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Abstract. Sophie Germain Counter Mode (SGCM) is an authenticated encryp-
tion mode of operation, to be used with 128-bit block ciphers such as AES.
SGCM is a variant of the NIST standardized Galois / Counter Mode (GCM)
which has been found to be susceptible to weak key / short cycle forgery attacks.
The GCM attacks are made possible by its extremely smooth-order multiplica-
tive group which splits into 512 subgroups. Instead of GCM’s GF (2128), we use
GF (p) with p = 2128+12451, where p−1

2
is also a prime. SGCM is intended for

those who want a concrete, largely technically compatible alternative to GCM. In
this memo we give a technical specification of SGCM, together with some ele-
ments of its implementation, security and performance analysis. Test vectors are
also included.
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1 Introduction

The Galois/Counter Mode (GCM) [8] is a NIST standardized authenticated en-
cryption mode, often used with the AES block cipher. AES-GCM has been pro-
posed as a replacement to HMAC [1] in cryptographic protocols such as SSH
[5], IPSec [7] and TLS [10].

In AES-GCM, data is encrypted using the Counter Mode (CTR). A single
AES key K is used to both encrypt data and to derive authentication secrets.
The component that is used by GCM to produce a message authentication code
is called GHASH. GCM also supports Additional Authenticated Data (AAD)
which is authenticated using GHASH but transmitted as plaintext.

The GHASH algorithm is a Wegman-Carter polynomial universal hash which
has relatively well understood security properties [2, 11]. Despite this, recently
it has been shown that there are large classes of weak (AES) keys that make
message forgery much easier than what is expected from a MAC function [12].

Section 2 describes GHASH and it’s vulnerability with GCM. Section 3
describes the SGCM, followed by some aspects of its implementation in Section
4. We conclude in Section 5. Appendix A contains an example of full SGCM
computation.



2 GHASH and the Cycle Swapping Attack

We will first give a concise description of the GHASH component of GCM
defined in [8], followed by a discussion of the attacks described in [12].

LetX be a concatenation of unencrypted authenticated data, CTR-encrypted
ciphertext, and padding. This data is split into 128-bit blocks Xi:

X = X1 || X2 || · · · || Xn. (1)

A 128-bit block cipher such as AES is used to derive the hash subkey H =
EK(0). The same AES keyK is also used as the data encryption key. GHASH is
based on arithmetic operations in a finite field. Horner’s rule is used to evaluate
the polynomial Y , given m 128-bit message blocks Xi with padding.

Ym =

m∑
i=1

Xi ×Hm−i+1. (2)

The authentication tag is T = Ym + EK(IV || 031 || 1), assuming that a
96-bit Initialization Vector (IV) is used. Other options exist.

The attack described in [12] is based on the observation that powers of H
sometimes repeat in a short cycle when the the arithmetic of Equation 2 is per-
formed in GF (2128). If we know that Hm−i+1 = Hm−j+1 with i 6= j, we may
simply swap Xi and Xj and the resulting authentication tag stays the same. The
powers of H repeat in cycles which are determined by n = ord(H), the multi-
plicative order of H . We may therefore produce collisions by swapping any two
ciphertext blocks Xi and Xj if i ≡ j mod n. Note that this swapping attack
can be also applied to any number of individual pairs of bits in corresponding
positions of blocks separated by n positions or its multiple.

Lagrange’s theorem in group theory tells us that each multiplicative sub-
group order divides the main multiplicative group order, which for GCM is
2128−1 = 3×5×17×257×641×65537×274177×6700417×67280421310721.
As there are 9 prime factors, there is a unique subgroup for each one of the
29 = 512 different subsets of these primes. We may use this observation to
increase the probability of successful message forgery.

Let n be a number satisfying gcd(2128 − 1, n) = n. There are 512 different
options for n, ranging almost log-uniformly in the 128-bit range. Blindly swap-
ping Xi and Xj , where i ≡ j (mod n) will result in a successful forgery with
probability of at least n

2128
, rather than the expected 1

2128
.

To illustrate this, consider a protocol which exchanges messages that are
larger than 1M (65537 blocks). It then has roughly 112-bit security in its ran-
domly keyed 128-bit GCM MAC against a blind ciphertext block swap with
offset 65537.



3 The Sophie Germain Counter Mode SGCM

Mathematically SGCM differs from GCM inly in the underlying field where
GHASH’s arithmetic operations are performed. While GCM uses the binary
field GF (2128), SGCM uses traditional modular arithmetic in GF (p), where

p = 2128 + 12451 = 340282366920938463463374607431768223907. (3)

Here p−1
2 is also a prime, a Sophie Germain prime. 1

3.1 Technical Specification of SGCM

All other aspects of SGCM are equivalent to GCM, apart those described in
Sections 6.3 “Multiplication Operation on Blocks” and 6.4 “GHASH Function”
of NIST Special Publication 800-38D [8].

