , . . . , (�xd)Bd
), ((�y0)B0 , . . . , (�yd)Bd

) ∈ V ∼= V0 ⊕ V1 ⊕ · · · ⊕ Vd,

(�x)Bt := ((�0)B0 , · · · , (�0)Bt−1 , (�x)Bt , (�0)Bt+1 , · · · , (�0)Bd
) ∈ V,

((�x0)B0 , (�xt)Bt : t = 1, . . . , �) := ((�x0)B0 , . . . , (�x�)B�
) :=
∑�

t=0(�xt)Bt ∈ V,

((�x0)B0 , (�xt)Bt : t = 1, . . . , �, (�xτ )Bτ ) := ((�x0)B0 , . . . , (�x�)B�
, (�xτ )Bτ )

:=
∑

t=0,...,�,τ (�xt)Bt ∈ V,

e(c,k∗) :=
∏d
t=0 e(ct,k

∗
t ) where c := (c0, . . . , cd) ∈ V0 ⊕ · · · ⊕ Vd,

k∗ := (k∗
0, . . . ,k

∗
d) ∈ V

∗
0 ⊕ · · · ⊕ V

∗
d,

and �et,j := (

j−1︷ ︸︸ ︷
0, . . . , 0, 1,

nt−j︷ ︸︸ ︷
0, . . . , 0) ∈ F

nt
q ,

and all the above notations are applied to the case with {B∗
t }t=0,...,d instead of {Bt}t=0,...,d

7.3 Construction

In the description of the scheme, we assume that the first coordinates, xi,1, of input vectors,
�xi := (xi,1, . . . , xi,ni) for i = 1, . . . , �, are nonzero.

Setup(1λ, �n := (d;n1, . . . , nd)) : (param�n, {Bt,B∗
t }t=0,...,d)

R← GHIPE
ob (1λ, �n),

B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, .., bt,nt , bt,4nt+1) for t = 1, .., d,

B̂
∗
0 := (b∗0,1, b

∗
0,3), B̂

∗
t := (b∗t,1, .., b

∗
t,nt

) for t = 1, .., d,

return pk := (1λ, param�n, {B̂t}t=0,...,d, b
∗
0,4, {b∗t,3nt+1, .., b

∗
t,4nt
}t=1,...,d), sk := {B̂∗

t }t=0,...,d.

KeyGen(pk, sk, (�v1, . . . , �v�) ∈ F
n1
q × · · · × F

n�
q ) :

for j = 1, . . . , 2�; τ = �+ 1, . . . , d; ι = 1, . . . , nτ ;

ψ, sdec,t, sran,1,j,t, θdec,t, θran,1,j,t
U← Fq for t = 1, . . . , �,

sdel,(τ,ι),t, sran,2,τ,t, θdel,(τ,ι),t, θran,2,τ,t
U← Fq for t = 1, . . . , �+ 1,

sdec,0 :=
∑�

t=1 sdec,t, sdel,(τ,ι),0 :=
∑�+1

t=1 sdel,(τ,ι),t,

sran,1,j,0 :=
∑�

t=1 sran,1,j,t, sran,2,τ,0 :=
∑�+1

t=1 sran,2,τ,t,

�ηdec,t, �ηran,1,j,t
U← F

nt
q for t = 0, . . . , �,
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�ηdel,(τ,ι),t, �ηran,2,τ,t
U← F

nt
q , for t = 0, . . . , �+ 1,

k∗
�,dec := ( ( −sdec,0, 0, 1, ηdec,0, 0 )B∗

0
,

( sdec,t�et,1 + θdec,t�vt, 02nt , �ηdec,t, 0 )B∗
t

: t = 1, . . . , �),
k∗
�,del,(τ,ι) := ( ( −sdel,(τ,ι),0, 0, 0, ηdel,(τ,ι),0, 0 )B∗

0
,

( sdel,(τ,ι),t�et,1 + θdel,(τ,ι),t�vt, 02nt , �ηdel,(τ,ι),t, 0 )B∗
t

: t = 1, . . . , �,
( sdel,(τ,ι),�+1�eτ,1 + ψ�eτ,ι, 02nτ , �ηdel,(τ,ι),�+1, 0 )B∗

τ
),

k∗
�,ran,1,j := ( ( −sran,1,j,0, 0, 0, ηran,1,j,0, 0 )B∗

0
,

( sran,1,j,t�et,1 + θran,1,j,t�vt, 02nt , �ηran,1,j,t, 0 )B∗
t

: t = 1, . . . , �),
k∗
�,ran,2,τ := ( ( −sran,2,τ,0, 0, 0, ηran,2,τ,0, 0 )B∗

0
,

( sran,2,τ,t�et,1 + θran,2,τ,t�vt, 02nt , �ηran,2,τ,t, 0 )B∗
t

: t = 1, . . . , �,
( sran,2,τ,�+1�eτ,1, 02nτ , �ηran,2,τ,�+1, 0 )B∗

τ
),

sk� := (k∗
�,dec, {k∗

�,del,(τ,ι)}τ=�+1,...,d; ι=1,...,nτ , {k∗
�,ran,1,j , k∗

�,ran,2,τ}j=1,...,2�; τ=�+1,...,d),
return sk�.

Enc(pk,m ∈ GT , (�x1, . . . , �x�) ∈ F
n1
q × · · · × F

n�
q ) :

ω, ϕ0, . . . , ϕ�
U← Fq, c1 := ( (ω, 0, ζ, 0, ϕ0)B0 , (ω�xt, 02nt , 0nt , ϕt)Bt : t = 1, . . . , �),

c2 := gζTm, ct := (c1, c2), return ct.

Dec(pk,k∗
�,dec, ct) : m′ := c2/e(c1,k

∗
�,dec), return m′.

Delegate�(pk, sk�, �v�+1 := (v�+1,1, . . . , v�+1,n�+1
)) :

for j′ = 1, . . . , 2(�+ 1); τ = �+ 2, . . . , d; ι = 1, . . . , nτ ;

φdel,(τ,ι), φran,2,τ , ψ
′ U← Fq,

p∗
dec,p

∗
del,(τ,ι),p

∗
ran,1,j′ ,p

∗
ran,2,τ

R← CoreDel�(pk, sk�, �v�+1),

where CoreDel�(pk, sk�, �v�+1) : σ, αj
U← Fq for j = 1, . . . , 2�+ 1,

return p∗ := σ(
∑n�+1

i=1 v�+1,ik
∗
�,del,(�+1,i)) +

∑2�
j=1 αjk

∗
�,ran,1,j + α2�+1k

∗
�,ran,2,�+1,

r∗
dec, r

∗
ran,1,j′

U← span〈b∗0,4, {b∗t,3nt+i
}t=1,...,�+1; i=1,...,nt〉,

r∗
del,(τ,ι), r

∗
ran,2,τ

U← span〈b∗0,4, {b∗t,3nt+i
}t=1,...,�+1,τ ; i=1,...,nt〉,

k∗
�+1,dec := k∗

�,dec + p∗
dec + r∗

dec,

k∗
�+1,del,(τ,ι) := p∗

del,(τ,ι) + φdel,(τ,ι)k
∗
�,ran,2,τ + ψ′k∗

�,del,(τ,ι) + r∗
del,(τ,ι),

k∗
�+1,ran,1,j′ := p∗

ran,1,j′ + r∗
ran,1,j′ ,

k∗
�+1,ran,2,τ := p∗

ran,2,τ + φran,2,τk
∗
�,ran,2,τ + r∗

ran,2,τ ,

sk�+1 := (k∗
�+1,dec, {k∗

�+1,del,(τ,ι)}τ=�+2,...,d; ι=1,...,nτ ,

{k∗
�+1,ran,1,j′ ,k

∗
�+1,ran,2,τ}j′=1,...,2(�+1); τ=�+2,...,d),

return sk�+1.

