
Resettable Statistical Zero Knowledge

Sanjam Garg1, Rafail Ostrovsky1, Ivan Visconti?2, and Akshay Wadia1

1 Department of Computer Science, UCLA, USA
{sanjamg,rafail,awadia}@cs.ucla.edu

2 Dipartimento di Informatica, University of Salerno, ITALY
visconti@dia.unisa.it

Abstract Two central notions of Zero Knowledge that provide very strong, yet seemingly incomparable
security guarantees against malicious verifiers are those of Statistical Zero Knowledge and Resettable Zero
Knowledge. The current state of the art includes several feasibility and impossibility results about the two
notions separately. However, the challenging question of achieving Resettable Statistical Zero Knowledge
(i.e., Resettable Zero Knowledge and Statistical Zero Knowledge simultaneously) for non-trivial languages
is still open. In this paper, we show:

- Resettable Statistical Zero Knowledge with efficient provers: Efficient-prover Resettable Sta-
tistical Zero-Knowledge proof systems exist for all languages that admit hash proof systems (e.g., QNR,
QR, DDH, DCR). Furthermore, for these languages, as an application of our technique, we also construct
a two-round resettable statistical witness-indistinguishable argument system.

- Resettable Statistical Zero Knowledge with unbounded provers: Under the assumption that
sub-exponentially hard one-way functions exist, rSZK = SZK. In other words, every language that
admits a Statistical Zero-Knowledge (SZK) proof system also admits a Resettable Statistical Zero-
Knowledge (rSZK) proof system. (Further, the result can be re-stated unconditionally provided there
exists a sub-exponentially hard language in SZK). Moreover, under the assumption that (standard)
one-way functions exist, all languages L such that the complement of L is random self reducible, admit
a rSZK, in other words: co-RSR ⊆ rSZK.

The round complexity of all our proof systems is Õ(log κ), where κ is the security parameter, and all our
simulators are black-box.

1 Introduction

The notion of a Zero-Knowledge (ZK, for short) Proof System introduced by Goldwasser, Micali and
Rackoff [GMR89] is central in Cryptography. Since its introduction, the concept of a ZK proof has been
extremely influential and useful for many other notions and applications (e.g., multi-party computa-
tion [GMW87], CCA encryption [NY90]). Moreover, the original definition has been then reformulated
under several variations, trying to capture additional security guarantees. Well known examples are
the notions of non-malleable ZK [DDN00] introduced by Dolev, Dwork and Naor, which concerns secu-
rity against man-in-the-middle attacks, of ZK arguments introduced by Brassard, Chaum and Crepeau
in [BCC88] where soundness is guaranteed only with respect to probabilistic polynomial-time adver-
sarial provers, and of concurrent ZK [DNS98] introduced by Dwork, Naor and Sahai, which concerns
security against concurrent malicious verifiers. Another important variant is that of Statistical Zero
Knowledge [GMR89,BMO90,SV03], where it is guaranteed that a transcript of a proof will remain zero
knowledge even against computationally unbounded adversaries.

An important model of security against malicious verifiers, known as Resettable Zero-Knowledge,
was introduced by Canetti, Goldreich, Goldwasser and Micali in [CGGM00]. In this setting, the ma-
licious verifier is allowed to reset the prover, and make it re-use its randomness for proving new the-
orems. Indeed, one of the main motivations for studying resettable ZK was to understand the conse-
quences of re-using limited randomness on the zero-knowledge property. In [CGGM00], it was shown
that computational zero-knowledge for all of NP is possible even in this highly adversarial setting.

? Work partially done while visiting UCLA.

Although resettable zero knowledge has received considerable attention since its inception (see for ex-
ample, [BGGL01] [DGS09]) and the references therein), almost all the work has been focused on the
computational setting.

In this work, we continue the line of research on resettable ZK by investigating the question of
resettability when the zero-knowledge property is required to be statistical, i.e., Resettable Statisti-
cal Zero Knowledge. This model constrains the prover strategy severely: not only should the prover
somehow re-use its limited randomness, it must do so in a way that makes the transcript of the proof
statistically secure. Known solutions in the setting of computational resettable ZK involve convert-
ing prover’s bounded randomness to unbounded pseudo-randomness by using pseudo-random functions
(PRF). However, this approach fails in our case, as an unbounded adversary can break the PRF and
gain critical information, breaking zero knowledge. In this paper, we develop a new technique to han-
dle this problem. Using this technique, we study resettable statistical zero knowledge in the form of
following two distinct questions.

– Do there exist efficient-prover resettable statistical ZK proofs? This question is motivated by prac-
tical applications of resettable ZK, for example, in smart cards. If a prover is to be implemented in
a small device like a smart card, it is essential that the prover strategy is polynomial-time.

– What languages in SZK have resettable statistical ZK proofs? The class SZK is the class of problems
which admit statistical zero-knowledge proofs. This question is purely theoretical in nature, and tries
to ascertain the difficulty of achieving resettability where statistical zero-knowledge already exists. In
this setting we consider prover’s which are forced into giving multiple proofs using the same limited
random coins. This work can be thought of a natural extension of the recent work on Concurrent
Statistical Zero-Knowledge (cSZK) [MOSV06,PTV08].

1.1 Our Contribution

In this paper we address the above questions and present the following results. We stress that our
techniques may be of independent interest.

Resettable Statistical Zero Knowledge with efficient provers. We show that efficient-prover
resettable statistical ZK proof systems exist for all languages in SZK that admit hash proof sys-
tems [CS02] (e.g., Quadratic Non-Residuosity (QNR), Decisional Diffie-Hellman (DDH), Decisional
Composite Residuosity (DCR)). Therefore, our techniques show that efficient-prover resettable statis-
tical ZK proof systems also exist for non-trivial languages (like DDH) where each instance is associ-
ated to more than one witness, where intuitively reset attacks are harder to deal with.1 Furthermore,
using our techniques, for these languages we also construct a two-round resettable statistical witness-
indistinguishable argument system.

Resettable Statistical Zero Knowledge with unbounded provers. We show that if a family
of sub-exponentially hard one-way functions exists then rSZK = SZK, i.e., all languages that admit
a statistical ZK proof systems also admit a resettable statistical ZK proof system. If there exists an
SZK language L which is (worst-case) sub-exponentially hard for all input length2 then rSZK = SZK
without any additional assumptions, as it already implies the existence of sub-exponentially hard one-
way functions. Informally, a sub-exponentially hard one-way function is a one-way function that is

1 When there are multiple witnesses that can prove membership of an instance in a language, in a reset attack the
adversarial verifier can potentially force the prover to reuse the same randomness for proving the same instance but
using a different witness.

2 If there exists a language L ∈ SZK such that for infinite sequence of input lengths, the worst-case decision problem for
L is sub-exponentially-hard, [Ost91] implies that there exists a non-uniform sub-exponentially hard one-way functions
for that sequence of input length.

2

secure against sub-exponential (2κ
ε

for some 0 < ε < 1) size circuits. Moreover, we show that if a family
of (standard) one-way functions exists then co-RSR ⊆ rSZK, i.e., all languages whose complement is a
random self-reducible language (e.g. Graph Non-Isomorphism), admit a resettable statistical ZK proof
system. Our results are achieved through a novel use of instance-dependent (ID, for short) commitment
schemes, a new simulation technique, and a coin-tossing protocol that is secure under reset attacks that
we build on top of a new ID commitment for all SZK.

Our simulators are black-box and the round complexity of all our constructions is Õ(log κ) which is al-
most optimal considering the lower bounds achieved so far for black-box concurrent ZK [CKPR02,MY08].

We stress that since the very introduction in [CGGM00] of the notion of resettable ZK, our results
are the first in establishing Resettable Statistical Zero Knowledge. We finally leave open an interesting
question of proving that SZK = rSZK unconditionally or under relaxed complexity-theoretic assump-
tions and of establishing whether resettable statistical ZK arguments are achievable for all NP.

As a final note, we remark upon the complexity of the verifiers in our protocols. Historically, the
notion of SZK was developed with bounded verifiers (and unbounded distinguishers), for example,
see [BMO90,Vad99]. Moving in the same direction, we obtain our results in this model, where the verifiers
are computationally bounded. In subsequent literature on SZK, the stronger notion of statistical zero-
knowledge against unbounded verifiers was developed. In this scenario, the notion of resettability seems
hard to achieve: unbounded verifiers can compute statistical correlations on the fly by making multiple
reset queries to the prover. We leave the question of constructing such protocols or showing impossibility
in a setting with unbounded verifiers as an open problem for future work.

1.2 Technical Difficulties and New Techniques

We begin by asking the general question: “Why is the problem of constructing resettable statistical zero-
knowledge proof systems hard?” The problem lies in the fact that the prover has limited randomness
and can be reset. Therefore, prover’s messages are essentially a deterministic function of the verifier’s
messages, and the verifier can probe this function by resetting the prover and thereby obtaining infor-
mation that might be useful for an unbounded distinguisher. We highlight the issues by demonstrating
why existing techniques fail. The most well studied way of achieving resettable computational zero-
knowledge proofs [CGGM00], is by using a pseudorandom function. In particular, very informally, using
this technique the prover applies a pseudorandom function on the common input and the verifier’s first
messages (this message is called the determining message), which fixes all future messages of verifier,
and uses the output as its random tape. Now, when the verifier resets and changes its determining
message, prover’s random tape changes, and thus, intuitively, the verifier does not gain any advantage
by resetting the prover. However, for our goal of obtaining resettable statistical zero knowledge, this
approach is not sufficient. In fact, intuitively, any protocol (as far as we know) in which there exists
a message computed using both the witness and the randomness, where the randomness is fixed but
the witnesses could change with theorem statements, can not be statistically “secure” in presence of
reset attacks. Indeed, an adversarial verifier could interact multiple times with provers that use a fixed
randomness but different statements and witnesses. This information can be used by an unbounded
distinguisher to establish certain correlations among the values used in different executions, ultimately
breaking the statistical ZK property. Because of these restrictions, previously known techniques, which
were sufficient for resettable [CGGM00,BGGL01] and statistical ZK [MOSV06,GMOS07,GOS06a] in-
dependently, turn out to be insufficient for achieving both of them simultaneously.

In light of the intuition above resettable statistical ZK for non-trivial languages at first sight might
be considered impossible to achieve. But, on the contrary we develop a new technique that overcomes the
above problems. We demonstrate this new technique by considering a toy version of our protocol. The
protocol consists of three phases. In the first phase the verifier sends a “special” instance-dependent non-
interactive (ID, for short) commitment of a random string m to the prover. (In this commitment, if the

3

prover is lying and x 6∈ L, then m will be undefined, while if x ∈ L, then m will be unique.) The second
phase consists of a PRS preamble [PRS02]. Very roughly, in the PRS preamble the verifier commits
to random shares of m, which are opened depending on the provers challenges. Finally, the prover is
required to send m to the verifier. The prover can obtain m by extracting it from the commitment
either efficiently using a witness in case of efficient-prover proofs, or running in exponential time in
case of unbounded-prover proofs. We stress that when the theorem being proved is true the message m
that can be extracted is unique. This can be thought of as a new abstraction of the Zero Knowledge
protocol for Graph Non-Isomorphism (GNI). Consider a prover that wants to prove to a verifier that
two graphs G0 and G1 are not isomorphic. Informally speaking, this protocol consists of the verifier
sending a random permutation of Gb for a random b and the prover is required to guess b. The are other
messages in the protocol, like the PRS phase, are required to help the simulator in the simulation. We
stress that our new idea is this generalization. Protocols with this specific property have been studied
before [MP06].

First, the protocol just described has the following property: every message sent by the prover is
public coin3 except its last message, which is uniquely determined by the first message of the verifier (we
use [CGGM00] terminology and refer to it as the determining message). Most importantly, no message
depends on the witness of the prover. It is this property that allows a simulator to generate a transcript
that is statically close to the transcript generated in the interaction with a real prover. An honest prover
uses a pseudorandom function on the common input and the determining message and uses the output
as its random tape. A simulator can sample the messages from the same distribution as the real prover.
Finally, the simulator will be able to obtain m by using rewinding capabilities, through a variation of a
PRS rewinding strategy [PRS02]. The need for the variation arises from the fact that a simulator that
uses pseudo-random coins does not gain anything by rewinding (i.e., after a rewind it would re-send the
same message). We deal with this problem by having the simulator cleverly use pseudorandom coins for
some messages while using pure random coins for others. We elaborate on this in § 4. This toy version,
described above, illustrates the key ideas that we use in achieving simultaneously both resettable and
statistical zero knowledge. To transform our toy version into a full proof system, for even the most basic
languages that we consider in this paper, we need an extra instance-dependent primitive. But we defer
this discussion to § 3 and § 5.

Second, our protocol also has the property that if the theorem is false then the prover has almost no
chance (in the information-theoretic sense) of sending an accepting last message. This follows from the
fact that the ID commitment from verifier is statistically hiding. This property guarantees soundness.

Unfortunately, the above ideas are insufficient to prove that rSZK = SZK. This is because statis-
tically hiding non-interactive ID commitments, introduced by Chailloux, Ciocan, Kerenidis and Vad-
han [CCKV08] for SZK are “honest-sender.” To force the sender into using purely random coins we
need a coin-flipping protocol secure against resetting senders. For this coin-flipping protocol an ID com-
mitment scheme which is computationally binding with respect to a resetting sender for instances in the
language and statistically hiding for instances not in the language, suffices. We will use some techniques
introduced by Barak, Goldreich, Goldwasser and Lindell in [BGGL01] on top of a previous result of
Ong and Vadhan [OV08] for obtaining such an ID commitment scheme.

However the more subtle problem arises in the use of pseudorandom functions. To obtain secu-
rity against reset attacks, the coin-flipping message played by the receiver of the commitment must
be computed by using a pseudorandom function. This again turns out to be insufficient for our anal-
ysis since the use of the pseudorandom function does not guarantee that the outcome of the coin-
flipping protocol is a uniform string to be used in the honest-sender non-interactive ID commit-
ment scheme. In order to solve this additional problem, we use sub-exponentially hard pseudoran-
dom functions (constructed from sub-exponentially hard one-way functions). These stronger primitives

3 Looking ahead, we will use a pseudorandom function to generate these messages.

4

have the additional property that they are secure against sub-exponential size circuits. This tech-
nique is referred to as complexity leveraging, and has been previously used in various applications
(e.g., [CGGM00,Lin03,BLV03,DFN06,CEMT09,PW10,Wee10]). However, we stress that in all our con-
structions, the simulator runs in expected polynomial time, and the above assumptions play a role only
inside our security proof.
Comparison with [MOSV06]. Before concluding this section, we point out an important differ-
ence between our approach and ideas developed by Micciancio, Ong, Sahai and Vadhan in [MOSV06].
In [MOSV06], the authors give unconditional constructions of concurrent statistical zero-knowledge
proofs for many non-trivial problems. Like their construction we use similar ID commitments but our
general approach and overall protocol is dramatically different from their approach. In [MOSV06], a
compiler is constructed that (using ID commitments) provides a generic way to construct statistical
zero-knowledge protocols. But, as pointed earlier, such a compiling technique along with standard reset-
tability techniques [CGGM00] is not sufficient for us. Therefore, we develop our zero-knowledge protocol
from scratch. This is needed because obtaining resettability along with statistical zero knowledge is dif-
ferent and for various reasons (as pointed earlier) harder than obtaining concurrent statistical zero
knowledge. We further note that in fact our techniques imply that SZK = cSZK unconditionally. We
discuss this further in Remark 2 in § 7.
Road map: We start by giving some preliminary definitions in § 2. We use three ID primitives in this
paper. We elaborate on those in § 3. In § 4 we construct a resettable statistical ZK proof secure against
partially honest verifiers. Then in § 5 we remove this limitation for certain classes of languages. In § 6,
we construct the proof system that works for all language in SZK. Finally, in § 7 we give some more
applications of our technique.

2 Preliminaries

We assume basic familiarity with the notions [GMR89] of Probabilistic Polynomial Time (PPT for
brevity) Interactive Turing Machines (ITM for brevity) and protocol (which is essentially a pair of PPT
ITM’s). We use the word algorithm interchangeably with an ITM.

We say that a function is negligible in κ if it is asymptotically smaller than the inverse of any fixed
polynomial. More precisely, a function η(κ) from non-negative integers to reals is called negligible in
κ if for every constant c > 0, ∃κc such that ∀κ > κc, |η(κ)| < κ−c. Otherwise, η(κ) is said to be
non-negligible in κ. If M is a probabilistic ITM, M(x) denotes the distribution of output generated by
M on input x, over the random coins of M .

The statistical difference between two random variables X and Y taking values from a discrete set
U (U is the set of all string in {0, 1}n) is defined as

∆(X,Y)
def
= max

S⊂U
| Pr [X ∈ S]− Pr [Y ∈ S] | .

We say that the two distributions are statistically indistinguishable if ∆(X,Y) is negligible in n.

2.1 Interactive Proofs

Two probabilistic ITM’s P and V define an interactive proof system in which the prover P is trying
to convince the verifier V that x ∈ L. Let 〈P, V 〉(x) denote the output of the the verifier after the
execution of the protocol between the prover P and the verifier V on common input x. The verifier
outputs accept if it accepts in the protocol.

