
Cryptanalysis of INCrypt32 in HID’s iCLASSTM

Systems

ChangKyun Kim, Eun-Gu Jung, Dong Hoon Lee, Chang-Ho Jung, and
Daewan Han

ETRI, Korea
{kimck, egjung, dlee, zangho, dwh}@ensec.re.kr

Abstract. The cryptographic algorithm called INCrypt32 is a MAC al-
gorithm to authenticate participants, RFID cards and readers, in HID
Global’s iCLASS systems. HID’s iCLASS cards are widely used contact-
less smart cards for physical access control. Although INCrypt32 is a
heart of the security of HID’s iCLASS systems, its security has not been
evaluated yet since the specification has not been open to public.
In this paper, we reveal the specification of INCrypt32 by reverse engi-
neering an iCLASS card and investigate the security of INCrypt32. As
a result, we show that the secret key of size 64 bits can be recovered
using only 218 MAC queries if the attacker can request MAC for chosen
messages of arbitrary length. If the length of messages is limited to pre-
determined values by the authentication protocol, the required number
of MAC queries grows to 242 to recover the secret key.

Key words: INCrypt32, HID’s iCLASS, RFID, reverse engineering,
chosen message attack.

1 Introduction

Nowadays Radio Frequency Identification (RFID) is widely used in our life
such as electronic payment system and access control. Since wireless communi-
cation is easy to intercept and tamper with, its security is a major concern to
cryptographic researchers, especially when RFID systems use some proprietary
cryptographic algorithms and unpublished protocols. The most representative
examples are NXP’s MIFARE Classic systems [10] and HID Global’s iCLASS
systems [8].

According to Kerckhoffs’s principal, a proprietary algorithm does not enhance
the security of the system [2]. In case of MIFARE Classic, Nohl and Plötz have
reverse engineered the hardware of the MIFARE Classic card and introduced
weaknesses in its proprietary primitive [6]. So far, several related papers [3, 5,
7, 1] have been published and MIFARE Classic system is considered to be fully
broken. One can easily recover a secret key of a MIFARE Classic card and
replicate it by using a card emulator such as Proxmark III and OpenPCD.

For the other case, Plötz and Meriac presented security weakness of the HID’s
iCLASS and extracted secret keys from the firmware images of an HID’s iCLASS

2 Authors Suppressed Due to Excessive Length

reader [4]. However, they have not recovered the proprietary cryptographic al-
gorithm and the details of security protocols. This means that although the
attacker is only able to access (read and write) iCLASS cards, they cannot
replicate cards because the diversified key of each card and the details of the
proprietary cryptographic algorithm are required to replicate cards.

Our Contribution This paper describes the proprietary cryptographic algo-
rithm called INCrypt321 of HID’s iCLASS systems. With authors’ best knowl-
edge, this is the first published work to describe the details of the INCrypt32
algorithm. We fully recover the INCrypt32 algorithm and communication pro-
tocols.

Furthermore, we investigate the security of INCrypt32. Our study shows
that INCrypt32 is vulnerable to chosen message attacks. If attacker is allowed
to request MAC for arbitrary messages, then the secret key can be recovered
within 218 MAC queries. If the length of messages is limited to the specified
value (determined by an authentication protocol), then the required number of
MAC queries grows to 242.

Organization This paper is organized as follows. The next section briefly de-
scribes the structure of the HID’s iCLASS card and the overview of the au-
thentication protocol between iCLASS cards and readers [9]. In Section 3, we
explain how to reveal INCrypt32 algorithm and introduce the full description
of the algorithm. But we omit the details of reverse engineering procedure since
it is beyond the scope of this paper. In Section 4, we present the weaknesses of
INCrypt32. Finally, we conclude in Section 5.

2 Preliminaries

2.1 Structure of HID’s iCLASS Cards

HID’s iCLASS cards are widely used contactless smart cards for physical
access control and are compliant with ISO 15693 and 14443B standards. The
iCLASS card is fundamentally a memory card with simple security mechanisms
for access control. The memory is divided into data blocks which are grouped
into application areas.

