
ANOTHER LOOK AT AUTOMATED

THEOREM–PROVING. II

NEAL KOBLITZ

Abstract. I continue the discussion initiated in [22] of whether or not
computer-assisted proofs are a promising approach to preventing er-
rors in reductionist security arguments. I examine some recent papers
that describe automated security proofs for hashed ElGamal encryption,
Boneh-Franklin identity-based encryption, and OAEP.

Keywords: Automated theorem–proving, computer-assisted proof, proof
checking, public key cryptography, encryption.

AMS classification: 03B35, 68T15, 94A60, 11T71

1. Introduction

The notion of a carefully constructed logical proof of a theorem, which
goes back to the ancient Greeks, has been a central paradigm in theoretical
mathematics, and more recently in certain branches of applied mathematics
as well. In general terms there is broad agreement about what a proof
is — an airtight, convincing argument that a certain assertion must be
true. However, there has sometimes been controversy about what constitutes
a proof. For example, the proof of the Four Color Conjecture in 1976,
which used a computer to run through a large number of cases, left many
mathematicians deeply troubled. Another example can be found in algebraic
geometry, where for many years proofs often cited results whose own proofs
could not be found in the published literature but had only been presented in
outline form in lectures; this also left some mathematicians uneasy. There
is a certain social component in the notion of proof: what constitutes a
satisfactory proof might vary from one research community to another. As
Yu. I. Manin observed, “a proof only becomes a proof after the social act of
‘accepting it as a proof’” ([25], p. 48).

The two most important characteristics of a satisfactory proof of a the-
orem are correctness and clarity. That is, it must (1) be free of gaps or
errors, and (2) be understandable to anyone with the necessary technical
prerequisites. The main tool for ensuring the first property is peer review
— first by the journal’s referees and later by the readers of the paper. The
process is not perfect. In particular, how much peer review a proof gets
depends on how important the result is, and errors are much more likely to
go undetected in proofs of minor results than in proofs of major ones.

1

2 NEAL KOBLITZ

The second property is more subjective, but no less important than
the first one — in part because how much careful peer review a proof
is likely to get depends on how much time and effort is required to get
through it. A well-written proof is highly valued in mathematics; in his
well-regarded guidelines for mathematical writing [23], Steven Krantz de-
votes several pages to advice for organizing a proof so that it is as readable
as possible. A proof of an important result that is particularly elegant and
well-organized — where the central ideas and logical progression are crystal
clear — is sometimes said to be a proof from “The Book,” which was Paul
Erdös’ term for an imaginary repository of all of the most beautiful proofs
of mathematics.

Several leaders of the cryptographic research community have acknowl-
edged that proofs in cryptography often fall far short of the above objectives.
According to Bellare and Rogaway [8],

In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a crisis
of rigor.

They say that this crisis “has at its core a significant social element,” and
Halevi [18] also says that

Some of the reasons for this problem are social (e.g., we
mostly publish in conferences rather than journals).

It is Halevi in [18] who is credited with articulating a response to this prob-
lem that is based on computer-aided construction and checking of proofs.

The purpose of the present article is to continue the discussion initiated
in [22] of whether or not this program has contributed to resolving the crisis
of rigor in cryptography. I examine some recent state-of-the-art papers on
computer-assisted proofs in cryptography, starting with [2], which won the
Best Paper Award at Crypto 2011.

I first examine the security proof for hashed ElGamal encryption in [2],
and then discuss more briefly the treatment of Boneh-Franklin identity-
based encryption in [4]. Next I comment on the automated theorem–proving
approach to OAEP in [3] and consider whether computer-assisted proof tech-
niques are likely to help prevent fallacies in proofs. In the conclusion I
suggest a methodology for determining whether or not computer-aided re-
ductionist security arguments are likely to help prevent errors in proofs.

2. Hashed ElGamal Encryption

Let G be a cyclic group (written multiplicatively) of order equal to a k-bit
prime q, and let g be a generator. Suppose that plaintexts are bitstrings
of length n, and let H : G → {0, 1}n be a hash function. Hashed ElGamal
encryption is defined as follows. In key generation Alice selects a random
integer x mod q as her secret key and computes α = gx as her public key.
Given the public key α and a messagem, Bob encrypts by choosing a random
integer y mod q (which is chosen fresh for each m) and computing β = gy,

ANOTHER LOOK AT AUTOMATED THEOREM–PROVING. II 3

h = H(αy) and ζ = h⊕m; he sends (β, ζ) to Alice. She decrypts by finding
h = H(βx) and then m = ζ ⊕ h.

The security of this scheme is assured provided that the Computational
Diffie–Hellman problem (CDH) is intractable in the underlying family of
groups G. In other words, one assumes that for uniformly random elements
x and y mod q it is hard to compute gxy given gx and gy.

We now give the proof that this encryption scheme is semantically secure
in the random oracle model if the CDH is intractable. This means that
from the ciphertext it is impossible to determine any information about the
plaintext, unless one can solve the CDH. A version of semantic security
that is sometimes convenient for proofs is IND-CPA (“indistinguishability
under chosen-plaintext attack”). This means that if the attacker chooses
two plaintexts m0 and m1 and gets to see the encryption of one of the
two (chosen at random), then she cannot determine which of the two was
encrypted with more than 1

2 + ǫ probability of being right.
The “random oracle model” [6] means that the hash functionH is modeled

as a random function whose output is obtained not from an algorithm but
from an “oracle” that chooses a random string of n bits every time it is
queried for H(γ) for a group element γ. The oracle keeps a record of all
previous queries, and if H(γ) is queried a second time, it must give the same
value.