Definition 1 (Interactive Proof System). An interactive protocol 〈P, V 〉(x) between a prover P
and a probabilistic polynomial-time verifier V is said to be an interactive proof system for a language L
with completeness error c(κ) and soundness error s(κ) if:

5

– Completeness. If x ∈ L, then Pr[〈P, V 〉(x) = accept] ≥ 1− c(|x|).
– Soundness. If x 6∈ L, then for all (possibly unbounded) adversarial prover’s P ∗, Pr[〈P ∗, V 〉(x) =

accept] ≤ s(|x|).

We require that c(κ) and s(κ) are negligible in κ.

If the honest prover algorithm in Definition 1 is probabilistic polynomial time then the interactive
proof system is called an efficient prover interactive proof system.

Let viewV (〈P (zP), V (zV)〉(x)) denote the random variable representing the contents of the random
tape of V together with all the messages sent between P and V during the interaction on common input
x, the prover’s auxiliary input zP and verifiers auxiliary input zV . In general an adversarial verifier may
receive an auxiliary input zV . But we ignore it in our notation for the sake of simplicity. Also an honest
prover executing in polynomial time receives as input a witness for every theorem x that it proves. In
such cases we use w to represent the witness (the auxiliary input) that the prover gets as input. The
witness is needed by efficient provers only.

Concurrent ZK We will use tools developed for the study of concurrent zero-knowledge within our
protocols. We give the suitable definitions below.

Definition 2 (Concurrent Statistical ZK). An interactive proof system 〈P, V 〉 for a language L
is said to be concurrent statistical ZK if for every probabilistic polynomial-time adversarial verifier V ∗

there exists a probabilistic polynomial-time machine S∗ so that the following two distribution ensembles
D1 and D2 are statistically indistinguishable: let each distribution be indexed by a sequence of common
inputs x = x1, . . . , xpoly(κ) ∈ L ∩ { 0, 1 }poly(κ) and a corresponding sequence of prover’s auxiliary-inputs
w = w1, . . . , wpoly(κ),

– Distribution D1 is defined by the following random process which depends on P and V ∗.
1. Let P i = Pxi,wi denote the prover that is trying to prove to the verifier that xi ∈ L. wi is the

auxiliary input of the prover. Every time the prover P i is instantiated it uses fresh randomness.
2. Machine V ∗ is allowed to run polynomially-many sessions with P i’s. We allow V ∗ to send arbi-

trary messages to each of P i, and obtain the responses of P i to such messages.
3. Once V ∗ decides it is done interacting with P i’s, it (i.e., V ∗) produces an output based on its

view of these interactions. Let us denote this output by 〈P (w), V ∗〉(x).
– Distribution D2 is the output of S∗(x).

In case there exists a universal probabilistic polynomial time machine, S, so that S∗ can be implemented
by letting S have oracle access to V ∗, we say that P is concurrent statistical ZK via a black-box simulation.

PRS Preamble from [PRS02]. A PRS preamble is a protocol between a committer C and a receiver R
that consists of two main phases, namely, (a) the commitment phase, and (b) the challenge-response
phase. Let k be a parameter that determines the round-complexity of the protocol. Then, in the commit
phase, very informally, the committer commits to a secret string σ and k2 pairs of its 2-out-of-2 secret
shares. The challenge-response phase consists of k iterations, where in each iteration, very informally,
the committer “opens” k shares, one each from k different pairs of secret shares as chosen by the receiver.

The goal of this protocol is to enable the simulator to be able to rewind and extract the “preamble
secret” σ with overwhelming probability. In the concurrent setting, rewinding can be difficult since one
may rewind to a time step that precedes the start of some other protocol [DNS98]. However, as it has
been demonstrated in [PRS02], there is a fixed “time-oblivious” rewinding strategy that the simulator
can use to extract the preamble secrets from every concurrent cheating committer, except with negligible
probability. Moreover this works as long as k = Ω̃(log κ) for some positive ε. We refer to this as the PRS
rewinding strategy or the PRS simulation strategy. We refer the reader to [PRS02] for more details.

6

Resettable/Statistical Zero Knowledge. In this paper we consider statistical [GMR89,BMO90,SV03]
and resettable [CGGM00] notions of zero-knowledge. The notion of resettability requires that a protocol
remains zero-knowledge even if the verifier can reset the prover. The notion of statistical zero knowl-
edge provides security guarantees against unbounded distinguishers. This paper constructs resettable
statistical zero-knowledge proof systems. In other words we try to achieve both the resettability and
the statistical guarantees simultaneously.

Definition 3 (Resettable Statistical ZK). An interactive proof system 〈P, V 〉 for a language L is
said to be resettable statistical ZK if for every probabilistic polynomial-time adversarial verifier V ∗ there
exists a probabilistic polynomial-time machine S∗ so that the following two distribution ensembles D1

and D2 are statistically indistinguishable: Let each distribution be indexed by a sequence of common
inputs x = x1, . . . , xpoly(κ) ∈ L ∩ { 0, 1 }poly(κ) and a corresponding sequence of prover’s auxiliary-inputs
w = w1, . . . , wpoly(κ),

– Distribution D1 is defined by the following random process which depends on P and V ∗.
1. Randomly select and fix t = poly(κ) random tapes, ω1, . . . , ωt, for P , resulting in deterministic

strategies P (i,j) = Pxi,wi,ωj defined by Pxi,wi,ωj (α) = P (xi, wi, ωj , α), for i, j ∈ { 1, . . . t }. Each

P (i,j) is called an incarnation of P .
2. Machine V ∗ is allowed to run polynomially-many sessions with P (i,j)’s.
3. We allow V ∗ (interleaving version [CGGM00]) to send arbitrary messages to each of P (i,j), and

obtain the responses of P (i,j) to such messages.
4. Once V ∗ decides it is done interacting with P (i,j)’s, it (i.e., V ∗) produces an output based on its

view of these interactions. Let us denote this output by 〈P (w), V ∗〉(x).
– Distribution D2 is the output of S∗(x).

In case there exists a universal probabilistic polynomial time machine, S, so that S∗ can be implemented
by letting S have oracle access to V ∗, we say that P is resettable statistical ZK via a black-box simulation.

Sub-exponentially hard one-way functions. A sub-exponentially hard one-way function is a one-way
function that is hard to invert even by sub-exponential (2κ

ε
for some 1 > ε > 0) size circuits. They

imply the existence of sub-exponentially hard pseudorandom functions. We stress that we need this
assumption only for proving that SZK = rSZK.

2.2 Complexity Assumptions

Definition 4 (Pseudorandom function (PRF)). A family of functions {fs}s∈{0,1}∗ is called pseudo-
random if for all adversarial PPT machines A, for every positive polynomial p(·), and sufficiently large
n’s it holds that ∣∣∣Pr[Afs(1n) = 1)]− Pr[AR(1n) = 1)]

∣∣∣ < 1

p(n)

where |s| = n and R denotes a random function.

A sub-exponentially hard one-way function is a one-way function that is hard to invert even by
sub-exponential size circuits.

Definition 5 (Sub-Exponentially Hard One-Way Functions (OWF)). A one-way function f :
{0, 1}∗ → {0, 1}∗ is sub-exponentially hard if for every circuit A of size 2n

ε
for some constant 1 > ε > 0,

every positive polynomial p(·), and sufficiently large n’s, and any auxiliary input z it holds that

Pr[A(f(Un), z) ∈ f−1(f(Un))] <
1

p(n)

where Un denotes a random variable uniformity distributed over {0, 1}n.

A sub-exponentially hard one-way function implies the existence of sub-exponentially hard pseudo-
random functions which can be defined in a similar manner.

7

3 Instance-Dependent Commitments and Proofs

In this section we construct three instance-dependent primitives, that we use in this paper: (1) a non-
interactive instance-dependent commitment scheme, (2) an interactive instance-dependent commitment
scheme, and finally (3) an instance-dependent argument system.

Non-Interactive Instance-Dependent Commitment Scheme. An important tool that we will re-define,
construct and use in our proof systems, is that of “special” non-interactive instance-dependent (ID,
for short) commitment schemes. A commitment scheme allows one party (referred to as the sender)
to commit to a value while keeping it hidden, with the ability to reveal the committed value later.
Commitments also have the property that once the sender commits to a value, it can not change its mind
later. This property is refereed to as the binding property. In certain settings commitment schemes, for
which these properties are not required to hold simultaneously, suffice. Such schemes are parameterized
by a value x and a language L and either the binding or the hiding property holds depending upon
the value x. These schemes are referred to as ID commitment schemes [CCKV08]. Typically, the ID
commitment schemes that have been considered in the literature require hiding property to hold when
x ∈ L and binding property to hold otherwise. We actually need the reverse properties, i.e., we need
hiding property when x 6∈ L and binding property otherwise.

In particular we consider an ID commitment scheme with further special properties. We require that
the commitment scheme be statistically binding for x ∈ L and statistically hiding otherwise. In other
words we want binding and hiding properties to hold against unbounded adversaries. Also we require
that our ID commitment scheme be secure against a resetting sender. This always holds when the
commitment scheme is non-interactive. All the non-interactive ID commitments that we consider are
statistically hiding. So to simplify notation we refer to a non-interactive instance-dependent commitment
scheme with perfect (binding holds with probability 1) binding and statistical hiding as a perfect non-
interactive ID commitment. Similarly, we refer to a non-interactive instance-dependent commitment
scheme with statistical binding and statistical hiding as a statistical non-interactive ID commitment.

Since the commitment is statistically binding, when x ∈ L, the committed value can always (with
overwhelming probability) be extracted in exponential time. Extractability instead becomes tricky when
the extractor has to run in polynomial time. We will call an ID commitment scheme efficiently extractable
if when x ∈ L then there exists an extractor that takes as input a witness for the membership of x in
L and the commitment, and outputs in polynomial-time the committed message.

It turns out that perfect non-interactive ID commitment schemes [IOS97,TW87,SCPY94] are ac-
tually known to exist for all languages in co-RSR. co-RSR is the class of languages such that the
complement of each of these languages is random self-reducible. Another class of languages that is
amenable to our techniques is the class of languages that are in SZK and that admit a hash proof
system. Observing that these languages imply instance-dependent primitives that are analogous to ID
commitments described above, we get efficient-prover resettable statistical ZK proof systems for this
interesting class. In particular, for DDH (the language that consists of all Diffie-Hellman quadruples
and that admits two different witnesses for proving the membership of a quadruple to the language),
we give an ad-hoc separate ID commitment scheme highlighting how our techniques work with multiple
witnesses.

We notice that for the whole SZK we only know a weak form of statistical non-interactive ID
commitment scheme where statistical binding holds with respect to honest senders only. We formalize
these notions in the next subsection.

3.1 Perfect (resp. Statistical) Non-Interactive ID Commitment Schemes

Perfect (resp. statistical) non-interactive ID commitment schemes are one of the key tools that we use
in this work. Instance-dependent (ID, for short) commitment schemes are parameterized by a value x

8

and a language L. Typically, ID commitment schemes (e.g., [CCKV08]) that have been considered in
the literature require hiding property to hold when x ∈ L and binding property to hold otherwise. As
highlighted in Section 1.2, we actually need the reverse properties, i.e. we need hiding property when
x 6∈ L and binding property otherwise.

Definition 6 (Instance-Dependent Function). An auxiliary-input function (or Instance-Dependent

Function) ensemble is a collection of functions F = {fx : {0, 1}p(|x|) → {0, 1}q(|x|)}x∈{0,1}∗, where p
and q are polynomials. We call F probabilistic-polynomial-time computable, if there is a probabilistic
polynomial-time algorithm F such that for every x ∈ {0, 1}∗ and y ∈ {0, 1}p(|x|), we have F (x, y; r) =
fx(y; r), where r denotes the randomness used by the function F .

Definition 7 (Non-Interactive Instance-Dependent Commitment). A Non-Interactive Instance-
Dependent Commitment Scheme COM with respect to (L, x), between sender and a receiver (S,R),
consists of two probabilistic polynomial time algorithms: CL,x, used in the commit phase; and VL,x, used
in the reveal phase. All parties receive the security parameter κ as input.

Commit Phase: In the commit phase, sender S receives a private input m ∈ {0, 1}`0 where `0 is
polynomial in the security parameter κ. It uses its private random bits r ∈ { 0, 1 }`1, where `1 is
polynomial in κ, and evaluates C ← CL,x(m; r). It then sends C to the receiver. Also, S outputs
private information pvt = (m, r).

Reveal Phase: In the reveal phase the sender S sends the private information pvt = (m, r) to the
receiver R. At the end of this phase, R executes VL,x(C, pvt), where C is the commitment value
previously received and pvt is the private information revealed by the sender, that returns accept or
reject. R accepts m as opening if V outputs accept and rejects otherwise.

We next define the correctness and security requirements of a perfect non-interactive instance-
dependent commitment scheme.

Definition 8 (Perfect (resp. Statistical) Non-Interactive Instance-Dependent Commitment
Scheme). Let RL, L, COM be as defined above. Then, COM is called a perfect (resp. statistical) non-
interactive instance-dependent commitment scheme, if the following properties hold.

Correctness. For all n, all x ∈ { 0, 1 }n, all m ∈ { 0, 1 }`0 and all random r ∈ { 0, 1 }`1, all (C, (m, r))
pairs such that C = CL,x(m; r), it is the case that VL,x always outputs accept on input (C, (m, r)).

Binding. The perfect (resp. statistical) non-interactive instance-dependent commitment scheme has the
perfect (resp. statistical) binding property.

Perfect Binding. For all n, all x ∈ L∩ { 0, 1 }n, all m,m′ ∈ {0, 1}`0 and r, r′ ∈ {0, 1}`1, such that
C = CL,x(m; r), pvt = (m, r) and pvt′ = (m′, r′) and m 6= m′ we have,

Pr
[

VL,x(C, pvt) = accept ∧ VL,x(C, pvt′) = accept
]

= 0.

For perfect non-interactive instance-dependent commitment scheme, given a transcript of the
commitment phase, C, there is a unique message that the Receiver will accept in the reveal
phase.

Statistical Binding. For all n, when r is chosen randomly in {0, 1}`1, then for all x ∈ L∩{ 0, 1 }n,
all m,m′ ∈ {0, 1}`0, r′ ∈ {0, 1}`1, such that C = CL,x(m; r), pvt = (m, r) and pvt′ = (m′, r′) and
m 6= m′ we have, Pr [VL,x(C, pvt) = accept ∧ VL,x(C, pvt′) = accept] is negligible in κ.

Statistical Hiding. For all n, all x /∈ L ∩ { 0, 1 }n, all (possibly unbounded) adversaries R̂, ∀m,m′ ∈
{ 0, 1 }`0 such that m 6= m′, the following distributions are statistically indistinguishable: {r $←−
{0, 1}∗; CL,x(m; r)} and {r′ $←− {0, 1}∗; CL,x(m′; r′)}.

9

When this scheme is used as subprotocol and the sender is allowed to cheat then the statistical binding
property does not always hold. If this is case then we will explicitly specify “honest senders” to stress
that the malicious player behaves honestly when computing the non-interactive commitment.

Note that for a perfect non-interactive instance-dependent commitment scheme when x ∈ L, the
commitment scheme is perfectly binding, and thus, given the commitment C, the committed message
is fixed. We denote this message by σ(C). The commitment scheme defined above, will be extractable
in the following sense: if x ∈ L, then there exists an algorithm called the extractor, that on input the
transcript of the first phase C outputs the message σ(C). This extractor could be efficient or it could
might be computationally unbounded. For a statistical non-interactive instance-dependent commitment
scheme, when x ∈ L the commitment scheme is statistically binding, and thus, given transcript C, the
committed message is fixed except with a negligible probability. Hence, there exists an extractor, that
on input the transcript of the first phase C outputs the message σ(C) except with negligible probability.
Again this extractor could be computationally unbounded.

Since the definition of extraction with an unbounded extractor is trivial, we now focus on defining
efficient extractability, and later we will show efficient extractors matching our definition.

Let RL(·, ·) be a polynomially-bounded, polynomial-time relation, with L as the corresponding
language. Let x ∈ { 0, 1 }n, where n is polynomial in the security parameter κ. A Non-Interactive
Instance-Dependent Commitment with respect to (L, x), denoted by COM, is defined as follows.

Definition 9 (Efficiently-Extractable Non-Interactive Instance-Dependent Commitment Scheme).
Let RL, L, COM be as defined previously. Then, COM is called an efficiently extractable instance-
dependent commitment scheme if, for all (x,w) ∈ RL, and commitment string C that can be generated
by the commitment algorithm CL,x(·), there exists a polynomial time extractor EL,x, such that for all
commitment strings C that can be generated by the commitment algorithm CL,x(·), the extractor, on
input C and a witness w, outputs σ(C).

ID Commitments for co-RSR. The class of random self-reducible languages was introduced
in [TW87,AFK89] and has been since then referred to as RSR.

Definition 10 (RSR [SCPY94]). Let N be a countably infinite set and, for each x ∈ N , let Rx be
a relation verifiable in polynomial-time. Define the domain of Rx as the set {z|∃w such that (z, w) ∈ Rx}
then we say when (z, w) ∈ Rx that w is an x-witness for z. The language LR = {(x, z)|∃w such that (z, w) ∈
Rx} is random self reducible (in RSR) if there exists a polynomial time algorithm SampleLR that, on
input x, z, r outputs y such that (x, y) ∈ LR and

1. If r’s bits are random, uniform, and independent then y is uniformly distributed over the domain of
Rx.

2. There exists a polynomial time algorithm A1 (A2) that, on input x, y, r and an x-witness for y (for
z) outputs an x-witness for z (for y).