Lemma 13 shows the distribution of delegated keys and that of the corresponding freshly-
generated keys are equivalent (except with negligible probability).

Lemma 13 If sk� is generated by KeyGen(pk, sk, (�v1, . . . , �v�)), the distribution of sk�+1 gener-
ated by Delegate(pk, sk�, �v�+1) is equivalent to that of sk�+1 generated by KeyGen(pk, sk, (�v1, . . . ,
�v�, �v�+1)) except with probability at most (2d− 2�+ 3)/q.

Lemma 13 is proven in the same manner as that in the full version of [23].
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7.4 Security

Theorem 3 The proposed HIPE scheme is adaptively (fully) attribute-hiding against chosen
plaintext attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines E0-1, E0-2, E1-1, E1-2-1 and E1-2-2, whose
running times are essentially the same as that of A, such that for any security parameter λ,

AdvHIPE,AH
A (λ) ≤ AdvDLIN

E0-1
(λ) + AdvDLIN

E1-1
(λ)

+
ν∑
h=1

L∑
I=1

(
AdvDLIN

E0-2-(h,I)
(λ) + AdvDLIN

E1-2-(h,I)-1
(λ) + AdvDLIN

E1-2-(h,I)-2
(λ)
)

+ ε,

where E0-2-(h,I)(·) := E0-2(h, I, ·), E1-2-(h,I)-1(·) := E1-2-1(h, I, ·), E1-2-(h,I)-2(·) := E1-2-2(h, I, ·), ν is
the maximum number of A’s key queries, L := d+2+

∑d
τ=2 nτ , and ε := ((2d+33)Lν+6d+23)/q.

The weakly attribute-hiding security of HIPE in the full version of [23] implies the security
of our HIPE with t = 0 as in Theorem 1, and the security with t = 1 is proven in a similar
manner as Lemma 1.
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A Some Key Techniques on DPVS

A.1 Summary

We now briefly explain our approach, DPVS, constructed on symmetric pairing groups (q,G,GT ,
G, e), where q is a prime, G and GT are cyclic groups of order q, G is a generator of G,
e : G × G → GT is a non-degenerate bilinear pairing operation, and e(G,G) �= 1. Here we
denote the group operation of G by addition and GT by multiplication, respectively. Note that
this construction also works on asymmetric pairing groups (in this paper, we use symmetric
pairing groups for simplicity of description).

Vector space V: V :=

N︷ ︸︸ ︷
G× · · · ×G, whose element is expressed by N -dimensional vector,

x := (x1G, . . . , xNG) (xi ∈ Fq for i = 1, . . . , N).

Canonical base A: A := (a1, . . . ,aN ) of V, where a1 := (G, 0, . . . , 0),a2 := (0, G, 0, . . . , 0),
. . . ,aN := (0, . . . , 0, G).

Pairing operation: e(x,y) :=
∏N
i=1 e(xiG, yiG) = e(G,G)

PN
i=1 xiyi = e(G,G)�x·�y ∈ GT ,

where x := (x1G, . . . , xNG) = x1a1 + · · · + xNaN ∈ V, y := (y1G, . . . , yNG) = y1a1 +
· · · + yNaN ∈ V, �x := (x1, . . . , xN ) and �y := (y1, . . . , yN ). Here, x and y can be ex-
pressed by coefficient vector over basis A such that (x1, . . . , xN )A = (�x)A := x and
(y1, . . . , yN )A = (�y)A := y.

Base change: Canonical basis A is changed to basis B := (b1, . . . , bN ) of V using a uni-
formly chosen (regular) linear transformation, X := (χi,j)

U← GL(N,Fq), such that bi =
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∑N
j=1 χi,jaj , (i = 1, . . . , N). A is also changed to basis B

∗ := (b∗1, . . . , b∗N ) of V, such that
(ϑi,j) := (XT )−1, b∗i =

∑N
j=1 ϑi,jaj , (i = 1, . . . , N). We see that e(bi, b∗j ) = e(G,G)δi,j ,

(δi,j = 1 if i = j, and δi,j = 0 if i �= j) i.e., B and B
∗ are dual orthonormal bases of V.

Here, x := x1b1 + · · ·+ xNbN ∈ V and y := y1b
∗
1 + · · ·+ yNb∗N ∈ V can be expressed by

coefficient vectors over B and B
∗ such that (x1, . . . , xN )B = (�x)B := x and (y1, . . . , yN )B∗ =

(�y)B∗ := y, and e(x,y) = e(G,G)
PN

i=1 xiyi = e(G,G)�x·�y ∈ GT .

Intractable problem: One of the most natural decisional problems in this approach is the
decisional subspace problem [21]. It is to tell v := vN2+1bN2+1 + · · · + vN1bN1 (=
(0, . . . , 0, vN2+1, . . . , vN1)B), from u := v1b1 + · · · + vN1bN1 (= (v1, . . . , vN1)B), where
(v1, . . . , vN1)

U← F
N1
q and N2 + 1 < N1.

Trapdoor: Although the decisional subspace problem is assumed to be intractable, it can be
efficiently solved by using trapdoor t∗ ∈ span〈b∗1, . . . , b∗N2

〉. Given v := vN2+1bN2+1 + · · ·+
vN1bN1 or u := v1b1 + · · ·+ vN1bN1 , we can tell v from u using t∗ since e(v, t∗) = 1 and
e(u, t∗) �= 1 with high probability.

Advantage of this approach: Higher dimensional vector treatment of bilinear pairing groups
have been already employed in literature especially in the areas of IBE, ABE and BE
(e.g., [5, 2, 9, 11, 17, 27]). For example, in a typical vector treatment, two vector forms
of P := (x1G, . . . , xNG) and Q := (y1G, . . . , yNG) are set and pairing for P and Q is
operated as e(P,Q) :=

∏N
i=1 e(xiG, yiG). Such treatment can be rephrased in this ap-

proach such that P = x1a1 + · · ·+ xNaN (= (x1, . . . , xN )A), and Q = y1a1 + · · ·+ yNaN
(= (y1, . . . , yN )A) over canonical basis A.

The major drawback of this approach is the easily decomposable property over A (i.e., the
decisional subspace problem is easily solved). That is, it is easy to decompose xiai =
(0, . . . , 0, xiG, 0, . . . , 0) from P := x1a1 + · · ·xNaN = (x1G, . . . , xNG).

In contrast, our approach employs basis B, which is linearly transformed from A using a
secret random matrix X ∈ F

n×n
q . A remarkable property over B is that it seems hard to

decompose xibi from P ′ := x1b1 + · · ·xNbN (and the decisional subspace problem seems
intractable). In addition, the secret matrix X (and the dual orthonormal basis B

∗ of V)
can be used as a source of the trapdoors to the decomposability (and distinguishability for
the decisional subspace problem through the pairing operation over B and B

∗ as mentioned
above). The hard decomposability (and indistinguishability) and its trapdoors are ones of
the key tricks in this paper. Note that composite order pairing groups are often employed
with similar tricks such as hard decomposability (and indistinguishability) of a composite
order group to the prime order subgroups and its trapdoors through factoring (e.g., [19,
28]).