Theorem 1. Hashed ElGamal encryption is semantically secure in the IND-

CPA sense in the random oracle model if the CDH is intractable.

2.1. Mathematical proof. The random oracle assumption on H means
that nothing can be determined about its output unless the exact value of
its input is known. The attacker knows gx (which is Alice’s public key) and
gy (which is part of the ciphertext), but by assumption she cannot compute
gxy. Since h = H(gxy), this means that the attacker does not know the
input to the hash function. Thus, to the attacker h is a random bitstring
about which she has no information, and so the encryption ζ = h ⊕m is a
one-time pad, which, as Claude Shannon proved in the 1940s, has perfect
security. QED

Remark 1. In my view, this proof has an appealing elegance and simplicity
that make it worthy of respect. There are, however, some mathematicians
who would disagree and would disparage it as nothing but a “trivial tautol-
ogy.” This type of stigmatization of a nice result is unfair, and I agree with
Jonathan Katz that we should protest vehemently, vigorously, and vocifer-
ously against the tendency of some mathematicians to look upon those of
us who work in cryptography with elitist and snobbish condescension (see
[21]).

2.2. Crypto proof (early style). In cryptography the preferred style of
proof is by a reductionist argument. This means that we assume that there is
an adversary Cynthia who has an algorithm to distinguish (with probability

4 NEAL KOBLITZ

more than 1
2 + ǫ) whether (β, ζ) is the encryption of m0 or m1. We must

show how Sam the Solver could use Cynthia’s algorithm to solve the CDH.
But in order for the reduction to work, we need to replace the CDH

by a closely related problem called the List Computational Diffie-Hellman
problem (LCDH). That is the problem, given gx and gy, of producing a
polynomial-size list L of elements of G that includes gxy.1

Thus, given gx and gy, Sam wants to interact with Cynthia (or rather,
with her algorithm) in such a way as to produce a list L ∋ gxy. Sam gives
Cynthia the key α = gx and waits for her to give him two test messages m0

andm1. He chooses b ∈ {0, 1} at random, sets β = gy, and chooses a random
n-bit string h as H(gxy). He then sets γ = h ⊕ mb and gives Cynthia’s
algorithm the ciphertext (β, γ). Whenever Cynthia’s algorithm queries a
hash value H(δ), Sam responds with a random n-bit number, except that
he keeps a record, called the H-List, of all queried pairs (δ,H(δ)), and if the
same δ is queried a second time, Sam gives the same value H(δ). Sam’s list
L is simply the set of δ.

If Cynthia is to have a better than 50-50 chance of guessing which message
mb was encrypted, at some point she must query the hash of δ = gxy. Since
in general Sam has no way to recognize that δ is the answer to the CDH and
so needs to be assigned the same hash value h as before, he’ll pick a random
h′, almost certainly not equal to h, as H(δ). Since this is a violation of the
rules, there is no telling how Cynthia’s algorithm might act starting from
that moment. But it makes no difference, since Sam already has a list that
includes gxy. QED

2.3. Crypto proof (late style). Over the past decade or two the style
of proof-writing in cryptography has changed. Partly in response to the
“practice-oriented” paradigm introduced in [5], it is now considered desir-
able to give detailed estimates of both running times and probabilities. Thus,
a reductionist proof might establish a result of the form, “If the protocol
A succumbs to an attack of type B in time ≤ t(k) with probability ≥ ǫ(k),
then the mathematical problem C can be solved in time ≤ t′(k) with prob-
ability ≥ ǫ′(k), where k is the security parameter.” Both t′(k) and ǫ′(k) are
typically functions not only of k, t and ǫ, but also of bounds on the number
of hash queries and decryption or signature queries, and other parameters of
the protocol. Along with the growing complexity of provable security state-
ments, there has been a concomitant introduction of new notation, such
as Pr (for probability), Adv (for advantage), Succ (for success probabil-
ity), etc.; each of these may carry subscripts and superscripts that indicate
parameters, problem names, security definitions, algorithms, or “games.”

1Note that an adversary who solves LCDH has broken IND-CPA, since she can compute
a list of possible messages H(γ) ⊕ ζ for γ ∈ L, one of which is the test-message mb,
b ∈ {0, 1}.

ANOTHER LOOK AT AUTOMATED THEOREM–PROVING. II 5

























Game G2 :
x←$ Zq; α← gx;
y ←$ Zq; ŷ ← αy;
(m0,m1)← A1(α);

b←$ {0, 1};
h←$ {0, 1}

k ;
b′ ← A2(g

y, h⊕mb);
return (b = b′)

























−→

























Game G3 :
x←$ Zq; α← gx;
y ←$ Zq; ŷ ← αy;
(m0,m1)← A1(α);

γ ←$ {0, 1}
k ;

b′ ← A2(g
y, γ);

b←$ {0, 1};
return (b = b′)

























|= G2 ∼ G3 : true =⇒=(res,ŷ,LA)

Pr[G2 : b = b′] Pr[G2 : ŷ ∈ LA] = Pr[G3 : ŷ ∈ LA]

= Pr[G3 : b = b′] = 1/2

Figure 1. Part of the proof sketch for hashed ElGamal encryption.

Lately many reductionist security proofs are written in a style called
“game-hopping” (see [8, 9, 28, 33]). Here the reductionist argument is bro-
ken down into a series of small transitions from one sequence of interactions
with the adversary to a slightly different sequence. At each stage the error
or discrepancy between the two “games” is measured. This provides a run-
ning total that can be used to express t′ and ǫ′ in terms of t, ǫ, and various
parameters.

