
AES Flow Interception :
Key Snooping Method on Virtual Machine.
- Exception Handling Attack for AES-NI -

Tatsuya TAKEHISA?, Hiroki NOGAWA??, and Masakatu MORII? ? ?

Abstract. In this paper, we propose a method for snooping AES en-
cryption key on Virtual Machine Monitor (VMM), and we present coun-
termeasures against this attack. Recently, virtualization technology has
rapidly emerged as a key technology for cloud computing. In general,
the virtualization technology composes two software parts: one is vir-
tual machine (VM) management software called Virtual Machine Moni-
tor (VMM), and the other is its associated software. The virtualization
technology at present does not provide methods for certifying depend-
ability of the VMMs. In this situation, the following case is possible:
when malicious service providers serve tampered VMMs and their users
run their VMs on these VMMs, the users will suffer unintended infor-
mation leakage. As one leakage case, in this paper, we propose a method
for snooping AES encryption key on the VMM. In addition, we present
countermeasures against this key snooping.

Keywords: Virtualization, Side Channel Attack, AES-NI, Key Snoop-
ing, Exception Handling

1 Introduction

Recently, virtualization technology has emerged for accommodating multiple
function units into one computer. In the center of the virtualization technology,
software called Virtual Machine Monitor(VMM) controls virtual machines that
are virtualized computers and the VMM intercepts virtual machines for system
stability. The virtual machines encrypt data inside them for security reason.
Among encryption methods, common key encryption methods are used for en-
cryption performance. Among many common key encryption methods, Advanced
Encryption Standard (AES)[1] is used in most cases, and AES is implemented
as software in some cases, and as hardware in other cases.

Against AES, many attack methods have been proposed. Among these at-
tacks, in this paper, we focus on methods that attack vulnerability of software
? Japan Datacom, Co., Ltd., Akasaka, Comfy Homes 6B 6-6-28 Akasaka, Minato-ku,

Tokyo 107-0052, Japan, takehisa@datacom.co.jp
?? Secureware Inc., Kamishinden 1-74-1-204, Toyonaka City, Osaka, 560―0085 Japan,

nogawa@secure-ware.com
? ? ? Graduate School of Engineering, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe-shi,

657-8501 Japan, mmorii@kobe-u.ac.jp

2

implementation of AES. Previous papers proposed side channel attack against
AES. Side channel attacks proposed are not able to obtain the encryption key
itself, and only able to get candidates of the encryption keys more efficiently
than brute force attack.

However, our method enables an attacker to guess the encryption key itself
when he intercepts a VM by a modified VMM. As a result, the attacker is able
to decrypt the secret data and to tamper with it. Our method consists of three
stages as follows:

1) An attacker executes a modified VMM on a CPU where Intel AES-NI in-
struction is not implemented.

2) The attacker intercepts a guest OS with fake return value of CPUID instruc-
tion by the modified VMM.

3) When the guest OS executes the AES-NI instruction, the modified VMM
generates invalid Opcode Exception. Then, the attacker is able to estimate
the encryption key stored in CPU registers or memory at Opcode Exception.

2 Architecture for Key Snooping

In this section, we briefly state architecture where our key snooping method
is possible. This section consists of four subsections describing the following
components: 1) AES-NI that is a hardware implementation of AES, 2) CPUID
instruction that is a basis of our attack method, 3) Method for checking whether
application software can call AES-NI, 4) Intel-VT for obtaining the timing of
the attack.

2.1 Intel AES New Instruction(AES-NI)

Intel developed AES-NI for rapid processing (by hardware) of the AES algo-
rithm[3]. AES-NI contains some AES sub step components as hardware imple-
mentation for rapid processing of AES encryption/decryption. In addition, im-
plementation of AES-NI instructions in hardware prevents software side channel
attacks.

AES-NI consists of six instructions that provide complete hardware support
for AES. Four instructions support the AES encryption and decryption, and the
other two instructions support the AES key expansion. Table 1 shows details of
the six instructions of AES-NI.

Figure 1 displays a sample flow of encryption/decryption for AES algorithm
(ECB mode) by the AES-NI instructions. For encryption, the AES repeats AES-
ENC instruction between 1 and n-1 and the final stage does AESENCLAST
instruction. Similarly, for decryption, the AES repeats AESDEC instruction be-
tween 1 and n-1, and the final stage does AESDECCLAST instruction.