A.2 Dual Pairing Vector Spaces by Direct Product of Asymmetric Pairing
Groups

Definition 11 “Asymmetric bilinear pairing groups” (q,G1,G2,GT , G1, G2, e) are a tuple of
a prime q, cyclic additive groups G1,G2 and multiplicative group GT of order q, G1 �= 0 ∈
G1, G2 �= 0 ∈ G2, and a polynomial-time computable nondegenerate bilinear pairing e : G1 ×
G2 → GT i.e., e(sG1, tG2) = e(G1, G2)st and e(G1, G2) �= 1.

Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear pairing
groups paramG := (q,G1,G2,GT , G1, G2, e) with security parameter λ.
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Definition 12 “Dual pairing vector spaces (DPVS)” (q,V,V∗,GT ,A,A
∗, e) by direct product of

asymmetric pairing groups paramG := (q,G1,G2,GT , G1, G2, e) are a tuple of a prime q, two N -

dimensional vector spaces V :=

N︷ ︸︸ ︷
G1 × · · · ×G1 and V

∗ :=

N︷ ︸︸ ︷
G2 × · · · ×G2 over Fq, a cyclic group

GT of order q, and their canonical bases i.e., A := (a1, . . . ,aN ) of V and A
∗ := (a∗

1, . . . ,a
∗
N )

of V
∗, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G1,

N−i︷ ︸︸ ︷
0, . . . , 0) and a∗

i := (
i−1︷ ︸︸ ︷

0, . . . , 0, G2,

N−i︷ ︸︸ ︷
0, . . . , 0) with the following

operations:

1. [Non-degenerate bilinear pairing] The pairing on V and V
∗ is defined by e(x,y) :=

∏N
i=1 e(Di,

Hi) ∈ GT where (D1, . . . , DN ) := x ∈ V and (H1, . . . , HN ) := y ∈ V
∗. This is non-

degenerate bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then
x = 0. For all i and j, e(ai,a∗

j ) = g
δi,j
T where δi,j = 1 if i = j, and 0 otherwise, and

e(G1, G2) �= 1 ∈ GT .

2. [Canonical maps] Linear transformation φi,j on V s.t.φi,j(aj) = ai and φi,j(ak) = 0 if

k �= j can be easily achieved by φi,j(x) := (
i−1︷ ︸︸ ︷

0, . . . , 0, Dj ,

N−i︷ ︸︸ ︷
0, . . . , 0) where (D1, . . . , DN ) := x.

Moreover, linear transformation φ∗i,j on V
∗ s.t.φ∗i,j(a

∗
j ) = a∗

i and φ∗i,j(a
∗
k) = 0 if k �= j

can be easily achieved by φ∗i,j(y) := (
i−1︷ ︸︸ ︷

0, . . . , 0, Hj ,

N−i︷ ︸︸ ︷
0, . . . , 0) where (H1, . . . , HN ) := y. We

call φi,j and φ∗i,j “canonical maps”.

DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N), N ∈ N and a description of bi-
linear pairing groups paramG, and outputs a description of param′

V
:= (q,V,V∗,GT ,A,A

∗, e)
constructed above with security parameter λ and N -dimensional (V,V∗).

B Proofs of Lemmas 4, 6–11 in Section 4.3

Proof of Lemma 4

Lemma 4 For any adversary B, there is a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP3

B (λ) ≤
AdvDLIN

E (λ) + 8/q.

Proof. Problem 3 is the hybrid of the following Experiment 3-0, 3-1 and 3-2, i.e., AdvP3
B (λ) =∣∣Pr

[
Exp3-0

B (λ)→ 1
] −Pr

[
Exp3-2

B (λ)→ 1
]∣∣. Therefore, from Lemmas 14, 15 and 3, there exist

probabilistic machines C and E , whose running time are essentially the same as that of B, such
that for any security parameter λ,

AdvP3
B (λ) =

∣∣Pr
[
Exp3-0

B (λ)→ 1
]− Pr

[
Exp3-2

B (λ)→ 1
]∣∣

≤ ∣∣Pr
[
Exp3-0

B (λ)→ 1
]− Pr

[
Exp3-1

B (λ)→ 1
]∣∣

+
∣∣Pr
[
Exp3-1

B (λ)→ 1
]− Pr

[
Exp3-2

B (λ)→ 1
]∣∣

≤ AdvP2
C (λ) + 3/q ≤ AdvDLIN

E (λ) + 8/q.

This completes the proof of Lemma 4. ��

Definition 13 (Experiment 3-α (α = 0, 1, 2)) We define Exp-3-α instance generator,
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GExp-3
α (1λ, n), where

GExp-3
α (1λ, n) : (paramV,B,B

∗) R← GIPE
ob (1λ, 4n+ 2),

B̂ := (b0, . . . , bn, b3n+1, . . . , b4n+1), B̂
∗ := (b∗0, . . . , b

∗
n, b

∗
2n+1, . . . , b

∗
4n+1),

τ, τ ′, δ0, ω′, ω′′, κ′, κ′′ U← Fq,

for i = 1, . . . , n;
n+1︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷

h∗
0,i := ( 0n+1, τ�ei, 0nt , δ0�ei, 0 )B∗

h∗
1,i := ( 0n+1, τ�ei, τ ′�ei, δ0�ei, 0 )B∗

h∗
2,i := ( 0n+1, 0n, τ ′�ei, δ0�ei, 0 )B∗

ei := ( 0n+1, ω′�ei, ω′′�ei, 0n, 0 )B,
fi := ( 0n+1, κ′�ei, κ′′�ei, 0n, 0 )B,

return (paramV, B̂, B̂
∗, {h∗

α,i, ei,fi}i=1,...,n).

For a probabilistic adversary B, we define 3 experiments Exp3-α
B (α = 0, 1, 2) as follows:

1. C is given �
R← GExp-3

α (1λ, n).

2. Output β′ R← B(1λ, �).

Lemma 14 For any adversary B, for any security parameter λ,
|Pr
[
Exp3-0

B (λ)→ 1
]− Pr

[
Exp3-1

B (λ)→ 1
] | ≤ 1/q.

Proof. Let θ U← Fq. If we set

d2n+i := b2n+i − θbn+i d∗
n+i := b∗n+i + θb∗2n+i for i = 1, . . . , n.

Then, D := (b0, . . . , b2n,d2n+1, . . . ,d3n, b3n+1, . . . , b4n+1) and D
∗ := (b∗0, . . . , b∗n,d∗

n+1, . . . ,d
∗
2n,

b∗2n+1, . . . , b
∗
4n+1) are dual orthonormal bases. Moreover, (D,D∗) are consistent with (B̂, B̂∗).