3. There exists an algorithm GenerateLr that, on input x, outputs in expected polynomial time a pair
(z, w) ∈ Rx, with z uniformly distributed over the domain of Rx, and w uniformly distributed over
all x-witnesses for z.

RSR includes the language of Graph Isomorphism, the language of Quadratic Residuosity, and the
language of the multiplicative subgroup of Z∗p generated by g (p a prime).

Definition 11 (co-RSR). The class of languages such that the complement of each of these languages
is in RSR is said the class co-RSR.

Definition 12 (rSZK). A language L is said to be in the complexity class rSZK if L admits a reset-
table statistical ZK proof system.

10

It is known that every language L ∈ co-RSR admits a perfect non-interactive ID commitment
scheme [IOS97,TW87,SCPY94]. A folklore theorem and an explicit construction4 can be found in
Lemma 5.2 of [KMV07].

Lemma 1. Every language L ∈ co-RSR has a perfect non-interactive ID commitment scheme.

Hash Proof Systems. We recall the notion of hash proof systems as introduced by Cramer and
Shoup [CS02]. We use the formalization as in [CHK10] that does not use the concept of subset mem-
bership problem, and where only the proof system itself is relevant.

Definition 13 (Hash Proof System).
Let L be a language and let ε be a real number with 0 ≤ ε < 1. A hash proof system HPSL =

(VL,PL, α,ΠL,PubL,PrivL) with error probability ε consists of the following:

– A finite non-empty set VL, where the verifier samples a secret verification-key from, to enable him
to check proofs.

– A finite non-empty set PL and a function α : VL → PL: this maps a verification key to its projection,
which is an auxiliary input for the prover to construct a proof.

– A non-empty finite set ΠL: this is where proof strings will be sampled from.

Furthermore, efficient algorithms for the following tasks exist:

– Sampling with the uniform distribution from VL.
– Computing α(v) ∈ PL when given v ∈ VL.
– The proof π ∈ ΠL can be computed:

- either, by an efficient public evaluation algorithm π ← PubL(x, α(v), w) given the statement
x ∈ L, along with the projection α(v) and a witness w for x ∈ L.

- or, by an efficient private evaluation algorithm π ← PrivL(x, v) given the statement x ∈ L and
the verification key v ∈ VL itself.

The following security properties hold (Soundness and Uniqueness hold even for an unbounded adversary):

– Completeness. If indeed x ∈ L, a proof π ∈ ΠL thus computed is accepted when verified using the
secret verification key v. This verification is performed efficiently by the verifier.

– Soundness. For every x 6∈ L, every projection u ∈ PL, and every purported proof π̃ ∈ ΠL: the
probability (over uniform v ∈ VL with α(v) = u) that π̃ will be accepted is at most ε.

– Uniqueness. The proof π ∈ ΠL is unique. In the verification procedure referred to above, the verifier
actually first computes π′ from x ∈ L and the verification key v. The decision is then made by
checking whether π′ = π. In other words, the verifier can compute the proof itself from seeing the
statement, using his secret verification key.

As in [CHK10], we note that the soundness error ε can be reduced to a negligible function by running
copies based on independently selected keys in parallel.

Analogues of ID Commitment for Hash Proof Systems. We note that a hash proof system is a
simple instance-dependent primitive that can be thought of as an analogue of ID commitment schemes
described in previous sections. Indeed, it turns out that hash proof systems enjoy the crucial properties
that we required from non-interactive ID commitments in the previous sections. Therefore we can use an
HPS in our resettable protocols as we would use ID commitments for other languages. For convenience,
we describe a HPS as a two party protocol between a sender S and a receiver R. Consider the protocol
in Fig. 1.

We reiterate two key properties we will use in our constructions.

4 Their construction is for RSR languages with the binding (for false theorems) and hiding (for true theorems) properties
reversed. This directly implies Lemma 1.

11

Common Input: Instance x ∈ { 0, 1 }n.
Receiver’s Input: Witness w for x.

1. S chooses uniformly at random a verification-key v ∈ VL, and sends α(v) to R.
2. R computes π̂ = PubL(x, α(v), w), and sends π̂ to S, who accepts if π̂ = PrivL(x, v).

Figure 1. A Hash Proof System HPSL = (VL,PL, α,ΠL,PubL,PrivL) for a language L reformulated as a two-party
protocol (S,R).

1. When x ∈ L, the proof π = PrivL(x, α(v)) is unique. Moreover it is extractable since the receiver
can compute π using the witness w, making the sender accept.

2. When x /∈ L, it follows from soundness of the hash proof system, that the probability that S accepts
is negligible (even against unbounded receivers).

Efficiently-Extractable Perfect Non-Interactive ID Commitment Scheme for DDH. Now
we show how to construct an efficiently extractable perfect non-interactive instance-dependent commit-
ment scheme for the NP-language DDH. We show this additional construction as an evidence that
our techniques are general and indeed can be applied also to languages where multiple witnesses are
associated to an instance. This is indeed one of the properties that a resetting verifier can try to exploit
during a reset attack. Indeed, it can ask the prover to run multiple times a proof of the same statement
with same randomness by changing the witness.

Let G be a cyclic group of order t where the DDH assumption is believed to hold. We define the
following language, DDH,

DDH = { (g1, g2, g3, g4) ∈ G4 : dlogg1(g2) · dlogg1(g3) = dlogg1(g4) }.

Here, dlogg(h) refers to the discrete logarithm of h to the base g in group G; that is, dlogg(h) = k

iff hk = g. Note that each instance (g1, g2, g3, g4) ∈ DDH has two witnesses of membership: dlogg1(g2)

and dlogg1(g3). Indeed, g
dlogg1 (g2)

3 = g4 iff (g1, g2, g3, g4) ∈ DDH, and g
dlogg1 (g3)

2 = g4 iff (g1, g2, g3, g4) ∈
DDH.

As above, let G be a group of order t, where the DDH assumption is believed to hold. We now
instantiate our instance dependent commitment scheme from the language DDH. Consider Fig. 2.

Common Input: Instance (g1, g2, g3, g4).
Sender’s Input: m ∈ G.
Commit Phase: The sender S chooses random elements r1, r2, r

′
1, r
′
2 ∈ Zt. Now, S computes:

– α1 = gr14 g
r2
2 /m and α2 = gr13 g

r2
1 .

– β1 = g
r′1
4 g

r′2
3 /m and β2 = g

r′1
2 g

r′2
1 .

Finally, it sends (α1, α2, β1, β2) to the receiver R.
Decommit Phase: The sender S sends r1, r2, r

′
1, r
′
2,m to the receiver R, who checks if α1, α2, β1, β2 were constructed

correctly. Receiver R accepts if this is the case, and rejects otherwise.

Figure 2. Efficiently Extractable Non-Interactive Instance-Dependent Commitment Scheme (S,R) for DDH.

Lemma 2. Let G be a group of order t where the DDH assumption holds. Then, DDH admits a non-
interactive instance dependent commitment scheme, with efficient extraction.

12

Proof. We now prove that the commitment scheme presented in Fig. 2 is perfectly binding and efficiently
extractable when (g1, g2, g3, g4) ∈ DDH, and statistically hiding when (g1, g2, g3, g4) /∈ DDH.

Perfect Binding and Efficient Extraction. Let a := dlogg1(g2), b := dlogg1(g3) and c := dlogg1(g4). Then,
as c = ab, we have,

αa2
α1

=

(
(gbr1+r2)a

gabr1+ar2

)
m = m,

βb2
β1

=

(
(gar

′
1+r

′
2)b

gabr
′
1+br

′
2

)
m = m.

For efficient extraction, the receiver computes either αa2/α1 or βb2/β1, depending upon whether it
has witness a or b.

Statistically Hiding. We show that if (g1, g2, g3, g4) /∈ DDH, then even an unbounded adversary does
not obtain any information about message m from the commitment. Let dlogg1(m) = τ , dlogg1(g2) =
a, dlogg1(g3) = b and dlogg1(g4) = c. The information that the unbounded adversary has after the
commitment phase can be captured by the following linear system (all discrete logarithms are base g1):

dlog(α1) = cr1 + ar2 − τ
dlog(α2) = br1 + r2

dlog(β1) = cr′1 + br′2 − τ
dlog(β2) = ar′1 + r′2.

This is a system with four unknowns (r1, r2,, r
′
1, r
′
2) and four equations. If c 6= ab, then the corre-

sponding matrix has full rank (that is, rank 4). Thus, for every setting of τ , there exist (r1, r2, r
′
1, r
′
2) that

will generate the same commitment. Thus, given the transcript of the commitment phase, all messages
are equally likely.

Honest-Sender Non-Interactive ID Commitment Scheme for SZK.

Lemma 3 ([CCKV08]). Every language L ∈ SZK has a honest-sender statistical non-interactive ID
commitment scheme.

3.2 Interactive ID Commitment Scheme.

We use an interactive ID commitment scheme ComL,x = (Sx, Rx), where Sx and Rx are the sender
and the receiver respectively, with common input x. This ID commitment scheme is computationally
binding against a resetting sender when the instance x is in the language, and is statistically hiding
otherwise. Very roughly, we construct such a scheme by using the constant-round public-coin ID com-
mitment scheme of [OV08]. This scheme has statistical binding and statistical hiding properties. We
make it secure under resetting senders by having the receiver determine its messages by applying a
pseudo-random function (similarly to Proposition 3.1 in [BGGL01]) to the transcript so far. Because
of this, the statistical binding property is degraded to computational5 binding. We stress that unlike
the non-interactive ID commitment described earlier, we will not need any extractability from these
commitments. We obtain this new ID commitment scheme for all of SZK under the assumption that
one-way functions exist.We provide the details below.

5 However, looking ahead we note that, computational binding will be sufficient for our applications since the role of the
sender will be played by a polynomially bounded party.

13

Definition 14 (Instance-Dependent Commitment, Definition 4 from [OV08]). An instance-
dependent commitment scheme is a family of protocols {Comx}x∈{0,1}∗ with the following properties:

1. Scheme Comx proceeds in two stages: a commit stage and a reveal stage. In both stages, the sender
and receiver receive instance x as common input, and hence we denote the sender and receiver as
Sx and Rx, respectively, and write Comx = (Sx, Rx).

2. At the beginning of the commit stage, sender Sx receives a private input b ∈ {0, 1}, which denotes
the bit that S is supposed to commit to. At the end of the commit stage, both sender Sx and receiver
Rx output a commitment c.

3. In the reveal stage, sender Sx sends a pair (b, d), where d is the decommitment string for bit b.
Receiver Rx accepts or rejects based on x, b, d, and c.

4. The sender Sx and receiver Rx algorithms are computable in polynomial time (in |x|), given x as
auxiliary input.

5. For every x ∈ {0, 1}∗, Rx will always accept (with probability 1) if both the sender Sx and receiver
Rx follow their prescribed strategy.

An instance-dependent commitment scheme {Comx = (Sx, Rx)}x∈{0,1}∗ is public coin if for every x ∈
{0, 1}∗, all messages sent by Rx are independent random coins.

To simplify the notation we use Comx or (Sx, Rx) to denote an instance-dependent commitment
scheme {Comx}x∈{0,1}∗ . The hiding and binding properties of standard commitments extend in a natural
way to their instance-dependent analogues.

Definition 15 (Definition 5 from [OV08]). An instance-dependent commitment scheme Comx =
(Sx, Rx) is statistically hiding on I ⊆ {0, 1}∗ if for every R∗, the ensembles {viewR∗(Sx(0), R∗)}x∈I
and {viewR∗(Sx(1), R∗)}x∈I are statistically indistinguishable, where random variable viewR∗(Sx(b), R∗)
denotes the view of R∗ in the commit stage interacting with Sx(b).

Definition 16 (Statistical [resp, computational] Binding, Definition 6 from [OV08]). An
instance-dependent commitment scheme Comx = (Sx, Rx) is statistically [resp., computationally] bind-
ing on I ⊆ {0, 1}∗ if for every [resp., nonuniform PPT] S∗, there exists a negligible function ε such that
for all x ∈ I the malicious sender S∗ succeeds in the following game with probability at most ε(|x|).

S∗ interacts with Rx in the commit stage obtaining commitment c. Then S∗ outputs pairs (0, d0)
and (1, d1), and succeeds if in the reveal stage, Rx(0, d0, c) = Rx(1, d1, c) = accept.

Definition 17 (ID Resettably Computationally Binding Commitment Scheme). Consider a
sequence of common inputs x = x1, . . . xpoly(κ) ∈ I. Randomly select and fix t = poly(κ) random tapes
ω1, . . . ωt, for P , resulting in deterministic strategies for a receiver. A receiver using random tape ω and
common input x is represented by Rωx .

An instance-dependent commitment scheme Comx = (Sx, Rx) is resettably computationally binding
on I ⊆ {0, 1}∗ if for every nonuniform PPT S∗, there exists a negligible function ε such that for all
x ∈ I the malicious sender S∗ succeeds in the following game with probability at most ε(|x|).

S∗ interacts with polynomially many instantiations of receivers Rωx where x ∈ {x1, . . . xpoly(κ)} and
ω ∈ {ω1, . . . ωt} for x and ω of its choice. It finally obtains a commitments for each of these sessions.
Then S∗ outputs pairs (0, d0) and (1, d1), and a common input x and a commitment c generated in one
of these sessions with Rx, and succeeds if in the reveal stage, Rx(0, d0, c) = Rx(1, d1, c) = accept.

Lemma 4 (Follows from Theorem 1 of [OV08]). For every language L ∈ SZK, there exists an
instance-dependent commitment scheme6 that is statistically hiding on instances x 6∈ L and statistically

6 It can be observed that we have reversed the binding and hiding properties. Since SZK is closed under comple-
ment [Oka96], this follows immediately.

14

binding7 on instances x ∈ L. Moreover, this instance-dependent commitment scheme is public coin and
is constant round.

Next we use this instance-dependent commitment scheme and construct an instance-dependent
commitment scheme which is resettable computationally binding on instances x ∈ L and statistically
hiding on instances x 6∈ L. We do this in a way very similar to the BGGL Transformation (Proposition
3.5 of [BGGL01]). The key idea is that the receiver chooses its messages based on the output of a
pseudorandom function applied on the transcript of the protocol, so far.

Lemma 5 (Similar to Proposition 3.1 of [BGGL01]). Let L ∈ SZK and (Sx, Rx) be a public-
coin and constant-round instance-dependent commitment scheme that is statistically hiding on instances
x 6∈ L and computationally binding on instances x ∈ L. Also, let {fs : {0, 1}∗ → {0, 1}|s|} be a
family of pseudorandom functions. Assume, without loss of generality, that on common input x, in
each round, the receiver Rx sends a uniformly distributed |x|-bit string. Let R′x(s) be a deterministic
receiver program that, on common input x ∈ L, emulates Rx except that it determines the current
round message by applying fs to the transcript so far. Let R′x be defined so that on common input x
and uniformly random tape s ∈ {0, 1}|x|, it acts as R′x(s). Then the commitment scheme (Sx, R

′
x) is an

instance-dependent commitment scheme that is statistically hiding on instances x 6∈ L and resettable
computationally binding on instances x ∈ L.

Proof. First note that the statistically hiding property is defined for a honest sender, and of course is
not affected by the fact that an adversarial sender can reset the receiver, since the hiding property cares
about dishonest receivers only.

Now we need to prove that if a commitment (Sx, Rx) is computationally binding when x ∈ L then
(Sx, R

′
x) is resettable computationally binding when x ∈ L. The proof follows essentially the principles

of [BGGL01] but we give a sketch here for the sake of completeness. Parts of the proof presented here
are verbatim from [BGGL01]. We claim that for any polynomial-size adversarial sender S∗ that interacts
with a resettable receiver R′x and breaks the binding property in one of the sessions with a probability ε,
there exists a polynomial-size adversarial sender S∗∗ that interacts with a (non-resettable) receiver Rx
and breaks the binding property with a probability at least ε/kc, where k is the bound on the number
of messages sent by S∗ and c is the number of rounds in the original protocol. Note that c is a constant.

Our cheating sender S∗∗ proceeds as follows: It uniformly selects i1, . . . , ic ∈ {1 . . . k}, and invokes
(the resetting sender) S∗ while emulating an imaginary resettable receiver RFx (This verifier RFx is same
as R′x, except that it uses a truly random function F : {0, 1}∗ → {0, 1}|x|, rather that a pseudorandom
function fs, for |s| = |x|. Loosely speaking, by the definition of pseudorandom functions, all non-
uniform polynomial-size senders must behave in essentially the same way under this replacement.) as
follows. If the prefix of the current session transcript is identical to a corresponding prefix of a previous
session, then S∗∗ answers by copying the same answer it has given in the previous session (to that very
same session transcript prefix). If (in the current session) S∗ sends a message that together with the
previous messages of the current session forms a new transcript prefix (i.e., the prefix of the current
session transcript is different from the prefixes of all prior sessions), then S∗∗ answers according to the
following two cases:

1. The index of the current message of S∗∗ does not equal any of the c integers to i1, . . . , ic selected
above. In this case, S∗∗ provides S∗ with a uniformly selected |x|-bit long string.