The iCLASS 2K (256-byte) has 32 blocks configured with 2 application areas.
This card does not allow for ISO 14443B standard. While the iCLASS 16K/2
has 256 blocks with 2 application areas, the iCLASS 16K/16 has 256 blocks with
16 application areas split into 8 pages evenly. These cards allow for both ISO
15693 and ISO 14443B standards. The memory map of each card is shown in
Table 1.

1 We borrow the algorithm name ‘INCrypt32’ from http://www.insidesecure.com/

eng/content/download/502/3679/version/2/file/01_Flyer_MicroPass4006_BD.

PDF, INSIDE Secure.

Cryptanalysis of INCrypt32 in HID’s iCLASSTM Systems 3

Table 1. iCLASS card memory map

2K Memory 16K/2 Memory 16K 16 Memory

Block Data Block Data Page Block Data

0 Card serial number 0 Card serial number

0

0 Card serial number

1 Configuration data 1 Configuration data 1 Configuration data

2 Stored value area 2 Stored value area 2 Stored value area

3 Key 1 (Kd) 3 Key 1 (Kd) 3 Key 1 (Kd)

4 Key 2 (Kc) 4 Key 2 (Kc) 4 Key 2 (Kc)

5 Application issuer data 5 Application issuer data 5 Application issuer data

6–18 Application area 1 6–18 Application area 1 6–18 Application area 1

19–31 Application area 2 19–255 Application area 2 19–31 Application area 2

Page 1–7

The first 6 blocks contain special data. Block 0 contains the card serial num-
ber (CSN) used in the anti-collision procedure. Block 1 has card configuration
information which contains a security option, application limit for secured page,
and read/write access. The value stored in block 2 is for the electronic purse.
Increment and decrement of this value should be authenticated using Kc (Credit
Key) and Kd (Debit Key), respectively. Block 3 and 4 contain secret keys which
are derived values from the master key and the CSN to create a unique key.
These keys are used for an authentication with the reader to allow the execution
of read and write commands. Data blocks from 6 to 18, application area 1, are
protected by Kd and the others, application area 2, are protected by Kc.

2.2 Communication Protocols Using INCrypt32

MIFARE Classic makes use of an authentication protocol by means of the
proprietary stream cipher CRYPTO-1. After an authentication protocol is per-
formed successfully, all communications are encrypted by CRYPTO-1. However,
iCLASS only makes use of the proprietary symmetric cryptographic algorithm
INCrypt32 when an authentication and write commands are performed [9].

Authentication Protocol To get an access right over the iCLASS card, the
card and the reader need to perform an authentication protocol. This protocol is
based on INCrypt32 with the 8-byte key Kd or Kc. The authentication protocol
is shown in Fig. 1.

Before the authentication protocol is performed, the reader derives a diversi-
fied key (Kd or Kc) for the card from the master key and the card serial number.
The stored value of block 2 is sent by the card. The reader then sends a 4-byte
random number (RND) with its 4-byte signature (MAC0r) which is the half of

4 Authors Suppressed Due to Excessive Length

Fig. 1. Authentication protocol

an 8-byte MAC. At this point, the card can compute an 8-byte MAC in the
same way. If MAC0r is correct, the card will answer the other 4-byte signature
(MAC1c) that enables the reader to authenticate the card. Therefore, the au-
thentication protocol needs to perform INCrypt32 with 12-byte input and 8-byte
output data.

Write Protocol If the authentication protocol succeeds, the reader is able to
read data blocks without an additional authentication procedure. However, to
write an 8-byte data in a data block, the reader needs to perform INCrypt32
every time. The write protocol is described in Fig. 2.