Then,

n+1︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷
h∗

0,i := ( 0n+1, τ�ei, 0n, δ0�ei, 0 )B∗

= ( 0n+1, τ�ei, τ ′�ei, δ0�ei, 0 )D∗

ei := ( 0n+1, ω′�ei, ω′′�ei, 0n, 0 )B,
= ( 0n+1, ω̃′�ei, ω′′�ei, 0n, 0 )D,

fi := ( 0n+1, κ′�ei, κ′′�ei, 0n, 0 )B,
= ( 0n+1, κ̃′�ei, κ′′�ei, 0n, 0 )D,

where τ ′ := −θτ, ω̃′ := ω′ + θω′′ and κ̃′ := κ′ + θκ′′, which are independently and uniformly
distributed since θ, ω′, κ′ U← Fq except for the case τ = 0. That is, the joint distribution for
Exp. 3-0 and that for Exp. 3-1 are equivalent except with probability 1/q. ��

Lemma 15 For any adversary B, there is a probabilistic machine C, whose running time is
essentially the same as that of B, for any security parameter λ,∣∣∣∣Pr
[
Exp3-1

B (λ)→ 1
]− Pr

[
Exp3-2

B (λ)→ 1
]∣∣− AdvP2

C (λ)
∣∣ ≤ 2/q.
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Proof. In order to prove Lemma 15, we construct a probabilistic machine C against Problem 2
using a machine B distinguishing the experiment Exp3-1

B from Exp3-2
B as a black box as follows:

C is given a Problem 2 instance, (paramV, B̂,B
∗, {h∗

β,i, ei}i=1,...,n). C sets

fi := η1bi + η2ei for i = 1, . . . , n,
D := (di)i=0,...,4n+1 := (b0, b2n+1, . . . , b3n, bn+1, . . . , b2n, b1, . . . , bn, b3n+1, . . . , b4n+1),
D
∗ := (d∗

i )i=0,...,4n+1 := (b∗0, b
∗
2n+1, . . . , b

∗
3n, b

∗
n+1, . . . , b

∗
2n, b

∗
1, . . . , b

∗
n, b

∗
3n+1, . . . , b

∗
4n+1),

D̂ := (d0, . . . ,dn,d3n+1, . . . ,d4n+1) = (b0, b2n+1, . . . , b3n, b3n+1, . . . , b4n+1),
D̂
∗ := (d∗

0, . . . ,d
∗
n,d

∗
2n+1, . . . ,d

∗
4n+1) := (b∗0, b

∗
2n+1, . . . , b

∗
3n, b

∗
1, . . . , b

∗
n, b

∗
3n+1, . . . , b

∗
4n+1),

where C can calculate D̂ and D̂
∗ from a part of the Problem 2 instance, i.e., (B̂,B∗), while C

cannot calculate a part of basis D, i.e., (dn+1, . . . ,d2n), from the Problem 2 instance. C gives
(paramV, D̂, D̂

∗, {h∗
β,i, ei,fi}i=1,...,n) to B, and receives β′ ∈ {0, 1}. C then outputs β′.

Then,

1︷︸︸︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷
h∗

0,i := ( 0, δ�ei, 0n, 0n, δ0�ei, 0 )B∗

= ( 0, 0n, 0n, δ�ei, δ0�ei, 0 )D∗

h∗
1,i := ( 0, δ�ei, τ�ei, 0n, δ0�ei, 0 )B∗

= ( 0, 0n, τ�ei, δ�ei, δ0�ei, 0 )D∗

ei := ( 0, ω�ei, σ�ei, 0n, 0n, 0 )B,
= ( 0, 0n, σ�ei, ω�ei, 0n, 0 )D,

fi := ( 0, (η1 + η2ω)�ei, η2σ�ei, 0n, 0n, 0 )B,
= ( 0, 0n, η2σ�ei, (η1 + η2ω)�ei, 0n, 0 )D,

where δ, τ, ω, σ, η1 + η2ω and η2σ are independently and uniformly distributed in Fq since

δ, τ, ω, σ, η1, η2
U← Fq except for the case σ = 0.

That is, the above (paramV, D̂, D̂
∗, {h∗

β,i, ei,fi}i=1,...,n) has the same distribution as the out-

put of the generator GExp-3
1 (1λ, n) (resp.GExp-3

2 (1λ, n)) when β = 1 (resp.β = 0) except with
probability 1/q. This completes the proof of Lemma 15. ��

Proof of Lemma 6

Lemma 6. For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0′)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP1

B1
(λ).

Proof. In order to prove Lemma 6, we construct a probabilistic machine B1 against Problem
1 using an adversary A in a security game (Game 0’ or 1) as a black box as follows:

1. B1 is given a Problem 1 instance, (paramV,B, B̂
∗, eβ,1, {ei}i=2,...,n).

2. B1 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B1 provides A a public key pk := (1λ, paramV, B̂) of Game
0’ (and 1), where B̂ := (b0, . . . , bn, b4n+1) is obtained from the Problem 1 instance.

4. When a key query is issued for vector �v, B1 answers normal key k∗ with Eq. (2), that is
computed using B̂

∗ of the Problem 1 instance.
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5. When B1 receives an encryption query with challenge plaintexts (m(0),m(1)) and vectors
(�x(0), �x(1)) from A, B1 computes the challenge ciphertext (c1, c2) such that,

c1 := ζb0 + x
(b)
1 eβ,1 +

∑n
i=2 x

(b)
i ei + ϕb4n+1, c2 := gζTm

(b),

where ζ, ϕ U← Fq, b
U← {0, 1}, and ({bi}i=0,4n+1, eβ,1, {ei}i=2,...,n) is a part of the Problem

1 instance.

6. When a key query is issued by A after the encryption query, B1 executes the same proce-
dure as that of step 4.

7. A finally outputs bit b′. If b = b′, B1 outputs β′ := 1. Otherwise, B1 outputs β′ := 0.

Claim 1 The distribution of the view of adversary A in the above-mentioned game simulated
by B1 given a Problem 1 instance with β ∈ {0, 1} is the same as that in Game 0’ (resp. Game
1) if β = 0 (resp. β = 1).

Proof. We will consider the distribution of c1.
When β = 0, ciphertext c1 generated in step 5 is

c1 = ζb0 + x
(b)
1 e0,1 +

∑n
i=2 x

(b)
i ei + ϕb4n+1 = ζb0 + ω

∑n
i=1 x

(b)
i bi + γb4n+1 + ϕb4n+1

= ( ζ, ω�x(b), 0n, 0n, 0n, ϕ′)B

where ϕ′ := ϕ+ γ, ζ, ω ∈ Fq are uniformly and independently distributed.
When β = 1, ciphertext c1 generated in step 5 is

c1 = ζb0 + x
(b)
1 e1,1 +

∑n
i=2 x

(b)
i ei + ϕb4n+1

= ζb0 + ω
∑n

i=1 x
(b)
i bi + x

(b)
1 zbn+1 + γb4n+1 + ϕb4n+1

= ( ζ, ω�x(b), x
(b)
1 z�e1, 0n, 0n, ϕ′)B

where ϕ′ := ϕ+ γ, ζ, ω ∈ Fq are uniformly and independently distributed.
Therefore, the above c1 and c2 := gζTm give a challenge ciphertext in Game 0’ when β = 0,

and that in Game 1 when β = 1. ��
From Claim 1,

∣∣∣Adv
(0′)
A (λ)− Adv

(1)
A (λ)

∣∣∣ = ∣∣∣Pr
[
B1(1λ, �)→1

∣∣∣ � R←GP1
0 (1λ, n)

]
−

Pr
[
B1(1λ, �)→1

∣∣∣ � R←GP1
1 (1λ, n)

]∣∣∣ = AdvP1
B1

(λ). This completes the proof of Lemma 6. ��

Proof of Lemma 7

Lemma 7. For any adversary A, |Adv
(2-(h−1)-4)
A (λ)− Adv

(2-h-1)
A (λ)| ≤ 2/q.

Proof.

Case that h = 1, i.e., proof for |Adv
(1)
A (λ)− Adv

(2-1-1)
A (λ)| ≤ 2/q :

In order to prove Lemma 7 in this case, we define an intermediate game, Game 1’, and
will show the equivalence of the distribution of the views of A in Game 1 and that in Game 1’
(Claim 2) and those in Game 2-1-1 and in Game 1’ (Claim 3).