2. Otherwise (i.e., the index of the current message of S∗ equals one of the c integers to i1, . . . , ic), S
∗∗

forwards the current message (of S∗) to Rx and feeds S∗ with the message from Rx. (We stress that
these are the only message of S∗ for which the emulation involves interaction with Rx.)

7 This implies that the scheme is also computationally binding. We rely on this weaker property only.

15

Clearly, for any possible choice of integers i1, . . . , ic, the distribution of messages seen by S∗ when
actually interacting with such an imaginary receiver. The reason being that in both cases different
prefixes of session transcripts are answered with uniformly and independently distributed strings, while
session transcripts with identical prefixes are answered with the same string. This is possible because
the original receiver is public coin.

Toward the analysis, we call a message sent by S∗ novel if together with the previous messages of
the current session it forms a new transcript prefix (i.e., the prefix of the current session transcript is
different from the prefixes of all prior sessions). Recall that novel messages are exactly those that cause
S∗∗ to pass along (to S∗) a new answer (rather than copying an answer given in a previous session). The
UrMessage of a non-novel message is the corresponding message that appears in the first session having
a transcript-prefix that is identical to the current session transcript-prefix. That is, the answer to the
UrMessage of a (non-novel) message is the one being retrieved from the memory in order to answer the
current message. The UrMessage of a novel message is the message itself. Using this terminology, note
that the new sender S∗∗ succeeds in cheating Rx if the chosen integers i1, . . . , ic equal the indices (within
the sequence of all messages sent by S∗) of the c UrMessages that correspond to the c messages sent
in a session in which S∗ is able to cheat, and therefore provide two commitments, with the imaginary
receiver. Since, with probability ε such a cheating session exists, S∗∗ succeeds provided it has guessed
its message indices (i.e., c indices out of k).

Note. Although the commitment schemes described in this section are for committing to bits, we can
use standard arguments to extend them to the case of strings of length greater than 1. Further, as we are
only concerned with string commitments in this paper, we will abuse notation and use ComL,x = (Sx, Rx)
to mean the corresponding string commitment scheme.

3.3 Instance-Dependent Argument System 〈PrsSWIx,VrsSWIx〉.

We will need an instance-dependent argument system 〈PrsSWIx, VrsSWIx〉 where PrsSWIx and VrsSWIx
are the prover and the verifier respectively, with common inputs x and a theorem statement ξ. When8

x is in the language, we want that 〈PrsSWIx,VrsSWIx〉 be a resettably sound argument of knowledge for
NP. In this case, very roughly, 〈PrsSWIx,VrsSWIx〉 has the additional property that the soundness holds
even when the prover can reset the verifier. If instead x is not in the language then 〈PrsSWIx,VrsSWIx〉
must be statistical witness indistinguishable. We construct this argument system by instantiating Blum’s
Hamiltonicity protocol with the constant-round public-coin ID commitment scheme of [OV08]. We make
it resettably sound by using a pseudorandom function [BGGL01]. Details follow.

We define an instance-dependent argument system 〈PrsSWIx,VrsSWIx〉, where PrsSWIx and VrsSWIx
are the prover and the verifier respectively. In our constructions, 〈PrsSWIx,VrsSWIx〉 will be used as a
sub-protocol within an outer protocol. We stress that there are two languages involved: the language
L, for which the outer protocol is constructed, and the language L for which the argument system
〈PrsSWIx,VrsSWIx〉 is used. It is important to note that the instance on which 〈PrsSWIx,VrsSWIx〉 de-
pends is an instance x of the language L, and not instance ξ of language L. Looking ahead, 〈PrsSWIx,VrsSWIx〉
is simply going to be the resettably sound Blum witness indistinguishable argument of knowledge9 with
the following modification: all commitments are replaced by ID commitments corresponding to the
language L.

8 In general, in proof systems when an ID commitment is used, it is parameterized by the theorem statement ξ being
proven. In our case the ID commitment is actually parameterized by a different value x. Looking ahead, x would be
the theorem statement of an interactive proof system that uses the sub-protocol 〈PrsSWIx,VrsSWIx〉 to prove the NP
statement ξ.

9 Blum’s witness indistinguishable proof system for Hamiltonicity can be made resettably sound by using the BGGL
transformation. See [BGGL01].

16

Definition 18 (Instance-Dependent Argument System). Given a language L, an instance-dependent
argument system for a language L is a family of protocols {〈Px, Vx〉}x∈{0,1}∗, such that for every
x ∈ { 0, 1 }∗, we have:

1. At the beginning of the protocol, both the prover and the verifier get an instance of language L, ξ,
as common input. The prover also gets a witness w for the theorem ξ.

2. The prover Px and verifier Vx run in polynomial time in the size of the input.
3. For every x ∈ {0, 1}∗, if both prover Px and verifier Vx follow their prescribed strategy, Vx accepts

with overwhelming probability if ξ ∈ L.

An Instance-Dependent Interactive Argument System {〈Px, Vx〉}x∈{0,1}∗ is public coin if for every x ∈
{0, 1}∗, all messages sent by Vx are independent random coins.

We want the following instance dependent behaviour from {〈Px, Vx〉}x∈{ 0,1 }∗ :

1. When x ∈ L, we want that 〈Px, Vx〉 be a resettably sound argument of knowledge for NP.
2. When x /∈ L, 〈Px, Vx〉 must be statistical witness indistinguishable.

To simplify the notation we use 〈Px, Vx〉 to denote an instance-dependent argument system {〈Px, Vx〉}x∈{0,1}∗ .
The resettable-completeness, resettable-soundness and statistical witness indistinguishability proper-
ties of standard proof systems extend in a natural way to their instance-dependent analogues. Here,
as in [BGGL01], we stress that resettable-completeness concerns the fact that a verifier will accept
with overwhelming probability instances adaptively selected by the resetting adversary as long as the
instances are in the language.

Definition 19 (Instance-Dependent Resettably-Sound Argument, modified from Definition
3.1 from [BGGL01]). A resetting attack of an adversarial prover P ∗x on a resettable verifier Vx, is
defined by the following two-step random process, indexed by a security parameter κ.

1. Uniformly select and fix t = poly(κ) random-tapes, denoted r1, . . . , rt, for Vx resulting in determin-

istic strategies V
(j)
x (ξ) = Vx,ξ,rj defined by Vx,ξ,rj (α) = Vx(ξ, rj , α), where ξ ∈ { 0, 1 }κ and j ∈ [t].

Each V
(j)
x (ξ) is called an incarnation of Vx.

2. On input 1κ, machine P ∗x is allowed to initiate poly(κ)-many interactions with V
(j)
x (ξ)’s. The activity

of P ∗ proceeds in rounds. In each round P ∗x chooses ξ ∈ { 0, 1 }κ and j ∈ [t], thus defining V
(j)
x (ξ),

and conducts a complete session with it.

We say that an instance-dependent argument system 〈Px, Vx〉 is a resettably sound argument system
for L on I ⊆ {0, 1}∗ if for all x ∈ I the following two conditions hold:

1. Resettable-Completeness: Consider a resetting attack of polynomial-time adversary, and suppose

that in some session, after selecting an incarnation V
(j)
x (ξ), the attacker follows the strategy Px.

Then, if ξ ∈ L then V
(j)
x (ξ) rejects with negligible probability.

2. Resettable-Soundness: For every resetting attack of a polynomial-time adversary, the probability that

in some session the corresponding V
(j)
x (ξ) has accepted and ξ 6∈ L is negligible.

Definition 20 (Instance-Dependent Resettably-Sound Argument of Knowledge, sketch,
modified from Definition 3.2 from [BGGL01]). Let RL ⊆ { 0, 1 }∗×{ 0, 1 }∗ be the NP-relation for
a NP-language L = { ξ : ∃w such that (ξ, w) ∈ RL }. We say 〈Px, Vx〉 is a resettably sound argument
of knowledge for RL on I ⊆ {0, 1}∗ if,

1. 〈Px, Vx〉 is resettably sound argument for L on I, and,

17

2. for all x ∈ I and for every polynomial q, there exists a probabilistic expected polynomial-time oracle
machine E such that for every resetting attack P ∗x of size q(κ), the probability that EP

∗
x (1κ) outputs

a witness for the input selected in the last session is at most negligibly smaller than the probability
that P ∗x convinces Vx in the last session.

In [BGGL01], the authors present a transformation that achieves the following result.

Lemma 6 (Simplified from Proposition 3.5 of [BGGL01]). Let L ∈ NP and RL be a corre-
sponding witness relation. Let 〈Px, Vx〉 be a constant-round, public-coin argument of knowledge for RL
on I. Then 〈Px, Vx〉 can be transformed into 〈P ′x, V ′x〉, such that, if 〈Px, Vx〉 is witness-indistinguishable
then, 〈P ′x, V ′x〉 is a resettably sound witness-indistinguishable argument of knowledge for RL on I.

We note (as observed in [BGGL01] for a similar claim) that if 〈Px, Vx〉 is statistically witness in-
distinguishable on I, then so is 〈P ′x, V ′x〉, as the witness-indistinguishability property of 〈Px, Vx〉 refers
to all possible adversarial verifiers, including V ′x. We will use V ω

x to denote the deterministic verifier
strategy obtained by fixing Vx’s random tape as ω.

Let 〈Px, Vx〉 be a constant-round, public-coin argument of knowledge on I ⊆ {0, 1}∗ for NP relation
RL, and let 〈P ′x, V ′x〉 be the argument system on I obtained as in Lemma 6. Then, we have the following
lemma.

Corollary 1 (Follows directly from Proof of Proposition 3.5 of [BGGL01]). For, any polynomial-
size adversarial prover P ′x that convinces V ′x to accept some common input ξ with probability ε, there
exists a polynomial-size adversarial prover P ′′x that convinces a (non-resettable) verifier Vx to accept the
same ξ with probability at least ε/mc, where m is a bound on the number of messages sent by the prover
P ′x and c is the number of rounds in the original protocol.

Definition 21 (Statistical Witness Indistinguishability). Let 〈Px, Vx〉 be an instance-dependent
argument system for language L and witness relation RL. Then 〈Px, Vx〉 is statistically witness-indistinguishable
on I ⊆ {0, 1}∗ if for every non-uniform PPT adversarial verifier V ∗, with auxiliary input z, for all ξ ∈ L
(where |ξ| is polynomial in the security parameter) and witnesses w1, w2 ∈ RL(ξ), the following ensem-
bles:

{viewV ∗x (〈Px(w1), V
∗
x (z)〉(ξ))}x∈I,ξ∈L,z∈{0,1}∗ , {viewV ∗x (〈Px(w2), V

∗
x (z)〉(ξ))}x∈I,ξ∈L,z∈{0,1}∗

are statistically indistinguishable.

Construction. We will use Blum’s constant-round public-coin argument system for Hamiltonicity
where commitments in the first message of Blum’s protocol are played using the instance-dependent
commitment scheme described in earlier. Since for x ∈ L, COM is computationally binding this pro-
tocol will be an argument of knowledge (which implies soundness). On the other hand, for x /∈ L the
commitment is statistically hiding and thus our instantiation of Blum’s protocol will be statistically
witness-indistinguishable. Applying the BGGL [BGGL01] transformation, using Lemma 6 we have that
when x 6∈ L, then the transformed protocol will enjoy resettable soundness (i.e., soundness will hold even
in case the adversarial prover can reset the verifier) remaining an argument of knowledge. Obviously the
transformation has no impact on the witness indistinguishability since it only affect the behavior of the
honest verifier. We will denote this transformed instance-dependent protocol by 〈PrsSWIx,VrsSWIx〉.
We stress that this protocol exists for all languages in SZK.

4 Resettable Partially Honest Verifier Statistical Zero Knowledge

We aim at constructing a resettable statistical zero-knowledge proof system. We start by building a sim-
pler protocol which is resettable statistical zero knowledge only against a restricted class of adversarial

18

verifiers. In subsequent sections, we build upon this simpler protocol to achieve our general results. The
adversarial verifiers that we consider here are restricted to “act honestly” but only in a limited manner.
We call such verifiers partially honest. As pointed out in § 3, we use a non-interactive ID commitment
scheme. Looking ahead, in our protocol this commitment is used by the verifier to commit to certain
messages. A partially honest verifier is required to behave honestly when computing the commitment
function, using pure randomness to commit to messages. Besides this it can cheat in any other way.

Definition 22 (Partially Honest Verifier). An adversarial verifier V ∗ for cpHSZK is said to be a
partially honest verifier if the first message of the verifier (α, α0

1,1, α
1
1,1, . . . , α

1
k,k) is such that: there exist

unique m,σbi,j, and there exist ρ0, ρbi,j for 1 ≤ i, j,≤ k, b ∈ { 0, 1 }, such that,

1. α = CL,x(m, ρ0), and,
2. αbi,j = CL,x(σbi,j ; ρ

b
i,j) for each 1 ≤ i, j ≤ k and b ∈ { 0, 1 }, and,

3. σ0i,j ⊕ σ1i,j = m for 1 ≤ i, j ≤ k.

except with negligible (in κ) probability.
Consider the protocol cpHSZK in Fig. 3. The first message generated by the honest verifier uses the

commitment scheme COM. We call this message the determining message. An adversarial verifier V ∗

is called a partially honest verifier if it generates these commitments “honestly.” This requires that: 1)
commitments are “well-formed”, and 2) commitments generated in the first step have unique openings
except with negligible probability. It follows from the description in Section 3.1, that a perfectly binding
COM always has a unique opening. On the other hand a statistically binding COM has a unique
opening (except with negligible probability) given that the coins used in generation of the commitments
are chosen uniformly at random. Because of this difference in the primitive used our final constructions
based on these primitives will be different.

We proceed as follows:

1. We first show a proof system cpHSZK (see Fig. 3) that is concurrent partially honest verifier statis-
tical zero-knowledge (defined below). Informally, a verifier is said to be partially honest if its first
message is “honestly” generated. The formal definition appears in Definition 22.

2. Then, we transform cpHSZK into a resettable partially honest verifier statistical zero-knowledge
rpHSZK (see Fig. 4).

Concurrent Partially Honest Verifier SZK. We start by informally describing the protocol
cpHSZK of Fig. 3. It consists of three phases. The first phase, called the Determining Message Phase,
consists of the verifier sending a commitment to a string m to the prover. We use the extractable
non-interactive ID commitment scheme described informally earlier and formally defined in Section 3.1.
The second phase is roughly a PRS preamble [PRS02] and we refer to it as the PRS Phase. Note that
some commitments are made in the PRS preamble, but we lump these with the commitment to m,
in the Determining Message Phase itself. Finally the prover sends to the verifier the value m. This is
referred to as the Final Message. An adversarial verifier, denoted by V ∗, is called a partially honest
verifier (defined formally in Definition 22) if it generates the non-interactive ID commitments of the
Determining Message Phase “honestly.” This requires that these ID commitments are: (1) “well-formed”
and (2) have unique10 openings (except with negligible probability).

We begin by briefly sketching why cpHSZK is a concurrent statistical zero-knowledge proof system
for L. Completeness follows from binding property of COM: when x ∈ L, the commitments in the De-
termining Message Phase are statistically binding with unique openings with overwhelming probability.

10 It follows from the description in Section 3.1, that a perfectly non-interactive ID commitment COM always has a unique
opening. On the other hand an honest sender statistically non-interactive ID commitment COM, has a unique opening
with overwhelming probability, for honest senders only.

19

Common Input: x ∈ L ∩ { 0, 1 }n and security parameter κ where parameter k = ω(log κ) and n = poly(κ).
Secret Input to P : Witness w such that (x,w) ∈ RL (not needed in case of unbounded prover).

1. Determining Message (V → P) V chooses message m randomly from { 0, 1 }`0 , and computes α = CL,x(m; ρ0)
for some random ρ0 ∈ {0, 1}`1 . For 1 ≤ i ≤ k and 1 ≤ j ≤ k, V randomly chooses σ0

i,j and σ1
i,j such that

σ0
i,j ⊕ σ1

i,j = m. For each (i, j, b), where 1 ≤ i ≤ k, 1 ≤ j ≤ k and b ∈ { 0, 1 }, V randomly chooses ρbi,j ∈ {0, 1}`1
computes the commitment αbi,j := CL,x(σbi,j ; ρ

b
i,j). Finally, V sends all the commitments α, α0

1,1, α
1
1,1, . . . , α

1
k,k to

the prover.
2. PRS Phase (V ⇔ P) For 1 ≤ l ≤ k:

(a) P sends bl chosen randomly in {0, 1}k to V .

(b) Let bil be the ith bit of bl. V sends the openings of α
b1l
l,1, . . . , α

bkl
l,k.

(c) If the opening sent by the verifier is invalid, then P sends ABORT to verifier, and aborts the protocol.
3. Final Message (P → V) P runs the extractor associated to the ID commitment of the Determining Message

Phase. If the extractor aborts then P aborts, else P sends the output of the extractor m′ to V , who accepts if
m′ = m.

Figure 3. Concurrent Partially Honest Verifier Statistical Zero-Knowledge Proof System: cpHSZK.

Thus, the prover can extract the unique message m and make the verifier accept in the Final Message
Phase. For soundness, note that when x /∈ L, the commitments in the first phase are statistically hiding.
Thus, m committed to in the Determining Message Phase is information theoretically hidden from a
cheating prover (also shares received during the preamble do not give any information), and therefore,
it can convince the verifier only with negligible probability.

