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Abstract

We put forward a framework for the modular design and analysis of multi-party protocols.
Our framework is called “GNUC” (with the recursive meaning “GNUC’s Not UC”), already
alluding to the similarity to Canetti’s Universal Composability (UC) framework. In particular,
like UC, we offer a universal composition theorem, as well as a theorem for composing protocols
with joint state.

We deviate from UC in several important aspects. Specifically, we have a rather different
view than UC on the structuring of protocols, on the notion of polynomial-time protocols and
attacks, and on corruptions. We will motivate our definitional choices by explaining why the
definitions in the UC framework are problematic, and how we overcome these problems.

Our goal is to offer a framework that is largely compatible with UC, such that previous
results formulated in UC carry over to GNUC with minimal changes. We exemplify this by
giving explicit formulations for several important protocol tasks, including authenticated and
secure communication, as well as commitment and secure function evaluation.

1 Introduction

Modular protocol design. The design and analysis of complex, secure multi-party protocols
requires a high degree of modularity. By modularity, we mean that protocol components (i.e.,
subprotocols) can be analyzed separately; once all components are shown secure, the whole protocol
should be.

Unfortunately, such a secure composition of components is not a given. For example, while one
instance of textbook RSA encryption with exponent e = 3 may be secure in a weak sense, all security
is lost if three participants encrypt the same message (under different moduli), see [H̊as88]. Further-
more, zero-knowledge proof systems may lose their security when executed concurrently [GK96].
In both cases, multiple instances of the same subprotocol may interact in strange and unexpected
ways.

The UC framework. However, if security of each component in arbitrary contexts is proven,
then, by definition, secure composition and hence modular design is possible. A suitable security
notion (dubbed “UC security”) was put forward by Canetti [Can01], building on a series of earlier
works [GMW86, Bea92, MR92, Can00].

Like earlier works, UC defines security through emulation; that is, a (sub)protocol is considered
secure if it emulates an ideal abstraction of the respective protocol task. In this, one system Π
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emulates another system F if both systems look indistinguishable in arbitrary environments, and
even in face of attacks. In particular, for every attack on Π, there should be a “simulated attack”
on F that achieves the same results.

Universal composition. Unlike earlier works, UC features a universal composition theorem
(hence the name UC): if a protocol is secure, then even many instances of this protocol do not lose
their security in arbitrary contexts. Technically, if Π emulates an ideal functionality F , then we can
replace all F-instances with Π-instances in arbitrary larger protocols that use F as a subprotocol.

This UC theorem has proven to be a key ingredient to modular analysis. Since the introduction
of the UC framework in 2001, UC-compatible security definitions for most conceivable cryptographic
tasks have been given (see, e.g., [Can05] for an overview). This way, highly nontrivial existing (e.g.,
[CLOS02, GMP+08]) and new (e.g., [Bar05, BCD+09]) multi-party protocols could be explained
and analyzed in a structured fashion. In fact, a security proof in the UC framework has become
a standard litmus test for complex multi-party computations. For instance, by proving that a
protocol emulates a suitable ideal functionality, it usually becomes clear what exactly is achieved,
and against which kinds of attacks.

The current UC framework. The technical formulation of the UC framework has changed
over time, both correcting smaller technical bugs, and extending functionality. As an example of
a technical bug, the notion of polynomial runtime in UC has changed several times, because it
was found that earlier versions were not in fact compatible with common constructions or security
proofs (see [HUMQ09] for an overview). As an example of an extension, the model of computation
(and in particular message scheduling and corruption aspects) in UC has considerably evolved.
For instance, earlier UC versions only allowed the atomic corruption of protocol parties; the most
recent public UC version [Can05] allows a very fine-grained corruption of subprotocol parts, while
leaving higher-layer protocols uncorrupted.

Issues in the UC framework. In the most recent public version UC05 [Can05], the UC frame-
work has evolved to a rather complex set of rules, many of which have grown historically (e.g., the
control function, a means to enforce global communication rules). As we will argue below, this has
led to a number of undesirable effects.

Composition theorem. As a first example, we claim that, strictly speaking, the UC theorem
itself does not hold in UC05. The reason has to do with the formalization of the composition
operation, i.e., the process of replacing one subprotocol with another. In UC05, the composition
operation replaces the code of an executed program party-internally, without changing even the
interface to the adversary. Hence, an adversary may not even know which protocol a party is
running.

However, during the proof of the composition theorem, we have to change exactly those parts
of the adversary that relate to the replaced subprotocol instances. Because there is no way for the
adversary to tell which program a party runs, it is hence not clear how to change the adversary.

We give a more detailed description of in §11.2, along with a counterexample, which we briefly
sketch here (using traditional UC terminology).

We start with a one-party protocol Π′ that works as follows. It expects an initialization message
from the environment Z, which it forwards to the adversary A. After this, it awaits a bit b from
A, which it forwards to Z.

We next define a protocol Π′1, which works exactly the same as Π′, except that upon receipt of
the bit b from A, it sends 1− b to Z.
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We hope that the reader agrees that Π′1 emulates Π′ in the UC05 framework. Indeed, the
simulator A′, which is attacking Π′, uses an internal copy of an adversary A′1 that is supposed to
be attacking Π′1. When A′1 attempts to send a bit b to Π′1, A′ instead sends the bit 1− b to Π′. We
think that this is not a quirk of the UC05 framework — in fact, we believe that Π′1 should emulate
Π′ in any reasonable UC framework.

So now consider a one-party protocol Π that works as follows. Π expects an initial message
from Z, specifying a bit c; if c = 0, it initializes a subroutine running Π′, and if c = 1, it initializes
a subroutine running Π′1. However, the machine ID assigned to the subroutine is the same in either
case. When Π receives a bit from its subroutine, it forwards that bit to Z.

The composition theorem says that we should be able to substitute Π′1 for Π′ in Π, obtaining a
protocol Π1 that emulates Π. Note that in Π1, the subroutine called is Π′1, regardless of the value
of c. However, it is impossible to build such a simulator — intuitively, the simulator would have to
decide whether to invert the bit, as in A′, or not, and the simulator simply does not have enough
information to do this correctly.

In any fix to this problem, the adversary essentially must be able to determine not only the
program being run by a given machine, but also the entire protocol stack associated with it, in
order to determine whether it belongs to the relevant subprotocol or not.

Trust hierarchy. Next, recall that UC05 allows very fine-grained corruptions. In particular,
it is possible for an adversary to corrupt only a subroutine (say, for secure communication with
another party) of a given party. In this, each corruption must be explicitly “greenlighted” by
the protocol environment, to ensure that the set of corrupted parties does not change during
composition. Specifically, this explicit authorization step prevents a trivial simulation in which the
ideal adversary corrupts all ideal parties.

We claim that the UC05 corruption mechanism is problematic for two reasons. First, usually the
set of (sub)machines in a real protocol and in an ideal abstraction differ. As an example, think of a
protocol that implements a secure auction ideal functionality, and in the process uses a subprotocol
for secure channels. The real protocol is comprised of at least two machines per party (one for the
main protocol, one for the secure channels subprotocol). However, an ideal functionality usually
has only one machine per party. Now consider a real adversary that corrupts only the machine
that corresponds to a party’s secure channels subroutine. Should the ideal adversary be allowed
to corrupt the only ideal machine for this party? How should this be handled generally? In the
current formulation of UC05, this is simply unclear. (We give more details and discussion about
this in §11.3.)

Second, consider the secure auctions protocol again. In this example, an adversary can imper-
sonate a party by only corrupting this party’s secure channels subroutine. (All communication is
then handled by the adversary in the name of the party.) Hence, for all intents and purposes, such
a party should be treated as corrupted, although it formally is not. This can be pushed further:
in UC05, the adversary can actually bring arbitrary machines (i.e., subroutines) into existence by
sending them a message. There are no restrictions on the identity or program of such machines; only
if a machine with that particular identity already exists is the message relayed to that machine. In
particular, an adversary could create a machine that communicates with other parties in the name
of an honest party before that party creates its own protocol stack and all its subroutines. This
has the same effect as corrupting the whole party, but without actually corrupting any machine.
(See §11.3 for more details.)

Polynomial runtime. Loosely speaking, UC05 considers a protocol poly-time when all ma-
chines run a number of steps that is polynomial in the difference between the length of their
respective inputs minus the length of all inputs passed down to subroutines. This implies that the
abstract interface of a protocol must contain enough input padding to propagate runtime through
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all necessary subprotocols of an implementation. In particular, this means that formally, the in-
terface of an ideal protocol must depend on the complexity of the intended implementation. This
complicates the design of larger protocols, which, e.g., must adapt their own padding requirements
to those of their subprotocols. Similar padding issues arise in the definition of poly-time adversaries.
This situation is somewhat unsatisfying from an aesthetic point of view, in particular since such
padding has no intuitive justification. We point out further objections against the UC05 notion of
polynomial runtime in §11.7.

None of the objections we raise point to gaps in security proofs of existing protocols. Rather,
they seem artifacts of the concrete technical formulation of the underlying framework.

GNUC. One could try to address all those issues directly in the UC framework. However, this
would likely lead to an even more complex framework; furthermore, since significant changes to the
underlying communication and machine model seem necessary, extreme care must be taken that
all parts of the UC specification remain consistent. For these reasons, we have chosen to develop
GNUC (meaning “GNUC’s not UC”, and pronounced g-NEW-see) from scratch as an alternative
to the UC framework. In GNUC, we explicitly address all of the issues raised with UC, while trying
to remain as compatible as possible with UC terminology and results.

Before going into details, let us point out our key design goals:
Compatibility with UC. Since the UC issues we have pointed out have nothing to do with

concrete security proofs for protocols, we would like to make it very easy to formulate existing UC
results in GNUC. In particular, our terminology is very similar to the UC terminology (although the
technical underpinnings differ). Also, we establish a number of important UC results (namely, the
UC theorem, completeness of the dummy adversary, and composition with joint state) for GNUC.
We also give some example formulations of common protocol tasks. Anyone comfortable in using
UC should also feel at home with GNUC.

Protocol hierarchy. We establish a strict hierarchy of protocols. Every machine has an
identity that uniquely identifies its position in the tree of possible (sub)protocols. Concretely, any
machine M ′ invoked by another machine M has an identity that is a direct descendant of that of
M . The program of a machine is determined by its identity, via a program map, which maps the
machine’s identity to a program in a library of programs. Replacing a subprotocol then simply
means changing the library accordingly. This makes composition very easy to formally analyze and
implement. Furthermore, the protocol hierarchy allows to establish a reasonable corruption policy
(see below).

Hierarchical corruptions. Motivated by the auction example above, we formulate a basic
premise:

if any subroutine of a machine M is corrupt, then M itself should be viewed as corrupt.

In particular, if a subroutine is corrupted that manages all incoming and outgoing communication,
then the whole party must be viewed as corrupt. This translates to the following corruption
policy: in order to corrupt a machine, an adversary must corrupt all machines that are above that
machine in the protocol hierarchy. Since our adversary cannot spontaneously create machines (as
in UC), this completely avoids the “hijacking” issues in UC explained above. Furthermore, when
we compare a real and an ideal protocol, real corruptions always have ideal counterparts. (If the
real adversary corrupts a subroutine, it must have corrupted the corresponding root machine in the
hierarchy; at least this root machine must have an ideal counterpart, which must now be corrupted
as well.)
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Polynomial runtime. Our definition of polynomial runtime should avoid the technical pitfalls
that led to current UC runtime definition. At the same time, it should be convenient to use, without
unnatural padding conventions (except, perhaps, in extreme cases). A detailed description can be
found in our technical roadmap in §2. However, at this point we would like to highlight a nice
property that our runtime notion shares with that of UC05. Namely, our poly-time notion is closed
under composition, in the following sense: if one instance of a protocol is poly-time, then many
instances are as well. Furthermore, if we replace a poly-time subprotocol Π′ of a poly-time protocol
Π with a poly-time implementation Π′1 of Π′, then the resulting protocol is poly-time as well.
(While this sounds natural, this is not generally the case for other notions of poly-time such as the
one from [HUMQ09].)

Other related work. Several issues in the UC framework have been addressed before, sometimes
in different protocol frameworks. In particular, the issues with the UC poly-time notion were
already recognized in [HMQU05, Küs06, HUMQ09]. These works also propose solutions (in different
protocol frameworks); we comment on the technical differences in §11.7, §11.8, and §11.9. The UC
issues related to corruptions have already been recognized in [CCGS10].

Besides, there are other protocol frameworks; these include Reactive Simulatability [BPW07],
the IITM framework [Küs06], and the recent Abstract Cryptography [MR11] framework. We
comment on Reactive Simulatability and the IITM framework in §11.9 and §11.8. The Abstract
Cryptography framework, however, focuses on abstract concepts behind cryptography and has not
yet been fully specified on a concrete machine level.

2 Roadmap

In this section, we give a high-level description of each of the remaining sections.

Section 3: machine models

In this section, we present a simple, low-level model of interactive machines (IMs) and systems of
IMs. Basically, a system of IMs is a network of machines, with communication based on message
passing. Execution of such a system proceeds as a series of activations: a machine receives a
message, processes it, updates its state, and sends a message to another machine.

Our model allows an unbounded number of machines. Machines are addressed by machine IDs.
If a machine sends a message to a machine which does not yet exist, the latter is dynamically
generated. A somewhat unique feature of our definition of a system of IMs is the mechanism by
which the program of a newly created IM is determined. Basically, a system of IMs defines a library
of programs, which is a finite map from program names to programs (i.e., code). In addition, the
system defines a mapping from machine IDs to program names. Thus, for a fixed system of IMs, a
machine’s ID determines its program.

Section 4: structured systems of interactive machines

Our definition of a system of IMs is extremely general — too general, in fact, to effectively model
the types of systems we wish to study in the context of universal composition of protocols. Indeed,
the definitions in §3 simply provide a convenient layer of abstraction. In §4, we define in great detail
the notion of a structured system of IMs, which is a special type of system of IMs with restrictions
placed on machine IDs and program behaviors. Technically, these restrictions can be enforced by
“sandboxing” machines: we consider machines structured as an arbitrary inner core running inside
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a sandbox that ensures that all restrictions are met. We give here a brief outline of what these
restrictions are meant to provide.

In a structured system of IMs, there are three classes of machines: environment, adversary, and
protocol. There will only be one instance of an environment, and only one instance of an adversary,
but there may be many instances of protocol machines, running a variety of different programs.

Protocol machines have IDs of the form 〈 pid , sid 〉. Here, pid is called a party ID (PID) and sid
is called a session ID (SID). Machines with the same SID run the same program, and are considered
peers. The PID serves to distinguish these peers. Unfortunately, the term “party” carries a number
of connotations, which we encourage the reader to ignore completely. The only meaning that should
be applied to the term “party” is that implied by the rules regarding PIDs. We will go over these
rules shortly.

We classify protocol machines as either regular or ideal. The only thing that distinguishes these
two types syntactically is their PID: ideal machines have a special PID, which is distinct from the
PIDs of all regular machines. Regular and real machines differ, essentially, in the communication
patterns that they are allowed to follow. An ideal machine may communicate directly (with perfect
secrecy and authentication) with any of its regular peers, as well as with the adversary.

A regular machine may interact with its ideal peer, and with the adversary; it may not interact
directly with any of its other regular peers, although indirect interaction is possible via the ideal
peer. A regular machine may also pass messages to subroutines, which are also regular machines.
Subroutines of a machine M may also send messages to M , their caller.

Two critical features of our framework are that regular machines are only created by being
called, as above, and that every regular machine has a unique caller. Usually, the caller of a regular
machine M will be another regular machine; however, it may also be the environment, in which
case, M is a “top level” machine. The environment may only communicate directly with such
top-level regular machines, as well as with the adversary.

Another feature of our framework is that the SID of a regular machine specifies the name
of the program run by that machine, and moreover, the SID completely describes the sequence
of subroutine calls that gave rise to that machine. More specifically, an SID is structured as a
“pathname”, and when a machine with a given pathname calls a subroutine, the subroutine shares
the same PID as the caller, and the subroutine’s SID is a pathname that extends the pathname of
the caller by one component, and this last component specifies (among other things) the program
name of the subroutine.

One final important feature of our framework is that the programs of regular machines must
“declare” the names of the programs that they are allowed to call as subroutines. These declarations
are strictly enforced at run time.

Execution of such a system proceeds as follows. First, the environment is activated. After this,
as indicated by the restrictions described above, control may pass between

• the environment and a top-level regular machine,

• a regular machine and its ideal peer,

• a regular machine and its caller,

• a regular machine and one of its subroutines,

• the adversary and the environment, or

• the adversary and protocol machine (regular or ideal).
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We close this section with the definition of the dummy adversary (usually denoted by Ad). This
is a specific adversary that essentially acts as a “wire” connecting the environment to protocol
machines.