3

AES-NI Instruction Description

AESENC Perform One Round of an AES Encryption Flow

AESENCLAST Perform Last Round of an AES Encryption Flow

AESDEC Perform One Round of an AES Decryption Flow

AESDECLAST Perform Last Round of an AES Decryption Flow

AESIMC Perform the AES InvMixColumn Transformation

AESKEYGENASSIST AES Round Key Generation Assist

Table 1. AES-NI Instructions

PlainText(128bit) �

KEY:	

128bit(10	
 rounds)	

192bit(12	
 rounds)	

256bit(14	
 rounds)	

CipherText(128bit) �

AESENC	

CipherText(128bit) �

AESENCLAST	

Round	
 -­‐	
 1	

PlainText(128bit) �

CipherText(128bit) �

AESDECLAST	

CipherText(128bit) �

AESDEC	

Round	
 -­‐	
 1	

Last	

Round	

Last	

Round	

Fig. 1. AES-NI Encription/Decription Flow for AES-ECB mode

2.2 CPUID Instruction

Intel-based CPU contains extended instructions for rapid processing and func-
tion extensions. When a CPU performs an extended CPU instruction in a case
where the CPU does not implement the instruction, interrupt execution occurs
as a general protection error. This is the reason why OS and application soft-
ware have to implement methods for checking the extended CPU instructions.
For checking the extended CPU instructions, OS and application software call
the CPUID instruction, the return value of which are four types of information:
vender, serial number, enhanced feature and cache information of CPU.

In addition, CPUID instruction returns processor identification and feature
information by means of EAX, EBX, ECX and EDX registers. The instruction’s
output depends on the contents of the EAX register. Table 2 shows arguments
and return values of the CPUID instruction.

2.3 How to Check AES-NI support

The following procedure describes a method for checking AES-NI support:

4

Argument(EAX) Return values

0
EAX=Maximum Input Value for Basic CPUID Information
EBX,ECX,EDX=Vendor ID

1
EAX=Version Information
EBX,ECX,EDX=Processor Signature and Feature Bits

2 EAX,EBX,ECX,EDX=Cache and TLB Information

3
EAX,EBX=Reserved
ECX,EDX=Processor Serial Number

Table 2. Argument and return value of CPUID

1) Check whether the processor supports SSE/SSE2
(if CPUID.01H:EDX.SSE[bit 25] = 1)

2) Check whether the processor supports AESNI
(if CPUID.01H:ECX.AESNI[bit 25] = 1)

3) Check whether the processor supports PCLMULQDQ
(if CPUID.01H:ECX.PCLMULQDQ[bit 1] = 1)

In most cases, only the second procedure works well.

2.4 Intel VT

VM	
 Monitor(VMM) �VMXON	
 VMXOFF	

VM	

(Guest	
 0) �

VM	

(Guest	
 1) �

VMCS(Guest	
 0) � VMCS(Guest	
 1) �

VM	
 Entry	
 VM	
 Entry	

VM	
 Exit	
 VM	
 Exit	

VMX	
 root	

VMX	
 non-­‐root	

Fig. 2. Interaction of a VMM and Guest OSes (VMs)

Intel released the Intel Virtualization Technology (Intel VT) to assist virtu-
alization with hardware. Intel introduced two new CPU execution modes into
Intel-VT: two VMX modes as Virtual Machine Extensions (VMX). One is VMX
root mode, and the other is VMX non-root mode. The VMX root mode is an
exclusive mode for VMM to work, and the VMX non-root mode is a mode to
allow users execute guest OSes. The concept of these VMX modes is different
from conventional privilege ring (Ring0 - 3) at Intel x86 architecture. Both these

5

VMX modes are able to use conventional privilege level so that running the guest
OS at privilege level is possible.

Figure 2 displays interaction of VMM and guest OSes on the Intel-VT. For
executing a guest OS with a VMX mode, at first VMXON instruction is exe-
cuted, and then, the VMM runs in the VMX root mode. Then, VMM prepares
a structure body (VMCS) to store a state (CPU register, CPU State, etc.) of
each VM. When the VMM switches over to VMX non-root mode, it executes
a VMRESUME instruction, and this state transition is named as VM Entry.
When the guest OS executes privileged instruction and hardware access, the
guest OS switches from the VMX non-root mode to the VMX root mode, and
this state transition is named as VM exit. At this state transition, The VMM
checks operations in the VM exit, and the VMM processes the operations on
behalf of the guest OS. In this way, VMM runs multiple guest OSes while it
switches between the state of VM Enter and VM Exit.

3 Key Snooping Method

In this section, we present our method for AES key snooping. Our attack consists
of two parts: one is to fake the return value of CPUID instruction of the VM,
and the other is to estimate an AES key by intercepting exceptions of the VM.
Subsection 3.1 describes the first part, and subsection 3.2 shows the second part.