To argue zero knowledge, we use the rewinding strategy of [PRS02]. Using the PRS rewinding
strategy we can construct a simulator that obliviously rewinds the verifier and is guaranteed (except
with negligible probability) to obtain the opening m committed to in the Determining Message Phase,
before the end of the PRS Phase for every session (except with negligible probability) initiated by the
cheating verifier. Once the cpHSZK simulator knows the message m committed in the Determining
Message Phase, it can play it back to the verifier in the Final Phase.

Note that to prove zero knowledge, we crucially use the fact that the verifier is partially honest.
First, we need that the commitment sent by the verifier are correctly formed. This is to make sure that
the commitments are done in accordance with the specifications for the first message of PRS preamble.
Secondly, we need that these commitments have unique openings with overwhelming probability. If, for
example, verifier’s commitment to m in the Determining Message Phase has two openings, then the
simulation would fail. Indeed, an unbounded prover unable to decide which is the right opening, would
always abort while the simulator would still extract some message from the PRS Phase and send that
to the verifier in the Final Phase. The case of an efficient prover instead would result in extracting a
message that could depend on the witness used, while the one obtained by the simulator would not
depend on the witness, therefore potentially generating a distinguishable deviation in the transcript.

Resettable Partially Honest Verifier SZK. We now exploit a key property of cpHSZK and
transform it into a resettable statistical zero-knowledge proof system secure against partially honest
adversaries. We note that the final message of cpHSZK depends only on the first message of the verifier.
In particular, it depends neither on the random tape of the prover, nor on its witness. Also messages
of the prover in the PRS phase are just random strings. Thus, very informally, an adversarial verifier
can not obtain any advantage by resetting the prover, as after every reset, the verifier will get the same
message back in the final round. This is a crucial fact that allows us to achieve resettability.

The transformed protocol, called rpHSZK (Fig. 4), is the same as cpHSZK, except for one difference:
in the PRS Phase, instead of sending random challenges in Step 2(a), the prover uses pseudorandom
challenges. The prover chooses a random seed s for selecting a function from a PRF family { fs }s∈{0,1}∗ ,
and sets ω as the output of fs() evaluated on the message received during the Determining Message

20

Common Input: x ∈ L ∩ { 0, 1 }n, k = ω(log κ), n = poly(κ) for a security parameter κ.
Secret Input to P : Witness w such that (x,w) ∈ RL (not needed in case of unbounded prover).

1. Determining Message Same as in Fig. 3.
2. PRS Phase (V ⇔ P) P chooses a random seed s, and sets ω = fs(x, α, α

0
1,1, . . . , α

1
k,k). Now P divides ω into k

blocks of k-bits each, i.e., ω = ω1 ◦ . . . ◦ ωk. For 1 ≤ l ≤ k,
(a) P sends ωl to V .
(b) Same as Fig. 3 Step 2b.
(c) Same as in Fig. 3 Step 2c.

3. Final Message Same as in Fig. 3.

Figure 4. Resettable Statistical Partially Honest Verifier Zero-Knowledge Proof System rpHSZK.

Phase. The prover uses this ω as its random tape for the PRS phase. A modification of the PRS
simulation where the simulator uses both pseudorandom and random messages during the preamble,
along with other known tricks [CGGM00] allows us to prove that this protocol is a resettable statistical
zero-knowledge proof system with respect to partially honest verifiers.

We now provide the details of the proofs discussed above.

Concurrent Statistical Partially Honest Verifier Zero-Knowledge. Consider the protocol cpHSZK
(in Fig. 3). To show that the protocol cpHSZK is concurrent partially honest verifier statistical zero-
knowledge, we directly use the rewinding strategy of PRS [PRS02]. The PRS simulator sim (Fig. 5)
executes an oblivious rewinding strategy in the hope of obtaining two different responses from V ∗ for
the same slot. A slot is defined as prover’s k-bit challenge, and verifier’s response to that challenge, in
the same session, and the ‘challenge-response’ phase of that session consists of the k-slots in Step 2 of
protocol cpHSZK. Note that if the simulator is able to obtain two different responses from V ∗ for the
same slot, then there exists (i, j) such that the simulator has obtained both σ0i,j and σ1i,j . This allows
the simulator to obtain message m committed by V ∗ in the first round, and can play the final round of
the session (when P has to return m) correctly, making V ∗ accept.

Let V ∗ be an adversarial verifier, and consider the simulation of V ∗ via sim. Over the probability
space defined by the random tapes of simulator sim, we define the event ExtractFailV ∗ as follows: there
exists a session s, such that the simulator sim has finished the challenge-response phase for session s, but
has not extracted the message m for that session yet. Note that in this case, sim can not proceed further
in the simulation. It is proved in [PRS02] that the probability of this event occurring is negligible.

Lemma 7 ([PRS02]). Let V ∗ be an adversarial verifier for cpHSZK. Then, the probability of occur-
rence of ExtractFailV ∗ is negligible in κ.

We now show that protocol cpHSZK is statistical concurrent partially honest verifier zero-knowledge.

Lemma 8. The protocol cpHSZK is concurrent partially honest verifier statistical zero-knowledge proof
any for language L that admits a statistical non-interactive instance-dependent commitment scheme
COM.

Proof. We first argue completeness and soundness. Let x ∈ L and first consider the case that COM
is perfectly binding on yes-instances. In this case, P can (possibly inefficiently) extract the message
committed by V in the determining message, and send the correct message back to V , which accepts
with probability 1. Now consider the case that COM is statistically binding on the yes-instances.
Then, as V constructs all instance-dependent commitments honestly (that is by uniformly choosing the
randomness), the determining message would have two openings only with negligible probability. Thus,
in this case, V accepts with probability negligibly close to 1.

21

Now let us consider the soundness property. Let x /∈ L. In this case, the commitment scheme COM
is statistically hiding. Thus, the instance-dependent commitments sent as the determining message do
not reveal any information about the message m committed by V . Now, consider the PRS Phase. In
this phase, the prover receives openings of shares of m. However, for each (i, j), it learns either σ0i,j or

σ1i,j , and never both. As these are random shares, they don’t reveal any information about m. Thus,
when x /∈ L, prover’s view is statistically independent of the message m, and therefore the probability
that it can send the correct message in the final round is negligible.

Now we prove that cpHSZK enjoys concurrent partially honest verifier statistical zero knowledge.
We use the simulator sim mentioned before. First, note that messages sent by sim in the challenge-
response phase are identically distributed to messages sent by the real prover in that phase. Also, as the
probability of occurrence of ExtractFailV ∗ is negligible, with all but negligible probability, sim extracts
some message m′, which is then sent to the verifier. It follows from the definition of partially honest
verifier, and the statistical binding property of the instance-dependent commitment scheme COM, that
(for every session) m′ is identical (except with negligible probability) to the final message played by the
real prover.

Input: (l, hist, T)
Bottom level (l = 1):

– Uniformly choose a first stage prover message p, and feed V ∗ with (hist, p).
– Store V ∗’s answer v, in T.
– Output (p, v), T .

Recursive Step (l > 1):

– Set (p̃1, ṽ1, . . . , p̃l/2, ṽl/2), T1 ← sim(l/2, hist, T).
– Set (p1, v1, . . . , pl/2, vl/2), T2 ← sim(l/2, hist, T1).
– Set (p̃l/2+1, ṽl/2+1, . . . , p̃l, ṽl), T3 ← sim(l/2, hist, T2).
– Set (pl/2+1, vl/2+1, . . . , pl, vl), T4 ← sim(l/2, hist, T3).
– Output (p1, v1, . . . , pl, vl), T4.

Figure 5. The PRS simulator, sim.

Resettable Partially Honest Verifier Statistical ZK. In this subsection, we convert the concurrent
partially honest verifier statistical zero-knowledge protocol cpHSZK to a resettable partially honest
verifier statistical zero-knowledge protocol rpHSZK (Fig. 4). The transformation is very similar to the
CGGM-transformation ([CGGM00]), where the prover applies a PRF to the determining message of
the session, and uses its output as the randomness for the rest of the protocol. If the verifier resets the
prover and changes the first (determining) message of the session, prover’s subsequent responses also
change, as the PRF is now applied to the new determining message. On the other hand, if the verifier
resets and plays the same determining message, then all of prover’s responses are the same as before.
Thus, intuitively, the verifier does not gain any advantage by resetting the prover.

As pointed out in the introduction, the standard techniques proposed for constructing resettable
zero-knowledge proof systems are not suited to construct resettable statistical zero-knowledge proof
systems. We stress that novelty of our argument here is in cpHSZK, which has certain special properties
that allow it to be converted to a resettable statistical zero-knowledge proof systems. In [CGGM00],
the CGGM-transformation is applied to obtain resettable computational zero-knowledge. On the other
hand, because of the special property of cpHSZK, we are able to obtain statistical zero-knowledge (using

22

the same CGGM transformation). This is because the messages of the prover depend either only on
its randomness, or only on the verifier’s messages. Soundness comes from the fact that the prover can
successfully generate these messages only if the theorem is true. We stress that our proof differs from
the one of [CGGM00] also in the construction of the simulator. Our simulator must use pseudorandom
coins unlike [CGGM00] where as they use pure random coins. However a simulator using pseudorandom
coins does not gain anything by rewinding (since the same identical messages would be played again).
We deal with this problem by having the simulator use pseudorandom coins for messages that will
appear in the final transcript while using pure random coins for messages played during a look-ahead
procedure, that therefore will not be visible to the unbounded distinguisher.

We begin by informally describing the steps we take in order to prove that rpHSZK is a resettable
partially honest verifier statistical zero-knowledge proof system.

1. We first prove that rpHSZK is in fact a concurrent statistical partially honest verifier zero-knowledge
protocol. We do this by constructing a modified PRS simulator msim (note that because the real
transcript of rpHSZK contains pseudorandom challenges from the prover, we can not use the original
PRS simulator sim, as it uses random challenges).

2. Then we convert the resetting partially honest verifier V ∗ to an intermediate concurrent par-
tially honest verifier W ∗. This is similar to the construction of the ‘hybrid adversarial verifier’
in [CGGM00]. This transformation ensures that the output of V ∗ (when interacting with rpHSZK
prover) is distributed identically to the output of W ∗ (when interacting with the cpHSZK prover).
Thus, the zero-knowledge property will follow from the simulator constructed in Step 1 above.

The modified simulator msim (Fig. 6) uses the same rewinding strategy as sim, except that it uses
pseudorandom challenges in the “main thread.” Because V ∗ (and thus W ∗) is polynomially bounded,
the probability that msim gets stuck is only negligibly different from the probability that sim gets stuck.
Further, the challenges generated by msim and the real prover (in rpHSZK) are identically distributed in
the main thread, and thus the views given in output by V ∗ corresponding to the main thread execution
are statistically close.

We begin by proving that rpHSZK is also concurrently secure. The completeness and soundness
follow from the completeness and soundness of cpHSZK. To prove zero-knowledge, we modify the PRS
simulator obtaining msim (Fig. 6). The simulator msim is similar to the PRS simulator, except it uses
pseudorandom challenges in the main thread, unlike sim which uses completely random challenges (both
simulators use random challenges in all the look-ahead threads). Let V ∗ be an adversarial concurrent
verifier for rpHSZK, and consider the simulation of V ∗ via msim. Over the probability space defined
by the random tapes of simulator msim, we define the event ExtractFailV ∗

11 as follows: there exists
a session s, such that the simulator msim has finished the challenge-response phase for session s, but
has not extracted the message m for that session yet. We note that conditioned on ExtractFailV ∗ not
occurring (and because V ∗ is partially honest), the distribution of the main thread of msim is statistically
close to the distribution of the real transcript. This is because the messages in the PRS preamble are
chosen from the same distribution by both the real prover and msim(in its main thread). Further, as
the determining message has a unique opening (with all but negligible probability), and V ∗ does not
cheat in constructing the shares (as it is partially honest), the final message is identical in both the
simulation and the real executions. Thus, to complete the proof of zero-knowledge, we need to prove
that the probability of occurrance of ExtractFailV ∗ is negligible in κ.

Lemma 9. Let V ∗ be a partially-honest adversarial verifier for rpHSZK. Then, the probability of oc-
currance of ExtractFailV ∗ is negligible in κ.

11 Note that this event is different from the ExtractFailV ∗ event used in Lemma 7, as the underlying probability spaces are
different. We use the same name for the two events for notational convenience.

23

Proof. The proof follows from a standard hybrid argument. We construct hybrids starting with sim
and leading to msim in the final hybrid. Let the first hybrid correspond to the interaction between
sim and V ∗. We call this H0. We recall that sim uses random coins to generate queries in the PRS
Phase. Therefore all queries in H0 are generated using random coins. Consider the hybrid H1 such that
pseudorandom coins are used in the main thread of the first session and random coins for the rest of the
sessions. We define a series of hybrids Hi such that pseudorandom coins are used in the main thread for
the first i sessions and random coins are used for the rest of the sessions. If there are N sessions then we
will have N + 1 hybrids. The only difference between Hi and Hi+1 is that pseudorandom coins are used
in main thread for the i+ 1th session while random coins are used in the Hi. Note that HN corresponds
to the interaction between msim and V ∗. If the probability of msim getting stuck is non-negligibly
different from the probability that sim gets stuck, then the hybrids H0 and HN will be non-negligibly
far apart. Since N = poly(κ), there will exist hybrids Hi and Hi+1 which are non-negligibly far apart.
In that case we can construct an adversary that can distinguish random bits from pseudorandom bits.
This is not possible since V ∗ is polynomially bounded. Therefore, since the probability that sim gets
stuck is negligible (as in Lemma 7), we have that the probability that msim gets stuck is negligible.

Intermediate Verifier W ∗. Here we explain the construction of W ∗ in brief.
Informally speaking W ∗ acts as a “mediator” that intercepts messages from V ∗ on one side, and

conveys them to the prover on the other side. Verifier W ∗ must handle messages from V ∗ to the prover
in such a way that it looks like a concurrent adversary. To do this, W ∗ keeps a record of the sessions
opened by the resetting adversary V ∗. Every time V ∗ opens a new session, W ∗ proceeds as follows:
if the session is opened with a new incarnation of the prover, then W ∗ opens a new session with the
prover. However, if the session is a repeat session (i.e., a reset of a session previously opened), then W ∗

simply plays the messages from the previous invocation of this session. In this case, W ∗ does not need
to communicate with the prover at all.

We describe W ∗ more formally now. In the following, we will use the notation P i,j,∆t to refer to the
interaction of V ∗ with the (i, j)th incarnation of the prover, where V ∗’s determining message is ∆t.

1. V ∗ initiates a new session P (i,j,∆t). In this case W ∗ initiates a new session P (i,j,∆t) and forwards
the message ∆t as the determining message for the session to the prover.

2. V ∗ initiates a repeat session P (i,j,∆t). In this case W ∗ must send the message that W ∗ had sent last
time. In order to deal with this W ∗ retrieves the message that was generated previously from the
store and sends it to V ∗.

3. V ∗ responds to a challenge corresponding to session P (i,j,∆t). If the response is not well-formed then
W ∗ sends abort to V ∗. If the response challenge message (or the final message of prover) has already
been sent to W ∗, then retrieve that message and send it to V ∗. Otherwise, it forwards the message of
V ∗ to the prover and forwards the response of the prover to W ∗. It also stores the prover’s response
(challenge value or the final message of prover), in case it needs to be sent again to V ∗.

4. V ∗ terminates. Whenever V ∗ sends a termination message, W ∗ also terminates. It outputs the
transcript generated by V ∗ as its output.

Lemma 10. Views 〈P (y), V ∗〉(x) and 〈P (y),W ∗〉(x) are identical.

Proof. The proof of the the claim follows directly by the construction of W ∗.

Lemma 11. If a family of one-way functions exist, and L admits a statistical non-interactive ID com-
mitment scheme COM then there exists a resettable partially honest verifier statistical zero-knowledge
proof system for L.

24

Input: (l, hist, T, b) (Invoked with b = 1)
Bottom level (l = 1):

– If b = 0 then uniformly choose a first stage prover challenge message p, else generate an honest prover challenge
message p using a pseudo-random function and feed V ∗ with (hist, p).

– Store V ∗’s answer v, in T.
– Output (p, v), T .

Recursive Step (l > 1):

– Set (p̃1, ṽ1, . . . , p̃l/2, ṽl/2), T1 ← msim(l/2, hist, T, 0).
– Set (p1, v1, . . . , pl/2, vl/2), T2 ← msim(l/2, hist, T1, b).
– Set (p̃l/2+1, ṽl/2+1, . . . , p̃l, ṽl), T3 ← msim(l/2, hist, T2, 0).
– Set (pl/2+1, vl/2+1, . . . , pl, vl), T4 ← msim(l/2, hist, T3, b).
– Output (p1, v1, . . . , pl, vl), T4.

Figure 6. Modified PRS simulator, msim.

Proof. Completeness of rpHSZK follows directly from the completeness of cpHSZK. Soundness of rpHSZK
follows directly from the soundness of the protocol cpHSZK. This is because the soundness for rpHSZK
is guaranteed against all cheating senders.

We first construct the simulator SrpHSZK.

1. SrpHSZK invokes both msim and V ∗, and uses W ∗. Simulator SrpHSZK relays the messages as follows.
All messages generated by V ∗ for the prover are sent to W ∗. All messages generated by W ∗ for the
verifier are sent to V ∗. All messages generated by W ∗ for the prover are sent to msim. All messages
generated by msim are sent to W ∗.