Game 1’ : Game 1’ is the same as Game 1 except that c1 of the challenge ciphertext for
(challenge plaintexts m := m(0) = m(1) and) vectors (�x(0), �x(1)) is:

c1 := ( ζ, ω�x(b), �r , 0n, ϕ )B, (12)

where �r U← F
2n
q \ {�0}, and all the other variables are generated as in Game 1.
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Claim 2 The distribution (paramV, B̂, {k(j)∗}j=1,...,ν , c1, c2) in Game 1 and that in Game 1’ are
equivalent except with probability 1/q.

Proof. We will consider the distribution in Game 1. We define new (dual orthonormal) bases
(D,D∗) of V below. First, we generate F U← GL(2n,Fq), and set

⎛
⎜⎜⎝

dn+1

...

d3n

⎞
⎟⎟⎠ := F−1 ·

⎛
⎜⎜⎝

bn+1

...

b3n

⎞
⎟⎟⎠ ,
⎛
⎜⎜⎝

d∗
n+1
...

d∗
3n

⎞
⎟⎟⎠ := FT ·

⎛
⎜⎜⎝

b∗n+1
...

b∗3n

⎞
⎟⎟⎠ ,

D := (b0, . . . , bn,dn+1, . . . ,d3n, b3n+1, . . . , b4n+1),

D
∗ := (b∗0, . . . , b∗n,d∗

n+1, . . . ,d
∗
3n, b

∗
3n+1, . . . ,d

∗
4n+1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

Then, D and D
∗ are dual orthonormal bases. Challenge ciphertext c1 is expressed as

c1 = ( ζ, ω�x(b),

2n︷ ︸︸ ︷
x

(b)
1 z�e1, 0n, 0n, ϕ)B = ( ζ, ω�x(b),

2n︷︸︸︷
�r , 0n, ϕ)D, (14)

where ζ, ω, z, ϕ U← Fq, and �r := (x(b)
1 z�e1, 0n)·F . Since x(b)

1 �= 0, coefficient vector (x(b)
1 z�e1, 0n) �=

�0 except for probability 1/q. Then, vector �r := (x(b)
1 z�e1, 0n) · F is uniformly distributed in

F
2n
q \ {�0} except for probability 1/q and independent from all the other variables.

Every queried key k∗ in Game 1 is

k∗ = ( 1, σ�v, 0n, 0n, �η, 0)B∗ = ( 1, σ�v, 0n, 0n, �η, 0)D∗ , (15)

where σ U← Fq and �η U← F
n
q .

In the light of the adversary’s view, (D,D∗) is consistent with public key pk := (1λ, paramV, B̂).
Moreover, since the RHS of Eq. (14) and that of Eq. (12) are the same form, the challenge ci-
phertext c1 and c2 := gζTm in Game 1 can be conceptually changed to that in Game 1’ except
with probability 1/q. ��

Claim 3 The distribution (paramV, B̂, {k(j)∗}j=1,...,ν , c1, c2) in Game 2-1-1 and that in Game
1’ are equivalent except with probability 1/q.

Proof. We will consider the distribution in Game 2-1-1. We define new dual orthonormal bases
(D,D∗) of V by Eq. (13). Challenge ciphertext c1 is expressed as

c1 = ( ζ, ω�x(b),

2n︷ ︸︸ ︷
ω′�x(b), ω′′

0�x
(0) + ω′′

1�x
(1), 0n, ϕ)B = ( ζ, ω�x(b),

2n︷︸︸︷
�r , 0n, ϕ)D, (16)

where ζ, ω, ω′, ω′′
0 , ω

′′
1 , ϕ

U← Fq, and �r := (ω′�x(b), ω′′
0�x

(0) +ω′′
0�x

(1)) ·F ∈ F
2n
q Since (ω′�x(b), ω′′

0�x
(0) +

ω′′
0�x

(1)) �= �0 except for negligible probability 1/q, vector �r := (ω′�x(b), ω′′
0�x

(0) + ω′′
0�x

(1)) · F is
uniformly distributed in F

2n
q \ {�0} except for negligible probability 1/q and independent from

all the other variables.
For queried keys k∗, the same as Eq. (15) holds also in Game 2-1-1.
In the light of the adversary’s view, (D,D∗) is consistent with public key pk := (1λ, paramV, B̂).

Moreover, since the RHS of Eq. (16) and that of Eq. (12) are the same form, the challenge ci-
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phertext c1 and c2 := gζTm in Game 2-1-1 can be conceptually changed to that in Game 1’
except with probability 1/q. ��

From Claims 2 and 3, adversary A’s view in Game 1 can be conceptually changed to that
in Game 2-1-1 except with probability 2/q. This completes the proof of Lemma 7 when h = 1.

Case that h ≥ 2, i.e., proof for
∣∣∣Adv

(2-(h−1)-4)
A (λ)− Adv

(2-h-1)
A (λ)

∣∣∣ ≤ 2/q for h ≥ 2 :
To prove Lemma 7 in this case, we define an intermediate game, Game 2-(h − 1)-4’, and

will show the equivalence of the distribution of the views of A in Game 2-(h− 1)-4 and that in
Game 2-(h− 1)-4’ (Claim 4) and those in Game 2-h-1 and in Game 2-(h− 1)-4’ (Claim 5).

Game 2-(h − 1)-4’ : Game 2-(h− 1)-4’ is the same as Game 2-(h− 1)-4 except that c1 of the
challenge ciphertext for (challenge plaintexts m := m(0) = m(1) and) vectors (�x(0), �x(1))
is:

c1 := ( ζ, ω�x(b), �r , ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ )B, (17)

where �r U← F
n
q \ {�0}, and all the other variables are generated as in Game 2-(h− 1)-4.

Claim 4 The distribution (paramV, B̂, {k(j)∗}j=1,...,ν , c1, c2) in Game 2-(h − 1)-4 and that in
Game 2-(h− 1)-4’ are equivalent except with probability 1/q when h ≥ 2.

Proof. We will consider the distribution in Game 2-(h−1)-4. We define new (dual orthonormal)
bases (D,D∗) of V below. First, we generate F U← GL(n,Fq), and set

⎛
⎜⎜⎝

dn+1

...

d2n

⎞
⎟⎟⎠ := F−1 ·

⎛
⎜⎜⎝

bn+1

...

b2n

⎞
⎟⎟⎠ ,
⎛
⎜⎜⎝

d∗
n+1
...

d∗
2n

⎞
⎟⎟⎠ := FT ·

⎛
⎜⎜⎝

b∗n+1
...

b∗2n

⎞
⎟⎟⎠ ,

D := (b0, . . . , bn,dn+1, . . . ,d2n, b2n+1, . . . , b4n+1),

D
∗ := (b∗0, . . . , b∗n,d∗

n+1, . . . ,d
∗
2n, b

∗
2n+1, . . . ,d

∗
4n+1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)

Then, D and D
∗ are dual orthonormal bases. Challenge ciphertext c1 is expressed as

c1 = ( ζ, ω�x(b), ω′
0�x

(0) + ω′
1�x

(1), ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ)B

= ( ζ, ω�x(b), �r, ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ)D, (19)

where ζ, ω, ω′
0, ω

′
1, ω

′′
0 , ω

′′
1 , ϕ

U← Fq, and �r := (ω′
0�x

(0) + ω′
1�x

(1)) · F . Since ω′
0�x

(0) + ω′
1�x

(1) �= �0
except for negligible probability 1/q, vector �r := (ω′

0�x
(0) + ω′

1�x
(1)) · F is uniformly distributed

in F
n
q \ {�0} except for negligible probability 1/q and independent from all the other variables.
When 1 ≤ j ≤ h− 1, the j-th queried key k(j)∗ is

k(j)∗ = ( 1, σ(j)�v(j), 0n, σ′′(j)�v(j), �η(j), 0)B∗ = ( 1, σ(j)�v, 0n, σ′′(j)�v(j), �η(j), 0)D∗ , (20)

where σ(j), σ′′(j) U← Fq and �η(j) U← F
n
q . When h ≤ j ≤ ν, the j-th queried key k(j)∗ is

k(j)∗ = ( 1, σ(j)�v, 0n, 0n, �η(j), 0)B∗ = ( 1, σ(j)�v, 0n, 0n, �η(j), 0)D∗ , (21)

where σ(j) U← Fq and �η(j) U← F
n
q .