Section 5: protocols

This section defines what we mean by a protocol. Basically, a protocol Π is a structured system of
IMs, minus the environment and adversary. In particular, Π defines a map from program names to
programs. The subroutine declarations mentioned above define a static call graph, with program
names as nodes, and with edges indicating that one program may call another. The requirement
is that this graph must be acyclic with a unique node r of in-degree 0. We say that r is the root of
Π, or, alternatively, that Π is rooted at r.

We then define what it means for one protocol to be a subprotocol of another. Basically, Π′ is a
subprotocol of Π if the map from program names to programs defined by Π′ is a restriction of the
map defined by Π.

We also define a subprotocol substitution operator. If Π′ is a subprotocol of Π, and Π′1 is another
protocol, we define Π1 := Π[Π′/Π′1] to be the protocol obtained by replacing Π′ with Π′1 in Π. There
are some technical restrictions, namely, that Π′ and Π′1 have the same root, and that the substitution
itself does not result in a situation where one program name has two different definitions.

Observe that protocol substitution is a static operation performed on libraries, rather than a
run-time operation.

We also introduce some other terminology.
If Z is an environment that only calls regular protocol machines running programs named r,

then we say that Z is multi-rooted at r. In general, we allow such a Z to call machines with various
SIDs, but if Z only calls machines with a single, common SID, then we say that Z is rooted at r.

If Π is a protocol rooted at r, A is an arbitrary adversary, Z is an environment multi-rooted at
r, then these programs define a structured system of IMs, denoted by [Π, A, Z].

If Z is rooted at r, then during an execution of [Π, A, Z], a single instance of Π will be running;
if Z is multi-rooted at r, then many instances of Π may be running. During the execution of such
a system, it is helpful to visualize its dynamic call graph. The reader may wish to look at Fig. 2
on p. 24, which represents a dynamic call graph corresponding to two instances of a two-party
protocol. In this figure, circles represent regular protocol machines. Rectangles represent ideal
protocol machines, which are connected to their regular peers via a dotted line. In general, a
dynamic call graph of regular machines will be a forest of trees, where the roots are the top-level
machines that communicate directly with the environment.

Section 6: resource bounds

The main goal of this section is to define the notion of a polynomial time protocol.
When we define a polynomial time algorithm, we bound its running time as a function of

the length of the input. For protocols that are reacting to multiple messages coming from an
environment (either directly or via the dummy adversary), we shall bound the running time of all
the machines comprising the protocols as a function of the total length of all these messages.

To this end, we only consider environments Z that are well-behaved in a technical sense defined
in this section. Intuitively, an environment Z is well behaved if it runs in time polynomial in
the length of all of its incoming messages, and the total length of messages emanating from it is
bounded by a polynomial in security parameter.
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The execution of a system [Π, A, Z] will be driven by such a well-behaved environment Z. The
running time of the protocol will be bounded by the length of various flows:

• fep is the flow from Z into Π;

• fea is the flow from Z into A;

• fap is the flow from A into Π.

By flow, we mean the sum of the lengths of all relevant messages (including machine IDs and
security parameter). To define the notion of a poly-time protocol, we do not need the flow fap, but
this will come in handy later. See Fig. 1 for an illustration. We stress that in this figure, the box
labeled Π represents all the running protocol machines.

Let us also define tp to be the total running time of all protocol machines running in the
execution of [Π, A, Z], and ta to be the total running time of A in this execution.

Our definition of a poly-time protocol runs like this: we say a protocol Π rooted at r is
(multi-)poly-time if there exists a polynomial p such that for every well-behaved Z (multi-)rooted
at r, in the execution of [Π, Ad, Z], we have

tp ≤ p(fep + fea)

with overwhelming probability. Recall thatAd denotes the dummy adversary. SinceAd is essentially
a “wire”, observe that fap is closely related to fea.

Two points in this definition deserve to be stressed: (i) the polynomial p depends on Π, but not
on Z; (ii) the bound is required to hold only with overwhelming probability, rather than probability
1. We also stress that in bounding the running time of Π, we are bounding the total running time
of all machines in Π in terms of the total flow out of Z — nothing is said about the running time
of an individual machine in terms of the flow into that machine.

This definition is really two definitions in one: poly-time (for “singly” rooted environments) and
multi-poly-time (for “multiply” rooted environments). The main theorem in this section, however,
states that poly-time implies multi-poly-time.

Section 7: emulation

At the heart of any framework for universal composition is a notion of emulation. Very informally,
one says that a protocol Π1 emulates another protocol Π if for every attack on Π1, there is a
simulator that attacks Π, so that these two attacks are indistinguishable — the idea is that in
this way, Π1 acts as a “secure implementation” of Π. More formally, the definition says that for
every adversary A1, there exists an adversary A, such that Exec[Π, A, Z] ≈ Exec[Π1, A1, Z] for
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all environments Z. Here, Exec[Π, A, Z] represents the output (which is generated by Z) of the
execution of the system [Π, A, Z], and “≈” means “computationally indistinguishable”. Also, we
quantify over all well-behaved environments Z, rooted at the common root of Π and Π1; if we
allow multi-rooted environments, we say that Π1 multi-emulates Π, and otherwise, we say that Π1

emulates Π.
In the above definition, we still have to specify the types of adversaries, A and A1, over which

we quantify. Indeed, we have to restrict ourselves to adversaries that are appropriately resource
bounded.

Recall the above definitions of flow and running time, namely, fep, fea, fea, tp, and ta. Suppose
Π is a protocol rooted at r. We say that an adversary A is (multi-)time-bounded for Π if there exists
a polynomial p, such that every well-behaved environment Z (multi-)rooted at r, in the execution
of [Π, A, Z], we have

tp + ta ≤ p(fep + fea)

with overwhelming probability. We also say that A is (multi-)flow-bounded for Π if there exists a
polynomial p, such that every well-behaved environment Z (multi-)rooted at r, in the execution of
[Π, A, Z], we have

fap ≤ p(fea)

with overwhelming probability.
So in our definition of emulation, we restrict ourselves to adversaries that are both (multi-)time-

bounded and (multi-)flow-bounded — we call such adversaries (multi-)bounded. The time-
boundedness constraint should seem quite obvious and natural. However, the flow-boundedness
constraint may seem somewhat non-obvious and unnatural; we shall momentarily discuss why it is
needed, some difficulties it presents, and how these difficulties may be overcome.

It is easy to see that if Π is (multi-)poly-time, then the dummy adversary is (multi-)bounded for
Π. So we always have at least one adversary to work with that satisfies our constraints — namely,
the dummy adversary — and as we shall see, this is enough.

We state here the main theorems of this section.

Theorem 5 (completeness of the dummy adversary) Let Π and Π1 be (multi-)poly-time
protocols rooted at r. Suppose that there exists an adversary A that is (multi-)bounded for Π,
such that for every well-behaved environment Z (multi-)rooted at r, we have Exec[Π, A, Z] ≈
Exec[Π1, Ad, Z]. Then Π1 (multi-)emulates Π.

Theorem 6 (emulates =⇒ multi-emulates) Let Π and Π1 be poly-time protocols. If Π1

emulates Π, then Π1 multi-emulates Π.

Recall that if a protocol is poly-time, then it is also multi-poly-time, so the statement of The-
orem 6 makes sense. Because of these properties, we ignore multi-emulation in the remaining two
theorems.

Theorem 7 (composition theorem) Suppose Π is a poly-time protocol rooted at r. Suppose Π′

is a poly-time subprotocol of Π rooted at x. Finally, suppose Π′1 is a poly-time protocol also rooted
at x that emulates Π′ and that is substitutable for Π′ in Π. Then Π1 := Π[Π′/Π′1] is poly-time and
emulates Π.

Theorem 8 (reflexivity and transitivity of emulation) Let Π, Π1, and Π2 be poly-time
protocols. Then Π emulates Π. In addition, if Π2 emulates Π1 and Π1 emulates Π, then Π2

emulates Π.
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The composition theorem (Theorem 7) is arguably the “centerpiece” of any universal composi-
tion framework. It says that if Π′1 emulates Π′, then we can effectively substitute Π′1 for Π′ in any
protocol Π that uses Π′ as a subprotocol, without affecting the security of Π.

It is in the proof of the composition theorem that we make essential use of the flow-boundedness
constraint. This constraint allows us to conclude from the hypotheses that the instantiated protocol
Π1 is itself poly-time. In order to use the composition theorem in a completely modular way, this
is essential — typically, the protocol Π will be designed without regard to the implementation of
Π′, and the protocol Π′1 is designed without regard to the usage of Π′ in Π.

If we drop the flow-boundedness constraint, the composition theorem is no longer true, and in
particular, Π1 may not be poly-time. Perhaps there is another type of constraint that would allow
us to prove the composition theorem, but our investigations so far have not yielded any viable
alternatives.

The flow-boundedness constraint can, at times, be difficult to deal with. Indeed, it turns out
that in some situations, it is difficult to design a simulator that satisfies it. To mitigate these
difficulties, we found it necessary to use a somewhat more refined notion of poly-time than that
discussed above. The idea is to introduce the notion of invited messages: a protocol machine may
invite the adversary to send it a specific message, and the adversary may invite the environment to
send it a specific message. We then stipulate that such invited messages are ignored for the purposes
of satisfying the flow-boundedness constraint; however, they are also ignored for the purposes of
bounding running times. Formally, this simply amounts to defining fea and fap to count only
uninvited messages.

Using this invitation mechanism, we may allow the adversary to send certain “control messages”
to the protocol, “free of charge”, so to speak. Of course, the protocol designer must ensure that
these invited messages do not upset the running-time bounds — this typically amounts to a very
simple form of “amortized analysis”. Our main use of the invitation mechanism is in the treatment
of corruptions.

In our analysis of the application of our framework to many known “use cases”, we have found
that by using the invitation mechanism, along with a few simple design conventions, the flow-
boundedness constraint does not present any insurmountable problems.

The flow-boundedness constraint may also seem to limit the adversary in a way that would rule
out otherwise legitimate attacks — see Note 7.3 for a discussion on why this is not the case.

Section 8: Conventions regarding corruptions and ideal functionalities

Perhaps somewhat surprisingly, our fundamental theorems, such as the composition theorem, are
completely independent of our mechanism for modeling corruptions, which is layered on top of the
basic framework as a set of conventions. This section describes these conventions.

Basically, the environment may choose to corrupt a “top level” regular protocol machine by
sending it a special corrupt message. When this happens, the chosen machine responds by notifying
the adversary that it is corrupted. This notification may include some or all of the current internal
state of the corrupted machine — this depends on whether one wants to model secure erasures or
not.

After such a machine M is corrupted, it essentially acts as a slave to the adversary, in the
following sense: any messages that M subsequently receives are forwarded to the adversary, and
the adversary may instruct M to send a message to another machine. More precisely, the adversary
may instruct M to send the special corrupt message to a subroutine of M , and it may instruct M to
send an arbitrary message to its ideal peer. By sending such “subroutine corruption instructions”,
the adversary may recursively corrupt all the regular machines in the subtree of the dynamic call
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graph rooted at M . Moreover, for each subroutine of M extant at the time of M ’s corruption, the
corresponding “subroutine corruption instructions” are invited messages, which means the adver-
sary is free to carry out this recursive corruption procedure, without breaking the flow-boundedness
constraint. Similarly, the adversary is invited to send an instruction to M that will cause M to send
the special corruption message to its ideal peer — the behavior of the ideal peer upon receiving
this message is entirely protocol dependent.

Our model of corruptions enforces a strict hierarchical pattern of corruption, so that if Q is a
subroutine of P , and Q is corrupted, then P must be corrupted as well.

This section also includes the definition of an ideal protocol, which is a particularly simple type
of protocol, for which a single instance of the protocol consists of just an ideal machine, along
with regular peers, so-called “dummy parties”, that just act as “wires”, each of which connects the
ideal machine to the caller of the dummy party. The logic of the ideal machine is called an ideal
functionality.

We also define the notion of hybrid protocols. If F1, . . . ,Fk are ideal functionalities, then we say
that a protocol Π is an (F1, . . . ,Fk)-hybrid protocol of the only non-trivial ideal machines used by
Π are instances of the Fi’s.

Section 9: protocols with joint state

Consider an F-hybrid protocol Π. Note that this means that even a single instance of Π can use
multiple instances of F . These subprotocol instances will be independent, and thus their potential
implementations will also be independent — in particular, they may not share joint state. Thus,
if F represents, say, an authenticated channel, we will not be able to implement all these different
F-instances using, say, the same signing key.

This section provides a construction and a theorem — the so-called JUC theorem [CR03] — that
allows us to sidestep this issue. The basic idea is this. First, we transform F into its multi-session
version F̂ . Second, we transform Π into a “boxed” protocol [Π]F , in which all of the individual
regular protocol machines that belong to one “party” will be run as virtual machines inside a single
“container” machine, where calls to the various F-instances are trapped by the container, and
translated into calls to a single running instance of F̂ . Our JUC Theorem (Theorem 9) then states
that [Π]F emulates Π.

Of course, this is only interesting if we can design a protocol Π̂ that emulates F̂ . For our
example above, where F models an authenticated channel, this can be done in a straightforward
way, assuming some kind of ideal functionality Fca which represents a “certificate authority”. Then
applying ordinary composition and transitivity, we get a Fca-hybrid protocol Π1 that emulates Π.

This type of application is one of the main motivations for the JUC theorem — it allows us to
replace a slow authenticated channel (i.e., between a user and a certificate authority) with a faster
one (i.e., one based on signatures).

We note that unlike the composition theorem, the JUC theorem does depend on our conventions
regarding corruptions, and its proof relies in an essential way on the invitation mechanism.

We also point out that our construction of [Π]F , which runs many virtual machines inside one
container, is necessitated by the fact that our framework does not provide for “joint subroutines”
— the single running instance of F̂ may only be a subroutine of one machine, which is our [Π]F .
This is actually quite natural, and in our application to authenticated channels, it closely resembles
how protocols are actually used and deployed in practice. It also meshes well with our principle of
hierarchical corruption. Moreover, we feel that any reasonable framework should support this type
of virtualization, as this seems to be a fundamental abstraction.
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Section 10: an extension: common functionalities

In this section, we present an extension to our framework, introducing the notion of common
functionalities, which will involve some revisions to the definitions and theorems in the previous
sections.

The goal is to build into the framework the ability for protocol machines that are not necessarily
peers, and also (potentially) for the environment, to have access to a “shared” or “common”
functionality.

For example, such a common functionality may represent a system parameter generated by a
trusted party that is accessible to all machines in the system. By restricting the access of the
environment, we will also be able to model a common reference string (CRS) — the difference
being that a simulator is allowed to “program” a CRS, but not a system parameter. Using this
mechanism, we can also model random oracles, both programmable and non-programmable.

We stress that our modeling of a CRS differs from the usual UC modeling, e.g., in [CF01].
Namely, [CF01] model a CRS as a hybrid ideal functionality, which means that every instance
of a subprotocol gets its own CRS. Using the JUC theorem, it is then possible to (non-trivially)
translate many instances of a protocol with individual CRSs into one instance of a multiple-use
protocol that uses only one CRS [CR03]. We believe that our modeling of a CRS is more natural
and direct, although one could of course formulate a CRS ideal functionality in GNUC.

Without some kind of set up assumption, such as a CRS, it is impossible to realize many
interesting and important ideal functionalities [CF01]. Moreover, with a CRS, it is feasible to
realize any “reasonable” ideal functionality [CLOS02] under reasonable computational assumptions.
(While the results in [CF01] use a CRS that is formalized as a hybrid functionality, they also carry
over easily to our CRS formalization.)

In contrast to CRSs, system parameters are not essential from a theoretical point of view, but
often yield more practical protocols.

Section 11: comparison with UC05 and other frameworks

In this section, we compare our proposed UC framework with Canetti’s UC05 framework [Can05],
and (more briefly) with some other frameworks, including Küsters’ IITM framework [Küs06], and
the Reactive Simulatability framework of Backes, Pfitzmann and Waidner [BPW07].

Section 12: examples

In this section, we give some examples that illustrate the use of our framework. These examples
include several fundamental ideal functionalities, carefully and completely specified in a way that
is compatible with our framework. These examples also include a more detailed discussion of how
the JUC theorem may be used together with a certificate authority to obtain protocols that use
authenticated channels, and that are designed in a modular way within our framework, but yet are
quite practical. Finally, the results in [BCL+05], on secure computation without authentication,
are considered, and we discuss how these may be translated into our framework.