2. Finally, SrpHSZK outputs the transcript generated by W ∗, corresponding to the main thread execution
of msim.

We show that the output of the verifier in the real interaction and the output of the simulator
SrpHSZK are statistically close via the following hybrids.

Hybrid H0. In this experiment, an honest prover strategy is executed with V ∗. In particular, a random
seed s is chosen, and the PRF fs(·) is applied to the determining message of each session. Thereafter,
this output is used for the challenge-response phase. In the end, if the final message of the session is
reached without aborting, the committed message m is extracted from the determining message, and
sent to V ∗. The output of the experiment is the output of V ∗. This is clearly the real interaction.

Hybrid H1. Same as Hybrid H0, except the intermediate verifier W ∗ is constructed, and used to mediate
the interaction between V ∗ and the honest prover strategy. For each session, the final message is still
extracted from the determining message, and sent to W ∗, which sends it to V ∗. If for any session, the
determining message does not have a unique opening (for the case of statistically-binding COM), that
session is aborted. By Lemma 10, hybrids H0 and H1 are statistically close.

Hybrid H2. In this hybrid, the honest prover strategy is replaced with msim. For each session, it is still
checked if the determining message has a unique opening or not. If not, then that session is aborted.
Else, as the final message, the message extracted by msim is sent for that session.

The challenges sent by msim to V ∗ are identically distributed to the challenges sent by the honest
prover strategy. By Lemma 9 and the fact that V ∗ is a partially honest adversarial verifier, it follows
that hybrids H2 and H1 are statistically close.

25

Hybrid H3. This is the same as previous hybrid, except the determining message is not checked for a
unique opening. By the fact that V ∗ is partially honest verifier, and that COM is statistically binding,
it follows that Hybrids H2 and H3 are statistically close. This is the output of the simulator SrpHSZK.

5 Resettable Statistical ZK from Perfect Non-Interactive ID Commitments

Sub-protocol: 〈PrsSWIx,VrsSWIx〉 is a resettably sound argument of knowledge when x ∈ L and a statistical witness
indistinguishable argument when x 6∈ L.
Common Input: x ∈ L ∩ { 0, 1 }n, k = ω(log κ), n = poly(κ) for a security parameter κ.
Secret Input to P a: Witness w such that (x,w) ∈ RL (not needed in case of unbounded prover).

1. Determining Message: Same as in Fig. 4.
2. Proof of Consistency: (V ⇔ P) V and P run 〈PrsSWIx,VrsSWIx〉, where V plays the role of PrsSWIx, and P

plays the role of VrsSWIx. V proves to P knowledge of m,σbi,j , ρ0, ρ
b
i,j for 1 ≤ i, j,≤ k, b ∈ { 0, 1 }, such that:

(a) α = CL,x(m, ρ0), and,
(b) αbi,j = CL,x(σbi,j ; ρ

b
i,j) for each 1 ≤ i, j ≤ k and b ∈ { 0, 1 }, and,

(c) σ0
i,j ⊕ σ1

i,j = m for 1 ≤ i, j ≤ k.
3. PRS Phase: Same as in Fig. 4.
4. Final Message: Same as in Fig. 4.

a P aborts the protocol in case any proof from the verifiers does not accept or some message is not well formed.
Notice that P uses two different seeds for the PRF f (one in Step 2 and the other one in Step 3).

Figure 7. Resettable Statistical Zero-Knowledge from Perfect Non-Interactive ID Commitments: rSZK.

In this section we consider languages that admit perfect non-interactive ID commitments and we
construct a resettable statistical ZK proof system which is secure against all malicious verifiers.

Let L be a language that admits a perfect non-interactive ID commitment scheme, and let COM be
the corresponding commitment function. We extend the proof system rpHSZK for L to handle arbitrary
malicious verifiers. The main idea is to enforce “partially honest behavior” on the malicious verifier. We
recall that the partially honest restriction on a verifier required that the verifier uses COM to generate
commitments honestly. More specifically, we required that these commitments have unique openings and
are correctly constructed. A fully malicious verifier however can deviate and compute commitments that
do not have the prescribed form. Therefore, the only concern we have is to make sure that commitments
are correctly generated. We enforce this by modifying rpHSZK and adding an extra step to it. This
step requires that the verifier proves to the prover that shares constructed in Step 1 (as part of the
Determining Message) are correct. If this proof is accepted then the prover can conclude that the first
message of the verifier is indeed honestly generated and the malicious verifier is forced into following
the desired partially honest behavior. In our protocol the verifier uses an instance-dependent argument
system 〈PrsSWIx,VrsSWIx〉 such that: when x ∈ L, 〈PrsSWIx,VrsSWIx〉 is a resettably sound argument12

of knowledge, while when x 6∈ L, 〈PrsSWIx,VrsSWIx〉 is statistically witness indistinguishable. Since the
protocol is resettably sound the malicious verifier can not go ahead with incorrect commitments even
when it can reset the prover. For the protocol see Fig. 7.

We need to prove that rSZK (in Fig. 7) is a resettable statistical zero-knowledge proof system. More
formally,

Theorem 1. If a family of one-way functions exists, and L admits a perfect non-interactive ID com-
mitment scheme then there exists a resettable statistical ZK proof system for L.

12 Note that in 〈PrsSWIx,VrsSWIx〉, we used the interactive ID commitment scheme Comx (defined in Section 3.3). We
could have also used the perfect non-interactive ID commitment COM in the case of co-RSR and DDH.

26

We begin by first showing completeness and soundness of rSZK (Fig. 7). We then argue that the protocol
is resettable statistical ZK.
Completeness. If x ∈ L, then the commitment scheme COM is perfectly-binding. Thus, the prover
can always correctly extract the message m committed by the verifier in the determining message,
and send it in the final message. If the commitment scheme permits, this extraction can be done in
polynomial time.
Soundness. Now let us consider the soundness property. Let x /∈ L. In this case, the commitment
scheme COM is statistically hiding. It follows from the statistical hiding of the commitment scheme,
the statistical WI property of the proof of consistency in Step 2, and the fact that only one of σ0i,j
and σ1i,j is ever revealed in the PRS phase, that the view of prover is independent of the message m
committed in the determining message. Thus, the probability that a malicious prover sends the correct
m in the final step is negligible.

Resettable Statistical Zero Knowledge. In order to show that our protocol is resettable statistical
zero-knowledge, by first converting the malicious verifier V ∗ (adversarial verifier for protocol rSZK) and
converts it to a verifier X∗ that is resetting partially honest verifier (except with negligible probability)
for protocol rSZK. We first describe this step. Then we obtain two results about X∗ in Lemma 12 and
Lemma 13. After this has been accomplished we argue in Lemma 14 that we can indeed construct a
simulator that can simulate the view of any malicious V ∗.

Construction of a resetting partially honest verifier X∗. Informally, X∗ acts as a “mediator,”
that intercepts the messages generated by the V ∗ (adversarial verifier for protocol rSZK) and converts it
to a verifier X∗ that is resetting partially honest verifier (except with negligible probability) for protocol
rpHSZK. X∗ acts as the prover PrSZK of rSZK for V ∗ and interacts with the prover PrpHSZK of protocol
rpHSZK. Informally to achieve this conversion, X∗ internally deals with the messages corresponding to
the proof of consistency phase following the honest prover algorithm PrSZK for these stages. After this
part of the interaction with V ∗ have been successfully completed X∗ initiates a session with the PrpHSZK.

Note that V ∗ can interact with prover P
(i,j)
rSZK of its choice and can reset it as it desires. We describe how

X∗ handles the messages with respect to one particular P
(i,j)
rSZK. The messages corresponding to every

P
(i,j)
rSZK are handled in the same way.

1. Corresponding to each P
(i,j)
rSZK, X∗ chooses a fixed random tape.

2. It follows the honest prover algorithm (for protocol rSZK) and responds to messages in the proof of
consistency phase.

3. If in a session the proof of consistency phase is successfully completed then X∗ initiates a new

session with P
(i,j)
rpHSZK and sends the determining message received earlier from V ∗ as the determining

message for the session. All messages between P
(i,j)
rpHSZK and V ∗ after the determining message is sent

to P
(i,j)
rpHSZK are relayed as such.

4. In the end, output the output generated by V ∗.

Lemma 12. The outputs 〈PrSZK(y), V ∗〉(x) and 〈PrpHSZK(y), X∗〉(x) are identically distributed.

Proof. The proof of the claim follows from the construction of X∗.

Lemma 13. For every resetting verifier V ∗ of protocol rSZK(Fig. 7) let ε be the probability that X∗ is
not a resetting partially honest verifier for Protocol rpHSZK(Fig. 4). Then ε is negligible in the security
parameter κ.

27

Proof. We note when x ∈ L, 〈PrsSWIx,VrsSWIx〉 is resettably sound. In every session V ∗ proves that
its first message is well formed. X∗ only forwards this message outside when this proof is accepting. It
follows from the resettable soundness of the proof that these proofs are correct.

We first note that as x ∈ L, all instance-dependent commitments sent by the verifier have unique
openings. Thus, if X∗ is not a resetting partially honest verifier for Protocol rpHSZK, then it must be
the case that shares σbi,js are not consistent with the committed message m. We will show that this
violates the resettable-soundness of 〈PrsSWIx,VrsSWIx〉.

We construct a malicious prover PrsSWI∗x for 〈PrsSWIx,VrsSWIx〉. The prover PrsSWI∗x uses V ∗ to
interact with an external verifier VrsSWIx, while also internally running SrpHSZK. Prover PrsSWIx handles
V ∗’s messages as follows:

1. For all sessions, all messages from Step 2 of the protocol consisting of the Proof of Consistency are
forwarded to the external verifier VrsSWIx. Messages sent back by VrsSWIx are sent to V ∗.

2. For all sessions, messages in the PRS Phase (Step 3) are sent to SrpHSZK, and its responses conveyed
back to V ∗.

3. For all sessions, for the final message, PrsSWI∗x sends the message extracted by SrpHSZK for that
session. If no such message exists, PrsSWI∗x aborts.

We first note that by Lemma 9, the probability that PrsSWI∗x can not send a final message for some
session is negligible in κ. Thus, V ∗’s view in all sessions where it committed to the correct shares, is
statistically close in the above interaction and the real interaction (with real prover of Protocol rpHSZK).
Let s be the first session in which V ∗ cheats; that is, uses incorrect shares of the determining message,
and yet, the proof of consistency is accepted. Then, in session s, V ∗’s view is again statistically close to
the real interaction up to the point it receives the final message. Note that as the shares are incorrect, the
message extracted by SrpHSZK might be different from message committed to the determining message
phase. Thus, V ∗ would detect this deviation, and its execution from that point forward might be very
different from the real interaction. However, the proof of consistency for session s has already been
forwarded to the external verifier, which accepted the proof. Thus, this truncated prover was successful
in proving a false theorem, which contradicts the resettable-soundness of 〈PrsSWIx,VrsSWIx〉, and thus
ε must be negligible.

Construction of SrSZK. Given an adversarial verifier V ∗, we show a simulator SrSZK such that views
〈PrSZK(y), V ∗〉(x) and SV ∗rSZK(x) are statistically close. We now construct the simulator SrSZK as follows.

1. Given oracle access to V ∗ that is an adversarial resetting verifier for protocol rSZK we construct an
adversarial partially honest verifier X∗ for protocol rpHSZK.

2. The output of SrSZK is the output generated by X∗ when interacting with SrpHSZK.

Next we give the proof that the distribution of the transcripts generated by the simulator SrSZK is
statistically close to the distribution on transcripts generated in interaction with an honest resettable
prover.

Lemma 14. Random variables 〈PrSZK(y), V ∗〉(x) and SV ∗rSZK(x) are statistically close.

Proof. Consider the following hybrid experiments.

Hybrid H0. This experiment corresponds to the interaction between an honest prover P of rSZK
which has access to the witness y and V ∗. This clearly corresponds to the real prover interaction
〈PrSZK(y), V ∗〉(x).

28

Hybrid H1. This is the same as the previous hybrid, except that we use the given resetting verifier V ∗

to construct a resetting partially honest verifier X∗. In this hybrid X∗ now interacts with the prover of
rpHSZK that has access to to the witness y. More formally, this hybrid represents 〈PrpHSZK(y), X∗〉(x).
By lemma 12, this hybrid is identical to hybrid H0.

Hybrid H2. This is the same as the previous hybrid, except that now instead of letting X∗ interact
with a prover with a witness, we let X∗ of H1 interact with SrpHSZK. By lemma 13, X∗ is a partially
honest resetting verifier except with negligible probability. Given that X∗ is a partially honest resetting
verifier by Theorem 11, the output of SX∗rpHSZK is statistical close to the output generated by an honest
prover while interacting with X∗. So, hybrids H1 and H2 are statistically close. Note that this hybrid
corresponds exactly to SV ∗rSZK.

Hence, Hybrids H0 and H2 generate transcripts that are statistically close.

Implications. It turns out that perfect non-interactive ID commitment schemes [IOS97,TW87,SCPY94]
are actually known to exist for all languages in co-RSR. co-RSR is the class of languages such that the
complement of each of these languages is random self-reducible. We refer the reader to Section 3.1 for
formal definitions of these classes and how such ID commitment schemes can be constructed. Finally
we note that our protocol rSZK, works for all languages in co-RSR.

Corollary 2. If a family of one-way functions exists and L ∈ co-RSR then there exists a resettable
statistical ZK proof system for L.

Proof. It follows directly from Lemma 1 and Theorem 1.

Similarly, we have the following corollary for languages that admit hash proof systems.

Corollary 3. If L ∈ SZK admits a hash proof system then there exists an efficient-prover resettable
statistical ZK proof system for L.

Proof. The corollary follows directly from the definition of hash proof systems, and Theorem 1.

6 Resettable Statistical ZK for all Languages in SZK

In this section we construct the general proof system which is actually resettable statistical zero knowl-
edge for all languages that have a statistical zero knowledge proof. Just like in previous section, we
start with a resettable partially honest verifier statistical ZK proof system. But we look at all languages
in SZK and construct a resettable statistical ZK proof system which is secure against all malicious
verifiers.

Let L be a language that admits an honest sender statistical non-interactive ID commitment scheme
COM. We extend the proof system rpHSZK for L to handle arbitrary malicious verifiers in our protocol
in Fig. 8. The main idea is to enforce “partially honest behavior” on the malicious verifier. We recall
that the partially honest restriction on a verifier required that the verifier uses COM to generate
commitments honestly. More specifically, we required that these commitments are correctly constructed
and have unique openings. The first requirement can be handled in a way just like in previous section, i.e.
by having the verifier prove to the prover that shares constructed in Step 1 (as part of the Determining
Message) are correct. We use the ID argument system 〈PrsSWIx,VrsSWIx〉 to achieve this. The problem
of uniqueness is more tricky, and we discuss that next.

The difficulty lies in the fact that the statistical non-interactive ID commitment scheme for all
languages in SZK [CCKV08], only works with respect to honest senders. Indeed, if the sender chooses
the randomness for the commitment uniformly, then, with overwhelming probability, the computed

29

commitment has a unique valid opening. However a malicious sender could focus on a set of negligible
size, B, of bad random strings r, such that CL,x(m; r) does not have a unique opening. If a malicious
verifier (that plays as sender of this commitment scheme) is able to pick random strings from B, then
the real interaction and the simulation can be easily distinguished. In the real protocol, the prover tries
to invert the commitment α, finds it does not have a unique opening, and aborts. In the simulation,
the simulator extracts some message m from the PRS phase, and sends m as the final message. As the
simulator is polynomially bounded, it can not detect if the commitment has a unique opening or not. To
use this commitment scheme, we must somehow ensure that the verifier does not use bad randomness
for its commitments. We do this by adding a special coin-flipping subprotocol at the beginning of the
protocol. However, because of reset attacks, the coin-flipping subprotocol introduces several technical
problems.

We begin by describing our coin-flipping protocol.The coin-flipping protocol requires a commitment
scheme such that computational binding holds against resetting senders when x ∈ L and statistical
hiding holds when x 6∈ L. We use the interactive ID commitment scheme ComL,x = (Sx, Rx). The coin
flipping proceeds as follows: first the verifier commits to a random string r1. Let the transcript of the
interactive commitment be c. Then prover applies the sub-exponentially hard PRF fs(c) and obtains
r2 that is sent to the verifier. The randomness that the verifier will use for the non-interactive ID
commitment is r1 ⊕ r2. For technical reasons, the verifier also needs to prove knowledge of r1 after it
has committed to r1. We use the interactive ID argument system 〈PrsSWIx,VrsSWIx〉 for this. In the
security proof, we will use some of the techniques introduced in [BGGL01] to show an adversary that
extracts the randomness used by the adversarial verifier in order to break the binding of the commitment
scheme.