Fig. 2. Write protocol

Once the card is selected and authenticated, the reader is able to write the
addressed memory block. The reader sends an 8-byte data with an 1-byte block
address and a 4-byte signature (MACr). At this point, the card can compute
a 4-byte signature MACc in the same way. If MACr is correct, the card writes
the 8-byte data at the addressed memory and answers the data to be stored.

Cryptanalysis of INCrypt32 in HID’s iCLASSTM Systems 5

Therefore, the write protocol needs to perform INCrypt32 with 9-byte input
and 4-byte output data.

3 Revealing the INCrypt32 Algorithm

We describe how to reveal the proprietary symmetric cryptographic algo-
rithm INCrypt32 from its silicon implementation alone. The details of INCrypt32
will be described as well.

3.1 Hardware Reverse-Engineering of iCLASS Cards

Several steps were taken for the hardware reverse-engineering of the iCLASS
2K card. After removing the card packaging, we decapsulated the card chip.
For die delayering, we stripped off an upper layer to expose a lower layer. The
picture of each layer was obtained with an auto-stage optical microscope at a
magnification of 1,000x after die deprocessing, as shown in Fig. 3.

The chip on iCLASS cards is small with a total area of one square millimeter.
This chip consists of three metal layers and a single poly layer and is implemented
with 0.5µm CMOS process. We extracted 108 different logic gates with different
driving strengths by analyzing the poly layer picture and the first metal layer
picture.

Fig. 3. iCLASS chip’s layered picture and physical location of INCrypt32

To reconstruct the primary whole chip schematic, we got the interconnection
information from the rest two layer pictures. Most of symmetric cryptographic
algorithms usually use XOR/XNOR operations. This fact is a good approach to
find the circuit including cryptography. Since the chip is visually divided into 18
blocks, we investigated the number of XOR/XNOR gates each block.

6 Authors Suppressed Due to Excessive Length

Since the block (we denote it by G block) near the right bottom corner iso-
lated from other blocks has the largest number of XOR/XNOR gates, we guessed
that G block would contain INCrypt32 (see Fig. 3). Fortunately, INCrypt32 was
found at the guessed block. It contains single 16-bit LFSR, single 8-bit LFSR,
two 8-bit full adders composed of 1-bit full adders, 16 1-bit D flip-flops, and an
output block with complex Boolean functions.

Without reconstructing control circuits, the roles of input/ouput pins were
derived from analyzing two types of captured signals of the communication pro-
tocol between the reader and the card. The first one is obtained from RF sniffing
and the other is taken from decapsulated chip probing using a probestation with
active probes, where probing pads are made by a Focused Ion Beam equipment.

3.2 Description of INCrypt32 Algorithm

We will describe bytes and words(2 bytes) as capital letters and describe a
bit as a small letter. xi means a i-th lsb of X. For example, a byte X is same to
x7 · · ·x0.

INCrypt32 consists of internal 40-bit registers (P,Q,R, S), 64-bit key K, and
a state update function F . The details of internal registers and the key are as
follows:

– P,Q: 1-byte registers, respectively.

– R: 1-byte register. ri is used as the state of 8-bit LFSR.

– S: 2-byte register. si is used as the state of l6-bit LFSR.

– K = (K0, · · · ,K7): 64-bit key, where each Ki is a byte.

In addition, a superscript of each register such as P i represents the number
of updating the state from the initial state (for example P 0). In other words,
(P i, Qi, Ri, Si) = F (P i−1, Qi−1, Ri−1, Si−1). Moreover pij means a j-th bit of

P i. We will use following notations for the description of F .

– A+B: addition of bytes A and B modulo 28.

– A⊕B: byte-wise XOR of A and B.

– a⊕ b: bit-wise XOR a and b.

– ab: bit-wise AND of a and b.

– A� l: right l-bits shift of A.

– a� l: a byte(word) which is made from left l-bit shift of a bit a.

– φ(u, v, w): an integer 4u+ 2v + w.