3.1 Faking the CPUID instruction

Virtual	
 Machine�

So0ware�

OS �

VMM�

VM	
 Exit�
(CPUID)	

CPUID	

Handler�

If	

EAX=1�

NO	

YES	

ECX[bit	
 25]=1	

VM	
 Enter	

Fig. 3. How to fake CPUID

Figure 3 depicts how to fake CPUID instruction. In fig.3, the VMM catches
exceptions occurring in the virtual machine (VM). Exceptions are read/write
access to hardware and executing privilege instructions. For secure and robust
operation of the VMs, the VMM mediates each exception called by the VMs.
This mediation is essential for assuring secure and robust operation of VMs on
varying resources of the VMM, as resources of VMM are not always assured. For
example, the VMM intercepts the execution of the CPUID instruction to mimic

6

the VM as if is working on a real machine. In addition, the VMM sometimes
makes the VM not to use some functions of the CPU while the CPU implements
the functions. When the VMM informs fake information of CPU instruction
extension to the VM, the VM usually tries to use its instruction extension to
increase processing speed. When the CPU receives an unimplemented instruc-
tion, the CPU generates an exception called Invalid Opcode instruction. Our
attack method changes return value of the CPUID instruction so that AESNI
bit (CPUID.01H:ECA.AESIN[bit 25]) is on. This change causes the VM to call
exception.

3.2 Exception handling of AES-NI instrcution

Virtual	
 Machine�

So0ware�

OS �

VMM�

VM	
 Exit�
(Invalid	
 Opcode	

Excep:on)	

#UD	

Handler� (1)�

NO	

YES	

Encoding	
 Operand2	

(=RoundKey)	

(1)If	
 Opcode=AESENC/AESDEC �

Emulate	
 AES-­‐NI	

VM	
 Enter	

Fig. 4. Exception Handling on VMM

Figure 4 displays our attack method in view of exception handling of AES-NI
instruction. Our attack method consists of six steps as follows, from interception
of exception in the VMM to AES key estimation:

1) When the VM executes AES-NI instruction, the CPU generates an invalid
opcode exception, which causes VM exit state transition. Then, the VMM
recovers control.

2) The attacker observes VM exit state transition cause and checks whether in-
valid opcode instruction is AESENC or AESDEC instruction. Table 3 shows
detail of AES-NI instructions, opcode, and operand.

3) If the invalid opcode instruction is AESENC or AESDEC instruction, then
the attacker estimates the next operands of the instructiion.

4) The attacker examines the place of stored key from the estimated operands.1

5) The attacker estimates AES key or the relevant plaintext from the result of
4), as the keys exists in memory or XMM register on the VM.

1 As shown in table 3, the first operand is“ModRM:reg(r,w)”and the second operand
is“ModRM:r/m(r)”. The attacker is able to estimate the place of stored key in
memory or XMM register of the VM from the contents of“ModRM:reg(r,w)”,
“ModRM:r/m(r)”[5](Table 2-2)

7

6) After estimation of the AES key or the relevant plaintext, the attacker em-
ulates AES-NI, not to let the VMM notice failure of AES-NI procedure.2

Instruction Opecode Operand 1 Operand 2 Operand 3

AESENC 0x66,0x0F,0x38,0xDC ModRM:reg(r,w) ModRM:r/m(r) none

AESENDLAST 0x66,0x0F,0x38,0xDD ModRM:reg(r,w) ModRM:r/m(r) none

AESDEC 0x66,0x0F,0x38,0xDE ModRM:reg(r,w) ModRM:r/m(r) none

AESDECLAST 0x66,0x0F,0x38,0xDF ModRM:reg(r,w) ModRM:r/m(r) none

AESIMC 0x66,0x0F,0x38,0xDB ModRM:reg(w) ModRM:r/m(r) none

AESKEYGENASSIST 0x66,0x0F,0x3A,0xDF ModRM:reg(w) ModRM:r/m(r) imm8

Table 3. AES-NI Instruction, Opecode, Operand

4 Discussion on AES key Snooping

In this section, we discuss essential basis of AES key snooping we have stated,
and countermeasures against it. In section 3, we showed our AES key snooping
attack that induces exception and does snooping of the AES key or related
plaintext when the exception occurs. Here, we define our attack as Exception
Handling Attack (EH Attack).

Let us consider the situation where EH attack is possible. The situation is
as follows: when a CPU vendor adds new cryptographic instructions and pro-
duces new CPUs that implement the new instruction in hardware, a time lag or
gap exists until every server installs the new CPUs. A malicious attacker takes
advantage of this gap, which means the attacker enjoys EH attack. When an at-
tacker provides massive cloud service over the modified VMM, he obtains every
encryption key used in every VM.

Here, we state countermeasures against the EH attack, although these coun-
termeasures do not provide fundamental solutions.

– Suggestion A:(best)
Users should use CPUs which support AES-NI instruction, where exception
handling for AES-NI is impossible.