In §2 of [2] the authors give a “proof sketch” of hashed ElGamal security
that consists of five games: Game IND-CPA (the game corresponding to
indistinguishability under chosen-plaintext attack), Games G1, G2, and G3,
and the Game LCDH (the game corresponding to solving the LCDH prob-
lem). For example, Fig. 1 shows the transition from G2 to G3 (in Fig. 1 Zq

denotes the integers mod q, ←$ means “chosen uniformly at random from,”
and Ai denotes actions by the adversary).

The “proof sketch” consists of four such transitions, going from Game
IND-CPA to G1 to G2 to G3 to Game LCDH, occupying a full page of small
type in [2]. Despite its formidable appearance, the authors point out that,
compared to an earlier version [1] the same authors prepared for a different
programming language called CertiCrypt,

The resulting proof sketch is about 250 lines long, about 5
times shorter than the proof in CertiCrypt... and arguably
much simpler and close to a pen-and-paper proof.

Presumably it is because of its brevity compared to CertiCrypt that they
chose the name “EasyCrypt” for the programming language used in [2].

6 NEAL KOBLITZ

2.4. Automated proof. Notice that the 250 lines of reduction steps are
only the proof “sketch”; it is merely the input to EasyCrypt, which produces
the actual proof.

Remark 2. The process of transforming a proof sketch into a format that
EasyCrypt understands has to be done manually and could be error-prone.
For instance, a step that is actually invalid might be inadvertently replaced
by a step that’s trivially valid, in which case EasyCrypt would presumably
generate an apparently valid proof, and it’s not clear that the fallacy would
ever be detected.

After a human has already laboriously constructed the 250 lines of input
for EasyCrypt from the proof sketch for hashed ElGamal, one might wonder
what is left for the computer to do. It turns out that the computer does a
lot — generating several thousand lines of code for the purpose of

Generating Verifiable Evidence. EasyCrypt implements a
compiler that turns proof sketches into Coq files that are
compatible with the CertiCrypt framework and can be ver-
ified using the type checker of Coq. The compiler... sig-
nificantly increases confidence in proof sketches by produc-
ing independently verifiable proofs, and providing means of
checking the consistency of the set of axioms used in a proof
sketch. (§3 of [2])

The expansion of the original proof from a paragraph or two to several
thousand lines of computer output is remarkable. Can one find anything
similar in the history of mathematical proofs? There is one striking analogy
that comes to mind. Early in the 20th century, Russell and Whitehead wrote
Principia Mathematica, a three-volume compendium of formal logical argu-
ments that spelled out in minute detail the foundations of arithmetic and
elementary mathematics. A true tour de force — and somewhat influential
in its time, because of the philosophical debates going on between different
schools of thought on the foundations of mathematics — it is now of only
antiquarian interest, gathering dust deep in the recesses of university math
libraries. Figure 2 shows the proof of a proposition late in the first volume
that establishes that 1 + 1 = 2.

Extremely long computer-aided reductionist security arguments would
not be meaningless exercises if there were evidence that they are likely to
prevent the types of errors in proofs that have caused great embarrassment
to the cryptographic research community. But this is doubtful. I’ll return
to this question in §5.

Remark 3. In §4.2 of [1] the authors refer to the List CDH assumption as a
“slightly different formulation that is equivalent in an asymptotic setting” to
CDH. Let us put aside the question of what an “asymptotic setting” means,
and look at their explanation of the equivalence:

ANOTHER LOOK AT AUTOMATED THEOREM–PROVING. II 7

∗54·43. ⊢ : . α, β ∈ 1. ⊃ : α ∩ β = ∧. ≡ . α ∪ β ∈ 2

Dem.

⊢ . ∗ 54·26. ⊃ ⊢ : . α = ι‘x . β = ι‘y . ⊃ : α ∪ β ∈ 2. ≡ . x 6= y .

[∗51·231] ≡ . ι‘x ∩ ι‘y = ∧.

[∗13·12] ≡ . α ∩ β = ∧ (1)

⊢ . (1) . ∗ 11·11·35 . ⊃

⊢ : . (∃x, y) . α = ι‘x . β = ι‘y . ⊃ : α ∪ β ∈ 2 . ≡ . α ∩ β = ∧ (2)

⊢ . (2) . ∗ 11·54 . ∗ 52·1 . ⊃ ⊢ .Prop

From this proposition it will follow, when arithmetical addition has been

defined, that 1 + 1 = 2.

Figure 2. A proposition from page 362 of Principia Mathematica.

To see this, note that an adversary against List CDH with a
non-negligible advantage can be converted into an adversary
against CDH by returning a random element in the result
list L; since L is necessarily of polynomial size, the... CDH
advantage of the resulting adversary is still non-negligible.

In other words, if PrLCDH(k) is the adversary’s probability of success in
solving the LCDH (as a function of the security parameter k), and if qH(k)
is the size of L (here qH , which is a bound on the number of hash function
queries, is polynomially bounded in k), then the adversary’s probability of
success in solving CDH is

PrCDH(k) ≥
1

qH(k)
PrLCDH(k).

However, qH can be quite large — it can be of the order of the adversary’s
running time. This means that the connection established in [2] between
the security of hashed ElGamal and the CDH is extremely non-tight.