Cryptanalysis of INCrypt32 in HID’s iCLASSTM Systems 7

For an input bit mi and the key K, F updates the internal state (P i−1, Qi−1,
Ri−1, Si−1) to the next state (P i, Qi, Ri, Si) as follows.

P i = (Xi−1 ⊕Ri−1) +Qi−1

Qi = P i−1 + P i

Ri = (Ri−1 � 1)⊕ ((ri−1
4 ⊕ ri−1

5 ⊕ ri−1
6 ⊕ xi−1

0 ⊕ qi−1
0)� 7)

e = si−1
0 ⊕ si−1

1 ⊕ si−1
4 ⊕ si−1

5 ⊕ si−1
8 ⊕ si−1

10 ⊕ s
i−1
14 ⊕ s

i−1
15

Si = (Si−1 � 1)⊕ ((e⊕ pi3 ⊕ pi7)� 15)

u = pi0 ⊕ pi4 ⊕ pi1pi3 ⊕ pi2pi4 ⊕ e
v = pi3 ⊕ pi5 ⊕ pi6 ⊕ pi3pi5 ⊕ pi4pi6 ⊕ pi5pi7
w = mi ⊕ pi0 ⊕ pi1 ⊕ pi2 ⊕ pi5 ⊕ pi6 ⊕ pi7 ⊕ pi0pi2 ⊕ pi5pi7 ⊕ e
Xi = Kφ(u,v,w)

In the above we used dummy variables Xi, e, u, v, w, which do not exist in the
real iCLASS card. F is depicted also in Fig. 4.

Fig. 4. State update function F of INCrypt32

INCrypt32 consists of an initialization step and a MAC computation step.
The both steps use the same state update function F . The difference is that
the former step initializes the internal state with each input message bit without
output and the latter step outputs MAC bits assuming that input bit is 0. Overall
process of INCrypt32 is described in Algorithm 1.

We were able to verify that the reconstructed INCrypt32 is exactly same one
implemented in iCLASS cards by comparing output data of our reconstructed
INCrypt32 with RF sniffing data. The diversified key used for verification of
INCrypt32 was extracted from probing signals of input pads.

8 Authors Suppressed Due to Excessive Length

Algorithm 1 INCrypt32 algorithm

Require:
1. K = (K0,K1, · · · ,K7): the secret key
2. (m1,m2, · · · ,mα): arbitrary input message of length α
3. (b1, b2, · · · , bβ): MAC output of length β

Ensure:
1. initial state: P 0 = 0xcb ; Q0 = 0x21 ;R0 = 0x4c ; S0 = 0xe012 ; X0 = K0

1: Init State((m1,m2, · · · ,mα))
2: Compute MAC()

3: procedure Init State((m1,m2, · · · ,mα))
4: for i=1 to α do
5: State update(mi)

6: end for
7: end procedure

8: procedure Compute MAC()
9: for i=1 to β do

10: State update(0)

11: bi = pα+i2

12: end for
13: end procedure

4 Cryptanalysis of INCrypt32

In this section we describe two kinds of key recovery attacks on INCrypt32.
The purpose of our attacks is to recover the secret key. In our attacks, the
attacker is able to request MAC for arbitrary messages of his/her choice. The
first attack allows messages of any length, especially very short messages. It
requires only about 218 MAC queries to recover the secret key. In the second
attack, the ability of the attacker is limited that he/she can only request MAC
for messages of the fixed length (eg. 72 or 96 bits) as implemented in HID’s
iCLASS systems. Thus the second attack scenario is more natural. It requires
about 242 MAC queries to recover the key.

We would like to mention that we did not break the algorithm in real HID’s
iCLASS systems. The system does not allow MAC queries for messages of ar-
bitrary length. Even in the second attack scenario, the required time for MAC
query is too long to mount the attack since the speed of communications between
cards and readers is very slow.

4.1 How to Choose Messages

INCrypt32 initializes the internal state with each bit of the input message
without output. Each mi affects the key selecting process as follows.