– Suggestion B:(better)
Users should not use AES-NI instruction in the OS and an application on
VM, where exception handling for AES-NI does not occur in the VMM.

2 To emulate the AES-NI instruction, see Appendix.

8

– Suggestion C:(so-so)
When users execute AES-NI instruction, users should confirm CPU cycles of
the AES-NI instruction by RDTSC instruction 3, and should check whether
EH attack is not running. 4

5 Conclusion

In this paper, we have stated a new AES key snooping attack on virtual en-
vironment, and presented countermeasures against this attack. Our AES key
snooping attack is possible when a virtual machine runs on a CPU, which does
not support AES-NI, and the virtual machine monitor is modified so that it
fakes return value of CPUID instruction. Our AES key snooping attack runs
when AES-NI executes in a virtual machine.

Here, we define our attack as Exception Handling Attack (EH Attack). EH
attack is executable in the following situation: 1) when a CPU vendor adds
new cryptographic instructions and produces new CPUs that implement the
new instruction in hardware, and 2) virtual machines are running on CPUs
that do not implement the new cryptographic instructions in hardware. This
situation tells that for avoiding EH attacks, users should avoid utilizing the new
cryptographic instructions until the new CPUs are available for their virtual
machines. This avoidance is also applicable when using IaaS (Infrastructure As
A Service) or PaaS (Platform As A Service).

Toward facilitating the development and utilization of cloud services, we
strongly believe we have to make research for dependability of virtual machine
monitors on which virtual machines run.

References

1. FIPS PUB 197, Advanced Encryption Standard(AES), National Institute of Stan-
dards and Technology, Nov. 2001, http://csrc.nist.gov/publications/fips/

fips197/fips-197.pdf

2. Securing the Enterprice with Intel AES-NI, Intel Corporation, Sept. 2010, http:
//www.intel.com/Assets/en\ US/PDF/whitepaper/323587.pdf

3. Intel Advanced Encryption Standard (AES) Instructions Set -
Rev 3, Jan. 2010, http://software.intel.com/en-us/articles/

intel-advanced-encryption-standard-aes-instructions-set/

4. Intel 64 and IA-32 Architectures Software Developer ’s Manual Volume 1:Basic
Architecture, Intel Corporation, May 2011, http://www.intel.com/Assets/PDF/

manual/253665.pdf

5. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2 (2A&2B):
Instruction Set Reference, A-Z, Intel Corporation, May 2011, http://www.intel.
com/Assets/PDF/manual/325383.pdf

3 We assume execution cycles of AES-NI instruction such as AESENC/AESDEC
would be larger in two digits during the EH attack.

4 The return value of RDTSC instruction may be set to a suitable value in a tampered
smart VMM.

9

Appendix: Pseudocode for AES-NI Instruction

AESENC xmm1, xmm2/m128
Tmp = xmm1;
RoundKey = xmm2/m128;
Tmp = ShiftRows(Tmp);
Tmp = SubBytes(Tmp);
Tmp = MixColumns(Tmp);
xmm1 = Tmp XOR RoundKey;

AESENCLAST xmm1, xmm2/m128
Tmp = xmm1;
RoundKey = xmm2/m128;
Tmp = ShiftRows(Tmp);
Tmp = SubBytes(Tmp);
xmm1 = Tmp XOR RoundKey;

AESDEC xmm1, xmm2/m128
Tmp = xmm1;
RoundKey = xmm2/m128;
Tmp = InvShiftRows(Tmp);
Tmp = InvSubBytes(Tmp);
Tmp = InvMixColumns(Tmp);
xmm1 = Tmp XOR RoundKey;

AESDECLAST xmm1, xmm2/m128
Tmp = xmm1;
RoundKey = xmm2/m128;
Tmp = InvShiftRows(Tmp);
Tmp = InvSubBytes(Tmp);
xmm1 = Tmp XOR RoundKey;

AESIMC xmm1, xmm2/m128
xmm1 = InvMixColumns(xmm2/m128);

AESKEYGENASSIST xmm1, xmm2/m128, imm8
Tmp3[31:0] = xmm2/m128[127: 96];
Tmp2[31:0] = xmm2/m128[95: 64];
Tmp1[31:0] = xmm2/m128[63: 32];
Tmp0[31:0] = xmm2/m128[31: 0];
RCON[31:0] = ZeroExtend(imm8[7:0]);
xmm1[31: 0] = SubWord(Tmp1);
xmm1[63:32] = RotWord(SubWord(Tmp1)) XOR RCON;
xmm1[95:64] = SubWord(Tmp2);
xmm1[127:96] = RotWord(SubWord(Tmp3)) XOR RCON;