Some theoreticians would say that the math proof given in §2.1 is too
intuitive and informal, and its only value is as heuristics. However, because
the automated proof in [2] is non-tight, one can argue that its value is
also merely heuristic. Because of security problems that have arisen with
non-tight reductions, many researchers are coming around to the view that
non-tight reductionist proofs should be regarded as only heuristic, unless the
security parameters are increased to account for the non-tightness (which,
because of the resulting loss of efficiency, is almost never done). See, for
example, the conclusion of [12]. Thus, one can question whether from the

8 NEAL KOBLITZ

standpoint of rigor the automated proof has any advantage over the very
short math proof.

In the case of hashed ElGamal, fortunately it is possible to obtain a much
tighter reduction than the one in [2] that links its security to CDH. Namely,
in §5 of [31] Shoup proves that LCDH and CDH are tightly equivalent. His
method is as follows. Run your LCDH-solver twice, once with the CDH input
(g, gx, gy) and once with shifted input (g, (gx)agb, gy) for randomly chosen a
and b. Let L = {li} be the list produced the first time and L = {l′i} be the
list produced with the altered input. Compare the two lists, looking for li
and l′j such that lai (g

y)b = l′j . When you find a match, you can be almost
certain that the corresponding li is the answer to CDH.

Shoup’s technique is clever, and in fact is the most nontrivial step in the
security reduction from CDH to breaking hashed ElGamal. Because the
automated techniques in [2] are apparently limited to generating proofs for
trivial steps, they give only a much weaker result.

Remark 4. The paper [2] gives a second example of EasyCrypt computer-
aided theorem–proving — the security of Cramer-Shoup encryption [13]
against chosen-ciphertext attack. This part of the paper closely follows
Halevi’s proof of the same result in [18], and the comments I made in [22]
apply equally to the EasyCrypt version. In particular, when discussing the
security argument for the Cramer-Shoup cryptosystem one should not lose
sight of the central point in the original proof — the fact that a certain bad
outcome is equivalent to a codimension-1 condition in the parameter space.
This is the step that is likely to require the most thought on the part of a
careful reader in order to become convinced of its validity. In the automated
proofs in [18] and [2] this step is accomplished by fiat; there is no attempt
to construct an automated check of the validity of the most important part
of the proof.

* * *

At Crypto 2011 the Program Chair, Phil Rogaway, explained that the
paper [2] was chosen for the Best Paper Award “overwhelmingly” by the
Program Committee, which “praised the work for its broad appeal...and its
potential impact.” And, indeed, the treatment of hashed ElGamal encryp-
tion in [2] is in some sense a remarkable achievement. Usually one has to
leave the sciences entirely if one wishes to find works of scholarship — for
example, Michel Foucault’s turgid 760-page three-volume philosophical trea-
tise on sex [14] — that have been so successful in turning something that
should be interesting and accessible to everyone into something lengthy, un-
readable, and boring.

3. Identity-Based Encryption

The title and abstract of [4] promise an automatically-verifiable security
proof for the Boneh-Franklin identity-based encryption scheme in [11]. The

ANOTHER LOOK AT AUTOMATED THEOREM–PROVING. II 9

protocol that is treated is not, however, the full scheme but rather a sim-
plified version called BasicIdent, which works as follows. Let G1 and G2 be
cyclic groups of prime order q (written additively) equipped with a bilinear
pairing ê : G1 ×G1 → G2, and let H1 : {0, 1}

∗ → G1 and H2 : G2 → {0, 1}
n be

two hash functions (where n is the message length). In the initial setup, a
trusted third party generates a master key pair. The master secret key is
a randomly chosen integer a mod q, and the master public key is the pair
(P,Ppub), where P is a randomly chosen element of G1 and Ppub = aP .

Let id be Alice’s public identity, and set Qid = H1(id) ∈ G1. Using a
secure channel, the trusted third party sends Alice her secret key S = aQid .
To encrypt a message m for Alice, Bob computes Qid and chooses a random
integer c mod q. He then computes cP and h = H2(ê(Qid , Ppub)

c); his
ciphertext is the pair (cP, h ⊕ m). To decrypt a ciphertext (Q,u) Alice
simply computes u⊕H2(ê(S,Q)). To see why this works, let Qid = bP for
some (unknown) b mod q. Then by the bilinearity of ê, both ê(Qid , Ppub)

c

and ê(S,Q) are equal to ê(P,P)abc.
The IND-CPA security of BasicIdent reduces to intractability of the fol-

lowing Bilinear Diffie-Hellman problem (BDH): given a quadruple of uni-
formly chosen elements (P, aP, bP, cP) ∈ G41 , find ê(P,P)abc. The BDH,
which was stated for the first time in [11], fits in very well with BasicIdent,
in the sense that the security argument (under the random oracle assump-
tion for H1 and H2) is immediate. Namely, the information available to
the adversary Cynthia is the uniformly chosen quadruple (P,Ppub , Qid , cP).

If Cynthia is unable to find ê(P,P)abc, then she has no information about
the hash function’s output h, which is then nothing but a random bitstring.
This means that to Cynthia the encryption h ⊕m is a one-time pad, as in
§2.1.

The entire treatment of Boneh-Franklin encryption in [4] amounts to
verifying the above argument by the automated system CertiCrypt. The
game-hopping proof consists of transitions involving nine games GIND-CPA,
G1, . . . , G7, GBDH (actually, twelve games if you count G3′ , G6′ and G7′).
The hops from game to game occupy roughly three densely-packed pages of
[4] that can be read with the help of a magnifying glass.