3 Machine models

3.1 Some basic notation and terminology

Throughout, we assume a fixed, finite alphabet Σ of symbols, which shall include all the usual
characters found on a standard American keyboard.
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We assume a fixed programming language for writing programs; programs are written as
strings over Σ. We assume that our programs have instructions for generating a random bit. We
also assume that a program takes as input a string over Σ and outputs a string over Σ. For
π, α ∈ Σ∗, if we view π as a program and α as an input, the notation β ← Eval(π, α) means that
the program π is run on input α, and if and when the program terminates with an output, that
output is assigned to β. If ω ∈ {0, 1}∞ is an infinite bit string, we may also write β ← Eval(π, α;ω)
to mean that π is run on input α, using ω as the source of random bits, and the output is assigned
to β. When discussing the execution of such probabilistic programs, we are assuming a probability
space on {0, 1}∞ analogous to the Lebesgue measure on [0, 1].

Finally, we assume a fixed list-encoding function 〈 · 〉: if α1, . . . , αn are strings over Σ, then
〈α1, . . . , αn 〉 is a string over Σ that encodes the list (α1, . . . , αn) in some canonical way. It may
be the case that a string does not encode a list, but if it does, then that list must be unique. We
assume the encoding and decoding functions may be implemented in polynomial time. We also
assume that the length of 〈α1, . . . , αn 〉 is at least n plus the sum of the lengths of α1, . . . , αn. For
example, one could define 〈α1, . . . , αn 〉 := |Quote(α1)| · · · |Quote(αn), where Quote(α) replaces
each occurrence of | in α with the “escape sequence” \|, and each occurrence of \ with \\.

3.2 Interactive machines

An interactive machine (IM) M consists of a triple (id , π, state), where id is its machine
ID, π is its program, and state is its current state, all of which are strings over Σ. Given
id0,msg0 ∈ Σ∗, the machine M computes γ ← Eval(π, 〈 id , state, id0,msg0 〉) ∈ Σ∗. The output γ is
expected to be of the form 〈 state ′, id1,msg1 〉, for some state ′, id1,msg1 ∈ Σ∗. Such a computation
is called an activation of M .

At the end of such an activation , the current state of M is modified, so that now M consists
of the triple (id , π, state ′) — although the state of M changes, we still consider it to be the same
machine (and the values of id and π will never change). Intuitively, msg0 represents an incoming
message that was sent from a machine M0 with machine ID id0, while msg1 represents an outgoing
message that is to be delivered to a machine M1 with machine ID id1.

We say that a program π is a valid IM program if the following holds: for all
id , state, id0,msg0 ∈ Σ∗, whenever the computation Eval(π, 〈 id , state, id0,msg0 〉) halts, its output
is the encoding of a triple, that is, a string of the form 〈 state ′, id1,msg1 〉 for some state ′, id1,msg1 ∈
Σ∗. Note that a valid IM program may be probabilistic, and may fail to halt on certain inputs and
certain coin-toss sequences, but whenever it does halt, its output must be of this form.

Whenever we consider an IM, we shall always assume that its program is a valid IM program,
even if this assumption is not made explicit. Note that while there is no algorithm that decides
whether a given program π is a valid IM program, we can easily convert an arbitrary program π
into a valid IM program π̄, which runs as follows: π̄ simply passes its input to π, and if π halts
with an output that is a valid triple, then π̄ outputs that triple, and if π halts with an output that
is not a valid triple, then π̄ outputs the triple 〈 〈 〉, 〈 〉, 〈 〉 〉. Thus, π̄ acts like a software sandbox
in which π is allowed to run. We will use this “sandboxing” idea extensively throughout the paper
to make similar restrictions on programs.

To simplify notation, if π is a valid IM program, we express a single activation as

〈 state ′, id1,msg1 〉 ← Eval(π, 〈 id , state, id0,msg0 〉).
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3.3 Machine models and running time

To complete our definition of an interactive machine, we should fully specify the programming
language, the execution model, and the notion running time. However, as long as we restrict
ourselves to models that are polynomial-time equivalent to Turing machines, none of these details
matter, except for the specific requirements discussed in the next two paragraphs.

We assume that there is a universal program πu that can efficiently simulate any other program,
and halt the simulation in a timely fashion if it runs for too long. To make this precise, define
B(π, α, 1t, ω) to be 〈 beep 〉 if the running time of the computation β ← Eval(π, α;ω) exceeds t, and
〈 normal, β 〉 otherwise. The requirement is that Eval(πu, 〈π, α, 1t 〉;ω) computes B(π, α, 1t, ω) in
time bounded by a fixed polynomial in the length of 〈π, α, 1t 〉.

We also assume that the programming language allows us to place a “comment” in a program,
so that the comment can be efficiently extracted from the program, but does not in any way affect
its execution. While not strictly necessary, this assumption will be convenient.

Finally, we define a simple notion of polynomial time for IMs. Let π be an IM program. We say
that π is multi-activation polynomial-time if the following holds: there exists a polynomial p
such that for all

id , id0,msg0, . . . , idk−1,msgk−1 ∈ Σ∗, (1)

if
n := |〈 id , id0,msg0, . . . , idk−1,msgk−1 〉|,

then with probability 1, the following computation runs in time at most p(n):

state ← 〈 〉
for i← 0 to k − 1

〈 state, id ′i,msg ′i 〉 ← Eval(π, 〈 id , state, id i,msg i 〉)

In addition, if there is a polynomial q such that for all strings as in (1), we have |msg ′i| ≤ q(|msg i|)
for i = 0, . . . , k − 1 with probability 1, we say that π is I/O-bounded.

3.4 Systems of interactive machines

Our next goal is to define a system of interactive machines. To do this, we first define two of the
basic components of such a system.

The first basic component of such a system is a run-time library. This is a partial function
Lib : Σ∗ → Σ∗ with a finite domain.

Intuitively, Lib maps program names to programs (i.e., code). The definition implies that
a given run-time library can only define a finite number of program names. The idea is that all
programs for machines executing in a system of interactive machines will come from the run-time
library. We write Lib(name) = ⊥ to mean that the given program name name is not in the domain
of Lib.

The second basic component of a system of IMs is a name map. This is a function NameMap :
Σ∗ → Σ∗ ∪ {⊥} that can be evaluated in deterministic polynomial time. In addition, we require
that NameMap(〈 〉) = ⊥.

Intuitively, NameMap maps a machine ID to a program name, or to ⊥ if there is no corre-
sponding program name. The machine ID 〈 〉 is special, and we insist that there is no program
name associated with this machine ID; more specifically, the string 〈 〉 will essentially be used as
the name of a “master machine” that carries out the execution of a system of interactive machines,
but is itself not a part of the system.
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A given software library Lib and name map NameMap determine the program map ProgMap :
Σ∗ → Σ∗ ∪ {⊥} defined as follows: for id ∈ Σ∗, if NameMap(id) = ⊥, then ProgMap(id) := ⊥,
and otherwise, if NameMap(id) = name 6= ⊥, then ProgMap(id) := Lib(name).

Intuitively, such a program map associates to each machine ID a corresponding program, or
the symbol ⊥ if there is no such program. By definition, a program map can be evaluated in
deterministic polynomial time.

A system of interactive machines (IMs) is a triple S = (id init,NameMap,Lib), where
id init is a machine ID, NameMap is a name map, and Lib is a run-time library. We require that if
ProgMap is the corresponding program map, then πinit := ProgMap(id init) 6= ⊥.

We shall next define the execution of such a system S. Such an execution takes an external
input α ∈ Σ∗, and produces an external output β ∈ Σ∗, if the execution actually halts.

Intuitively, the execution of the system proceeds as a sequence of activations. The machine
Minit := (id init, πinit, 〈 〉) is the initial machine, and it performs the first activation: starting with
the (rather arbitrary) initial state 〈 〉, it is given the message 〈 init, α 〉, apparently originating
from the “master machine”. In general, whenever a machine M performs an activation, it receives
a message msg0 from a machine M0 with ID id0, and then M ’s state is updated, and a message
msg1 is sent to a machine M1 with ID id1, after which, the next activation is performed by M1. If
there is no machine M1 with the ID id1, then a new machine is created afresh, using the program
determined by the program map. Two special conditions may arise:

• id1 = 〈 〉 (i.e., id1 is the ID of the “master machine”). In this case, the execution of the
system terminates, and the output of the system is defined to be msg1.

• id1 6= 〈 〉 but ProgMap(id1) = ⊥ (i.e., the program corresponding to id is undefined). In this
case, a special error message (apparently originating from the “master machine”) is sent back
to M .

We formalize of the above intuition by describing in detail the algorithm representing the
execution of a system S as above. To streamline the presentation, we make use of an “associative
array” or “lookup table” Machine, which maps machine IDs to program/state pairs. Initially,
Machine[id ] = ⊥ (i.e., is undefined) for all id ∈ Σ∗; as the algorithm proceeds, for various values
id , π, state, we will set Machine[id ] to (π, state), so that the triple (id , π, state) represents an IM.

Here is the algorithm:
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Input: α ∈ Σ∗

Output: β ∈ Σ∗

id ← id init; id0 ← 〈 〉; msg0 ← 〈 init, α 〉

while id 6= 〈 〉 {
/∗ message msg0 is being passed from id0 to id ∗/

if Machine[id ] = ⊥
then { π ← ProgMap(id); state ← 〈 〉 } // create new machine
else (π, state)← Machine[id ] // fetch description of existing machine

/∗ perform one activation: ∗/
〈 state ′, id1,msg1 〉 ← Eval(π, 〈 id , state, id0,msg0 〉)
Machine[id ]← (π, state ′) // update state

if id1 6= 〈 〉 and ProgMap(id1) = ⊥
then { id0 ← 〈 〉; msg0 ← 〈 error, id1,msg1 〉 } // error – undefined program
else { id0 ← id ; msg0 ← msg1; id ← id1 } // pass message msg1 to id1

}
β ← msg0; output β

4 Structured systems of interactive machines

In the previous section, we defined the notion of a system of IMs. This is a very simple and general
notion, but is far too general for our purposes. Our goal in this section is to define the notion of
a structured system of IMs. It is with respect to such structured systems that our main theorems
(such as the Composition Theorem) will be formulated.

In defining a structured system of IMs, we will define once and for all the name map (which
maps machine IDs to program names) that will be used for all structured systems (although in §10
we will define the notion of an extended structured system, which will have some extra features).
In addition, we will define various classes of machines that satisfy certain constraints — all of these
constraints can be imposed “locally”, by software sandboxing, and we will not require any form
of “global controller”, beyond the simple “master machine” that carries out the execution of a
(general) system of IMs.

4.1 Some basic syntax

At a high level, in a structured system of IMs, there are three classes of machines: environment,
adversary, and protocol. Moreover, in any execution of a structured system, there will be only
one instance of an environment machine, and only one instance of an adversary machine, so there
will be no confusion when we speak of “the environment” and “the adversary”.

Syntactically, what distinguishes these three classes is the form of their machine IDs. For
specificity, we will say that the environment has machine ID 〈 env 〉, the adversary has machine
ID 〈 adv 〉. Protocol machines will have machine IDs of the form 〈 pid , sid 〉, where pid is a string
representing the party ID (or PID) of the machine and sid is a string representing the session
ID (or SID) of the machine. We say that two such IDs are peers if their SIDs match, and two
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protocol machines whose machine IDs are peers are also called peers.
We next describe constraints on the format of PIDs and SIDs of protocol machines. We divide

protocol machines into two subclasses: regular and ideal. These two subclasses of machines are
distinguished by the form of their PIDs: regular machines have a PID of the form 〈 reg, basePID 〉,
while ideal protocol machines have the PID 〈 ideal 〉. A typical PID of a regular machine could be
of the form 〈 reg, email address 〉 to denote machines associated with the party with a given email
address.

As will be described in detail below, regular machines may invoke other regular machines as
“subroutines”. When a machine P invokes a machine Q as a subroutine, we say that P is the
caller of Q and Q is a subroutine of P . This caller/subroutine relationship will play a crucial
role. An essential constraint we shall impose is the following:

every regular machine has a unique caller.

This is an important constraint, and we shall have much more to say about it. However, for the
time being, we indicate how this constraint relates to the syntactic structure of SIDs.

SIDs for all protocol machines (regular and ideal) are structured as “path names”, which will
be used to explicitly represent the caller/subroutine relationship of regular machines. That is, SIDs
will be of the form

〈α1, . . . , αk 〉. (2)

Some terminology will be helpful. We say an SID sid ′ is an extension of an SID sid
if for some α1, . . . , α` ∈ Σ∗, and for some k ≤ `, we have sid = 〈α1, . . . , αk 〉 and sid ′ =
〈α1, . . . , αk, αk+1, . . . , α` 〉. If ` > k, we say sid ′ is a proper extension of sid , and if ` = k + 1,
we say sid ′ is a one-step extension of sid .

Next, we define a simple syntactic relation on machine IDs. Given two machine IDs id =
〈 pid , sid 〉 and id ′ = 〈 pid ′, sid ′ 〉, we say that the ID id is a parent of the ID id ′ if pid = pid ′

and sid ′ is a one-step extension of sid . Evidently, the parent of any ID is uniquely determined. As
usual, if id is a parent of id ′, then we also say that id ′ is a child of id . Moreover, we say that id
is an ancestor of id ′ if pid = pid ′ and sid ′ is a proper extension of sid .

With this definition in hand, we can state more precisely the constraint that regular machines
will satisfy: for any regular machine with ID id , its caller is either the environment or the regular
machine whose ID is the parent of id . This will be more precisely formulated below.

For an SID of the form (2), the last component, namely, αk, is called the basename of the
SID. This basename also must be of a particular form, namely, 〈 protName, sp 〉. Here, protName
specifies the name of the program being executed by the machine. For protocol machines, we
require that program names be of the form prot-name. We call a program name of this form
a protocol name. Also, sp is an arbitrary string, which we call a session parameter — its
contents is determined by the application.

To give an example, an SID for a zero-knowledge protocol (for a relation rel) that is
called as a subroutine by a commitment protocol could be of the form 〈 〈 prot-commit,
〈 sender , receiver , label 〉 〉, 〈 prot-zk, 〈 sender , receiver , rel , label ’ 〉 〉 〉. Here, sender and receiver de-
note the PIDs of the corresponding peers, and label , label ’ are labels that distinguish different
instances of the same protocol.

That completes the description of the format of the machine IDs of protocol machines. Now
that we have defined the format of all machine IDs, we can define the name map that will be
used in every structured system of IMs. The name map will map the machine ID 〈 env 〉 to the
program name env, the machine ID 〈 adv 〉 to the program name adv, and a machine ID of the form
〈 pid , 〈 . . . , 〈 protName, sp 〉 〉 〉 to the protocol name protName.
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Of course, certain aspects of this definition of the name map are somewhat arbitrary, but we
have included them for specificity.

4.2 Overall execution pattern

We now describe the overall execution pattern of a structured system of IMs.
The environment is the initial machine. In any execution of the system, it will be given the

external input and will perform the first activation.
In all executions of interest, the external input will be of the form 1λ, where λ represents the

security parameter. We will also insist on the following constraints:

C1: The environment is the only machine that can produce an external output (and thereby halt
the execution of a structured system).

C2: Every message sent from one machine to another is of the form 〈 1λ,m, i1, . . . , ik 〉, where λ is
the security parameter; m is called the message body, and i1, . . . , ik are called invitations;
invitations may be included only in messages from a protocol machine to the adversary, and
in messages from the adversary to the environment.

Note that there is no constraint placed on the format of the external output generated by the
environment.

These constraints are easily enforced by sandboxing. To implement constraint C1, the sandbox
would check for an illegal attempt to generate an external output — if this happens, the message
would simply be sent to the adversary (this will always be legal). Similarly, if a machine generates
a message that does not satisfy constraint C2, the message is translated into one that does; the
details of this translation are not so important, but we can assume that the message is simply
replaced by 〈 1λ, 〈 〉 〉.

Invitations will play a special role when we discuss running time and other resource bounds in
§6 and §7. For now, we leave the reader with the following, admittedly vague, intuition: when a
machine P sends an invitation i to a machine Q, this is a hint that Q should send the message i
back to P .

Because the security parameter is always transmitted as part of a message, when describing pro-
tocols at high level, we will generally leave the security parameter out of the description. Whenever
we say “send message m”, the low-level message that is transmitted is actually 〈 1λ,m 〉. Whenever
we say “send message m with invitations for i1, . . . , ik”, the low-level message that is transmitted
is actually 〈 1λ,m, i1, . . . , ik 〉.

4.3 Constraints on the environment

In addition to the constraints imposed in §4.2, we shall impose additional constraints on the envi-
ronment.