Next we highlight the reasons behind the use of sub-exponentially hard pseudorandom (PRF) func-
tions for our construction. Let α be the statistical non-interactive ID commitment of some message m
sent by the verifier. There are two ways in which α might not have a unique opening. In the first case,
a malicious V ∗, after looking at prover’s response r2, might use an opening of c such that r1 ⊕ r2 ∈ B.
This however would violate the computational binding of the interactive ID commitment scheme secure
against resetting senders used in the coin flipping, thus this event occurs with negligible probability. The
second case is more subtle. It might be possible that performing reset attacks, the verifier can study the
behavior of the PRF, and then can be able to succeed in obtaining that r1⊕ r2 ∈ B with non-negligible
probability (even though the polynomial-time V ∗ does not know the two openings). In this case, we
can not construct a polynomial-time adversary that breaks fs, as we can not efficiently decide if r ∈ B.
This is where we need the sub-exponential hardness of the one-way function and in turn of the PRF.
As |B| is only 2` while the size of the set of all random strings is 2L, where l = o(L), we can give the
entire set B as input to the sub-exponential size circuit that aims at breaking the PRF. The circuit can
now check if the string r is a bad string or not, by searching through its input. Notice that one can give
as input to the circuit the whole B for each of the polynomial number of statements (since for each x
there can be a different B) on which the reset attack is applied (see Definition 3). This sub-exponential
size circuit has still size o(L) and breaks the PRF which contradicts the sub-exponential hardness of
the PRF.

Completeness follows from the fact that when x ∈ L, with overwhelming probability, the commitment
α in the determining message will have a unique opening. Thus, the prover will be able to extract the
committed message and send it as the final message to the verifier, that will accept.

Statistical resettable zero knowledge property of our protocol also follows the same argument. In-
deed, when x ∈ L even a resetting verifier can not cheat during the proofs in Steps 1(c) and 3. Moreover,
the above discussion about the security of the coin-flipping protocol implies that a resetting adversar-
ial verifier is forced into following partially honest behavior when computing the non-interactive ID
commitments.

30

Finally, we look at soundness. Note that when x /∈ L non-interactive ID commitments are statistically
hiding and the protocol 〈PrsSWIx,VrsSWIx〉 is statistical WI in Steps 1(c) and 3. Also note that the
fact that only a single share is revealed in the PRS phase. From this it follows that the prover’s view
when verifier commits message m is statistically close to its view when verifier commits to m′, where
m 6= m′. Thus, the probability that it replies with the correct final message is negligible. Now we are
ready to give the detailed protocol and security proof.

Sub-protocols: 〈PrsSWIx,VrsSWIx〉 is a resettably sound argument of knowledge when x ∈ L and a statistical
witness indistinguishable argument when x 6∈ L; (Sx, Rx) is an interactive ID commitment scheme that is resettably
computational binding when x ∈ L and statistically hiding when x 6∈ L.
Common Input: x ∈ L ∩ { 0, 1 }n, k = ω(log κ), n = poly(κ) for a security parameter κ.
Secret Input to P a: Witness w such that (x,w) ∈ RL (not needed in case of unbounded prover).

1. Coin Flipping
(a) (V ⇔ P): V picks a random value r1 ∈ {0, 1}`, where ` = (2k2 + 1)`1. Now P and V run the commitment

scheme (Sx, Rx) where V plays the sender Sx and commits the string r1. Let r′1 be the random tape used by
V for Sx, and let c be the transcript of this sub-protocol.

(b) PoK of a Committed String (V ⇔ P): Now, P and V run 〈PrsSWIx,VrsSWIx〉, where P plays the verifier
VrsSWIx, and V plays the prover PrsSWIx. V proves to P that there exist r1, r

′
1 such that when Sx is used the

commit r1 using randomness r′1, then the transcript is consistent with c.
(c) (P → V): Let τ |x be the concatenation of the transcript so far and x. P picks a random s1 ∈ {0, 1}poly(κ), sets

r2 = fs1(τ |x) (note that |r2| = (2k2 + 1)`1), and sends it to V .
2. Determining Message

(a) (V → P): V sets ρ = r1 ⊕ r2. Divide ρ into blocks of length `1, i.e., ρ = ρ0 ◦ ρ01,1 ◦ ρ11,1 ◦ . . . ◦ ρ0k,k ◦ ρ1k,k.

(b) V chooses message m randomly from { 0, 1 }`0 , and computes α = CL,x(m; ρ0).
(c) For 1 ≤ i ≤ k and 1 ≤ j ≤ k, V randomly chooses σ0

i,j and σ1
i,j such that σ0

i,j ⊕ σ1
i,j = m. For each (i, j, b),

where 1 ≤ i ≤ k, 1 ≤ j ≤ k and b ∈ { 0, 1 }, V computes the commitment αbi,j := CL,x(σbi,j ; ρ
b
i,j).

Finally, V sends all the commitments α, α0
1,1, α

1
1,1, . . . , α

1
k,k to P .

3. Proof of Consistency (V ⇔ P): Now, P and V run 〈PrsSWIx,VrsSWIx〉, where P plays the verifier VrsSWIx,
and V plays the prover PrsSWIx. V proves to P the knowledge of r1, r

′
1,m, σ

b
i,j for 1 ≤ i, j,≤ k, b ∈ { 0, 1 }, where

r1 ⊕ r2 = ρ0 ◦ ρ01,1 ◦ . . . ◦ ρ1k,k, such that,

(a) When Sx is used to commit r1 with randomness r′1, the transcript is consistent with c, and,
(b) α = CL,x(m, ρ0), and,
(c) αbi,j = CL,x(σbi,j ; ρ

b
i,j) for each 1 ≤ i, j ≤ k and b ∈ { 0, 1 }, and,

(d) σ0
i,j ⊕ σ1

i,j = m for 1 ≤ i, j ≤ k.

4. PRS Phase: Same as in Fig. 4.
5. Final Message: Same as in Fig. 4.

a P aborts the protocol in case any proof from the verifier does not accept or some message is not well formed.
Notice that P uses four different seeds for the PRF f (one in Step 1.b, one in Step 1.c, one in Step 3 and one in
Step 4).

Figure 8. Resettable Statistical Zero-Knowledge Proof System rSZK′ for SZK.

Theorem 2. If a family of sub-exponentially hard one-way functions exists, and L admits a honest-
sender statistical non-interactive ID commitment scheme then there exists a resettable statistical ZK
proof system for L.

As every language in SZK has an honest-sender statistical non-interactive ID commitment scheme (see
Lemma 3, Section 3.1), the previous theorem gives us the following result.

Corollary 4. If a family of sub-exponentially hard one-way functions exists, then SZK = rSZK.

31

We prove this by actually using a cheating resetting verifier that breaks the statistical ZK property
of rSZK′ to construct another resetting partially honest verifier that breaks the statistical ZK property
of rpHSZK. We begin by constructing a resetting partially honest verifier X∗ for rpHSZK.

Construction of a resetting partially honest verifier X∗. The construction of the intermediate
verifier X∗ is very similar to the construction of the intermediate verifier of Section 5. Here, X∗ must
handle the additional messages for the coin-flipping stage. These messages are handled using the honest
prover strategy. All other messages are handled as described in Section 5.

Lemma 15. 〈PrSZK′(y), V ∗〉(x) and 〈PrpHSZK(y), X∗〉(x) are identically distributed.

Proof. The proof of the claim follows from the construction of X∗.

Now we prove that the above X∗ is a resetting partially honest verifier for rpHSZK. Then we can
use our machinery developed in the previous section for the simulation.

Lemma 16. For every resetting verifier V ∗ of rSZK′(Fig. 8) X∗ is a resetting partially honest verifier
for rpHSZK(Fig. 4) except with negligible probability.

Proof. Before starting the proof, we make the following observation: it is sufficient to show that in the
last session, verifier V ∗ is not partially honest with only negligible probability. This is because given a
V ∗ that cheats with non-negligible probability in any session, we can construct V ∗∗ that cheats in the
last session with non-negligible probability: V ∗∗ runs V ∗, and after V ∗ terminates, it randomly selects
a completed session s, and replays it with the external prover. Thus, if V ∗ cheats with non-negligible
probability in some session, then V ∗∗ cheats in the last session with non-negligible probability. As a
further simplification, we only prove that the commitment α sent in Step 2(b) has a unique opening
with overwhelming probability. The same analysis applies to all other instance-dependent commitments
in the session.

Lemma 17. Let α be the commitment played in Step 2(b) of the last session of rSZK′. Let ε be the
probability that α has two distinct openings and P does not abort the protocol before Step 4. Then ε is
negligible in κ.

Proof. (Sketch) As in [BGGL01], we use the extractor for the Blum argument of knowledge twice to
extract the witnesses used by V ∗ in the two proofs in its last session. We have the added complication
of having to extract twice: once from the proof of commitment in Step 1(c), and once from the proof
of consistency in Step 3. We have to be careful that we extract both the proofs from the same session
of the protocol, otherwise we might extract witnesses for different theorems, and we won’t be able to
reach a contradiction. However, these issues can be handled using techniques similar to [BGGL01]. We
first extract from the proof of commitment in Step 1(c). We run V ∗, and follow honest prover’s strategy
for the messages before Step 4. We also run msim and let it handle all PRS preamble messages. For the
final message of a session, we use the message extracted by msim for that session. By Lemma 9, and
resettable-soundness of proof of consistency in Step 3., it follows that with overwhelming probability,
the correct message for the session is extracted.

Let clast be the commitment in Step 1(b) of the last session. Note that we can not use Blum’s
extractor on this last session only. This is because the verifier might have played the same session
before. In this case, as the verifier is sending the same determining message, it knows the messages from
the prover. Thus, if the extractor tries to extract by rewinding and changing its challenge, the verifier
will detect the deviation, and might abort. Thus, we must rewind V ∗ to the first time it plays the
determining message in the last session. That is, we rewind V ∗ to session s, where s is the first session
such that the commitment in Step 1(b) of session is clast. Now we use Blum’s extractor to find the
witness (r1, r

′
1). Next, we rewind and extract from the proof of consistency (Step 3) for the same session

32

s using Blum’s extraction. Let the opening of clast extracted from the proof of consistency be (t1, t
′
1).

The probability of extracting both these values, ε′, is polynomial in ε. At least one of the following two
cases occurs with probability at least ε′/2.

Case 1. The two openings are different, that is, r1 6= t1. In this case we break the binding of the
commitment scheme (Sx, Rx) with probability polynomial in ε′. Thus, ε must be negligible in the
security parameter.

Case 2. The openings are same, i.e., r1 = t1. In this case, we construct a circuit A that distinguishes
the PRF family { fs } from a random function. The non-uniform circuit13 A gets as input the sets Bx
(for all polynomial instances x on which is based the experiment) of bad strings of CL,x. Adversary A
interacts with V ∗ playing the role of the honest prover, with the following modifications:

1. For all sessions, all messages of Step 1(c) are forwarded to the BGGL extractor for the resettably-
sound argument of knowledge.

2. For all sessions, all messages of Step 4 (PRS Preamble) are forwarded to the simulator msim.
3. For the final session, when V ∗ sends commitment c in Step 1(b), adversary A forwards this to the

external challenger, and gets r2 in return, which is either uniformly distributed, or the output of the
PRF. Adversary A sends r2 to V ∗ in Step 1(d).

Let (r1, r
′
1) be the witness extracted from the argument of knowledge above and let x be the instance

of this final session. Adversary A checks if r1 ⊕ r2 ∈ Bx. If so, it guesses that the challenger is a PRF,
else it guesses the challenger is a random function. Thus, by the security of the PRF family, it follows
that ε is negligible.

Finally, it follows from the proof of Lemma 14 using Lemma 15 and Lemma 16 instead of Lemma 12
and Lemma 13, respectively, rSZK′ is a resettable statistical zero-knowledge proof system.

7 Applications

In this section, we highlight the applicability of our techniques, and construct a simple two-round
resettable statistical witness-indistinguishable argument for languages that have efficiently extractable
perfectly binding instance-dependent commitment schemes. As discussed before, this class contains, in
particular, all languages that admit hash proof systems. We note that all results in this section hold in
the stronger model of statistical zero-knowledge where the verifier is computationally unbounded.

Informally, the two-round WI argument consists of the verifier committing to a randomly chosen
message m using the instance-dependent commitment scheme for that language. The prover, using the
witness and the efficient extractor, extracts a message m′ from the commitment and sends it to the
verifier. The verifier accepts if m = m′. Intuitively, as long as verifier’s commitment is well-formed, this
protocol is a perfect WI, as irrespective of the witness and randomness, the prover always extracts the
same message (in fact, prover’s strategy is deterministic). Thus, the only complication is to ensure that
verifier’s commitment is well-formed in a round efficient manner. We enforce this by making the verifier
provide a non-interactive WI proof of “well-formedness” in the first round. Details follow.

As an ingredient, we will need non-interactive WI (NIWI) proofs. The following discussion on non-
interactive proofs is taken from [GOS06b].

13 For simplicity of the exposition and without loss of generality we now describe A as an ITM.

33

Preliminaries. Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x the
statement and w the witness. Let L be the language consisting of statements in R.

A non-interactive proof system [BFM88] for a relation R consists of a common reference string
generation algorithm K, a prover P and a verifier V . We require that they all be probabilistic polynomial
time algorithms, i.e., we are looking at efficient prover proofs. The common reference string generation
algorithm produces a common reference string σ of length Ω(k). The prover takes as input (σ, x, w) and
produces a proof π. The verifier takes as input (σ, x, π) and outputs 1 if the proof is acceptable and 0
if rejecting the proof. We call (K,P, V) a non-interactive proof system for R if it has the completeness
and soundness properties described below.

Completeness. A proof system is complete if an honest prover with a valid witness can convince an
honest verifier. For all adversaries A we have

Pr
[
σ ← K(1k); (x,w)← A(σ);π ← P (σ, x, w) : V (σ, x, π) = 1 if (x,w) ∈ R

]
= 1.

Computational soundness. A proof system is sound if it is infeasible to convince an honest verifier
when the statement is false. For all polynomial size families {xk} of statements xk /∈ L and all non-
uniform polynomial-time adversaries A running on auxiliary input z, we have

Pr
[
σ ← K(1k);π ← A(σ, xk, z) : V (σ, xk, π) = 1

]
< ν(λ)

where ν(·) is a negligible function.

Witness-indistinguishability and non-interactive zap. We call (P, V) a non-interactive zap
for R if (P, V) is a non-interactive proof (with trivial key generation K(1k) = 1k) with witness-
indistinguishability.

Witness-indistinguishability means that proof does not reveal which witness the prover used. For
all non-uniform polynomial-time interactive adversaries A running on auxiliary input z, we have that

Pr
[
(x,w0, w1)← A(1k, z);π ← P (1k, x, w0) : A(π, z) = 1 and (x,w0), (x,w1) ∈ R

]
≈ Pr

[
(x,w0, w1)← A(1k, z);π ← P (1k, x, w1) : A(π, z) = 1 and (x,w0), (x,w1) ∈ R

]
.

A construction of a NIWI proof forNP based on number-theoretic assumptions is shown in [GOS06b].

Our Protocol. Our protocol is presented in Figure 9.

Common Input: Instance x of language L.
Prover’s Input: Witness w.

1. V → P Verifier chooses a random message m, and sends a commitment string c = CL,x(m; r) to Prover, along with
NIWI proof π of the following statement: there exists a random string r and message m, such that c = CL,x(m; r).

2. P → V Prover checks if the NIWI verifier will accept the proof π. If so, using witness w, Prover extracts a message
m′ from c and sends it to Verifier.

3. Finally, Verifier outputs accept iff m = m′.

Figure 9. Resettable Statistical 2-round WI for Language L that admits a Perfect Instance-Dependent Commitment
Scheme COM.

The completeness of the protocol is straightforward. Soundness and witness-indistinguishability is
shown in the following claims.

34

Lemma 18. Let κ be the security parameter. For every adversarial probabilistic polynomial time prover
strategy P ∗, and for every x /∈ L, the probability that P ∗ makes the Verifier in Figure 9 accept is
negligible in κ.

Proof. Let x /∈ L and fix an adversarial strategy P ∗. Over the random coins of the verifier, let the
probability that P ∗ convinces honest Verifier be ε. Denote this event by E . For the sake of contradiction,
lets assume that ε is non-negligible, or in other words ε grows as at least an inverse polynomial, on an
infinite number of input lengths. Now, there exists a first round commitment string c such that the
probability that P ∗ convinces the verifier conditioned on the first round commitment is c is at least ε.
Fix this commitment string c. We want to consider the probability that P ∗ convinces the verifier given
the commitment string was c, and given that the message committed by the (honest) verifier in the first
round was m. Denote this probability by Pr [E | c,m]. Consider the following subset of messages,

S = {m : Pr [E | c,m] ≥ ε/2 }.

It follows from an averaging argument to see that Pr [m ∈ S] ≥ ε/2. Fix some m0 ∈ S. Consider the
following subset of S,

Sm0 = {m ∈ S : Pr [P ∗ sends m to Verifier | c,m0] ≥ ε/4 }

Thus, set Sm0 is the set of messages in S that P ∗ sends to Verifier with high probability (greater
than ε/4), when the Verifier commits to message m0(all conditioned on the commitment string being
c). We argue Sm0 has small size. Indeed, as P ∗ returns m0 with probability at least ε/2, we have,

|Sm0 | · ε/4 ≤ 1− ε/2.

Thus, |Sm0 | ≤ 4/ε. By the assumption that ε is inverse-polynomial for infinitely many input lengths,
the size of Sm0 is bounded by a polynomial (for those lengths). However, by the fact that Pr [m ∈ S] ≥
ε/2 and that m is chosen uniformly at random, the size of S is exponential in κ. Thus, the set difference of
these two sets is non-empty. Let m1 be a message in S but not in Sm0 . We now construct a non-uniform
adversary A that breaks the WI property of the WI system.