As explained in the introduction to [4], in order to prove that their
identity-based encryption scheme is secure against chosen-ciphertext attack
in the random oracle model, Boneh and Franklin constructed BasicIdent:

The proof proceeds in two stages: first, an identity-based
scheme BasicIdent is introduced and proved secure against
chosen-plaintext attacks; second the BasicIdent scheme is
transformed into a scheme that is secure against chosen-
ciphertext attack by applying a variant of the Fujisaki-Oka-
moto transformation [15]. A flaw in the second part of the
proof was discovered and fixed by Galindo [17]. Although,
fortunately, in this case the fix did not require to modify

10 NEAL KOBLITZ

the scheme or the underlying assumption, this shows that
some degree of wariness is needed when evaluating provable
security arguments.

From this passage and from the title and abstract the reader might get the
impression that proof-checking software has been used for the whole security
proof. However, this is not the case. The only part that is verified in [4] is
the easy, tautological first stage; the second part, which is where the error
and fix occurred, are outside the scope of the paper.

Remark 5. As in the case of hashed ElGamal, the automated proof linking
BDH to the IND-CPA security of BasicIdent is very non-tight, because of
the need to reduce BDH to List BDH. Once again Shoup’s methods for
CDH in [31] will also work for BDH and give a tight reduction. However,
because Shoup’s argument seems to be outside the reach of the automated
techniques in [4], that paper, like [2], has to settle for a weaker result — a
result which is arguably of only heuristic value.

4. OAEP

In this section and the next I discuss some questions about the computer-
aided security proof in [3] for the Optimal Asymmetric Encryption Padding
(OAEP) of Bellare and Rogaway [7].

The OAEP encryption scheme works as follows. Suppose that f is a trap-
door permutation on {0, 1}k corresponding to a public-key/secret-key pair
(pk, sk). For example, in RSA-OAEP the functions f and f−1 correspond-
ing to pk = (N, e) and sk = d, where N ≈ 2k, are given by f(x) = xe mod
N and f−1(y) = xd mod N . Using f , Bob sends a plaintext m of n bits with
k1 zero-bits and k0 random bits appended, where k = n + k1 + k0. Before
applying f he puts the k-bit string through two Feistel rounds as follows.
Let

G : {0, 1}k0 −→ {0, 1}n+k1 , H : {0, 1}n+k1 −→ {0, 1}k0

be two hash functions. Bob applies the hash-function G to his random
r ∈ {0, 1}k0 and sets s = m0⊕G(r), where m0 is m with k1 zeros appended,
and then t = r ⊕ H(s). He sets x = s ‖ t, and, using the public key, he
computes the ciphertext c = f(x). The construction is shown in Fig. 3. To
decrypt c, Alice uses her secret key to compute f−1(c) = s ‖ t, then finds
r = t ⊕H(s) and m ‖ 0k1 = s ⊕G(r). (If the k1 zero-bits aren’t there, she
rejects the message as invalid ciphertext.)

The introduction to [3] summarizes the history of work on OAEP as
follows:

OAEP is widely deployed... Yet, the history of OAEP se-
curity is fraught with difficulties. The original 1994 paper
of Bellare and Rogaway [7] proves that, under the hypothe-
sis that the underlying trapdoor permutation family is one-
way, OAEP is semantically secure under chosen-ciphertext

ANOTHER LOOK AT AUTOMATED THEOREM–PROVING. II 11

rm 0

k0k1n

tsx

s = m0 ⊕G(r)

t=r ⊕H(s)

Figure 3. OAEP encryption.

attacks. Shoup [32] subsequently discovered in 2000 that
this proof only established the security of OAEP against
non-adaptive chosen-ciphertext attacks, and not (as was be-
lieved at that time) against the stronger version of IND-CCA
that allows the adversary to adaptively obtain the decryp-
tion of ciphertexts of its choice. Shoup suggested a modified
scheme... Simultaneously, Fujisaki, Okamoto, Pointcheval
and Stern [16] proved that OAEP in its original formulation
is indeed secure against adaptive attacks, but under the as-
sumption that the underlying permutation family is partial-
domain one-way.... In 2004, Pointcheval [29] gave a different
proof of the same result; this new proof fills several gaps in
the reduction of [16], which results in a weaker bound than
originally stated.

I won’t go through a conceptual, mathematical proof (that could be stig-
matized as too “informal” or “heuristic”) or an early-style crypto proof of
the IND-CCA security of OAEP under the partial-domain one-way assump-
tion. Suffice it to say that such proofs would be quite short.2 In dramatic
contrast, the verifiable proof in [3] consists of “over 10,000 lines of Coq
scripts... and contains about 30 games.” Amusingly, ten pages earlier in the
same article the authors write:

As with any other mathematical activity, formal proofs strive
for elegance and conciseness.

One can only wonder what they would consider to be an inelegant, unconcise
proof!

2On p. 33 of [29] Pointcheval gives a half-page informal proof in a style similar to that
of the proof given in §2.1 for hashed ElGamal.