In the light of the adversary’s view, (D,D∗) is consistent with public key pk := (1λ, paramV, B̂).
Moreover, since the RHS of Eq. (19) and that of Eq. (17) are the same form, the challenge ci-
phertext c1 and c2 := gζTm in Game 2-(h− 1)-4 can be conceptually changed to that in Game
2-(h− 1)-4’ except with probability 1/q. ��
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Claim 5 The distribution (paramV, B̂, {k(j)∗}j=1,...,ν , c1, c2) in Game 2-h-1 and that in Game
2-(h− 1)-4’ are equivalent except with probability 1/q.

Proof. We will consider the distribution in Game 2-h-1. We define new dual orthonormal bases
(D,D∗) of V by Eq. (18). Challenge ciphertext c1 is expressed as

c1 = ( ζ, ω�x(b), ω′�x(b), ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ)B

= ( ζ, ω�x(b), �r, ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ)D, (22)

where ζ, ω, ω′, ω′′
0 , ω

′′
1 , ϕ

U← Fq, and �r′ := ω′�x(b) · F . Since ω′�x(b) �= �0 except for negligible
probability 1/q, vector �r := ω′�x(b) · F is uniformly distributed in F

n
q \ {�0} except for negligible

probability 1/q and independent from all the other variables.
For queried keys k(j)∗, the same as Eqs. (20) and (21) hold also in Game 2-h-1.
In the light of the adversary’s view, (D̃, D̃∗) is consistent with public key pk := (1λ, paramV, B̂).

Moreover, since the RHS of Eq. (22) and that of Eq. (17) are the same form, the challenge cipher-
text c1 and c2 := gζTm in Game 2-h-1 can be conceptually changed to that in Game 2-(h− 1)-4’
except with probability 1/q. ��

From Claims 4 and 5, when h ≥ 2, adversary A’s view in Game 2-(h− 1)-4 can be concep-
tually changed to that in Game 2-h-1 except with probability 2/q.

This completes the proof of Lemma 7. ��

Proof of Lemma 8

Lemma 8. For any adversary A, there exists a probabilistic machine B2-1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-1)
A (λ) −

Adv
(2-h-2)
A (λ)| ≤ AdvP2

B2-h-1
(λ), where B2-h-1(·) := B2-1(h, ·).

Proof. In order to prove Lemma 8, we construct a probabilistic machine B2-1 against Problem
2 using an adversary A in a security game (Game 2-h-1 or 2-h-2) as a black box as follows:

1. B2-1 is given an integer h and a Problem 2 instance, (paramV, B̂,B
∗, {h∗

β,i, ei}i=1,...,n).

2. B2-1 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B2-1 provides A a public key pk := (1λ, paramV, B̂
′) of Game

2-(h − 1)-4 (and 2-h-1), where B̂
′ := (b0, . . . , bn, b4n+1) is obtained from the Problem 2

instance.

4. When the ι-th key query is issued for vector �v := (v1, . . . , vn), B2-1 answers as follows:

(a) When 1 ≤ ι ≤ h− 1, B2-1 answers keys of the form (8), that is computed using B
∗ of

the Problem 2 instance.

(b) When ι = h, B2-1 calculates k∗ using ({h∗
β,i}i=1,...,n, {b∗i }i=0,3n+1,...,4n) of the Problem

2 instance as follows:

�η := (η1, . . . , ηn)
U← F

n
q , k∗ := b∗0 +

∑n
i=1(vih

∗
β,i + ηib

∗
3n+i).

(c) When ι ≥ h + 1, B2-1 answers normal keys of the form (2), that is computed using
B
∗ of the Problem 2 instance.
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5. When B2-1 receives an encryption query with challenge plaintexts (m(0),m(1)) and vectors
(�x(0), �x(1)) from A, B2-1 computes the challenge ciphertext (c1, c2) such that,

c1 := ζb0 +
∑n

i=1 x
(b)
i ei +

∑n
i=1(ω

′′
0x

(0)
i + ω′′

1x
(1)
i )b2n+i + ϕb4n+1, c2 := gζTm

(b),

where ω′′
0 , ω

′′
1 , ζ, ϕ

U← Fq, b
U← {0, 1}, and ({bi}i=0,2n+1,...,3n,4n+1, {ei}i=1,...,n) is a part of

the Problem 2 instance.

6. When a key query is issued by A after the encryption query, B2-1 executes the same
procedure as that of step 4.

7. A finally outputs bit b′. If b = b′, B2-1 outputs β′ := 1. Otherwise, B2-1 outputs β′ := 0.

Claim 6 The distribution of the view of adversary A in the above-mentioned game simulated
by B2-1 given a Problem 2 instance with β ∈ {0, 1} is the same as that in Game 2-h-1 (resp.
Game 2-h-2) if β = 0 (resp. β = 1).

Proof. We will consider the joint distribution of c1 and k∗.
Ciphertext c1 generated in step 5 is

c1 = ζb0 +
∑n

i=1 x
(b)
i ei +

∑n
i=1(ω

′′
0x

(0)
i + ω′′

1x
(1)
i )b2n+i + ϕb4n+1

= ζb0 +
∑n

i=1 x
(b)
i (ωbi + σbn+i) +

∑n
i=1(ω

′′
0x

(0)
i + ω′′

1x
(1)
i )b2n+i + ϕb4n+1

= ( ζ, ω�x(b), σ�x(b), ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ)B

where ζ, ω, σ, ω′′
0 , ω

′′
1 , ϕ ∈ Fq are uniformly and independently distributed.

When β = 0, secret key k∗ generated in case (b) of step 4 or 6 is

k∗ = b∗0 +
∑n

i=1(vih
∗
0,i + ηib

∗
3n+i) = b∗0 +

∑n
i=1(vi(δb

∗
i + δ0b

∗
3n+i) + ηib

∗
3n+i)

= b∗0 + δ
∑n

i=1 vib
∗
i +
∑n

i=1(viδ0 + ηi)b∗3n+i

= ( 1, δ�v, 0n, 0n, �η′, 0 )B∗

where �η′ := (v1δ0 + η1, . . . , vnδ0 + ηn) ∈ F
n
q Then, δ ∈ Fq and �η′ ∈ F

n
q are uniformly and

independently distributed. Therefore, generated c1 and k∗ have the same joint distribution as
in Game 2-h-1.