Cryptanalysis of INCrypt32 in HID’s iCLASSTM Systems 9

u = pi0 ⊕ pi4 ⊕ pi1pi3 ⊕ pi2pi4 ⊕ e
v = pi3 ⊕ pi5 ⊕ pi6 ⊕ pi3pi5 ⊕ pi4pi6 ⊕ pi5pi7
w = mi ⊕ pi0 ⊕ pi1 ⊕ pi2 ⊕ pi5 ⊕ pi6 ⊕ pi7 ⊕ pi0pi2 ⊕ pi5pi7 ⊕ e (1)

Xi = Kφ(u,v,w)

According to the above Equation (1), the attacker can control the w value
by selecting mi as he/she wants. In particular, w can be selected to be zero by
selecting mi as follows.

mi = pi0 ⊕ pi1 ⊕ pi2 ⊕ pi5 ⊕ pi6 ⊕ pi7 ⊕ pi0pi2 ⊕ pi5pi7 ⊕ e.

In other words, the indices of the selected key byte determined by φ(u, v, w) can
be always even number. Thus if the attacker knows the half of the secret key
(K0,K2,K4,K6), he/she can initialize the internal state for the selected message.
It is easy to show that mi is uniquely determined if (K0,K2,K4,K6) is given. We
call the uniquely determined message bit for the half key by the even message
bit. Similarly, even messages of arbitrary length consist of only even message
bits. Note that the even message of a given length is uniquely determined for a
half key.

On the other hands, the attacker knows the internal state after initialization
for even messages assuming that he/she knows the half key. Then he/she also
computes the first bit of MAC for the message since the output bit is derived
from the internal state after initialization. Therefore the attacker can guess the
half of the key and filter out the wrong key by comparing the first bit of two
MACs (computed and queried) for even messages. Our attack strategy is as
follows.

1. Guess the half of the secret key HK = (K0,K2,K4,K6).
(a) Find the even messages and tweak messages for the half key HK and

compute the first bit of MACs of each message assuming the guessed
key is correct. Tweak messages will be explained later.

(b) Request the correct MACs for the even messages and tweak messages.
(c) Compare the first bit of two MACs (computed and queried) and filter

out the wrong half key until finding the correct one.
2. Determine the rest of the secret key.

4.2 Attack with Short Messages

In the first attack, we request MAC for short messages of length at most 33
bits. At first, we define some notations for a given half keyHK = (K0,K2,K4,K6).

– mi: even message bits for i = 1, 2, · · · .
– Mi = (m1,m2, · · · ,mi): even message of length i.
– ci = pi+1

2 for the even message Mi. It is the first bit of the computed MAC.
It should be identical with the first bit of the queried MAC for Mi if the half
key HK is correct.

10 Authors Suppressed Due to Excessive Length

Making a Precomputation Table As described in Section 4.1, we have to
determine even message bits mi (i = 1, 2, · · · , 16) for a given half key HK.
This process can be done independent of the target card. Thus we can make a
precomputation table with even message bits mi and additional information ci
associated with 32-bit half keys in advance.

To make a table, each HK is regarded as a index (memory address) and
(m1,m2, · · · ,m16 | c1, c2, · · · , c16) is stored as a 32-bit data for the index HK.
Hence we need a memory space of size 4 · 232 bytes (16GB). Note that the
distribution of the data is uniform in the sense that the number of elements in
the table with the first i bits are identical is about 232−i for i = 1, · · · , 16 and
that ci can be 0 or 1 with the probability 1/2.

Reducing the Number of Candidates of the Half Key This is the first
step of online phase. Now we are ready to request MACs for short messages. We
request MACs for 1-bit messages (0) and (1) respectively. Let the first bit of the
MACs be b0 and b1 respectively. Then we can filter out the half keys such that
the data has forms of (0, ∗, · · · | b0 ⊕ 1, ∗, · · ·) and (1, ∗, · · · | b1 ⊕ 1, ∗, · · ·) where
∗ can be any value. As a result, about 231 candidates can survive.