12 NEAL KOBLITZ

Although the authors of [3] give the impression that they are carrying
out Pointcheval’s proof in [29], their techniques give a significantly weaker
result: their non-tightness factor (roughly: the ratio of the time required to
find partial preimages to the time required to successfully attack IND-CCA
security of OAEP) is equal to the product of all three query bounds qDqGqH ,
whereas Pointcheval’s non-tightness factor does not include the bound qD
on the number of decryption queries. In [29] Pointcheval explains why his
time estimate has only a qGqH and not a qDqGqH term:

Although the plaintext-extractor is called qD times, there is
no qD multiplicative factor in the bound for t′. This comes
from a simple bookkeeping argument. Instead of only storing
the listsG-List andH-List, one stores an additional structure
consisting of tuples (γ,G(γ), δ,H(δ), y). A tuple is included
only for (γ,G(γ)) ∈ G-List and (δ,H(δ)) ∈ H-List. For such
a pair, one defines σ = δ, θ = γ ⊕H(δ), µ = G(γ) ⊕ δ, and
computes y = f(σ ‖ θ). If the last k1 bits of µ are 0k1 , one
stores the tuple (γ,G(γ), δ,H(δ), y). The cumulative cost
of maintaining the additional structure is qGqH(Tf +O(1));
[however, giving] it to the plaintext-extractor allows one to
output the expected decryption of y, by table lookup, in
constant time. Of course, a time-space tradeoff is possible,
giving up the additional table, but raising the computing
time to qDqGqH(Tf +O(1)).

(I’ve changed the notation in this passage to be consistent with the notation
in this section and in [3].) Apparently a limitation of CertiCrypt in [3] was
that it couldn’t handle this argument giving the better bound.

Remark 6. It should be noted that, despite the comment at the end of
the above quotation, actually no significant time-space tradeoff is involved
in Pointcheval’s “bookkeeping argument” for reducing the term in the time
estimate from qDqGqH to qGqH . That is, the additional storage is not signif-
icantly greater than the storage required for the G-List and H-List. Namely,
except with negligible probability, for a given δ there will be at most one γ
such that G(γ)⊕ δ has the k1 zero-bits that result in the tuple being stored.
If there were a second such γ′, then G(γ) and G(γ′) would agree on those k1
bits, of which the probability is only 2−k1 . The probability that there are
two different γ with G-values agreeing on those k1 bits is equal to

1−

qG−1
∏

i=0

2k1 − i

2k1
≈

q2G
2k1+1

(this is just the birthday paradox). Thus, if one simply subtracts an addi-
tional q2G/2

k1+1 in the expression for the probability ǫ′, one need not worry
about a time-space tradeoff.

ANOTHER LOOK AT AUTOMATED THEOREM–PROVING. II 13

5. Fallacies in Proofs

What is much more important than the weakness of the bound in [3] is
the question of whether it meets the standard the authors set in §2 of [3]:

Yet, what matters most about a formal proof is that it pro-
vides a nearly absolute degree of assurance, without requiring
expensive human verification.

I’m skeptical that it’s possible to find and eliminate the types of errors we
tend to make in proofs without “expensive human verification.” Except for
obvious, tautological arguments — such as when there’s no substantive dif-
ference between the two problems for which a reduction is being given —
any nontrivial proof is going to involve some conceptual steps, and verifica-
tion that there’s no subtle error in such steps cannot be done by machine,
at least not with any software I’m aware of.

Remark 7. It was because of statements such as the one quoted above
that I wrote in [22] that “the hope of authors of recent papers on automated
theorem–proving is to take the uncertainties, flaws, and human foibles out
of the process of deriving reductionist security arguments.” In [19] Halevi
quoted this statement and commented: “I seriously doubt that there is any-
one working on automated proofs that has this view... Koblitz completely
missed the point of the work that is done in automated/computer-aided
cryptographic proofs.” Apparently the authors of [3] are missing the point,
too, since they say pretty much the same thing that I did.

The authors of [3] have the benefit of hindsight. They know that the
best security proof for the original OAEP is Pointcheval’s in [29], so that
is the one that they follow as they construct their elaborate proof sketch
for CertiCrypt. But what if the game-hopping proof outline had been built
up for either the proof in [7] (by someone who was unaware that Shoup
[32] had found a subtle but fundamental error in it) or for the proof in
[16] (by someone who was not aware that the proof, while generally sound,
had some errors that affected the bounds)? Perhaps in the process of a
painstaking construction of a very detailed proof outline for CertiCrypt or
EasyCrypt, they would have found the errors. But if they hadn’t, would the
software have found the gaps in logic, or would it have obediently filled in
the details of the proof as if it had been valid? I don’t know the answer to
this hypothetical question, but it seems doubtful that the software is capable
of finding the types of errors that have occurred in the published literature
on OAEP.

Similarly, one has to be skeptical about whether automated techniques
would have caught some of the other high-profile fallacies in important se-
curity proofs, for example:

• Krawczyk’s proof of security for HMQV [24] inadvertently assumed
that an element of the supergroup G′ ⊃ G was necessarily in the
subgroup G, although in order to achieve greater efficiency a key

14 NEAL KOBLITZ

validation step had been removed from the protocol that would have
ensured this (see [26, 27]).
• The security proof for the sequential aggregate signature scheme
in [10] erroneously overlooked the fact that an attacker could work
in the publicly known exponent space, and their “provably secure”
protocol was completely broken a year later (see [20]).

It would be nice to have a way of testing whether automated software is really
capable of detecting these sorts of errors. I’ll propose a possible approach
in the concluding section.

6. Conclusion

Much of the response to my critique [22] has been negative (no surprise).
For example, the authors of [3] accuse me of having “fragmentary knowl-
edge” and “profound misconceptions.” I plead guilty to the first charge. I
wrote [22] and the present paper from the viewpoint of an outsider, and I
have no expertise in automated theorem–proving. In fact, not once in my
professional life have I even attempted to construct a “game-hopping” proof
of anything.