C3: The environment may send messages to the adversary, and may send messages to regular
protocol machines; however, it may not send messages to ideal protocol machines.

C4 (peer/ancestor free constraint): The set of regular protocol machines to which the envi-
ronment sends messages must be peer/ancestor free, which means that no one machine in
the set has an ID that is a peer of an ancestor of another.
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Constraint C4 can be rephrased as saying that among the regular protocol machines to which
the environment sends messages, no one machine may have an SID that is a proper extension of
the SID of any other machine. These constraints are easily enforced by sandboxing.

Note 4.1. Constraint C4 is not necessary to prove any of the theorems in this paper. However, this
constraint can be justified, and including it helps to justify some other constraints — see Note 8.10.
�

Note 4.2. The set of constraints taken together will imply that the only machines from which the
environment receives messages are the adversary and the regular protocol machines to which it has
already sent a message. �

Note 4.3. If the environment specifies an SID of the form 〈α1, . . . , αk 〉, we do insist that αk is
a well-formed basename; however, we do not make any other constraints: the program name need
not be specified by the library, and α1, . . . , αk−1 may be completely arbitrary strings. �

4.4 Constraints on the adversary

In addition to the constraints imposed in §4.2, we shall impose an additional constraint on the
adversary:

C5: The adversary may send messages to the environment. The adversary may send a message
to a protocol machine (regular or ideal) only if it has previously received a message from that
machine.

Again, this constraint is easily enforced by sandboxing.

Note 4.4. This constraint means that the adversary never causes a protocol machine to be created.
�

Note 4.5. The set of constraints taken together will imply that the adversary may receive messages
from the environment and from any existing protocol machine (regular or ideal). �

Note 4.6. Constraint C5 may seem like an unrealistic restriction, since we normally think of the
adversary as being generally unfettered. However, this constraint could alternatively be imposed
by constraining protocol machines, so that messages received from the adversary too early would
simply be ignored and bounced back to the adversary. Thus, this constraint may be viewed as a
constraint on the protocol, rather than the adversary. �

4.5 Constraints on ideal protocol machines

In addition to the constraints imposed in §4.2, we shall impose an additional constraint on ideal
protocol machines:

C6: The only machines to which an ideal protocol machine may send messages are (i) the adversary
and (ii) regular peers of the ideal machine from which it has previously received a message.

Again, this constraint is easily enforced by sandboxing.

Note 4.7. The set of constraints taken together will imply that an ideal machine will receive
messages only from the adversary and from its regular peers. �
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4.6 Constraints on regular protocol machines

In addition to the constraints imposed in §4.2, we shall impose additional constraints on regular
protocol machines. These constraints will require sandboxing — not only to enforce certain behav-
ior, but to structure the computation in a particular way. Thus, we will insist that the program of
the machine is structured as an “inner core”, which is running inside a “sandbox”. The inner core
is quite arbitrary; however, the sandbox is fully specified here.

Let us call this regular machine M , and suppose id is its machine ID. Let parentId be the
machine ID that is the parent of id . Because of all the constraints we are imposing across the system,
the first message received by M (and the one that brings it into existence) will be from either the
environment or a regular protocol machine with ID parentId ; moreover, whichever machine sends
this first message, the other machine will never send it a message. We call the machine sending this
first message the caller of M , and let us denote it here by C. We will also say that C invokes
M .

4.6.1 Caller ID translation

The first function of the sandbox is “caller ID translation”, which works as follows:

C7 (caller ID translation): When M receives a message from C, then if C is the environment,
the sandbox changes the source address of the message to parentId before passing the message
for further processing to the inner core. Similarly, when the inner core generates a message
whose destination address is parentId, and C is the environment, then the sandbox sends the
message instead to the environment.

To implement caller ID translation, the sandbox will have to store the true identity of C;
however, this information will never be directly accessible to the inner core. This can be achieved by
structuring the state of M to be of the form 〈 sandboxState, coreState 〉, and only passing coreState
to the inner core.

Note 4.8. Caller ID translation is useful in that it effectively hides the true identity of caller of
M , which will be crucial in proving the main composition theorem. �

4.6.2 Communication constraints

The second function of the sandbox will be to enforce constraints on the machines to which M may
send messages.

C8 (communication constraints): M is only allowed to send messages to the following ma-
chines:

• the adversary;

• its ideal peer;

• machines whose machine IDs are children of id;

• the caller of M , via caller ID translation — the inner core is not allowed to address a
message directly to the environment.

We may assume that any attempt by the inner core to send a message to any other machine
will simply be forwarded by the sandbox to the adversary.
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4.6.3 Subroutine constraints

In §4.6.2, we allowed M to send messages to machines whose IDs are children of id . Such a machine
S is called a subroutine of M . Because of all the constraints we have imposed, M must in fact
be the caller of S, i.e., the first machine to send a message to S and to bring it into existence.

We shall require that M ’s program explicitly declares the program names of any subroutine
it may invoke during any activation. As we are assuming that a “comment” can be placed in
a program (see §3.3), this declaration can be placed in the program as a “comment”, using any
convenient format to encode the declaration. This could also be achieved by modifying the notion of
a library, so that it allows us to associate such “comments” with the program, instead of embedding
them in the program itself. The details are really not important. Let us call this declaration the
subroutine declaration of M .

We require, of course, that the sandbox actively enforces the subroutine constraints:

C9 (subroutine constraints): M only invokes subroutines whose program names are explicitly
declared in its subroutine declaration.

Note 4.9. The set of all constraints taken together will imply that a regular protocol machine will
receive messages only from its caller, its ideal peer (unique, if it exists at all), its subroutines (if
any), and the adversary. �

Note 4.10. Regular and ideal protocol machines with a given program differ only in their PID.
Thus, the various constraints for ideal and regular protocol machines will be enforced by a single
sandbox — the behavior of this sandbox will be determined by the format of the PID. �

4.7 The dummy adversary

The dummy adversary is a special adversary that essentially acts as a router between the environ-
ment and protocol machines. It works as follows:

• if it receives a message of the form 〈 id ,m 〉 from the environment, and it has previously
received a message from a protocol machine with machine ID id , then it sends m to that
protocol machine; otherwise, it sends the message 〈 error 〉 back to the environment;

• if it receives a message m from a protocol machine with machine ID id , it sends the message
〈 id ,m 〉 to the environment;

• if it receives a message m along with invitations for i1, . . . , ik (see §4.2) from a proto-
col machine with machine ID id , it sends the message 〈 id ,m 〉 along with invitations for
〈 id , i1 〉, . . . , 〈 id , ik 〉 to the environment.

That completely specifies the logic of the dummy adversary. We denote the dummy adversary
by Ad.

Intuitively, a message 〈 id ,m 〉 is an instruction to the dummy adversary to send the message
m to the machine whose ID is id . Also, note that when the dummy adversary receives invitations
from a protocol machine, it translates these invitations into invitations to the environment, which
themselves are dummy adversary instructions to deliver the invited message to the machine that
originally issued the invitation; thus, when the environment delivers this invited instruction to the
dummy adversary, the latter will send the original invited message to the appropriate protocol
machine.
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5 Protocols

5.1 Definition of a protocol

We next define what we formally mean by a protocol. A protocol is a run-time library that satisfies
the following four requirements.

P1: The library should only define programs for protocol names. In particular, a protocol does not
define the program for the environment or the adversary.

P2: The programs defined in the library should satisfy all the constraints discussed in §4 that apply
to protocol machines.

Before we state the next requirement, recall that the subroutine constraint (C9) in §4.6.3 says
that the program for a regular protocol machine must explicitly declare the program names of the
machines it is allowed to invoke as subroutines during any activation.

P3: For each program name defined by the library, every program name declared by its correspond-
ing program must also be defined by the library.

Before we state the last requirement, we need to define the static call graph of the protocol.
The set of nodes of this graph is the domain of the library, that is, the set of protocol names defined
by the library; there is an edge from one program name to another if the subroutine declaration
in the program associated with the first name allows a call to the second (by requirement P3, the
second name is defined by the library, and so is a node in the graph).

P4: The static call graph is acyclic and has a unique node of in-degree 0.

The node r defined in P4 is called the root of the protocol — we may also say that the protocol
is rooted at r. It follows from the definition that every node in the static call graph is reachable
from r.

5.2 Subprotocols

We next define what it means for one protocol to be a subprotocol of another. The definition is
quite natural, and is easy to define in a simple, mathematically rigorous way, as follows.

Let Π and Π′ be protocols, as defined in §5.1 Recall that these are functions with finite domains,
say, D and D′. We say that Π′ is a subprotocol of Π if D′ ⊂ D and the restriction of Π to D′ is
equal to Π′.

Let Π be a protocol which defines a protocol name x. Let D′ be the set of nodes reachable from
x in the static call graph of Π. Let Π′ be the restriction of Π to D′. Then it is easy to see that Π′

is a subprotocol of Π with root x. We call Π′ the subprotocol of Π rooted at x, and we denote
it by Π | x.

It is clear that if Π′ is an arbitrary subprotocol of a protocol Π, then Π′ = Π | x for some x.

We next wish to define a subprotocol substitution operator. Let Π be a protocol rooted at r,
which defines a protocol name x. Let D′′ be the set of nodes of the static call graph of Π that are
reachable by paths from r that do not go through x. We write Π \ x to denote the restriction of Π
to D′′.
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Now, let Π′ := Π | x, and let Π′1 be any other protocol rooted at x. We say that Π′1 is
substitutable for Π′ in Π if the following condition holds: for every y in the domain of Π \x, if y
is also defined by Π′1, then the definition of y in Π′1 agrees with that in Π. If this condition holds,
we write Π[Π′/Π′1] to denote the protocol Π1 rooted at r such that Π \x = Π1 \x and Π1 | x = Π′1.
It is easy to see that Π1 exists and is uniquely determined. In words, Π[Π′/Π′1] is the protocol
obtained by substituting Π′1 for Π′ in Π.

The substitution operation is symmetric. Specifically, the following is easy to prove: if Π′1 is
substitutable for Π′ in Π, and if Π1 := Π[Π′/Π′1], then it holds that Π′ is substitutable for Π′1 in
Π1, and that Π = Π1[Π′1/Π1].

5.3 Protocol execution

Let Π be a protocol with root r. Let Z be a program defining an environment, meaning that it
satisfies the constraints discussed in §4.2 and §4.3. that apply to the environment. If Z only invokes
machines with the same SID with protocol name r, we say that Z is rooted at r — note that
in this case, Z trivially satisfies Constraint C4 in §4.3. If Z invokes machines whose SIDs are not
necessarily the same, but still all with protocol name r, we say that Z is multi-rooted at r.

For the remainder of this section, we assume that Π is a protocol rooted at r, and that Z is
an environment multi-rooted at r. Also, we assume that A is a program defining an adversary,
meaning that it satisfies the constraints discussed in §4 that apply to the adversary. The protocol
Π, together with A and Z, define a structured system of IMs, which we denote [Π, A, Z].

For a given value of the security parameter λ, we may consider the execution of the system
[Π, A, Z] on the external input 1λ. This execution is a randomized process that may or may not
terminate.

For such an execution of [Π, A, Z], we may define the associated dynamic call graph, which
evolves during the execution. At any point in time, the nodes of this graph consist of all regular
protocol machines created during the execution up to that point. There is an edge from one machine
to a second machine if the second is a subroutine of the first.

By our constraints on structured systems, this graph is a forest of trees, where the roots of
these trees are precisely the machines directly invoked by Z; all the nodes in any one tree have the
same PID; moreover, for any two nodes in this graph, if these two nodes are peers, then the roots
of their respective trees are also peers.

In this graph, we may group together all those nodes belonging to trees whose roots are peers;
let us also add to such a group any ideal machines that are peers of these nodes. Let us call such
a grouping of machines an instance of Π. By the observations in the previous paragraph, every
protocol machine in the system (regular or ideal) belongs to a unique instance. In addition, we
may associate with each instance the common SID of the root nodes belonging to that instance.
We call this the SID of the instance. In any one instance, all machines will have SIDs that are
extensions of the SID of the instance.

If Z is rooted at r, then there will only be one instance. If Z is multi-rooted at r, there may be
many instances. Constraint C4 says that for every two distinct instances, the SID of one cannot
be an extension of the SID of the other. The total number of instances will be bounded by the
number of messages that Z sends to any protocol machine.

The overall pattern of execution can be broken up into epochs: an epoch begins with an
activation of Z, and ends just before the next activation of Z. At the beginning of the epoch,
control passes from Z to either a protocol machine or the adversary. From a protocol machine,
control may pass to another protocol machine in the same instance (possibly a new one), or to A,
or back to Z (which ends the epoch). From A, control may pass to an existing protocol machine
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Figure 2: A dynamic call graph

(belonging to any instance), or back to Z (which, again, ends the epoch). The total number
of epochs is bounded by the number of messages that Z sends to a protocol machine or to the
adversary.

See Fig. 2 for a visual representation of a simple dynamic call graph corresponding to two
instances of a two-party protocol. In this figure, circles represent regular protocol machines. Rect-
angles represent ideal protocol machines, which are connected to their regular peers via a dotted
line.

6 Resource bounds

In this section, we discuss various notions of resource bounds, including a definition of a polynomial-
time protocol.

Suppose Π is a protocol rooted at r, Z is an environment multi-rooted at r, and A is an arbitrary
adversary. Suppose we fix the value of the security parameter λ, and consider the execution of the
structured system [Π, A, Z] on external input 1λ

We wish to define several random variables which measure the running time of various ma-
chines during this execution. To this end, TimeZ [Π, A, Z](λ) denotes the running time of Z,
TimeA[Π, A, Z](λ) denotes the running time of A, and TimeΠ[Π, A, Z](λ) denotes the sum of the
running times of all protocol machines. For convenience, we define

TimeΠ,A[Π, A, Z](λ) := TimeΠ[Π, A, Z](λ) + TimeA[Π, A, Z](λ).

We also wish to define several random variables which measure the amount of flow of data
between various machines during this execution.

For the purposes of this definition, we measure the length of a message from one machine to
another as the length of the string 〈 id , id0,msg0 〉, where id is the machine ID of the recipient, id0

is the machine ID of the sender, and msg0 is the low-level message, which is of the form 〈 1λ, . . . 〉,
as discussed in §4.2.

We also need to distinguish between invited messages and uninvited messages. Recall that
messages from A to Z, and messages from a protocol machine to A, may include invitations (see
§4.2). At any point in time, a multi-set of outstanding invitations from A to Z is defined; initially,
this multi-set is empty; wheneverA sends an invitation to Z, this invitation is added to the multi-set.
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A message sent from Z to A is called invited if it belongs to the multi-set of outstanding invitations,
and when this message is sent, it is removed from the multi-set of outstanding invitations; otherwise,
the message is called uninvited. Analogously, we may categorize each message from A to a protocol
machine M as either invited or uninvited, depending on whether there is an outstanding invitation
from M to A for that message.

FlowZ→A[Π, A, Z](λ) denotes the sum of the lengths of all uninvited messages sent from Z to
A, FlowA→Π[Π, A, Z](λ) denotes the sum of the lengths of all uninvited messages sent from A to
any protocol machine, and FlowZ→Π[Π, A, Z](λ) denotes the sum of the lengths of all messages sent
from Z to any protocol machine. Note that there are no invitations sent from protocol machines
to Z — in this sense, all messages from Z to protocol machines may be considered uninvited. For
convenience, we define

FlowZ→Π,A[Π, A, Z](λ) := FlowZ→Π[Π, A, Z](λ) + FlowZ→A[Π, A, Z](λ).

Finally, we define Flow∗Z [Π, A, Z](λ) to be the total flow out of Z into Π and A, including both
invited and uninvited messages.

Our definitions of a polynomial-time protocol, as well as other resource bound conditions to
be presented in the next section, will be made in terms of environments which themselves are well
behaved, in the following sense:

Definition 1 (well-behaved environment). Suppose Z is an environment that is multi-rooted
at r. We say that Z is a well-behaved environment if it is multi-activation polynomial-time
(see §3.3), and there exists a polynomial p such that for every protocol Π rooted at r, for every
adversary A, and for all λ, the following holds with probability 1:

Flow∗Z [Π, A, Z](λ) ≤ p(λ).

Note 6.1. All messages sent to Z will contain 1λ; therefore, Z will always have at least time
polynomial in λ to perform its computations. �

Note 6.2. Our notion of a well-behaved environment essentially plays the same role as the notion
of an a priori poly-time environment in [HUMQ09]. Roughly speaking, an environment Z is said to
be a priori poly-time if TimeZ [Π, A, Z](λ) is bounded by a fixed polynomial in λ with probability
1, for all Π, A, and λ. The problem with this definition is that without making very specialized
assumptions about encodings and machine execution models, it is impossible to even construct an a
priori poly-time Z, since any Z could easily be overwhelmed with a very long message that it could
not process quickly enough. We prefer to use the above (slightly more complicated) definition,
rather than rely on such specialized assumptions. �

Before we present the definition of a poly-time protocol, recall that Ad denotes the dummy
adversary (see §4.7).

