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Abstract. The paper proposes a τ2−NAF method for scalar multipli-
cation on Koblitz curves, which requires asymptotically 0.215m point
additions in GF (2m). For τ2−NAF method, point quading operation
(a→ a4) is performed instead of point squarings. The proposed method
is faster than normal τ−NAF method, which requires around m

3
point

additions. However, like width w based τ−NAF methods, there is an
overhead of pre-computations in the τ2−NAF method. For extended
binary fields of small size, the τ2−NAF based scalar multiplication re-
quires almost same number of point additions as in width 4 τ−NAF
method. Though, complexity wise, τ2−NAF based scalar multiplication
and width 4 − τ−NAF based scalar multiplication are similar, but the
techniques are different.

1 Introduction

Elliptic curve cryptography (ECC) provides more security per bit compared to
other security standards. Elliptic curves are of two types: random curves and
Koblitz curves. In Koblitz curves [6] Frobenius endomorphism can accelerate
scalar multiplication compared to random curves.

Significant research have been carried out in accelerating scalar multiplication
for hardware designs [2–5, 7, 10]. In [9], τ−NAF representation of the scalar
was proposed to achieve fast scalar multiplication, which does point squaring
instead of point doubling. In [9], width w− τ−NAF algorithm was shown to be
computationally more efficient compared to normal τ−NAF technique due to
reduced density of non-zero digits in the representation. However there is a cost
of pre-computations in width w − τ−NAF.

In this paper, we present a novel τ2−NAF method for scalar multiplication
on Koblitz curves. The τ2−NAF representation has half the length of τ−NAF
representation of the scalar and scalar multiplication using τ2−NAF method
requires asymptotically 0.215m point additions for a scalar having binary ex-
pansion length m in GF (2m). Similar to width w − τ−NAF method, τ2−NAF
method also has overhead of pre-computations.



The structure of the paper is: Section 2 presents brief description of Koblitz
curves. Section 3 proposes τ2−NAF of scalar. Section 4 describes scalar multi-
plication technique using the proposed τ2−NAF of scalar. The final section gives
conclusion.

2 Preliminaries

In this section we present an overview of the basic properties of Koblitz curves
and scalar multiplication techniques using τ−NAF.

2.1 Koblitz Curves

Koblitz curves, also known as anomalous binary curves, are defined over GF (2m)
and have the following representation:

Ea : y2 + xy = x3 + ax2 + 1

where the elliptic curve parameter a ∈ {0, 1}.
The group of rational points on Ea is denoted by Ea(2m) and the order of

the group is denoted by #Ea(2m). A Koblitz curve (Ea) is said to have almost-
prime order if #Ea(2m) = hn, where n is a prime and co-factor h = 4 for a = 0
and h = 2 for a = 1.

The Frobenius map τ : Ea(2m) → Ea(2m) is defined by, τ(∞) = ∞ and
τ(x, y) = (x2, y2). The Frobenius map can be considered as a complex number
which follows the relation, τ2 + 2 = µτ , where µ is given by µ = (−1)1−a. Thus
τ = (µ+

√
−7)/2.

The norm of an element α = (a0 + a1τ) ∈ Z[τ ] is the integer product of
α and its complex conjugate and is given by, N(α) = a20 + µa0a1 + 2a21. The
Norm function has the following properties: (i) N(α) ≥ 0 for all α ∈ Z[τ ] with
equality if and only if α = 0. (ii) N(τ) = 2 and N(τ − 1) = h. (iii) Norm
function is multiplicative; N(α1α2) = N(α1)N(α2). (iv) The Euclidean distance
from α to 0 in complex plane is

√
N(α). The triangle Inequality takes the form√

N(α+ β) ≤
√
N(α) +

√
N(β).

2.2 τ−adic non-adjacent form (NAF)

In [9], Solinas presented a τ−NAF representation of a scalar. Any element k ∈
Z[τ ] can be written in the form k =

∑i=l−1
i=0 uiτ

i, where each ui ∈ {0,±1} and
no two consecutive ui’s are nonzero. The τ−NAF representation of a scalar can
be obtained by repeatedly dividing the scalar by τ and obtaining the remainders
(ui’s) in such a way that the NAF property is maintained. An algorithm for
computing τ−NAF of the scalar was presented in [9]. If the length of τ−NAF
representation of α be l(α), then l(α) has the following bound:

log2(N(α))− 0.55 < l(α) < log2(N(α)) + 3.52 (1)

where N(α) is the norm of any element α ∈ Z[τ ]. The average number of nonzero
digits in the τ−NAF representation is asymptotically 1/3 of the length [8, 9].