As far as “profound misconceptions” are concerned, it is hard for me to
answer that charge, because the authors of [3] do not say what they believe
my misconceptions to have been. Was it the notion that the true test of
whether automated proofs are worthwhile is whether or not they are likely
to prevent fallacies of the sort that have embarrassed the research community
in the past? Was it my claim that most of the published computer-aided
proofs for cryptographic protocols have been for reductionist arguments that
are essentially trivial, and not for those that give the deeper results? Was
it my assertion that on the rare occasion when automated proofs are given
of nontrivial reductions (e.g., for Cramer-Shoup encryption) it is the trivial
steps that are automated, while the most important steps — of the sort
that in many security proofs have had errors — are inserted by fiat and not
verified by the automated software?

In contrast to the authors of [3], in [19] Halevi wrote a reasoned and
thoughtful response to [22]. First, he faulted me for quoting his comment
about the social causes of the crisis of rigor in cryptography (also quoted in
§1 above) without quoting the rest of his explanation, which is as follows:

...but the true cause of it [the problem of erroneous proofs]
is that our proofs are truly complex. After all, the objects
that we deal with are non-trivial algorithms, and what we
try to prove are some properties of an intricate interaction
between a few of these algorithms.

But then, after distinguishing between the creative, nontrivial parts of proofs
and the “mundane” and “obvious” parts, he goes on to say that all that he
claims about automated theorem–proving is that “computer programs can
help with the task of checking the ‘obvious details’ of a proof, making sure

ANOTHER LOOK AT AUTOMATED THEOREM–PROVING. II 15

that there are no errors there.” According to him, “Errors in published
proofs are often contained in exactly those ‘obvious details’ (see the OAEP
case for example), and computer software may help avoiding such errors.”
This contradicts what he said before about the “non-trivial” and “intricate”
nature of proofs — not the trivial tautological equivalences — being the
source of error. And indeed, in the OAEP case the error of Bellare and
Rogaway was a subtle one that went undiscovered for seven years.

In some cases a protocol is tailor-made to fit a given problem P so that the
reduction of P to the problem of breaking the protocol (in a specified sense)
can be proved (perhaps under the random oracle assumption) in a short
paragraph. We saw an example of this in §2. In other cases the problem P
is tailor-made to fit the protocol, and again the reduction argument is im-
mediate; we saw such a case in §3. In both situations computer-constructed
proofs have worked fine, confirming the obvious in the same sense that Prin-
cipia Mathematica confirmed some well-known identities (see Fig. 2).

The danger of error arises, as Halevi said, when “we deal with non-trivial
algorithms, and...an intricate interaction between a few of these algorithms.”
The unresolved question, then, is whether automated theorem–proving soft-
ware is likely to help in such circumstances.

In looking for a way to evaluate to what extent computer-aided proofs
can help prevent errors, it is useful to recall what is often done with other
security issues in cryptography. In many cases in making an evaluation the
methodology that works best is interactive. To evaluate how good your
firewall is, the best approach is to hire a team of hackers to try to break
through it. The best way to stimulate work on the Integer Factorization
and Elliptic Curve Discrete Logarithm problems — which lie at the heart of
RSA and ECC, respectively — is to give a series of RSA challenges and ECC
challenges, preferably with monetary awards attached. Before describing an
analogous approach for computer-assisted proofs I’d like to digress for two
paragraphs.

A pedagogical digression. Some mathematicians have argued that
the removal of rigorous proofs from the teaching of most elementary math
courses — such as first-year calculus — in American universities was a mis-
take, and we should return to an emphasis on proofs. According to them,
even prospective engineering students should learn ǫδ-proofs of the basic
properties of limits. My response when I hear that viewpoint expressed is
to conjecture that in practice all that would happen would be that the stu-
dents would merely attempt to memorize the required proofs with no true
understanding. Rather than seeing proofs the way mathematicians see them
— as a way to develop critical thinking, logical discipline, and creativity —
the students will think of them as a hated and meaningless ritual.

I have the following challenge to my colleagues who wish to teach a proof-
based calculus course to engineering students. Half-way through the semes-
ter come to class and with a straight face give a plausible-sounding proof
that makes no logical sense whatsoever. See if any of the students notice.

16 NEAL KOBLITZ

If not, then it seems to me that all your efforts to teach proofs have been a
waste of time.

* * *

By analogy, the method I would propose to assess the value of computer-
aided proofs in cryptography is to set up some challenges (preferably sup-
ported by monetary incentives). For a given protocol, challenge your col-
leagues to write a game-hopping proof that can be input to CertiCrypt or
EasyCrypt in which they give a security reduction that they know has a
fallacy. If the computer fills in the proof without objecting, they win and
the computer loses; but if the software discovers their fallacy, then they get
nothing, and you have some evidence that there’s hope that this type of soft-
ware can detect the kinds of errors in proofs that working cryptographers
are likely to make.

7. Acknowledgments

I would like to thank Ann Hibner Koblitz and Alfred Menezes for reading
and commenting on earlier drafts of this paper.

References

[1] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin, Formal certification of

ElGamal encryption: A gentle introduction to CertiCrypt, 5th Intern. Workshop on
Formal Aspects in Security and Trust – FAST 2008, LNCS 5491, Springer-Verlag,
2009, pp. 1-19.

[2] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin, Computer-aided security

proofs for the working cryptographer, Advances in Cryptology – Crypto 2011, LNCS
6841, Springer-Verlag, 2011, pp. 71-90..

[3] G. Barthe, B. Grégoire, Y. Lakhnech, and S. Zanella Béguelin, Beyond provable

security verifiable IND-CCA security of OAEP, CT-RSA 2011, LNCS 6558, Springer-
Verlag, 2011, pp. 180-196.