Next, we request MACs for all 2-bit messages (0, 0), (0, 1), (1, 0), and (1, 1)
respectively. Let the first bit of the MACs be b00, b01, b10, and b11 respec-
tively. Then we also filter out the survived keys such that the data has forms
of (0, 0, ∗, · · · | ∗, b00 ⊕ 1, ∗, · · ·), (0, 1, ∗, · · · | ∗, b01 ⊕ 1, ∗, · · ·), (1, 0, ∗, · · · |
∗, b10⊕ 1, ∗, · · ·), and (1, 1, ∗, · · · | ∗, b11⊕ 1, ∗, · · ·). As a result, about 230 candi-
dates can survive.

In the same manner, we request MACs for all the messages of length at most
16 bits and can filter out wrong key candidates by comparing the first bit of
MACs and the precomputed table. Finally, we have about 216 candidates of the
half key. The required number of MAC queries is 2 + 22 + · · ·+ 216 = 217 − 2.

Determining the Correct Half Key After above filtering, we have 216 can-
didates of the half key and associated 16-bit even messages. In the second phase,
we verify the correctness of each candidate in turn.

Let HK be one of the survived keys. We determine 17-th even message bit
m17 and compute c17 as described in the previous section. Then we request MAC
for M17 = (m1, · · · ,m17) and compare the first bit of the MAC with c17. If they
are different, then HK can be filtered out. The probability that a wrong key
passes the test is 1/2. If the candidate passes the test, we proceed the same test
for longer even messages M18, · · · ,M33. If HK is correct, all the tests should
be passed. Since the probability that a wrong key passes all the tests is 1/217,
we can expect that the only correct key survives. The required number of MAC
queries is 216 + 215 + · · ·+ 1 = 217 − 1.

Determining the Rest of the Key In this phase, we will find new tweak
messages slightly different from even messages. Let m1 be the first even message
bit and 2l be the associated key index, i.e. X1 = K2l.

Cryptanalysis of INCrypt32 in HID’s iCLASSTM Systems 11

We guess K2l+1. Let T1 be (m1⊕1) which is the first tweak message. Since we
guessed K2l+1, we can update the internal state and compute c1 for T1. Then we
request MAC for T1 and compare the first bit of the MAC with c1. If the both
values do not coincide, the guessed K2l+1 is not correct. Otherwise, we proceed
to find the next tweak message Ti for i ≥ 2. The i-th message bit is selected such
that the key index should be even number. We denote such a message bit by m̃i

for i ≥ 2. Thus Ti has the following form.

Ti = (m1 ⊕ 1, m̃2, · · · , m̃i).

Then we can check the correctness of the guessed valueK2l+1. We expect the only
one value would be survived after 9 consecutive tests and it would be the correct
K2l+1. The required number of MAC queries is about 28 + 27 + · · ·+ 1 = 29− 1.

The other secret keys with odd index can be found in the similar way. The
required number of MAC queries is also same respectively. Therefore the total
number to determine the rest of the key is about 211 − 4.

4.3 Attack with Messages of the Fixed Length

The messages of the authentication protocol in real environments are for-
matted and have fixed lengths (72 or 96 bits). Hence the previous attack cannot
be applied to HID’s iCLASS systems. In the second attack, we assume that the
attacker can request MAC for messages of the fixed length determined by the
authentication protocol.

In this attack, we guess the half key HK = (K0,K2,K4,K6), and we find the
unique even message of given length (eg. 72 bits) for HK and compute additional
information c = p73

2 to compare with the first bit of the MAC. As the previous
attack, we request MAC for the even message and filter out wrong candidates
by comparing the first bit of MACs. Thus we have 231 candidates of the half key.
Let (m1, · · · ,m72) be the even message for a survived HK and vi be the index of
selected key byte in i-th updating process, i.e Xi = Kvi . Then vi ∈ {0, 2, 4, 6}.