Definition 2 (poly-time protocol). A protocol Π rooted at r is called (multi-)poly-time if
there exists a polynomial p such that for every well-behaved environment Z that is (multi-)rooted
at r, we have

Pr
[
TimeΠ[Π, Ad, Z](λ) > p

(
FlowZ→Π,Ad

[Π, Ad, Z](λ)
)]

= negl(λ).

Here, negl(λ) denotes an anonymous negligible function, i.e., one that tends to zero faster than
the inverse of any polynomial in λ.
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In words, the last line of the definition says that when we consider the execution of the system
[Π, Ad, Z], if f is the flow out of Z, the running time t of Π must satisfy t ≤ p(f) with all but
negligible probability. An essential feature of this definition is that the polynomial p does not
depend on Z. Also note that unless specified otherwise, whenever we speak of flow, either from the
environment to the adversary, or from the adversary to the protocol, we mean the flow of uninvited
messages only.

Note that as we have defined it, the values t and f are measured at the end of the system
execution, and the condition t ≤ p(f) is required to hold at that time. We could consider a
seemingly stronger definition, where we measure the values t and f after each activation of a
machine, and insist that t ≤ p(f) holds after each activation, with all but negligible probability.
However, it turns out that this definition, which we could call continuously (multi-)poly-time,
is actually no stronger:

Theorem 1 ((multi-)poly-time =⇒ continuous (multi-)poly-time). If Π is a (multi-)poly-
time protocol (with polynomial bound p), then it is also continuously (multi-)poly-time (with the
same polynomial bound p).

Proof. The proof is a standard “guessing argument”, where we guess the first epoch in which the
time bound is violated.

Suppose Π is protocol rooted at r that is (multi-)poly-time with polynomial bound p, so that
the relation tZ ≤ p(fZ) holds at the end of the execution of [Π, Ad, Z], for all Z and with all but
negligible probability. Here, tZ represents the execution time of Π and fZ represents the flow out
of Z in the execution of [Π, Ad, Z]. More precisely, this means that for all well-behaved Z and all
c > 0, there exists λ0 > 0 such that the probability that tZ > p(fZ) at the end of execution of
[Π, Ad, Z] on external input 1λ is less than 1/λc for all λ > λ0.

Now suppose, for the sake of contradiction, that there is a well-behaved Z ′ such that with non-
negligible probability, tZ′ > p(fZ′) at some point during the execution of [Π, Ad, Z

′]. This means
that for this Z ′ there is a c > 0 and an infinite set Λ such that for all λ ∈ Λ, the probability that
tZ′ > p(fZ′) at some point during the execution of [Π, Ad, Z

′] on external input 1λ is at least 1/λc.
Using Z ′, we construct a new environment Z. To motivate the construction of Z, we recall the

discussion of the dynamic call graph in §5.3. As discussed there, we may divide the execution of
[Π, Ad, Z

′] into epochs. At the beginning of an epoch, as control departs from Z ′, the flow fZ′ can
only increase, but during the remainder of the epoch, fZ′ remains constant while the time tZ′ only
increases. Therefore, if tZ′ > p(fZ′) holds at any point in time during the execution of [Π, Ad, Z

′],
it will hold at the end of some epoch. Because Z ′ is assumed well-behaved, the number of epochs is
bounded by q(λ) for some polynomial q — this follows from the fact that the number of epochs is
bounded by the total flow out of Z (including invited messages), which is bounded by a polynomial
in λ. We can number the epochs 1, . . . , q(λ). Let j∗ be the random variable that denotes the index
of the first epoch in which tZ′ > p(fZ′) in the execution of [Π, Ad, Z

′], defining j0 := 0 if this event
never occurs.

So Z works the same as Z ′, except that it makes a random guess j0 at j∗, and halts at the
end of epoch j0. As a minor technical matter, since we want Z to be well-behaved, and our model
of computation gives Z access to random bits, Z may not be able to sample j0 from the uniform
distribution on {1, . . . , q(λ)}. So instead, in generating j0, we round up the bound q(λ) to the next
power of 2.

The reader may easily verify that Z is well-behaved, and that for all λ ∈ Λ, the probability that
tZ > p(fZ) at the end of the execution of [Π, Ad, Z] on external input 1λ is at least 1/(2λcq(λ)),
which is the contradiction we sought. �
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Clearly, if Π is multi-poly-time, then it is, in particular, poly-time. The following theorem
establishes the converse:

Theorem 2 (poly-time =⇒ multi-poly-time). Every poly-time protocol is multi-poly-time.

Proof. This is also a standard “guessing argument”, where we guess which instance first violates
a corresponding time bound.

Assume Π is a poly-time protocol rooted at r. We want to show that Π is multi-poly-time.
By assumption, there exists a polynomial p such that for all well-behaved Z rooted at r, with

all but negligible probability, we have tZ ≤ p(fZ). Here, tZ represents the running time of Π and
fZ represents the flow out of Z in the execution of [Π, Ad, Z].

Without loss of generality, we may assume that p takes only non-negative values and is super-
additive, meaning that p(a+ b) ≥ p(a) + p(b) for all non-negative integers a and b. This is because
tZ = 0 whenever fZ = 0, which means that we may take p to be of the form p(X) = c0X

c1

for positive constants c0 and c1. Such a p is non-negative and super-additive. Note that any
non-negative and super-additive function is also non-decreasing.

By Theorem 1, we may assume that with all but negligible probability, the bound tZ ≤ p(fZ)
holds continuously throughout the execution of [Π, Ad, Z]. We claim that the same holds, even if
Z is multi-rooted at r.

So suppose that Z ′ is a well-behaved environment, but is multi-rooted at r, and further suppose,
by way of contradiction, that the claim does not hold for this Z ′. This means that for this Z ′ there
is an infinite set Λ and a c > 0 such that for all λ ∈ Λ, with probability at least 1/λc, we have
tZ′ > p(fZ′) at some time during the execution of [Π, Ad, Z

′].
To finish the proof of the theorem, we will show how to use Z ′ to construct a well-behaved

environment Z that is (singly) rooted at r, such that for some polynomial q, and for all λ ∈ Λ, with
probability at least 1/q(λ), we have tZ > p(fZ) at some time during the execution of [Π, Ad, Z].
This will contradict the assumption that Π is poly-time.

To motivate the construction of Z, we recall the discussion in §5.3 on the dynamic call graph
associated with the execution of [Π, Ad, Z

′]. The number of instances of Π created during the
execution of [Π, Ad, Z

′] is at most qi(λ) for some polynomial qi — this follows from the fact that
the number of instances is bounded by the flow from Z into Π, which is in turn bounded by a fixed
polynomial in λ. At the beginning of each epoch, control passes from Z to an instance of Π, either
directly or via Ad; during the epoch, control stays within that instance; at the end of the epoch,
control passes back to Z, either directly or via Ad.

Let us number the instances 1, 2, . . . , qi(λ), in the order in which the first machine in the

instance is created. Also, for i = 1, . . . , qi(λ), write f
(i)
Z′ for the flow out of Z that is bound for

the ith instance (either directly or via Ad), and t
(i)
Z′ for the total running time of the machines in

the ith instance. More precisely, to determine f
(i)
Z′ , we count the messages sent from Z ′ directly to

protocol machines in the ith instance, and the uninvited messages sent to Ad that are syntactically
well-formed instructions to send a message to a machine that has previously sent a message to

Ad and that belongs to the ith instance. By definition, we have tZ′ =
∑

i t
(i)
Z′ . We also have

fZ′ ≥
∑

i f
(i)
Z′ — note the inequality: some uninvited messages from Z ′ to Ad may not be forwarded

to any instance of Π (in particular, a message that is not a syntactically well formed instruction,
or an instruction to send a message to a machine that has not previously sent a message to Ad).
By super-additivity,

p(fZ′) ≥ p
(∑

i

f
(i)
Z′

)
≥
∑

i

p
(
f

(i)
Z′
)
.
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Thus, if tZ′ > p(fZ′), we must have t
(i)
Z′ > p(f

(i)
Z′ ) for some i = 1, . . . , qi(λ). Let i∗ denote the index

i of the instance for which t
(i)
Z′ > p(f

(i)
Z′ ) for the first time during the execution of [Π, Ad, Z

′].
The machine Z will work as follows. It will make a guess i0 at the index i∗. Z will internally

simulate Z ′, but will only invoke machines in the i0th instance invoked by Z ′. The machines in
other instances it will internally simulate, but with a “clamp” placed on their running times: for

each instance i 6= i0, Z will keep track of the values t
(i)
Z′ and f

(i)
Z′ , and as soon as t

(i)
Z′ > p(f

(i)
Z′ )

holds, Z will immediately terminate the execution of the system. When Z ′ attempts to send a
message directly to a protocol machine, Z forwards the message, either to an internally simulated
machine or to an external one, as appropriate. In addition, when Z ′ attempts to send a message
to a protocol machine via Ad, Z does the following: if such a machine (internally simulated or
external) has previously sent a message to the adversary (which is something that Z can keep track
of), then Z forwards the message to that machine (via a dummy adversary), and control eventually
returns to Z (and then Z ′); otherwise, Z returns the message 〈 error 〉 to Z ′. Note that when
sending a message to a protocol machine via Ad, Z can easily determine the instance to which the
machine belongs by inspecting the SID associated with that machine: the SID can be truncated at
the right-most component with protocol name r, and then compared to the SIDs of the existing
instances. Finally, as in the proof of Theorem 1, in generating i0, Z rounds up the bound qi(λ) to
the next power of 2.

By design, Z is a well-behaved environment rooted at r. Indeed, it is obvious that the flow out
of Z is bounded by the flow out of Z ′, and hence bounded by a fixed polynomial in λ. One also
has to verify that Z is itself multi-activation polynomial-time. This follows fairly easily from the
fact that the internally simulated protocol machines of Z are clamped, and the fact that Z ′ is itself
multi-activation polynomial-time; in particular, one observes that within a single activation of Z,
the total length of the messages sent to Z ′ from simulated protocol machines of Z is bounded by a
fixed polynomial in λ; moreover, the amount of time spent simulating clamped protocol machines
is bounded by a fixed polynomial in λ.

The execution of [Π, Ad, Z] perfectly mimics that of [Π, Ad, Z
′], at least up until the point that Z

forces the execution to a halt. Moreover, whenever tZ′ would have exceeded p(fZ′), with probability
at least 1/(2qi(λ)), Z will guess i∗ correctly, which will lead to tZ > p(fZ). Setting q(λ) := 2λcqi(λ),
this implies tZ > p(fZ) with probability 1/q(λ) for all λ ∈ Λ. This is the contradiction we sought. �

7 Protocol emulation

In this section, we state the basic definitions and theorems related to protocol emulation. Intuitively,
when we say that a protocol Π1 emulates another protocol Π, we mean that Π1 is “no less secure”
than Π, in the sense that anything an adversary can achieve attacking Π1 can be achieved by
attacking Π.

To begin with, we introduce constraints on the types of adversaries we will consider in this
context (as characterized in Definition 5 below).

Definition 3 (time-bounded adversary). Let Π be a (multi-)poly-time protocol rooted at r. Let
A be an adversary. We say that A is (multi-)time-bounded for Π if the following holds: there
exists a polynomial p such that for every well-behaved environment Z that is (multi-)rooted at r,
we have

Pr
[
TimeΠ,A[Π, A, Z](λ) > p

(
FlowZ→Π,A[Π, A, Z](λ)

)]
= negl(λ).

In words, the last line of the definition says that when we consider the execution of the system
[Π, A, Z], if f is the flow out of Z, the running time t of Π and A together must satisfy t ≤ p(f) at
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the end of the execution with all but negligible probability. If this property holds, then just as in
Theorem 1, we may assume that the bound t ≤ p(f) holds continuously throughout the execution
of [Π, A, Z] with all but negligible probability. We omit the details: the statement and proof are
nearly identical to that in Theorem 1. Again, unless specified otherwise, whenever we speak of
flow, either from the environment to the adversary, or the adversary to the protocol, we mean the
flow of uninvited messages only.

Definition 4 (flow-bounded adversary). Let Π be a (multi-)poly-time protocol rooted at r. Let
A be an adversary. We say that A is (multi-)flow-bounded for Π if the following holds: there
exists a polynomial p such that for every well-behaved environment Z that is (multi-)rooted at r,
we have

Pr
[
FlowA→Π[Π, A, Z](λ) > p

(
FlowZ→A[Π, A, Z](λ)

)]
= negl(λ).

In words, the last line of the definition says that when we consider the execution of the system
[Π, A, Z], if fea is the flow from Z into A, then the flow fap from A into Π must satisfy fap ≤ p(fea)
at the end of the execution with all but negligible probability. Again, if this property holds, we
may assume that the bound fap ≤ p(fea) holds continuously throughout the execution of [Π, A, Z]
with all but negligible probability.

Definition 5 (bounded adversary). Let Π be a (multi-)poly-time protocol. Let A be an adver-
sary. We say that A is (multi-)bounded for Π if it is (multi-)time bounded for Π and (multi-)flow
bounded for Π.

A simple, but important, fact is the following:

Theorem 3 (dummy adversary is bounded). Let Π be a (multi-)poly-time protocol. Then the
dummy adversary Ad is (multi-)bounded for Π.

Proof. This follows almost immediately from the definitions, as the reader may verify. �

Indeed, the converse of Theorem 3 is also easy to prove: if Ad is (multi-)bounded for Π, then
Π is (multi-)poly-time.

We next state a simple theorem about the overall running times of structured systems, assuming
all components satisfy their respective constraints.

Theorem 4 (overall poly-time). Suppose Π is a (multi-)poly-time protocol rooted at r, A is an
adversary that is (multi-)bounded for Π, and Z is a well-behaved environment that is (multi-)rooted
at r. Then there exists a polynomial p such that for all λ, the total running time of all machines
in the execution of the structured system [Π, A, Z] on external input 1λ is bounded by p(λ) with
probability 1− negl(λ).

Proof. By the well-behaved property for Z, the number of activations of Z and the flow out of
Z is bounded by a fixed polynomial in λ with probability 1. Therefore, by the assumption that
A is time-bounded for Π, the running time of all the machines in Π and A is bounded by a fixed
polynomial in λ with all but negligible probability. Assuming the latter event holds, it follows
that the flow into Z per activation is bounded by a fixed polynomial in λ, and the fact that Z is
multi-activation polynomial-time implies the overall running time of Z is polynomial in λ. �

We are almost ready to present the central definition of our framework. However, we must first
establish just a bit more (mostly standard) notation and terminology.
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We write Exec[Π, A, Z](λ) to denote that random variable representing the output of the struc-
tured system [Π, A, Z] on input 1λ. If the process terminates, Exec[Π, A, Z](λ) is a string over Σ;
otherwise, we write Exec[Π, A, Z](λ) = ⊥.

Each value of λ defines a different random variable Exec[Π, A, Z](λ), and we may consider the
family of random variables {Exec[Π, A, Z](λ)}∞λ=1. We write Exec[Π, A, Z] to denote this family.

We will need the standard notion of indistinguishability between two such families of random
variables. To this end, let {Xλ}λ be a family of random variables, where each random variable
takes values in the set Σ∗ ∪ {⊥}. Let D be a probabilistic polynomial-time program that takes as
input a string over Σ, and outputs 0 or 1. We call such a program a distinguisher. For each λ,
we can define the random variable D(Xλ) by the following randomized process: sample a value x
according to the distribution of Xλ; if x = ⊥, then D(Xλ) := ⊥; otherwise, D(Xλ) is defined to be
the output of D on input 〈 1λ, x 〉.

Definition 6 (computationally indistinguishable). Let X := {Xλ}λ and Y := {Yλ}λ be two
families of random variables, where each random variable takes values in the set Σ∗ ∪ {⊥}. We
say X and Y are computationally indistinguishable if for every distinguisher D, we have
|Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| = negl(λ). If this holds, we write X ≈ Y .

Here is the central definition of the framework.

Definition 7 (emulation). Let Π and Π1 be (multi-)poly-time protocols rooted at r. We say that
Π1 (multi-)emulates Π if the following holds: for every adversary A1 that is (multi-)bounded
for Π1, there exists an adversary A that is (multi-)bounded for Π, such that for every well-behaved
environment Z that is (multi-)rooted at r, we have

Exec[Π, A, Z] ≈ Exec[Π1, A1, Z].