[4] G. Barthe, F. Olmedo, and S. Zanella Béguelin, Verifiable security of Boneh-Franklin

identity-based encryption, 5th Intern. Conference on Provable Security – ProvSec
2011, to appear.

[5] M. Bellare, Practice-oriented provable security, 1st Intern. Workshop on Information
Security – ISW ’97, LNCS 1396, Springer-Verlag, 1998, pp. 221-231.

[6] M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing

efficient protocols, 1st Annual Conference on Computer and Communications Secu-
rity, ACM, 1993, pp. 62-73.

[7] M. Bellare and P. Rogaway, Optimal asymmetric encryption, Advances in Cryptology
– Eurocrypt 1994, LNCS 950, Springer-Verlag, 1995, pp. 92-111.

[8] M. Bellare and P. Rogaway, Code-based game-playing proofs and the security of triple

encryption, available at http://eprint.iacr.org/2004/331
[9] B. Blanchet and D. Pointcheval, Automated security proofs with sequences of games,

Advances in Cryptology – Crypto 2006, LNCS 4117, Springer-Verlag, 2006, pp. 537-
554.

[10] A. Boldyreva, C. Gentry, A. O’Neill, and D. H. Yum, Ordered multisignatures and

identity-based sequential aggregate signatures, with applications to secure routing, 14th

ANOTHER LOOK AT AUTOMATED THEOREM–PROVING. II 17

ACM Conference on Computer and Communications Security – CCS 2007, ACM
Press, 2007, pp. 276-285.

[11] D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, SIAM
J. Computing 32(3) (2003), pp. 586-615.

[12] S. Chatterjee, A. Menezes, and P. Sarkar, Another look at tightness, to appear; avail-
able from http://anotherlook.ca and from http://eprint.iacr.org/2011/442.

[13] R. Cramer and V. Shoup, A practical public key cryptosystem provably secure against

adaptive chosen ciphertext attack, Advances in Cryptology – Crypto ’98, LNCS 1462,
Springer-Verlag, 1998, pp. 13-25.

[14] M. Foucault, The History of Sexuality (3 vols.), Pantheon Books, 1978.
[15] E. Fujisaki and T. Okamoto, How to enhance the security of public-key encryption at

minimum cost, 2nd Intern. Workshop on Practice and Theory in Public Key Cryp-
tography – PKC 1999, LNCS 1560, Springer-Verlag, 1999, pp. 53-68.

[16] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern, RSA-OAEP is secure under

the RSA assumption, J. Cryptology 17 (2004), pp. 81-104.
[17] D. Galindo, Boneh-Franklin identity based encryption revisited, 32nd Intern. Col-

loquium on Automata, Languages and Programming – ICALP 2005, LNCS 3580,
Springer-Verlag, pp. 791-802.

[18] S. Halevi, A plausible approach to computer-aided cryptographic proofs, available at
http://eprint.iacr.org/2005/181.

[19] S. Halevi, posting to the IACR discussion forum for the eprint version of [22], 22
October 2007.

[20] J. Y. Hwang, D. H. Lee, and M. Yung, Universal forgery of the Identity-Based Se-

quential Aggregate Signature Scheme, ACM Symposium on Information, Computer
& Communication Security – ASIACCS 2009, ACM Press, 2009, pp. 157-160.

[21] J. Katz, Letter to the Editor, Notices of the Amer. Math. Soc., December 2007,
available at http://www.ams.org/notices/200711.

[22] N. Koblitz, Another look at automated theorem–proving, J. Math. Cryptology 1
(2007), pp. 385-403.

[23] S. Krantz, A Primer of Mathematical Writing, Amer. Math. Soc., 1996.
[24] H. Krawczyk, HMQV: A high-performance secure Diffie-Hellman protocol, Advances

in Cryptology – Crypto 2005, LNCS 3621, 2005, pp. 546-566.
[25] Yu. I. Manin, A Course in Mathematical Logic, translated by N. Koblitz, Springer-

Verlag, 1977.
[26] A. Menezes, Another look at HMQV, J. Mathematical Cryptology 1 (2007), pp. 47-64.
[27] A. Menezes and B. Ustaoglu, On the importance of public-key validation in the MQV

and HMQV key agreement protocols, Progress in Cryptology – Indocrypt 2006, LNCS
4329, 2006, pp. 133-147.

[28] D. Nowak, A framework for game-based security proofs, available at http://eprint.
iacr.org/2007/199.

[29] D. Pointcheval, Provable security for public key schemes, in Contemporary Cryptology,
Advanced Courses in Mathematics — CRM Barcelona, Birkhäuser, 2005, pp. 133-189.

[30] B. Russell and A. N. Whitehead, Principia Mathematica, Vol. 1, 2nd ed., Cambridge
University Press, 1950.

[31] V. Shoup, Lower bounds for discrete logarithms and related problems, Advances in
Cryptology – Eurocrypt ’97, LNCS 1233, Springer-Verlag, 1997, pp. 256-266.

[32] V. Shoup, OAEP reconsidered, Advances in Cryptology – Crypto 2001, LNCS 2139,
Springer-Verlag, 2001, pp. 239-259.

[33] V. Shoup, Sequences of games: a tool for taming complexity in security proofs, avail-
able at http://eprint.iacr.org/2004/332.

18 NEAL KOBLITZ

Department of Mathematics, Box 354350, University of Washington, Seat-

tle, WA 98195 U.S.A.

E-mail address: koblitz@uw.edu