The non-uniform adversary A gets (m0, r0,m1, r1) as advice, where CL,x(m0; r0) = CL,x(m1; r1) = c.
Now A outputs (c, (m0, r0), (m1, r1)), and gets a proof NIWI π, which it sends to P ∗. If P ∗outputs m1,
adversary A outputs 1, otherwise it outputs 0.

Note that when π is computed using witness (m0, r0), P
∗ outputs m1 with probability at most

ε/4, while if π is computed using witness (m1, r1), P
∗ outputs m1 with probability at least ε/2. Thus,

the difference in the probability of A in outputting 1 in the two cases has a polynomial gap, which
contradicts the WI property. ut

Next, we prove witness-indistinguishability. Let V ∗ be a malicious verifier. Let x be an instance of
L, and let w0 and w1 be two witnesses of membership of x. Let the random variable msgV

∗
wb

(x) denote
the final message sent by honest prover to V ∗, when the honest prover uses witness wb, and the common
input is x.

Lemma 19. Let x be an instance of L, and let w0, w1 be two witnesses of membership for x ∈ L. Then
for every PPT verifier V ∗, the random variables msgV

∗
w0

(x) and msgV
∗

w1
(x) are statistically close.

Proof. Note that as x ∈ L, the commitment scheme COM is perfectly binding. Thus, if the commitment
scheme sent by V ∗ in the first round is well formed, then both witnesses w0 and w1 extract the same
unique message, and msgV

∗
w0

(x) and msgV
∗

w1
(x) are identically distributed. It follows from the soundness

of the NIWI proof system that with probability negligibly close to 1, V ∗’s commitment is well formed.
Thus, msgV

∗
w0

(x) and msgV
∗

w1
(x) are statistically close. ut

35

Combining the above lemmas, we have the following theorem for this section.

Theorem 3. Assume Non-Interactive Witness Indistinguishable proofs exist. Let L be a language that
admits non-interactive perfectly-binding instance-dependent commitment schemes. Then, there exists a
two-round statistical witness-indistinguishable protocol for membership in L.

Finally, we make the following concluding remarks.

Remark 1. Four-Round Statistical ZK. We note that our protocol in Figure 7 provides a four-
round statistical zero-knowledge proof system for all languages that admit perfect non-interactive
instance-dependent commitment schemes, when instead of using the k-round PRS preamble we use
a 1-round PRS stage. Furthermore we need to give the proof of consistency in parallel with the
rest of the messages of the protocol. We stress that this result was known before, see for exam-
ple [GMW91,GMR89][IS91][CP94][CDM00]. Nevertheless, our techniques serves as another way to
achieve the same result.

Remark 2. We note that our techniques imply that SZK = cSZK, unconditionally. The protocol in
Fig. 8, without the prover having to use the pseudo-random function, is a concurrent statistical zero-
knowledge proof system for all languages in SZK. We stress that one-way functions in our protocol are
required just to immunize the protocol from reset attacks and are not needed for cSZK. The claim about
SZK = cSZK unconditionally was already conjectured by Ong and Vadhan in [OV08] and explicitly
stated by Pass, Tseng and Venkitasubramaniam in [PTV08].

8 Acknowledgments

We thank Giuseppe Persiano for suggesting the open problem of achieving resettable statistical zero
knowledge. Moreover we thank Omkant Pandey for several discussions on our techniques.

This research is supported in part by NSF grants 0830803, 09165174, 106527 and 1118126, US-Israel
BSF grant 2008411, grants from OKAWA Foundation, IBM, Lockheed-Martin Corporation and the
Defense Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract
N00014-11-1-0392. The views expressed are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. The work of the third author has
also been supported in part by the European Commission through the FP7 programme under contract
216676 ECRYPT II.

References

[AFK89] Martin Abadi, Joan Feigenbaum, and Joe Kilian. On hiding information form an oracle. J. Comput. Syst. Sci.,
39(1):21–50, 1989.

[AH87] William Aiello and Johan H̊astad. Perfect zero-knowledge languages can be recognized in two rounds. In
FOCS, pages 439–448, 1987.

[APV05] Joël Alwen, Giuseppe Persiano, and Ivan Visconti. Impossibility and feasibility results for zero knowledge wi
th public keys. In Advances in Cryptology – Crypto ’05, volume 3621 of Lecture Notes in Computer Science,
pages 135–151. Springer Verlag, 2005.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd Symposium on Foundations of
Computer Science, (FOCS ’01), pages 106–115, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
2001. IEEE Computer Society Press.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge. J. Comput.
Syst. Sci., 37(2):156–189, 1988.

[BFGM01] Mihir Bellare, Marc Fischlin, Shafi Goldwasser, and Silvio Micali. Identification protocols secure against reset
attacks. In EUROCRYPT, pages 495–511, 2001.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications (extended
abstract). In STOC, pages 103–112, 1988.

36

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-sound zero-knowledge and its
applications. In FOCS, pages 116–125, 2001. Full version available at: http://eprint.iacr.org/2001/063.

[BHZ87] Ravi Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have short interactive proofs? Inf. Process.
Lett., 25(2):127–132, 1987.

[BJY97] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge arguments based on any
one-way function. In W. Fumy, editor, Advances in Cryptology – Eurocrypt ’97, volume 1223 of Lecture Notes
in Computer Science, pages 280–305. Springer-Verlag, 1997.

[BLV03] Boaz Barak, Yehuda Lindell, and Salil Vadhan. Lower bounds for non-black-box zero knowledge. In FOCS
2003, pages 384–393, 2003.

[BMO90] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. The (true) complexity of statistical zero knowledge. In
STOC, pages 494–502, 1990.

[CCKV08] André Chailloux, Dragos Florin Ciocan, Iordanis Kerenidis, and Salil P. Vadhan. Interactive and noninteractive
zero knowledge are equivalent in the help model. In TCC, pages 501–534, 2008.

[CDM00] Ronald Cramer, Ivan Damg̊ard, and Philip D. MacKenzie. Efficient zero-knowledge proofs of knowledge without
intractability assumptions. In Public Key Cryptography, pages 354–373, 2000.

[CEMT09] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s one-way function candidate and
myopic backtracking algorithms. In TCC, pages 521–538, 2009.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-knowledge (extended
abstract). In STOC, pages 235–244, 2000.

[CHK10] Ronald Cramer, Dennis Hofheinz, and Eike Kiltz. A twist on the naor-yung paradigm and its application to
efficient cca-secure encryption from hard search problems. In TCC, pages 146–164, 2010.

[CKPR02] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-knowledge requires (almost)
logarithmically many rounds. SIAM J. Comput., 32(1):1–47, 2002.

[CP94] Giovanni Di Crescenzo and Giuseppe Persiano. Round-optimal perfect zero-knowledge proofs. Inf. Process.
Lett., 50(2):93–99, 1994.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable Cryptography. SIAM J. on Computing,
30(2):391–437, 2000.

[DFN06] Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-knowledge from homomorphic encryp-
tion. In 3rd Theory of Cryptography Conference (TCC ’06), volume 3876 of Lecture Notes in Computer Science,
pages 41–59. Springer-Verlag, 2006.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous resettability conjecture and a new non-
black-box simulation strategy. In FOCS, 2009.

[DL07] Yi Deng and Dongdai Lin. Instance-dependent verifiable random functions and their application to simulta-
neous resettability. In EUROCRYPT, pages 148–168, 2007.

[DN07] Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J. Comput., 36(6):1513–1543, 2007.
[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In STOC, pages 409–418, 1998.
[DPV04] Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti. Constant-round resettable zero knowledge with

concurrent soundness in the bare public-key model. In Advances in Cryptology – Crypto ’04, volume 3152 of
Lecture Notes in Computer Science, pages 237–253. Springer-Verlag, 2004.

[For87] Lance Fortnow. The complexity of perfect zero-knowledge. In 19th ACM Symposium on Theory of Computing
(STOC ’87), pages 204–209, 1987.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge proof systems for np. J.
Cryptology, 9(3):167–190, 1996.

[GMOS07] Vipul Goyal, Ryan Moriarty, Rafail Ostrovsky, and Amit Sahai. Concurrent statistical zero-knowledge argu-
ments for np from one way functions. In ASIACRYPT, pages 444–459, 2007.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-systems.
SIAM J. on Computing, 18(6):186–208, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game - a completeness theorem for
protocols with honest majority. In Proceedings of the 19th ACM Symposium on Theory of Computing (STOC
’87), pages 218–229, 1987.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity for all languages
in np have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for nizk. In CRYPTO,
pages 97–111, 2006.

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for nizk. In CRYPTO,
pages 97–111, 2006.

[GS09] Vipul Goyal and Amit Sahai. Resettably secure computation. In EUROCRYPT, pages 54–71, 2009.
[GSV98] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-knowledge equals general

statistical zero-knowledge. In STOC, pages 399–408, 1998.

37

[HM96] Shai Halevi and Silvio Micali. Practical and provably-secure commitment schemes from collision-free hashing.
In Advances in Cryptology - Crypto ’96, volume 1109 of Lecture Notes in Computer Science, pages 201–215.
Springer-Verlag, 1996.

[IOS97] Toshiya Itoh, Yuji Ohta, and Hiroki Shizuya. A language-dependent cryptographic primitive. J. Cryptology,
10(1):37–50, 1997.

[IS91] Toshiya Itoh and Kouichi Sakurai. On the complexity of constant round zkip of possession of knowledge. In
ASIACRYPT, pages 331–345, 1991.

[KMV07] Bruce M. Kapron, Lior Malka, and Srinivasan Venkatesh. A characterization of non-interactive instance-
dependent commitment-schemes (nic). In ICALP, pages 328–339, 2007.

[Lin03] Yehuda Lindell. Bounded-concurrent secure two-party computation without setup assumptions. In 35th ACM
Symposium on Theory of Computing (STOC ’03), pages 683–692. ACM, 2003.

[MOSV06] Daniele Micciancio, Shien Jin Ong, Amit Sahai, and Salil P. Vadhan. Concurrent zero knowledge without
complexity assumptions. In TCC, pages 1–20, 2006.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In STOC, pages 306–315, 2006.
[MR01a] Silvio Micali and Leonid Reyzin. Min-round resettable zero-knowledge in the public-key model. In Advances in

Cryptology – Eurocrypt ’01, volume 2045 of Lecture Notes in Computer Science, pages 373–393. Springer-Verlag,
2001.

[MR01b] Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In Advances in Cryptology – Crypto ’01,
volume 2139 of Lecture Notes in Computer Science, pages 542–565. Springer-Verlag, 2001.

[MY08] Daniele Micciancio and Scott Yilek. The round-complexity of black-box zero-knowledge: A combinatorial
characterization. In TCC, pages 535–552, 2008.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In
22nd ACM Symposium on Theory of Computing (STOC ’90), pages 427–437, 1990.

[Oka96] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. In 28th ACM Symposium on
Theory of Computing (STOC ’96), pages 649–658. ACM, 1996.

[Ost91] Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-knowledge proofs. In
Structure in Complexity Theory Conference, pages 133–138, 1991.

[OV08] Shien Jin Ong and Salil P. Vadhan. An equivalence between zero knowledge and commitments. In TCC, pages
482–500, 2008.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with logarithmic round-
complexity. In FOCS, pages 366–375, 2002.

[PTV08] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasubramaniam. Concurrent zero knowl-
edge: Simplifications and generalizations. 2008. http://hdl.handle.net/1813/10772.

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from sub-exponential one-way
functions. In EUROCRYPT, pages 638–655, 2010.

[SCPY94] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. On monotone formula closure
of szk. In FOCS, pages 454–465, 1994.

[SV97] Amit Sahai and Salil P. Vadhan. A complete promise problem for statistical zero-knowledge. In FOCS, pages
448–457, 1997.

[SV03] Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J. ACM, 50(2):196–249,
2003.

[TW87] Martin Tompa and Heather Woll. Random self-reducibility and zero knowledge interactive proofs of possession
of information. In FOCS, pages 472–482, 1987.

[Vad99] Salil Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, MIT, 1999.
[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability amplification. In FOCS,

2010.
[YZ07] Moti Yung and Yunlei Zhao. Generic and practical resettable zero-knowledge in the bare public-key model. In

EUROCRYPT, pages 129–147, 2007.
[ZDLZ03] Yunlei Zhao, Xiaotie Deng, Chan H. Lee, and Hong Zhu. Resettable zero-knowledge in the weak public-key

model. In Advances in Cryptology – Eurocrypt ’03, volume 2045 of Lecture Notes in Computer Science, pages
123–139. Springer-Verlag, 2003.

38

A Further Discussion on Statistical ZK, Resettable ZK and SZK.

Here we give an additional discussion about statistical zero knowledge, resettable zero knowledge and
the complexity class SZK.

Perfect and statistical ZK. One of the most important properties inferred by the ZK property is
that of forward security, i.e., what has been proved in a ZK proof will be secure for ever. However,
while today we can safely assume a bound on the maximal computing power of an adversary, we can
not realistically predict its future capabilities. Therefore, protocols with computational forward security
might be broken when the used security parameters for the used complexity assumption will turn out to
be insufficient. It is therefore important to strengthen the ZK property so that the prover does not say
anything other than the mere truthfulness of the proven theorem, regardless of the computing power
of the distinguisher that in the future will analyze the transcript of the conversation. This notion has
been formalized under the two variations of statistical and perfect ZK, where the information encoded
in the transcript, beyond the mere truthfulness of the theorem, is essentially null. In this paper we will
concentrate on statistical ZK, and we will also consider the complexity class SZK.

Resettable ZK. Motivated by considerations regarding smart cards, the notion of resettable ZK (rZK,
for short) was introduced in [CGGM00]. A rZK proof system remains “secure” even in case the verifier is
able to tamper with the prover and to reset it in the middle of a proof to any previous state, then asking
different questions. More specifically, the adversarial verifier can ask the prover to run multiple times the
protocol, for several statements, forcing him to reuse randomness, and forcing him also to use different
witnesses. Resettable ZK is a strictly stronger primitive than concurrent zero knowledge. The original
result by Canetti, Goldreich, Goldwasser and Silvio Micali [CGGM00] showed how to achieve resettable
zero-knowledge for any NP language. Dwork and Naor in [DN07] showed that their ZAP can be turned
into a resettably sound resettable witness indistinguishable proof system. Very recently, Deng, Goyal
and Sahai in [DGS09] solved the very challenging simultaneous resettability conjecture (i.e., achieving
a resettably sound resettable zero-knowledge argument for NP) extending the non-black-box technique
of Barak [Bar01], thus making a very important step for understanding the real power of reset attacks.
However, all these results only achieve “computational” resettable zero knowledge, i.e., the output of
the simulator is distinguishable by an unbounded distinguisher.

Previous work on resettable zero knowledge and SZK. In [CGGM00] Canetti et al. showed
how to achieve resettable zero-knowledge proofs for all NP. Then, in [BGGL01], resettably-sound zero-
knowledge has been achieved using the non-black-box techniques of Barak [Bar01]. More variations have
been considered in [BFGM01,BLV03,GS09]. Further results addressing round complexity issues with
some set-up assumptions have been achieved in [MR01a] [MR01b,ZDLZ03,DPV04,APV05,YZ07,DL07].
Very recently, Deng et al. in [DGS09] solved the very challenging simultaneous resettability conjecture
(i.e., achieving a resettably sound resettable zero-knowledge argument for NP) using new non-black-
box techniques, thus making a very important step for understanding the real power of reset attacks.
However, all the previous results that achieve resettable zero-knowledge only obtain “computational”
zero knowledge.

The study of the complexity of statistical zero-knowledge started with the works of Fortnow and
the one of Aiello and H̊astad [For87,AH87] that showed respectively that SZK ⊂ coAM and that
SZK ⊂ AM. Boolean closure properties were showed in [SCPY94]. Then Okamoto in [Oka96], proved
that SZK has a public-coin proof system, and proved the closure of the class under complementation.
In [SV97], Sahai and Vadhan presented a complete promise problem for SZK, the class of languages
possessing statistical zero-knowledge proofs against an honest verifier. This was achieved by showing
that all languages in SZK reduce to the language Statistical Difference, and showing a statistical zero-
knowledge proof system for it. In [GSV98] Goldreich et al. showed how to transform any proof system
that is statistical zero knowledge against an honest verifier into one that is statistical zero knowledge

39

against all verifiers. Combining [GSV98] with [SV97] one obtains a complete promise problem for SZK,
including also adversarial verifiers.

Concurrent statistical zero knowledge has been achieved for several interesting languages in [MOSV06],
where Micciancio et al. gave also some efficient-prover constructions for some non-trivial NP lan-
guages. The analysis given in [MOSV06] considers a non-interactive instance-dependent commitment.
However [MOSV06], left open the problem of establishing whether cSZK = SZK.

Ong and Vadhan, conjectured in [OV08] that their interactive instance-dependent commitment
scheme for any language in SZK, combined with other techniques introduced in [MOSV06] could show
that cSZK = SZK unconditionally. The claim about SZK = cSZK unconditionally was then explicitly
stated by Pass, Tseng and Venkitasubramaniam in [PTV08].

As we have already discussed, reset attacks are much harder to defeat when statistical zero knowledge
is desired. All previous techniques turn out to be insufficient and the feasibility of resettable statistical
zero-knowledge for a non-trivial language was an interesting open problem. Our work therefore clearly
gives a solid contribution to the understanding of the complexity of these notions and opens interesting
directions for further research.

40

