eprint.iacr.org will be offline for approximately an hour for routine maintenance at 11pm UTC on Tuesday, April 16. We lost some data between April 12 and April 14, and some authors have been notified that they need to resubmit their papers.
You are looking at a specific version 20130401:203113 of this paper. See the latest version.

Paper 2011/534

Formal Analysis of the Entropy / Security Trade-off in First-Order Masking Countermeasures against Side-Channel Attacks

Maxime Nassar and Sylvain Guilley and Jean-Luc Danger

Abstract

Several types of countermeasures against side-channel attacks are known. The one called masking is of great interest since it can be applied to any protocol and/or algorithm, without nonetheless requiring special care at the implementation level. Masking countermeasures are usually studied with the maximal possible entropy for the masks. However, in practice, this requirement can be viewed as too costly. It is thus relevant to study how the security evolves when the number of mask values decreases. In this article, we study a first-order masking scheme, that makes use of one $n$-bit mask taking values in a strict subset of $\mathbb{F}_2^n$. For a given entropy budget, we show that the security does depend on the choice of the mask values. More specifically, we explore the space of mask sets that resist first and second-order correlation analysis (CPA and 2O-CPA), using exhaustive search for word size $n \leqslant 5$~bit and a SAT-solver for $n$ up to $8$~bit. We notably show that it is possible to protect algorithms against both CPA and 2O-CPA such as AES with only $12$ mask values. If the general trend is that more entropy means less leakage, some particular mask subsets can leak less (or on the contrary leak remarkably more). Additionally, we exhibit such mask subsets that allows a minimal leakage.

Note: This version has been made more pedagogical. 1) It is explained why the masks domain is public. 2) We rephrase why in the context of side-channel analysis by moments the mask variable can be "depleted". 3) The expression of the Boolean function search in SAT is better explained.

Metadata
Available format(s)
PDF
Category
Implementation
Publication info
Published elsewhere. Extended version of a paper that will appear at INDOCRYPT'2011
Contact author(s)
sylvain guilley @ TELECOM-ParisTech fr
History
2013-04-01: last of 2 revisions
2011-10-01: received
See all versions
Short URL
https://ia.cr/2011/534
License
Creative Commons Attribution
CC BY
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.