We now state the four central theorems of the framework. The first two are somewhat technical
theorems, which are used to prove the third theorem, which is the main theorem of the framework.

Theorem 5 (completeness of the dummy adversary). Let Π and Π1 be (multi-)poly-time pro-
tocols rooted at r. Suppose that there exists an adversary A that is (multi-)bounded for Π, such that
for every well-behaved environment Z (multi-)rooted at r, we have Exec[Π, A, Z] ≈ Exec[Π1, Ad, Z].
Then Π1 (multi-)emulates Π.

The proof is in §7.2.

Theorem 6 (emulates =⇒ multi-emulates). Let Π and Π1 be poly-time protocols. If Π1

emulates Π, then Π1 multi-emulates Π.

The proof is in §7.3 Recall that from Theorem 2, if a protocol is poly-time, then it is also multi-
poly-time, so the statement of Theorem 6 makes sense. Because of these properties, we ignore
multi-emulation in the remaining two theorems.

The next of the central theorems is the main theorem of the framework:

Theorem 7 (composition theorem). Suppose Π is a poly-time protocol rooted at r. Suppose Π′

is a poly-time subprotocol of Π rooted at x. Finally, suppose Π′1 is a poly-time protocol also rooted
at x that emulates Π′ and that is substitutable for Π′ in Π. Then Π1 := Π[Π′/Π′1] is poly-time and
emulates Π.

The proof is in §7.4.
The final central theorem is simple but useful:
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Theorem 8 (reflexivity and transitivity of emulation). Let Π, Π1, and Π2 be poly-time
protocols. Then Π emulates Π. In addition, if Π2 emulates Π1 and Π1 emulates Π, then Π2

emulates Π.

Proof. The reflexivity property, that Π emulates Π, is obvious. For the transitivity property,
suppose Π2 emulates Π1 and Π1 emulates Π. We want to show that Π2 emulates Π. Let A2

be an adversary that is bounded for Π2. Since Π2 emulates Π1, there exists an adversary A1

that is bounded for Π1 such that Exec[Π1, A1, Z] ≈ Exec[Π2, A2, Z] for all well-behaved Z. Since
Π1 emulates Π, there exists an adversary A that is bounded for Π such that Exec[Π, A, Z] ≈
Exec[Π1, A1, Z] for all well-behaved Z. The theorem then follows by the transitivity of the ≈
relation. �

7.1 Discussion

Note 7.1. Typically, in Definition 7, Π will be some kind of simple, idealized protocol which
represents a security specification for some particular type of task, while Π1 is a more complicated,
but more concrete protocol that is meant to implement this specification. Indeed, Π will typically
specify just a single program that implements an “ideal functionality”, so that a single instance of
Π will essentially consists of just a single ideal machine. See §8.2 for more details.

Also, the adversary A in the definition is often called a simulator. The task of any security
proof is to design such a simulator. Because of Theorem 5, one can, if convenient, assume that A1

is the dummy adversary. �

Note 7.2. A key feature of Theorem 7 is that we do not need to assume a priori that Π1 is
poly-time. This meshes well with the way we expect this theorem to be used in the practice of
protocol design. Typically, Π′ is an ideal functionality and Π′1 is an implementation of this ideal
functionality that may be quite complex. Naturally, Π′1 was designed and analyzed in isolation, and
proved to be poly-time and to emulate Π′, without regard to any application for which Π′ might
be used. Similarly, Π was designed and analyzed in isolation, without regard to how Π′ might be
implemented. As a protocol designer, we do not have to additionally prove that Π1 is poly-time —
that is a conclusion of the theorem, and not an additional hypothesis. This leads to a high degree
of modularity in protocol design and analysis.

The tradeoff in achieving this modularity is the introduction of the flow-boundedness constraint.
Unfortunately, without this constraint, Theorem 7 is false, as demonstrated by the following exam-
ple.

Let Π′ be a one-party protocol that acts as a simple relay: it sends any message it receives
from its environment to the adversary and sends any message it receives from the adversary to its
environment. It is easy to see that Π′ is poly-time.

Let Π′1 be a protocol that works as follows: whenever it receives a message from its envi-
ronment, it immediately “bounces” that message back to its environment. It is easy to see that
Π′1 is poly-time. Moreover, if we drop the flow-boundedness constraint, then Π′1 emulates Π′,
via the following simulator A′: whenever the simulator receives a message from Π′, it immedi-
ately “bounces” that message to Π′. It is easy to see that A′ is time-bounded for Π′, and that
Exec[Π′, A′, Z] ≈ Exec[Π′1, Ad, Z] for all well-behaved Z. However, A′ is not flow-bounded for Π′

— A′ sends messages to Π′ without any provocation from Z.
We now define a one-party protocol Π that uses Π′ as a subprotocol. After being activated by

a message from its environment, Π sends that message to Π′; after this, whenever it receives any
message from Π′, it immediately “bounces” that message back to Π′. It is easy to see that Π is
poly-time.
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Now consider the corresponding protocol Π1, which is the same as Π, but with Π′1 substituted
for Π′. It is easy to see that once activated by its environment, Π1 runs forever, without any further
activations of the environment. Indeed, when Π1 is activated by a message m from its environment,
Π1 passes m down to Π′1, which bounces it up to Π1, which bounces it back down to Π′1, which
bounces it back up to Π1, etc. In particular, Π1 is not poly-time.

Thus, without the flow-boundedness constraint, poly-time is not preserved under composition.
It may be instructive to see where the proof of Theorem 7 fails in this case. The essence of the

proof is to show that Π1 emulates Π via a simulator A, so that Exec[Π, A, Z] ≈ Exec[Π1, Ad, Z] for
all well-behaved Z, and from this, argue that the poly-time property of Π1 is inherited from the
fact that A is time-bounded for Π. For this example, it suffices to consider environment Z which
send an initial message to the protocol, but otherwise does not interact with the protocol or the
adversary. In this case, the simulator A constructed in the proof of Theorem 7 is essentially just
A′.

But it is easy to see that the execution of the system [Π, A, Z] never halts: after Π is initialized
with a message m from Z, that message passes through Π′ to A′, then bounced back through Π′

to Π, then bounced back through Π′ to A′, then bounced back through Π′ to Π, etc. In particular,
A is not time-bounded for Π. �

Note 7.3. In Definition 7, we only consider adversaries that are bounded for the protocol. There
are two senses in which this might appear to be too restrictive.

First, perhaps there are interesting attacks that cannot be modeled by such a restricted ad-
versary. We argue that this is not the case. Ultimately, the only attack we really care about
is an attack on a fully instantiated and concrete protocol as deployed in the real world. Such a
real-world attack can be modeled using the dummy adversary: all the logic of the attack can be
absorbed into the environment. Thus, a real-world attack on a concrete, poly-time protocol Π1 is
an environment Z interacting with Π1 via the dummy adversary Ad. Theorem 3 says that Ad is
bounded for Π1. Now, when we show that Π1 emulates some more idealized protocol Π, we show
that there exists an adversary A that is bounded for Π such that Exec[Π, A, Z] ≈ Exec[Π1, Ad, Z]
for all well-behaved Z. In proving such a theorem, we may consider other, intermediate protocols
Π′, along with corresponding adversaries A′ that are bounded for Π′, and piece together these pro-
tocols and adversaries, using (among other things) Theorems 5–8. But the point is, this chain of
reasoning is grounded by the boundedness of the dummy adversary — all of the other adversaries
that arise are really just elements of various “thought experiments”, which do not correspond to
any real-world objects.

The second sense in which the boundedness constraint may appear to be too restrictive is
this: perhaps the boundedness constraint makes it overly difficult to design simulators in security
proofs. Indeed, while the time-boundedness constraint should not cause any problems, the flow-
boundedness constraint may not always be trivial to maintain. For example, one consequence of the
flow-boundedness constraint is that if the adversary has received no messages from the environment,
then the adversary may not send any messages to the protocol — indeed, we saw above in Note 7.2
an example of what happens when this is not the case.

The restrictive nature of the flow-boundedness constraint is significantly mitigated by the
message-invitation mechanism; indeed, this was the main motivation for introducing this mech-
anism. Our only essential use of invitations here is in connection with corruptions (see §8.1) and
the JUC theorem (see §9). It may seem that the generality of the invitation mechanism is overkill for
this application, but it turns out that this level of generality is needed to make all the components
of our model work well together.

In addition to using the invitation mechanism, flow-boundedness problems can usually be
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avoided by simply following a reasonable set of conventions in the design of ideal functionali-
ties. See §12.1 for examples of this (and in particular, §12.1.4). With such conventions, for typical
protocols, the flow-boundedness constraints will naturally be satisfied by the simulators in their
security analysis without much effort at all.

In some exceptional cases, it may be necessary to make a small, but usually benign, modification
to a protocol so that flow-boundedness constraints may be satisfied in its security analysis. An
example of this is seen in §12.1.6. �

Note 7.4. The invitation mechanism itself may seem somewhat artificial. Indeed, it is only present
to facilitate the analysis of protocols. In fact, in a fully instantiated and concrete protocol is
deployed in the real-world, all invitations may be left out. To see this, suppose that Π1 is such a
concrete protocol with invitations, and that Π2 is the same protocol, but with all invitations filtered
out. It is not hard to see that Π2 is poly-time and emulates Π1 (the simulator just filters out the
invitations). Thus, if we prove that Π1 emulates some idealized protocol Π, then by transitivity,
we have Π2 emulates Π. Of course, it is only a good idea to leave out the invitations in this final
step — a protocol stripped of its invitations may no longer be useful as a building block in other
protocols. �

Note 7.5. We should stress that our notions of poly-time and emulation have nothing at all to do
with the notion of liveness. Intuitively, liveness means that the protocol actually gets something
useful done. How this intuition is made rigorous is ultimately application dependent. Typically, for
a particular class of protocols for some application, one defines the notions of “useful messages” and
“useful results”, and liveness means that to the extent that the adversary delivers useful messages,
the protocol should deliver useful results.

For example, consider a trivial protocol Π1 that essentially does nothing: whenever it receives
a message from either its caller or the adversary, a machine running Π1 sends an arbitrary (but
fixed) message to the adversary. The protocol Π1 satisfies our definition of poly-time, and emulates
many interesting idealized protocols. However, it will certainly not satisfy any reasonable notion
of liveness.

Because the notion of liveness is ultimately application dependent, we do not make any attempt
to formalize it in this work. �

7.2 Proof of Theorem 5 (completeness of the dummy adversary)

We shall refer to Fig. 3 for several diagrams that will assist in the proof of the theorem.
Assume Π and Π1 are (multi-)poly-time protocols rooted at r. Further, assume that there exists

an adversary A that is (multi-)bounded for r, with the following property: for every well-behaved
environment Z (multi-)rooted at r, we have Exec[Π, A, Z] ≈ Exec[Π1, Ad, Z]. Figs. 3(a) and (b)
illustrate the execution of the systems [Π1, Ad, Z] and [Π, A, Z]. The arrows represent flows of
messages among the various machines. Note that the boxes labeled Π1 and Π represent all the
protocol machines that exist in the system.

Our goal is to show that Π1 (multi-)emulates Π. What we have to show is the following: for every
adversary A∗1 that is (multi-)bounded for Π1, there exists an adversary A∗ that is (multi-)bounded
for Π, such that for every for every well-behaved environment Z (multi-)rooted at r, we have
Exec[Π, A∗, Z] ≈ Exec[Π1, A

∗
1, Z].

So let A∗1 be given. For convenience, we may assume that A∗1 is internally structured as illus-
trated in Fig. 3(c): it consists of a sub-machine A1 that communicates directly with an arbitrary
environment Z, but communicates with Π1 via the dummy adversary Ad. It is easily seen that
any adversary can be converted to an adversary of this type, without changing its behavior in any
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non-trivial way. Of course, in our formal model, A∗1 is a single machine, which internally simulates
the “virtual” machines A1 and Ad.

Fig. 3(d) illustrates how the corresponding adversary A∗ is constructed: it is the same as A∗1,
except that the sub-machine Ad is replaced by A.

We now want to show that A∗ is (multi-)bounded for Π and that for every for every well-behaved
environment Z (multi-)rooted at r, we have Exec[Π, A∗, Z] ≈ Exec[Π1, A

∗
1, Z].

To this end, let Z be an arbitrary well-behaved environment that is (multi-)rooted at r. Using
Z and A1, we construct a new environment Z(0), corresponding to the box outlined with dotted
lines in Fig. 3(e). In that diagram, we have also defined quantities fep, fea, and fap: here, fep

represents the amount of flow from Z into Π1, fea represents the amount of flow from Z into A1,
and fap represents the amount of flow from A1 into Ad (which is essentially the same as the amount
of flow from Ad into Π1). Note that fea and fap measure the flow of uninvited messages. Let us
define fe := fep + fea. In addition, we also stipulate the following: if the external output produced
by Z is β, then the external output produced by Z(0) is 〈 normal, β 〉.

Note that Z(0) may not be well-behaved. So we define a new environment Z(1) that is. To define
Z(1), we recall that since A∗1 is (multi-)bounded for Π1, and since Z is well-behaved, we know that
there are polynomials p and q, such that with all but negligible probability, the running time of A1

(and indeed, A1 and Π1 together) is continuously bounded by p(fe) and fap is continuously bounded
by q(fea). The environment Z(1) is defined by placing a “clamp” on the execution of Z(0): if ever
the running time of A1 would exceed p(fe) or the flow fap would exceed q(fea), the environment
Z(1) immediately halts and emits a “beep” — more precisely, it outputs 〈 beep 〉, which is distinct
from any “normal” output 〈 normal, β 〉 that might be produced by Z(0).

By construction, and the assumption that Z is well-behaved, it is clear that Z(1) is also well-
behaved. Because A∗1 is (multi-)bounded for Π1, it is clear that [Π1, Ad, Z

(1)] emits a beep with
negligible probability. Moreover, since the systems [Π1, Ad, Z

(0)] and [Π1, Ad, Z
(1)] behave identi-

cally unless the latter emits a beep, we have

Exec[Π1, Ad, Z
(0)] ≈ Exec[Π1, Ad, Z

(1)]. (3)

We next consider the system [Π, A, Z(1)], which is illustrated in Fig. 3(f). Since Z(1) is well-
behaved, by hypothesis, we have

Exec[Π1, Ad, Z
(1)] ≈ Exec[Π, A, Z(1)]. (4)

In particular, the probability that [Π, A, Z(1)] emits a beep is negligibly close to the probability
that [Π1, Ad, Z

(1)] emits a beep, and so itself is negligible.
In the system [Π, A, Z(1)], we write f ′ap to denote the flow from A into Π. Again, this counts

the flow of uninvited messages. By the assumption that A is (multi-)bounded for Π, and since Z(1)

is well-behaved, it follows that there exist polynomials p′ and q′, such that with all but negligible
probability, the running time of Π and A together is continuously bounded by p′(fep + fap) and
f ′ap is continuously bounded by q′(fap). Moreover, in this system, we always have fap ≤ q(fea). It
follows that there exist polynomials p′′ and q′′, such that with all but negligible probability, the
running time of Π and A together is continuously bounded by p′′(fe) and the flow f ′ap is continuously
bounded by q′′(fea).

Finally, we consider the system [Π, A, Z(0)], effectively removing the clamp. Since the two
systems [Π, A, Z(0)] and [Π, A, Z(1)] proceed identically unless the clamp in the latter triggers the
beep, and since the latter happens with negligible probability, we have

Exec[Π, A, Z(1)] ≈ Exec[Π, A, Z(0)]. (5)
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Figure 3: Diagrams for proof of Theorem 5

Moreover, in the system [Π, A, Z(0)], with all but negligible probability, the running time of Π
and A together is bounded by p′′(fe), the running time of A1 is bounded by p(fe), and the flow
f ′ap is bounded by q′′(fea) — this follows from the fact that the corresponding events occur with all

but negligible probability in [Π, A, Z(1)], and the two systems [Π, A, Z(0)] and [Π, A, Z(1)] proceed
identically unless a negligible event occurs. This establishes that A∗ is (multi-)bounded for Π.

Finally, equations (3)–(5) imply that

Exec[Π1, Ad, Z
(0)] ≈ Exec[Π, A, Z(0)],

and this clearly implies that

Exec[Π1, A
∗
1, Z] ≈ Exec[Π, A∗, Z],

which proves the theorem.

7.3 Proof of Theorem 6 (emulates =⇒ multi-emulates)

Assume Π and Π1 are poly-time protocols rooted at r. By Theorem 2, both Π and Π1 are multi-
poly-time protocols. Assume Π1 emulates Π. In particular, there exists an adversary A that is
bounded for Π, such that for every well-behaved environment Z that is rooted at r, we have

Exec[Π, A, Z] ≈ Exec[Π1, Ad, Z].