When β = 1, secret key k∗ generated in case (b) of step 4 or 6 is

k∗ = b∗0 +
∑n

i=1(vih
∗
1,i + ηib

∗
3n+i) = b∗0 +

∑n
i=1(vi(δb

∗
i + τb∗n+i + δ0b

∗
3n+i) + ηib

∗
3n+i)

= b∗0 + δ
∑n

i=1 vib
∗
i + τ

∑n
i=1 vib

∗
n+i +

∑n
i=1(viδ0 + ηi)b∗3n+i

= ( 1, δ�v, τ�v, 0n, �η′, 0 )B∗

where �η′ := (v1δ0 + η1, . . . , vnδ0 + ηn) ∈ F
n
q Then, δ ∈ Fq and �η′ ∈ F

n
q are uniformly and

independently distributed. Therefore, generated c1 and k∗ have the same joint distribution as
in Game 2-h-2. ��

From Claim 6,
∣∣∣Adv

(2-h-1)
A (λ)− Adv

(2-h-2)
A (λ)

∣∣∣ = ∣∣∣Pr
[
B2-h-1(1λ, �)→1

∣∣∣ � R←GP2
0 (1λ, n)

]
−

Pr
[
B2-h-1(1λ, �)→1

∣∣∣ � R←GP2
1 (1λ, n)

]∣∣∣ = AdvP2
B2-h-1

(λ). This completes the proof of Lemma 8.
��

35



Proof of Lemma 9

Lemma 9. For any adversary A, |Adv
(2-h-2)
A (λ)− Adv

(2-h-3)
A (λ)| ≤ 8/q.

Proof. To prove Lemma 9, we will show distribution (paramV, B̂, {k(j)∗}j=1,...,ν , c1, c2) in Game
2-h-2 and that in Game 2-h-3 are equivalent. For that purpose, we define an intermediate game,
Game 2-h-2’, as

Game 2-h-2’ (h = 1, . . . , ν) : Game 2-h-2’ is the same as Game 2-h-2 except that c1 of the
challenge ciphertext for (challenge plaintexts m := m(0) = m(1) and) vectors (�x(0), �x(1))
and the reply to the h-th key query for �v, k∗, are:

c1 := ( ζ, ω�x(b), �r , ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ )B, k∗ := ( 1, σ�v, �w , 0n, �η, 0 )B∗ ,

where, if �x(0) · �v = �x(1) · �v = 0, then (�r, �w) U← W0 := {(�r, �w) ∈ F
n
q × F

n
q |�r · �w = 0}, and if

�x(0) · �v �= 0 and �x(1) · �v �= 0, then (�r, �w) U← F
n
q × F

n
q \W0, and and all the other variables

are generated as in Game 2-h-2.

Claim 7 The distribution (paramV, B̂, {k(j)∗}j=1,...,ν , c1, c2) in Game 2-h-2 and that in Game
2-h-2’ are equivalent except with probability 4/q.

Proof. We will consider the distribution in Game 2-h-2. We define new dual orthonormal
bases (D,D∗) of V. First, we generate matrix U U← GL(n,Fq), and set⎛

⎜⎜⎝
dn+1

...

d2n

⎞
⎟⎟⎠ := U−1 ·

⎛
⎜⎜⎝

bn+1

...

b2n

⎞
⎟⎟⎠ ,
⎛
⎜⎜⎝

d∗
n+1
...

d∗
2n

⎞
⎟⎟⎠ := UT ·

⎛
⎜⎜⎝

b∗n+1
...

b∗2n

⎞
⎟⎟⎠ ,

D := (b0, . . . , bn,dn+1, . . . ,d2n, b2n+1, . . . , b4n+1),

D
∗ := (b∗0, . . . , b∗n,d∗

n+1, . . . ,d
∗
2n, b

∗
2n+1, . . . ,d

∗
4n+1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)

We then easily verify that D and D
∗ are dual orthonormal, and are distributed the same as the

original bases, B and B
∗.

The h-th queried key and challenge ciphertext (k(h)∗, c1, c2) in Game 2-h-2 are expressed
over bases (B,B∗) and (D,D∗) as

k(h)∗ = ( 1, σ�v, σ′�v, 0n, �η, 0 )B∗ = ( 1, σ�v, σ′�vZ, 0n, �η, 0 )D∗ , (24)
c1 = ( ζ, ω�x(b), ω′�x(b), ω′′

0�x
(0) + ω′′

1�x
(1), 0n, ϕ )B

= ( ζ, ω�x(b), ω′�x(b)U, ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ )D,

c2 = gζTm, (25)

where Z := (U−1)T.
From Lemma 5, if �x(0) · �v �= 0 and �x(1) · �v �= 0, the pair of coefficients (ω′�x(b)U, σ′�vZ) are

uniformly distributed in F
n
q × F

n
q \W0 and independent from all the other variables except for

the case ω′ = 0 or σ′ = 0, i.e., except with probability 2/q.
Also, from Lemma 5, if �x(0) · �v = �x(1) · �v = 0, the pair of coefficients (ω′�x(b)U, σ′�vZ) are

uniformly distributed in W0 and independent from all the other variables except for the case
ω′ = 0 or σ′ = 0, i.e., except with probability 2/q.

In the light of the adversary’s view, both (B,B∗) and (D,D∗) are consistent with public key
pk := (paramV, B̂) and the answered keys {k(j)∗}j �=h. Therefore, by using the above result for
the distribution of (k(h)∗, c1, c2), {k(j)∗}j=1,...,ν and c1 can be expressed as keys and ciphertext
in two ways, in Game 2-h-2 over bases (B,B∗) and in Game 2-h-2’ over bases (D,D∗). Thus,
Game 2-h-2 can be conceptually changed to Game 2-h-2’ except with probability 4/q. ��
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Claim 8 The distribution (paramV, B̂, {k(j)∗}j=1,...,ν , c1, c2) in Game 2-h-3 and that in Game
2-h-2’ are equivalent except with probability 4/q.

Proof. Claim 8 is similarly proven as that of Claim 7.
As in Claim 7, we set new bases (D,D∗) as in Eq. (23). The h-th queried key k(h)∗ in Game

2-h-3 is expressed as in Eq. (24) over bases B
∗ and D

∗, and a part of challenge ciphertext c2 in
Game 2-h-3 is given by Eq. (25). c1 in Game 2-h-3 is expressed over bases B and D as

c1 = ( ζ, ω�x(b), ω′
0�x

(0) + ω′
1�x

(1), ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ )B

= ( ζ, ω�x(b), (ω′
0�x

(0) + ω′
1�x

(1))U, ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ )D.

Using Lemma 5, similar to the proof of Claim 7, we see that {k(j)∗}j=1,...,ν and c1 can be
expressed as keys and ciphertext in two ways, in Game 2-h-3 over bases (B,B∗) and in Game
2-h-2’ over bases (D,D∗). Thus, Game 2-h-3 can be conceptually changed to Game 2-h-2’ except
with probability 4/q. ��

From Claims 7 and 8, we obtain Lemma 9. ��

Proof of Lemma 10

Lemma 10. For any adversary A, there exists a probabilistic machine B2-2, whose running
time is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-3)
A (λ)−

Adv
(2-h-4)
A (λ)| ≤ AdvP3

B2-h-2
(λ), where B2-h-2(·) := B2-2(h, ·).

Proof. In order to prove Lemma 10, we construct a probabilistic machine B2-2 against Problem
3 using an adversary A in a security game (Game 2-h-3 or 2-h-4) as a black box as follows:

1. B2-2 is given an integer h and a Problem 3 instance, (paramV, B̂, B̂
∗, {h∗

β,i, ei}i=1,...,n).

2. B2-2 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B2-2 provides A a public key pk := (1λ, paramV, B̂
′) of Game

2-h-3 (and 2-h-4), where B̂
′ := (b0, . . . , bn, b4n+1) is obtained from the Problem 3 instance.

4. When the ι-th key query is issued for vector �v := (v1, . . . , vn), B2-2 answers as follows:

(a) When 1 ≤ ι ≤ h− 1, B2-2 answers keys of the form (8), that is computed using B̂
∗ of

the Problem 3 instance.