The bytes of 128-bit blocks of data are accessed in little-endian fashion. We
give an example of computing the product of two elements in GF (p) and the
arrangement of the bytes in computer memory:

X = b2126πc = 267257146016241686964920093290467695825

X = D1 1C DC 80 8B 62 C6 C4 34 C2 68 21 A2 DA 0F C9

Y = b2126ec = 231245843636555084287727758960834198769

Y = F1 3C 3D 27 20 56 DC AF 9A 4A BB A2 58 54 F8 AD

Z = XY mod p = 92057282056387974665238950822035710352

Z = 90 E1 BD 2C 96 07 A3 63 19 D9 D9 AE 6D 96 41 45

Now let Xi denote the sequence of blocks as defined in Equation 1 and let
H = EK(0) + 2 be the hash subkey. We start with Y0 = 0 and iterate for
i = 1, . . . , n the following:

Yi = (Yi−1 +Xi) H mod p. (4)

The final iteration satisfies Yn = SGHASHH(X). Should the value be
equal to 2128 or larger and hence require more than 16 bytes of storage, the re-
sult should be truncated mod 2128. This special case is exceedingly rare (P ≈
2−114.396). This value is then used in equal fashion as GHASHH(X) is used
in the GCM specification.

Appendix A contains an example of a full SGCM computation.

1 Primes of this type are named after the French mathematician Marie-Sophie Germain (April
1, 1776 – June 27, 1831) who used these strong primes in her investigations.



3.2 SGCM Cycle Properties

We will now characterize the cycle properties of SGCM. Here
(
x
p

)
is the Leg-

endre symbol. From elementary number theory we know that the multiplicative
order of a GF (p) element H > 0 always satisfies one of the following four
cases when p−1

2 is also a prime:

A. If H = 1 then ord(H) = 1.
B. If H = p− 1 then ord(H) = 2.
C. If 1 < H < p− 1 and

(
H
p

)
= 1 then ord(H) = p−1

2 .
D. If 1 < H < p− 1 and

(
H
p

)
= −1 then ord(H) = p− 1.

Due to the start point ruleH = EK(0)+2, which putsH in the range 2 ≤ H <
2128 + 2, we may dismiss cases A, B, and the pathological case H = 0.

One can compare this behavior to that of GCM with a n-bit key, which has
roughly 2n−96 weak keys that produce cycles shorter than 232 blocks. SGCM
cycles are always about 2127.

3.3 Resistance to Other Attacks

In [3] Ferguson notes, using a more complicated technique, that an n-bit GCM
tag provides only n - k bits of authentication security when messages are 2k

blocks long. His attacks were based on bitwise linearity of constant multiplica-
tion and squaring in GF (2128), and hence these attacks do not apply to SGCM.

Joux [6] discusses chosen-IV attacks against GCM. SGCM is susceptible to
these attacks and the IVs should never be repeated.

4 Implementation

SGCM may be implemented in software either by using large tables derived
from the H value (a common method for GCM) or by using regular integer
multiplication instructions. Table-based implementations have similar structure
as those for GCM, with the obvious difference that XOR operations are replaced
with ADD operations and carry propagation and overflow logic must be imple-
mented.

Division-free modular reduction can be achieved by noting that

2128x ≡ −12451x (mod p). (5)

Multiplication of the 128-bit overflow with this small negative constant may
also be tabulated (this table is not dependent on the H value).



Some Intel processors support the PCLMULQDQ “carry-less multiplica-
tion” instruction. This instruction was apparently included in response to GCM
performance issues [4]. We note that SGCM does not require special instruc-
tions to achieve similar speed.

Overall, we expect SGCM to have similar or superior performance to GCM
on most software platforms. Hardware implementations of SGCM may require
a somewhat larger gate count.

5 Conclusions

We have described the Sophie Germain Counter Mode (SGCM), which is a
plug-in compatible variant of the Galois/Counter Mode (GCM) in terms of data
paths and implementation logic. We have shown that SGCM is resistant to weak
key / short-cycle attacks and has similar, or better performance features to GCM.
We encourage the cryptographic community to study and comment on SGCM.
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A Example of Full SGCM Computation

In this example we will encrypt 48 bytes (an increasing byte sequence) using
AES-SGCM with a 128-bit key and a 96-bit IV. Three rounds and a finalization
round is required. The authentication tag can be found at the end.

KEY 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
IV 10 11 12 13 14 15 16 17 18 19 1A 1B

(+2) H C8 A1 3B 37 87 8F 5B 82 6F 4F 81 62 A1 C8 D8 79

i = 1
PT 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
CB 10 11 12 13 14 15 16 17 18 19 1A 1B 00 00 00 02

CT & X C4 2F 01 AC 0B 4A B0 E8 1F D4 57 FE CB 2A E5 31
Y 6C 33 4B FF 88 81 60 66 2B C9 D5 5A D6 2E 15 AB

i = 2
PT 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
CB 10 11 12 13 14 15 16 17 18 19 1A 1B 00 00 00 03

CT & X 2A AD 66 94 22 E1 7D A8 9D D2 33 0A 7B 18 0F B2
Y 64 EE 69 40 EF 74 DC 6E 34 E2 C8 1F B5 17 C0 F4

i = 3
PT 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
CB 10 11 12 13 14 15 16 17 18 19 1A 1B 00 00 00 04

CT & X F2 F8 03 1C A5 83 DD 3B CB 89 FF E3 F6 FD 7F 34
Y 86 64 80 7B 55 0F 65 96 1E D6 CF C5 CD E1 17 CE

Fin
X 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 80
Y 05 89 56 EC 77 7A B2 1A 17 76 29 17 56 DF 8C D1

CB 10 11 12 13 14 15 16 17 18 19 1A 1B 00 00 00 01
TAG 0B 5E 73 76 AA 6A A3 FB 4E A6 27 76 E7 4D D8 C1

We note that with the exactly same input data, AES-GCM will produce the
following authentication tag:

TAG BB 50 08 DB A5 F7 4C E1 6F BC 92 5F 78 C7 45 76
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