We want to show that Π1 multi-emulates Π. By the completeness of the dummy adversary (Theo-
rem 5), it will suffice to construct an adversary A∗ that is multi-bounded for Π, such that for every
well-behaved environment Z that is multi-rooted at r, we have

Exec[Π, A∗, Z] ≈ Exec[Π1, Ad, Z].
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Before describing A∗, let us first make some preliminary observations. Consider an execution of
the system [Π, A, Z], where Z is (singly) rooted at r. We define fep to be the flow from Z into Π,
fea to be the flow from Z into A, fe := fep + fea, and fap to be the flow from A into Π. We define
t to be the running time of Π and A together. As usual, fea and fap measure the flow of uninvited
messages.

By the assumption that A is bounded for Π, we know that there exist polynomials p and q,
such that t ≤ p(fe) and fap ≤ q(fea) with all but negligible probability. Moreover, we may assume
that these bounds hold continuously throughout the execution of [Π, A, Z].

As in the proof of Theorem 2, we may assume that p is non-negative and super-additive. The
essential fact used to establish this is that t = 0 whenever fe = 0. We may also assume that q is
non-negative and super-additive. This requires a bit more of an argument, because we may have
fap > 0 even though fea = 0. However, all messages sent between machines include the unary
encoding of the security parameter λ. As λ tends to infinity, the length of any message sent from
A to Π will eventually exceed q(0). Therefore, with all but negligible probability, we have fap = 0
whenever fea = 0. Because of this, we may assume q is non-negative and super-additive.

Here is how A∗ works. In the design of A∗, one should bear in mind that we expect the
environment to be multi-rooted at r, and the messages the environment sends to A∗ are expected
to be instructions to a dummy adversary interacting with Π1, even though A∗ is actually interacting
with Π. During the execution of the system, A∗ will keep track of the instances it knows about
and their SIDs. Let us number the instances 1, 2, . . . , in order of their discovery by A∗, and denote
by sid i the SID of the ith instance. For each known instance, A∗ will run an internally simulated
copy of A.

When A∗ receives a message from a protocol machine, it examines the SID of that machine. By
scanning the components of this SID from right to left, and finding the first component from the
right that names program r, A∗ can determine the SID of the instance of Π to which this machine
belongs. If necessary, this instance is added to its list of known instances. If the message received
originates from the ith known instance, we say that the SID resolves to sid i in this case, and
A∗ forwards this message to its ith internal copy of A. This copy of A will generate a message
addressed to either a protocol machine in instance i or to the environment (recall that an adversary
will only send messages to protocol machines from which it has previously heard, and moreover,
this copy of A will only receive messages from protocol machines in instance i). In any case, A∗

forwards the message generated by this copy of A to its intended recipient. However, if the message
is to be sent to the environment, A∗ first applies a special invitation filter : if the message to the
environment includes any invitations, A∗ checks that these invitations are instructions to send
messages to machines whose SIDs also resolve to sid i; if this check fails, A∗ delivers the message
〈 error 〉 to the environment; otherwise, it forwards the message, as usual.

When A∗ receives a message from its environment, it parses the message as an instruction
to the dummy adversary, which is of the form 〈 id ,m 〉. If the message it receives is not of this
form, A∗ sends 〈 error 〉 back to its environment. Otherwise, A∗ processes id as in the previous
paragraph; if its SID does not resolve to the SID of a known instance, 〈 error 〉 is passed back
to the environment. Even if the SID of id of resolves to a known instance, A∗ sends 〈 error 〉
back to the environment unless the environment has already received a message from the copy of
A corresponding to this instance — we call this logic the instruction filter. Otherwise, A∗ forwards
〈 id ,m 〉 to the corresponding copy of A. This copy of A will respond with a message addressed
to a protocol machine in the corresponding instance (from which it has previously heard) or to
the environment. In any case, A∗ forwards the message to its intended recipient. However, as
in the previous paragraph, the same invitation filter is applied to messages directed towards the
environment.
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That completes the description of A∗. Before going further, we give some intuition behind
the invitation and instruction filters. Essentially, the invitation filter prevents one copy of A from
inviting the environment to deliver a message to a different copy of A. Of course, we do not expect
this to happen with any more than negligible probability, but it will simplify the argument to
simply explicitly enforce it. Doing this allows us to measure the “global” uninvited flow from the
environment to A∗ as the sum of the “local” uninvited flows from the environment to each copy
of A. The instruction filter will assist us in making the necessary hybrid argument that is used to
relate the execution of many protocol instances to execution of one. In that argument, we will be
considering an environment that may have a somewhat different view of existing protocol instances:
it discovers an instance the first time it passes a message to a protocol machine in that instance;
the instruction filter will ensure that this does not lead to any inconsistencies.

To analyze A∗, we fix a well-behaved environment Z that is multi-rooted at r. Z will remain
fixed for the rest of the proof.

We now describe a machine Z0. Z0 will not interact with any other machines: it will receive
an input 1λ, and will produce an output in Σ∗. We will write Exec[Z0](λ) for the random variable
representing the output of Z0 on input 1λ, and define Exec[Z0] := {Exec[Z0](λ)}λ. Here is how
Z0 works. Z0 will internally run a copy of Z, keeping track of various protocol instances and
their associated SIDs. The instances are numbered 1, 2, . . . , and the SID of the ith instance is
denoted sid i. Whenever Z attempts to deliver a message to a protocol machine, that machine’s
SID determines a protocol instance. New protocol instances may be discovered in this way. In
addition, when Z attempts to send a message to the adversary, Z0 processes the message as an
instruction to the dummy adversary, and attempts to resolve the embedded SID to the SID of a
known instance, using the same resolution procedure as in the design of A∗, inclusing the instruction
filter. This may result in an error, in which case the message 〈 error 〉 is returned to Z. For each
instance i, Z0 maintains a cluster of virtual machines, consisting of one copy of the adversary A and
all the protocol machines of one instance of Π. When Z attempts to pass a message to a machine in
the ith cluster, Z0 forwards the message to the appropriate virtual machine in that cluster (either
a virtual protocol machine or the copy of A). Control will pass among machines in the ith cluster,
eventually returning to the environment, either via a virtual protocol machine or via a copy of
A. In the first case, Z0 forwards the message to Z, while in the second case, Z0 applies the same
invitation filter used in the design of A∗ before forwarding the message to Z.

As discussed above, the invitation filter ensures that the copy of A in one cluster will not invite
Z to send a message to the copy of A in a different cluster.

Observe that the number of protocol instances discovered by Z0 is bounded by qi(λ) for some
polynomial qi. This follows from the fact that the number of discovered instances is bounded by the
flow from Z into Π, which is in turn bounded by a fixed polynomial in λ. Moreover, the polynomial
qi may be chosen in a manner that is independent of the protocol Π and the adversary A.

The execution of Z0 proceeds in a manner that is essentially the same as that of [Π, A∗, Z]. The
instruction filter ensures that any instance discovered by A∗ would have already been discovered
by Z0. In particular, Exec[Z0] = Exec[Π, A∗, Z]. The key feature of Z0, however, is its modular
internal structure: it consists of an internal copy of Z, a number of independent clusters of virtual
machines built with Π and A, and a simple “dispatch module” connecting Z to the clusters.

Now consider the execution of Z0 on input 1λ. For i = 1, . . . , qi(λ), we define f
(i)
ep to be the flow

from Z into the ith instance of Π, f
(i)
ea to be the flow from Z into the ith copy of A, f

(i)
e := f

(i)
ep +f

(i)
ea ,

and f
(i)
ap to be the flow from the ith copy of A into the ith instance of Π; we also define t(i) to be

the combined running time of Π and A in the ith cluster — this is the running time that the actual
machines would take, not the amount of time required to simulate them. Note that, as usual, the
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flows f
(i)
ea and f

(i)
ap count uninvited messages only.

Next, we define a “clamped” version of Z0, which we call Zc
0. Each cluster will locally keep

track of its internal flows and running times: the ith cluster will keep track of f
(i)
ep , f

(i)
ea , f

(i)
e , f

(i)
ap ,

and t(i). If at any time during the execution of the ith cluster it should happen that t(i) > p(f
(i)
e )

or f
(i)
ap > q(f

(i)
ea ), the ith cluster immediately halts the entire execution of Z0.

Because of the clamps, and because Z is well-behaved, we see that Zc
0 runs in time polynomial

in λ. Using a standard “guessing argument”, almost identical to the proof of Theorem 2, one
can show that the clamps set in Zc

0 will actually halt the execution prematurely with negligible
probability. From this, it follows that

Exec[Π, A∗, Z] = Exec[Z0] ≈ Exec[Zc
0]. (6)

It also follows that with all but negligible probability, in the execution of Z0, we have

∑

i

t(i) ≤
∑

i

p(f (i)
e ) ≤ p

(∑

i

f (i)
e

)

and ∑

i

f (i)
ap ≤

∑

i

q(f (i)
ea ) ≤ q

(∑

i

f (i)
ea

)
.

Here, we have used the assumed super-additivity of p and q. Because the execution of [Π, A∗, Z]
proceeds in essentially the same way as that of Z0, we conclude that A∗ is multi-bounded for Π.

It remains to show that Exec[Π, A∗, Z] ≈ Exec[Π1, Ad, Z]. To this end, we define machines
Z1 and Zc

1: these machines work just like Z0 and Zc
0, except that we use Π1 and Ad in place of

Π and A, and in defining Zc
1, we use a time clamp appropriate to Π1 (recalling that Π1 is poly-

time). As before, because of the clamps, Zc
1 runs in time polynomial in λ. Observe that in the

execution of Z1, the invitation filter will never trigger an error, and the instruction filter will never
trigger an error that would not already be triggered by the dummy adversary in the execution
of Exec[Π1, Ad, Z]. Therefore, the execution of Z1 proceeds in essentially the same way as the
execution of Exec[Π1, Ad, Z]. Thus, analogous to the observations above, we have

Exec[Π1, Ad, Z] = Exec[Z1] ≈ Exec[Zc
1]. (7)

So it will suffice to show that Exec[Zc
0] ≈ Exec[Zc

1].
To this end, we define two machines, Z∗0 and Z∗1 . For b = 0, 1, machine Z∗b works as follows: it

chooses a random index i0 ∈ {1, . . . , qi(λ)}, and then works like machine Zc
0, except that in clusters

i = i0 + 1− b, . . . , qi(λ) it uses the clamped versions of Π1 and Ad, in place of the clamped versions
of Π and A. Note that in generating i0, we assume that its distribution is statistically close to the
uniform distribution on {1, . . . , qi(λ)}. Because execution in all clusters is clamped, both Z∗0 and
Z∗1 run in time polynomial in λ.

Both Z∗0 and Z∗1 use clamped versions of Π and A in clusters 1, . . . , i0 − 1, and use clamped
versions of Π1 and Ad in clusters i0 + 1, . . . , qi(λ). The only difference between Z∗0 and Z∗1 is that
in instance i0, Z∗0 uses a clamped version of Π and A, and Z∗1 uses a clamped version of Π1 and
Ad. Using a standard hybrid argument, we have

Exec[Z∗0 ] ≈ Exec[Z∗1 ] =⇒ Exec[Zc
0] ≈ Exec[Zc

1]. (8)

Finally, we define an environment Z∗, that is (singly) rooted at r, as follows: it works like
machine Z∗0 (and, indeed, Z∗1 ), except that instead of using cluster i0 to process instance i0, it uses
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Figure 4: Structure of the environment Z∗ in the proof of Theorem 6

whatever protocol and adversary it happens to be interacting with. In other words, after choosing
i0 at random, Z∗ follows the logic of Z, but processes instances 1, . . . , i0−1 using clusters of virtual
machines, each running clamped versions of Π and A, processes instances i0 + 1, . . . , qi(λ) using
clusters of virtual machines, each running clamped versions of Π1 and Ad, and processes instance
i0 using its external protocol and adversary. The structure of Z∗ is illustrated in Fig. 4, where it
is shown interacting with an arbitrary external protocol Π̃ and an arbitrary external adversary Ã.

Because Z is well-behaved, and because all of its clusters run with clamps, Z∗ is well-behaved.
The execution of [Π, A, Z∗] (resp., [Π1, Ad, Z

∗]) proceeds essentially identically to that of Z∗0 (resp.,
Z∗1 ), unless the constraints defining the boundedness of A for Π (resp., Ad for Π1) are violated,
which happens with negligible probability. It follows that

Exec[Π, A, Z∗] ≈ Exec[Z∗0 ] and Exec[Π1, Ad, Z
∗] ≈ Exec[Z∗1 ]. (9)

Now, using the defining property of A, and the fact that Z∗ is a well-behaved environment rooted
at r, we have

Exec[Π, A, Z∗] ≈ Exec[Π1, Ad, Z
∗]. (10)

Combining (9) and (10), we obtain

Exec[Z∗0 ] ≈ Exec[Z∗1 ].

Combining this with (8), we obtain

Exec[Zc
0] ≈ Exec[Zc

1].

And combining this with (6) and (7), we obtain

Exec[Π, A∗, Z] ≈ Exec[Π1, Ad, Z],

which proves the theorem.

7.4 Proof of Theorem 7 (composition theorem)

We are assuming that Π′1 emulates Π′. By Theorem 6, this implies that Π′1 multi-emulates Π′.
This means that there exists an adversary A′ that is multi-bounded for Π′ such that for every
well-behaved environment Z that is multi-rooted at x, we have Exec[Π′, A′, Z] ≈ Exec[Π′1, Ad, Z].

39



We want to show that Π1 emulates Π. We will in fact prove the stronger result that Π1 multi-
emulates Π. Strictly speaking, this is not necessary, in light of Theorem 6. However, we choose to
do this for several reasons. First, the proof is really no more difficult. Second, by giving a direct
proof of this stronger result, the resulting security reduction is more efficient than that obtained
via Theorem 6. Third, we will later wish to prove a variant of this theorem in a slightly different
setting where Theorem 6 will not be available to us, and so it will prove convenient to prove this
stronger result now.

Because of Theorem 5, it suffices to exhibit an adversary A that is multi-bounded for Π, such
that for every well-behaved Z that is multi-rooted at r, we have Exec[Π, A, Z] ≈ Exec[Π1, Ad, Z].

It will fall out as a natural by-product of the proof that Π1 is itself poly-time. In fact, the
proof will show directly that Π1 is multi-poly-time, bypassing Theorem 2. However, we will use
Theorem 2 to deduce from the hypotheses that Π and Π′1 are multi-poly-time, and hence (by
Theorem 3) that Ad is multi-bounded for Π′1.

The first part of the proof is to describe our adversary A, which will interact with an environ-
ment Z and protocol machines belonging to instances of Π. One should think of Z as providing
instructions to the dummy adversary to send messages to machines belonging to instances of the
protocol Π1 (and not Π). Our adversary A will internally maintain a copy of A′.

As a first step, let us introduce some helpful terminology. Given an SID sid , we shall classify
it either sub or super. To do this, we scan the components of sid from right to left, until we reach
one that specifies either r or x as a protocol name. If such a component exists and specifies x, we
classify sid as sub; otherwise, we classify sid as super. Intuitively, a classification of sub means the
SID apparently belongs to a machine in an instance of the subprotocol.

So here is how A works. Suppose A receives a message from a protocol machine. A first
calculates the classification of this machine’s SID. If the classification is sub, A forwards the message
to its internal copy of A′. If the classification is super, A records the ID of the machine and forwards
the message to Z, after performing the translations usually done by the dummy adversary.

Suppose A receives a message from Z. This message should be in the form of a dummy machine
instruction (otherwise A just sends the usual error message 〈 error 〉 back to Z). So assume the
message is 〈 id ,m 〉, where id = 〈 pid , sid 〉. A calculates the classification of the SID sid . If the
classification is sub, A forwards 〈 id ,m 〉 to its internal copy of A′. If the classification is super and
A has previously recorded id (as in the previous paragraph), A sends the message m to the machine
with ID id . Otherwise, A sends the message 〈 error 〉 to Z.

Suppose A′ generates a message, which is either addressed to a protocol machine or to the
environment. If it is addressed to a protocol machine, A forwards the message to that machine —
by Constraint C5 (see §4.4) and by the construction of A, this machine exists, belongs to an instance
of the subprotocol, and has previously sent a message to A. If it is addressed to the environment,
A will forward the message to Z, but subject to the following invitation filter : if the message to
the environment includes any invitations, A checks that these invitations are instructions to send
messages to machines whose SIDs are classified as sub; if this check fails, A delivers the message
〈 error 〉 to Z; otherwise, A forwards the message to Z.