(b) When ι = h, B2-2 calculates k∗ using ({h∗
β,i}i=1,...,n, {b∗i }i=0,...,n,3n+1,...,4n) of the

Problem 3 instance as follows:

σ
U← Fq, �η := (η1, . . . , ηn)

U← F
n
q , k∗ := b∗0 +

∑n
i=1(σvib

∗
i + vih

∗
β,i + ηib

∗
3n+i).

(c) When ι ≥ h + 1, B2-2 answers normal keys of the form (2), that is computed using
B̂
∗ of the Problem 3 instance.

5. When B2-2 receives an encryption query with challenge plaintexts (m(0),m(1)) and vectors
(�x(0), �x(1)) from A, B2-2 computes the challenge ciphertext (c1, c2) such that,

c1 := ζb0 + ω
∑n

i=1 x
(b)
i bi +

∑n
i=1(x

(0)
i ei + x

(1)
i fi) + ϕb4n+1, c2 := gζTm

(b),

where ω, ζ, ϕ
U← Fq, b

U← {0, 1}, and ({bi}i=0,...,n,4n+1, {ei,fi}i=1,...,n) is a part of the
Problem 3 instance.
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6. When a key query is issued by A after the encryption query, B2-2 executes the same
procedure as that of step 4.

7. A finally outputs bit b′. If b = b′, B2-2 outputs β′ := 1. Otherwise, B2-2 outputs β′ := 0.

Claim 9 The distribution of the view of adversary A in the above-mentioned game simulated
by B2-2 given a Problem 3 instance with β ∈ {0, 1} is the same as that in Game 2-h-3 (resp.
Game 2-h-4) if β = 0 (resp. β = 1).

Proof. We consider the joint distribution of c1 and k∗.
Ciphertext c1 generated in step 5 is

c1 = ζb0 + ω
∑n

i=1 x
(b)
i bi +

∑n
i=1(x

(0)
i ei + x

(1)
i fi) + ϕb4n+1

= ζb0 + ω
∑n

i=1 x
(b)
i bi +

∑n
i=1

(
x

(0)
i (ω′bn+i+ω′′b2n+i) + x

(1)
i (κ′bn+i+κ′′b2n+i)

)
+ ϕb4n+1

= ( ζ, ω�x(b), ω′�x(0) + κ′�x(1), ω′′�x(0) + κ′′�x(1), 0n, ϕ)B

where ζ, ω, ω′, ω′′, κ′, κ′′, ϕ ∈ Fq are uniformly and independently distributed.
When β = 0, secret key k∗ generated in case (b) of step 4 or 6 is

k∗ = b∗0 +
∑n

i=1(σvib
∗
i + vih

∗
0,i + ηib

∗
3n+i)

= b∗0 +
∑n

i=1

(
σvib

∗
i + vi(τb∗n+i + δ0b

∗
3n+i) + ηib

∗
3n+i

)
= b∗0 + σ

∑n
i=1 vib

∗
i + τ

∑n
i=1 vib

∗
n+i +

∑n
i=1(viδ0 + ηi)b∗3n+i

= ( 1, σ�v, τ�v, 0n, �η′, 0 )B∗

where �η′ := (v1δ0 + η1, . . . , vnδ0 + ηn) ∈ F
n
q Then, σ, τ ∈ Fq and �η′ ∈ F

n
q are uniformly and

independently distributed. Therefore, generated c1 and k∗ have the same joint distribution as
in Game 2-h-3.

When β = 1, secret key k∗ generated in case (b) of step 4 or 6 is

k∗ = b∗0 +
∑n

i=1(σvib
∗
i + vih

∗
1,i + ηib

∗
3n+i)

= b∗0 +
∑n

i=1

(
σvib

∗
i + vi(τb∗2n+i + δ0b

∗
3n+i) + ηib

∗
3n+i

)
= b∗0 + σ

∑n
i=1 vib

∗
i + τ

∑n
i=1 vib

∗
2n+i +

∑n
i=1(viδ0 + ηi)b∗3n+i

= ( 1, σ�v, 0n, τ�v, �η′, 0 )B∗

where �η′ := (v1δ0 + η1, . . . , vnδ0 + ηn) ∈ F
n
q Then, σ, τ ∈ Fq and �η′ ∈ F

n
q are uniformly and

independently distributed. Therefore, generated c1 and k∗ have the same joint distribution as
in Game 2-h-4. ��

From Claim 9,
∣∣∣Adv

(2-h-3)
A (λ)− Adv

(2-h-4)
A (λ)

∣∣∣ = ∣∣∣Pr
[
B2-h-2(1λ, �)→1

∣∣∣ � R←GP3
0 (1λ, n)

]
−

Pr
[
B2-h-2(1λ, �)→1

∣∣∣ � R←GP3
1 (1λ, n)

]∣∣∣ = AdvP3
B2-h-2

(λ). This completes the proof of Lemma 10.
��

Proof of Lemma 11

Lemma 11. For any adversary A, |Adv
(2-ν-4)
A (λ)− Adv

(3)
A (λ)| ≤ 1/q.

Proof. To prove Lemma 11, we will show distribution (paramV, B̂, {k(j)∗}j=1,...,ν , c1, c2) in Game
2-ν-4 and that in Game 3 are equivalent. For that purpose, we define new dual orthonormal
bases (D,D∗) of V as follows:
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We generate θ U← Fq, and set

d2n+i := b2n+i − θbi, d∗
i := b∗i + θb∗2n+i for i = 1, . . . , n,

D := (b0, . . . , b2n,d2n+1, . . . ,d3n, b3n+1, . . . , b4n+1),
D
∗ := (b∗0, . . . , b

∗
n,d

∗
n+1, . . . ,d

∗
2n, b

∗
2n+1, . . . , b

∗
4n+1).

We then easily verify that D and D
∗ are dual orthonormal, and are distributed the same as the

original bases, B and B
∗.

Keys and challenge ciphertext ({k(h)∗}h=1,...,ν , c1, c2) in Game 2-ν-4 are expressed over bases
(B,B∗) and (D,D∗) as

k(h)∗ := ( 1, σ(h)�v(h), 0n, σ(h)′′�v(h), �η(h), 0 )B∗

= ( 1, σ(h)�v(h), 0n, σ(h)′′�v(h) − θσ(h)�v(h), �η(h), 0 )D∗

= ( 1, σ(h)�v(h), 0n, ξ(h)�v(h), �η(h), 0 )D∗ ,

c1 := ( ζ, ω�x(b), ω′
0�x

(0) + ω′
1�x

(1), ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ )B

= ( ζ, ω�x(b) + θ(ω′′
0�x

(0) + ω′′
1�x

(1)), ω′
0�x

(0) + ω′
1�x

(1), ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ )D,

= ( ζ, ω0�x
(0) + ω1�x

(1), ω′
0�x

(0) + ω′
1�x

(1), ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ )D,

c2 := gζTm,

where ωb := ω+θω′′
b , ω1−b := θω′′

1−b and ξ(h) := σ(h)′′−θσ(h) ∈ Fq are uniformly, independently

(from other variables) distributed since ω, θ, σ(h)′′ U← Fq, except for the case ω′′
1−b = 0, i.e.,

except with probability 1/q.
In the light of the adversary’s view, both (B,B∗) and (D,D∗) are consistent with public key

pk := (1λ, paramV, B̂). Therefore, {k(h)∗}h=1,...,ν and c1 above can be expressed as keys and
ciphertext in two ways, in Game 2-ν-4 over bases (B,B∗) and in Game 3 over bases (D,D∗).
Thus, Game 2-ν-4 can be conceptually changed to Game 3. ��
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