We will simultaneously find the rest of the secret key with odd index in
the process of checking the validity of HK. For example, we start with K1. Let
I0 = {i1, · · · , ik} be the set of indices i such that vi = 0.

For a possible value of K1, we have to find the tweak message Tj for each
j ∈ I0 such that the first vj−1 bits are identical to the even message, the next bit
is flipped, and the other bits are selected as tweak message bits as the previous
subsection.

Tj = (m1, · · · ,mvj−1,mvj ⊕ 1, m̃vj+1, · · · , m̃72).

Since we know HK = (K0,K2,K4,K6) and K1, we can initialize the internal
state with the tweak message Tj and compute cj = p73

2 . We request MAC for Tj
and compare the first bit of the MAC with cj . If both values are identical, we
repeat the test for another j ∈ I0. We have to carry out the test until we find a
value of K1 such that the test passes for all j ∈ I0.

12 Authors Suppressed Due to Excessive Length

If we can not find a value of K1 passing the above test, then the candidate
HK must be incorrect. The probability that wrong (HK, K1) passes the test is
1/2n0 where n0 is the number of elements in I0. n0 is expected about 18 = 72/4.

If we find a candidate K1, we proceed the above test for K3, K5, and K7

in turn in the same way. The wrong 64-bit key may pass the above test with
probability 1/272, thus it hardly happens. Therefore the survived value is the
full secret key. The required number of MAC queries is at most 231 · 4(28 + 27 +
· · ·+ 1) ' 242.

5 Conclusion

Although INCrypt32 plays a key role in the security of HID’s iCLASS sys-
tems, it has not been evaluated the security since the structure of INCrypt32
is not known to public. In this paper, we revealed the unknown algorithm by
reverse engineering iCLASS cards. Unfortunately, we showed that there are some
security flaws in cryptographic sense. The secret key of iCLASS cards can be
recovered using MAC queries for chosen messages. The number of MAC queries
is 218 or 242 which depends on the attack scenario.

Note that our analysis for INCrypt32 is not realistic yet since our attack
requires many (in real environments) MAC queries for unauthorized messages.
But our work shows that a proprietary cryptographic algorithm does not enhance
the security of a system. Moreover, if INCrypt32 were used in other applications
which allow very short messages, then the security of a whole system could be
totally compromised.

References

1. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Schreur, R.W., and Jacobs, B.: Dismantling MIFARE Classic. In: Jajodia, S.,
Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 97-114. Springer, Heidel-
berg (2008)

2. Kerckhoffs, A.: La cryptographie militaire. Journal des Sciences Militaires IX. 5–38
(1883)

3. de Koning Gans, G., Hoepman, J.-H., Garcia, F.D.: A practical attack on the
MIFARE Classic. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 267–282. Springer, Heidelberg (2008)

4. Meriac, M.: Heart of darkness - exploring the uncharted backwaters of HID
iCLASSTM security. In: 27th Chaos Communication Congress (2010)

5. Nohl, K., Evans, D., Starbug, Plötz, H.: Reverse-engineering a cryptographic RFID
tag. In: 17th USENIX Security Symposium 2008. pp. 185–193. (2008).

6. Nohl, K., Plötz, H.: Mifare, little security despite obscurity. In: 24th Chaos Com-
munication Congress (2007)

7. Teepe, W., Nohl, K.: Making the best of MIFARE Classic (manuscript, 2008)
8. HID Global.: http://www.hidglobal.com/technology.php?tech_cat=2\

&subcat_id=9\&techno_id=2

9. INSIDE Secure.: PicoPass 2KS, http://66.7.214.212/~orangeta/datasheet/

Inside/DSPicopass2KSV1-0.pdf

Cryptanalysis of INCrypt32 in HID’s iCLASSTM Systems 13

10. NXP Semiconductors.: MIFARE standard 4KByte card IC functional specification.
February (2007)