Now, when α = k for some integer scalar k, then N(k) = k2. Thus, length
of the τ−NAF of k is approximately log2(N(k)) = 2log2(k), which is close to
twice of the length of binary expansion of k. The problem of long τ−NAF repre-
sentation of the scalar can be avoided by performing reduction on the scalar. In
[9], Solinas presented an efficient reduction algorithm for scalar multiplication
in main sub group, i.e using points of near to prime order. The reduced scalar
has length close to m in GF (2m).

3 Representing a scalar using τ 2−NAF

In this section, we propose a technique to represent a reduced scalar using
τ2−NAF. This reduces the length of the scalar to almost half compared to
τ−NAF method.

3.1 Computation of τ2−NAF

For any element α = c0 + c1τ , the τ2−NAF representation can be computed by
repeatedly dividing the element by τ2 and generating the remainders as members
of the τ2−NAF.

Theorem 1. When the element is not divisible by τ2, the remainder r should
be chosen such that,

3r = (3c0 − 2c1) (mod 16) for µ = −1

r = (c0 + 6c1) (mod 16) for µ = 1

For µ = −1, the set of possible remainders is thus

R = {±1,±2,±3,±5,±6,±7, 10}.

The remainder cannot take values 4 and 8, as τ2 divides 4. At each step, after the
division, the absolute values of c0 and c1 reduces and the algorithm terminates
when both c0 and c1 become any of the possible values of the remainders.

The algorithm for computing the τ2−NAF is presented in Algorithm 1 for
µ = −1.

3.2 Length and Density of τ2−NAF

For τ−NAF, any element α is repeatedly divided by the norm two element τ
and thus the τ−adic NAF has length close to log2(N(α)) [9]. For τ2−NAF, the
element is divided by the norm four element τ2 and thus length is close to
log4(N(α)). Length of τ2−NAF has the following bound

log4(N(α))− 2.9 < l < log4(N(α)) + 5.1 (2)

It can be proved that the proposed τ2−NAF has a nonzero density of 0.43. In
GF (2m), length l of τ2−NAF is close to m

2 and thus scalar multiplication requires
nearlyasymptotically 0.215m point additions. The normal τ−NAF method re-
quires m

3 point additions.



Algorithm 1 τ2 − adic NAF
Require: Reduced scalar (k0 + k1τ)
Ensure: τ2 −NAF of (k0 + k1τ)
1: begin
2: Set c0 ← k0, c1 ← k1
3: Set S ←< >
4: While c0 6∈ R

⋃
{0} or c1 6∈ R

⋃
{0}

5: If c0 6≡ 2c1 (mod 4)
6: set r so that 3r = (3c0 − 2c1) (mod 16)
7: set c0 ← c0 − r
8: else
9: set r ← 0

10: Prepend r to S
11: Set (c0, c1)← (− 2c1+c0

4
,− 2c1−c0

4
)

12: EndWhile
13: return < c1, c0, S >

4 The τ 2−adic method for Elliptic Curve Scalar
Multiplication

Let for any scalar k, the Algorithm 1 gives output c1, c0 and S =< ul−1, · · · , u0 >.
Then the scalar multiplication for base point P is given by
kP = (c0 + c1τ)(τ2)lP + ul−1(τ2)l−1P + · · ·+ u1(τ2)P + u0P .
Application of τ2 on P is equivalent to P (x, y) → P (x4, y4). A single squaring
is required for c1 6= 0 to compute c1τ(τ2)lP . For some platforms, quading is as
efficient as a single squaring [1]. The right-to-left scalar multiplication algorithm
for µ = −1 is presented in Algorithm 2.

Algorithm 2 Scalar Multiplication using τ2 − adic NAF
Require: Scalar k, Base Point P
Ensure: kP
1: begin
2: Compute (c0, c1)← Reduction(k)
3: Set Q← O
4: For all r ∈ R, compute Pr = rP
5: While c0 6∈ R or c1 6∈ R
6: If c0 6≡ 2c1 (mod 4)
7: set u so that 3u = (3c0 − 2c1) (mod 16)
8: set c0 ← c0 − u
9: compute Q← Q+ Pu

10: For all r ∈ R, compute Pr = τ2Pr

11: Set (c0, c1)← (− 2c1+c0
4

,− 2c1−c0
4

)
12: EndWhile
13: Q← Q+ (c0 + c1τ)P1

14: return Q



5 Conclusion

This paper proposes scalar multiplication on Koblitz curves using τ2−NAF
method, which results in asymptotically 0.215m point additions. Due to reduc-
tion in number of point additions, the proposed technique is faster than normal
τ−NAF method of scalar multiplication.
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