That completes the description of A. The purpose of the invitation filter is essentially the same
as in the proof of Theorem 6; in this case, we want to prevent A′ from inviting Z to deliver a
message to the superprotocol, rather than the subprotocol; this ensures that invitations to deliver
a message to the superprotocol come from the superprotocol, and invitations to deliver a message
to the subprotocol come from A′, keeping the measure of the flow of uninvited messages locally
consistent. We also note that if the adversary A′ is the one constructed in Theorem 6, the invitation
filter here becomes redundant.
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That completes the description of our adversary A. See Fig. 5(a) for a schematic view of how
A interacts with protocol machines belonging to instances of Π and an environment Z. Here, all
the protocol machines that belong to instances of the subprotocol Π′ are grouped together in the
box labeled Π′, while all other protocol machines are grouped together in the box labeled Π \ x.
Our adversary A is represented by the two boxes labeled “router” and A′.

• Messages from Z to A that represent instructions to send messages to machines in Π1 \ x
(which is the same as Π \ x) are passed through the router to these machines, with just a bit
of reformatting (translating dummy machine instructions to actual messages).

• Messages from Z to A that represent instructions to send messages to machines that appear
to belong to instances of Π′1 are passed directly through the router to the internal copy of A′.

• Messages from protocol machines in Π \ x to A are passed through the router to Z, applying
the usual transformations performed by the dummy adversary.

• Messages from the internal copy of A′ to Z are passed through the router directly, subject to
the invitation filter described above.

• Messages from machines in Π′ to A are passed directly to the internal copy of A′.

• Messages from the internal copy of A′ to machines in Π′ are passed by A directly to those
machines.

The arrows represent the flows of messages between machines grouped in the various boxes.
For the remainder of the proof, we let Z be an arbitrary, but fixed, well-behaved environment

that is multi-rooted at r. Consider the diagram in Fig. 5(b). Here, we have labeled the diagram
with various bounds that we anticipate to hold by virtue of the assumptions we are making. We will
presently give a rigorous argument that these bounds hold continuously throughout the execution
of the system, with all but negligible probability, but let us first describe the relevant notation in
some detail.

• fep is the flow from Z into Π.

• fea is the flow from Z into A. Note that the flow from the router into A′ is bounded by fea as
well, while the flow from the router into Π\x is bounded by h∗(fea) for some implementation-
dependent polynomial h∗ that bounds any flow expansion in translating dummy instructions
to messages. As usual, this flow counts only uninvited messages.

• We anticipate that the flow from A′ into Π′ is bounded by q1(fea), where q1 is the polynomial
that is guaranteed to exist by virtue of the assumption that A′ is flow-bounded for Π′. Again,
this is the flow of uninvited messages.

• We anticipate that the total running time of protocol machines in Π \ x and in Π′ will be
bounded by t := p(fep + fea + h(q1(fea))). Here, p is the polynomial that is guaranteed to
exist by virtue of the assumption that Π is poly-time, and h is an implementation-dependent
polynomial that bounds any flow expansion in translating from messages to dummy instruc-
tions. The reader should recall that in defining poly-time, the relevant quantity is the flow
from Z into the dummy adversary, which we anticipate to be at most fea + h(q1(fea)), rather
than the flow from the dummy adversary into Π.
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Figure 5: Diagrams for proof of Theorem 7
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• We anticipate that the flow from Π \ x into Π′ will be bounded by h′(t), where h′ is an
implementation-dependent polynomial. Indeed, if the running time of machines in Π \ x
is bounded by t, then the flow that they can generate and pass into the subprotocol Π′ is
bounded by some polynomial in t.

• We anticipate that the running time of A′ will be bounded by p1(fea + h′(t)), where p1 is the
polynomial that is guaranteed to exist by virtue of the assumption that A′ is time-bounded
for Π′.

We assume that the polynomials h∗, h, h′, p1, q1, and p are all non-negative and non-decreasing.
Our first goal is to show that the bounds in the dotted ovals in the diagram, labeled c1, c2,

c3, and c4, hold continuously throughout the execution, with all but negligible probability. Here,
c1 says the running time of Π \ x is continuously bounded by t, c2 says the running time of Π′

is continuously bounded by t, c3 says that the flow from A′ into Π′ is continuously bounded by
q1(fea), and c4 says the running time of A′ is continuously bounded by p1(fea + h′(t)).

To this end, consider a single machine M0 that simulates the execution of the system, but with
“clamps” placed that enforce the bounds c1, c2, c3, and c4. If any of these clamps are “triggered”,
meaning that the corresponding bound, which is continuously monitored by M0, is violated, then
M0 immediately halts with an arbitrary output. It will suffice to show that during the execution
of M0, each of these clamps is triggered with only negligible probability.

We first argue that c3 and c4 are triggered with negligible probability. Consider the interaction
of Π′ and A′ with an environment Z1 that comprises Z, Π \ x, and the router, but with the clamp
c1 in place. This system is illustrated in Fig. 5(c), where Z1 is outlined by a dashed box. The
environment Z1 simulates the execution of all the machines in Π \ x, monitoring the clamp c1. It
is straightforward to verify that the system [Π′, A′, Z1] satisfies all the constraints defined in §4
that any structured system must satisfy — this is entirely trivial, except perhaps Constraint C4
in §4.3 (the peer/ancestor free constraint), but even this is easily verified using the corresponding
constraint for Z, and the fact that the static call graph of Π is acyclic. It is also worth noting here
that because of the caller ID translation mechanism (see Constraint C8 in §4.6) the machines in
Π′ behave exactly the same, regardless of whether they are invoked by Z1 or by machines in Π \ x.
It is also easily verified that Z1 is a well-behaved environment multi-rooted at x. The fact that is
it multi-rooted at x is immediate from the construction. The fact that it is well-behaved follows
from the fact that Z is well-behaved and that the simulated machines in Π \ x are clamped. So
now, we see that Z1 is well-behaved, the flow from Z1 into Π′ is continuously bounded by h′(t),
and the flow from Z1 into A′ is continuously bounded by fea; therefore, the flow from A′ into Π′

is continuously bounded by q1(fea) with all but negligible probability (because A′ is multi-flow-
bounded for Π′), and the running time of A′ is continuously bounded by p1(fea +h′(t)) with all but
negligible probability (because A′ is multi-time-bounded for Π′). Since the execution of the system
[Π′, A′, Z1] proceeds identically to the execution of M0 unless the clamps c3 or c4 are triggered, we
conclude that with all but negligible probability, neither c3 nor c4 are triggered in M0.

We next argue that c1 and c2 are triggered in M0 with negligible probability. Consider the
interaction of Π with an environment Z2 that comprises Z, the router, and A′, but with the clamps
c3 and c4 in place. This system is illustrated in Fig. 5(d), where Z2 is outlined by a dashed box. Also,
note that technically speaking, the communication lines between Π\x and the router, and between
Π′ are A′, actually go through a dummy adversary. Because of the clamp c4, it is easy to verify that
Z2 is a well-behaved environment multi-rooted at r. Moreover, during the execution of [Π, Ad, Z2],
the total flow out of Z2 is continuously bounded by fep + fea + h(q1(fea)) — the polynomial h is
used to account for the translation from messages to dummy instructions. Therefore, because Π
is assumed multi-poly-time, it follows that during the execution of [Π, Ad, Z2], the running time
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of Π, is continuously bounded by t = p(fep + fea + h(q1(fea))) with all but negligible probability.
Since the execution of the system [Π, Ad, Z2] proceeds identically to the execution of M0 unless the
clamps c1 or c2 are triggered, we conclude that with all but negligible probability, neither c1 nor c2

are triggered in M0.
So now we have established that with all but negligible probability, none of the clamps in M0 are

triggered. As a first consequence of this fact, we derive the first major conclusion of the theorem:

A is multi-bounded for Π.

This follows from the fact that execution of [Π, A, Z] proceeds identically to that of M0 unless one
of the clamps in M0 is triggered. Since none of these clamps are triggered, with all but negligible
probability, we conclude that all of the corresponding bounds in the execution of [Π, A, Z] hold
continuously, with all but negligible probability. From this, it is clear that A is multi-bounded for
Π.

Next, we observe that in the execution of [Π′, A′, Z1], the clamp c1 is triggered with only
negligible probability. Again, this follows from the fact that the execution of [Π′, A′, Z1] proceeds
identically to that of M0 unless one of the clamps in M0 is triggered. Since none of these clamps
are triggered, with all but negligible probability, we conclude that in the execution of [Π′, A′, Z1],
the clamp c1 is triggered with only negligible probability.

From the observation in the previous paragraph, we may conclude that

[Π, A, Z] ≈ [Π′, A′, Z1].

This follows from the fact that the executions of [Π, A, Z] and [Π′, A′, Z1] proceed identically unless
the clamp c1 in Z1 is triggered, and that happens with negligible probability.

Next, using the fact that Z1 is a well-behaved environment multi-rooted at x, and the defining
property of A′, we conclude that

[Π′, A′, Z1] ≈ [Π′1, Ad, Z1].

The system [Π′1, Ad, Z1] is illustrated in Fig. 5(e). Moreover, we observe that in the execution of
[Π′1, Ad, Z1], the clamp c1 in Z1 is triggered with negligible probability; indeed, if this did not hold,
we could easily build an environment that distinguished between Π′/A′ and Π′1/Ad.

Observe that [Π′1, Ad, Z1] and [Π1, Ad, Z] proceed identically unless the clamp c1 in Z1 is trig-
gered. In justifying this step, we are actually making use of the subroutine constraints (Con-
straint C9 in §4.6.3), as well as the substitutability hypothesis: together, these two conditions
ensure that the programs simulated by Z1 in [Π′1, Ad, Z1] are really the same as those in the ex-
ecution of [Π1, Ad, Z]. Additionally, we are making use of the fact the invitation filter will never
trigger an error in the execution of [Π1, Ad, Z].

Now, since the clamp c1 in Z1 is triggered with negligible probability, it follows that

[Π′1, Ad, Z1] ≈ [Π1, Ad, Z].

So we have
[Π, A, Z] ≈ [Π′, A′, Z1] ≈ [Π′1, Ad, Z1] ≈ [Π1, Ad, Z],

and we derive the second major conclusion of the theorem:

[Π, A, Z] ≈ [Π1, Ad, Z].

Finally, observe that in the execution of [Π′1, Ad, Z1], the flow out of Z1 is continuously bounded
by h′(t) + fea. Using the fact that Π′1 is multi-poly-time, we conclude that in the execution of
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[Π′, Ad, Z1], the running time of Π′1 is bounded by p′1(h′(t)+fea), with all but negligible probability,
for some fixed polynomial p′1. Again, since [Π′1, Ad, Z1] and [Π1, Ad, Z] proceed identically unless
the clamp c1 in Z1 is triggered, and the latter happens with negligible probability, it follows that
with all but negligible probability, in the execution of [Π1, Ad, Z], the running time of Π1 is bounded
by t+ p′1(h′(t) + fea). This proves the third, and final, major conclusion of the theorem:

Π1 is multi-poly-time.

That completes the proof of the theorem.

8 Conventions regarding corruptions and ideal functionalities

8.1 Machine corruption

In analyzing protocols, one traditionally distinguishes between honest and corrupt parties. Most
formal frameworks for multi-party computation include some mechanism for corrupting machines,
and we do so as well. However, our mechanism is layered on top of the framework we have already
defined, via certain message-passing conventions.

Consider a regular protocol machine. Such a machine starts out “honest”, following the logic
dictated by its program. The machine becomes “corrupt” when it receives a special corrupt
message from its caller.

The exact format of the special corrupt message is unimportant, but some conventions should
be established so that this message is not confused with other types of messages. For example, the
special corrupt message could be 〈 corrupt 〉, and all other messages could be of the form 〈α, . . . 〉,
where α 6= corrupt. We emphasize that to corrupt a regular protocol machine, this machine
must receive this special corrupt message from its caller — receiving it from any other machine (a
subroutine, its ideal peer, or the adversary) will not corrupt the machine.

When a regular protocol machine M is corrupted, here is what happens:

• In the activation in which M is corrupted, it sends a special message to the adversary that
indicates that it has been corrupted; this message includes the state of M as it was at the
beginning of the activation (to be clear, in the context of caller ID translation, as discussed
in §4.6.1, this state information only includes the state of the inner core); this message also
contains several invitations, which are described below. In addition, upon corruption, the
internal state of M is updated to record the fact that the machine is corrupted; the state of
M will never change again.

• In subsequent activations, M essentially becomes a “slave” to the adversary:

– any messages received by M are forwarded to the adversary (along with the ID of the
source);

– the adversary may send “slave instructions” to M , telling it to deliver the special corrupt
message to a subroutine of M , or an arbitrary message (possibly, but not necessarily,
the special corrupt message) to M ’s ideal peer; the precise format of these “slave in-
structions” is not critical.

• The invitations that M sends to the adversary upon corruption are the “slave instructions”
to send the special corrupt message to M ’s ideal peer and all currently existing subroutines
of M .
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Note 8.1. We do not make any conventions regarding ideal protocol machines. Such a machine
may receive special corrupt messages from its peers, but how these are processed is completely up
to the logic of its program. �

Note 8.2. The very first message that a regular machine receives (as an input from its caller) may
be the special corrupt message; when this happens, the machine is created as usual, and the steps
described above are immediately carried out. �

Note 8.3. Obviously, once a regular protocol machine M is corrupted, the adversary is free to
corrupt any of M ’s subroutines: to see this, notice that after M is corrupted, the adversary may
simply use M as a slave to send the special corrupt message to any of M ’s subroutines; because
the messages are sent through M , the caller of these subroutines, and not sent directly by the
adversary, these special corrupt messages will have their intended effect.

Also, observe that the corruption instructions are treated as invited messages if they refer
to subroutines that existed at the time of M ’s corruption. The adversary may also create new,
corrupted subroutines, but the instructions to do so will be treated as uninvited. In this way, an
adversary may construct a chain of corrupted machines in order to get one that “connects up” (i.e.,
is a peer of) some ideal machine, which may itself connect up to some honest machine. This ability
seems like an essential requirement in any reasonable corruption model. �

Note 8.4. Note that the adversary cannot corrupt any machine that it wants to: considering the
dynamic call graph, discussed in §5.3, the environment determines which of the root machines get
corrupted; once a root machine is corrupted, the adversary is free to corrupt all the machines in
the tree rooted by this machine, using only invited messages. �

Note 8.5. Treating the instructions to corrupt subroutines as invited messages should have no
impact on the running-time analysis of a protocol: there was already enough uninvited flow to
“pay” for the creation of this subroutine and the computation of its current state, and so there is
also enough uninvited flow to “pay” for the corruption step. �

Note 8.6. One could consider a stronger corruption model, wherein after a regular protocol ma-
chine M is corrupted, the adversary is allowed to send arbitrary messages via M to M ’s subroutines.
This is perhaps not unreasonable; however, it is not clear if this extra power is really useful in any
meaningful way; moreover, with this extra power, it may be more difficult to prove that a protocol
is poly-time. �

Note 8.7. Our conventions allow one to model the erasure or non-erasure model: it is really
up to the logic of the program to determine what is stored in the state of the machine. In the
non-erasure model, we would usually insist that the state include the entire history, including all
incoming messages, and the results of all coin tosses. �

Note 8.8. As it is, our definitions model adaptive corruptions. Static corruptions can be effectively
modeled using the notion of a common functionality CSscor (see Section 10.7). �

Note 8.9. One could also model so-called “honest but curious” corruptions with a different set
of corruption conventions. For example, when a regular protocol machine M is corrupted, its
internal state is handed over to the adversary; subsequently, however, M follows its usual logic,
except that it will respond to future requests from the adversary to reveal its current state, and
that it will honor future requests from the adversary to send the special corrupt message to any
of its subroutines. It is easy to arrange that all such special requests are invited messages, with
appropriate invitations sent out in response to a corrupt or reveal request. �

46



Note 8.10. After a machine is corrupted, it still adheres to the constraints imposed in §4. Most
of these are clearly reasonable, but the subroutine constraints in §4.6.3 may not seem to be at first
sight. This constraint means that the adversary can only create subroutines of a corrupt machine
whose protocol names are declared by the machine. Let us call this Constraint X. We shall argue
that this constrain is, in fact, reasonable. As we have previously argued (see Note 7.3), the only
attack we really care about is an attack on a fully instantiated and concrete protocol as deployed in
the real world, carried out by an environment via the dummy adversary. Suppose that the deployed
protocol Π is a poly-time protocol. We need to make a further (quite reasonable) assumption: the
ideal machines which may be created during an execution of Π are polynomial-time bounded in
the following sense: for any such machine, with overwhelming probability, its total running time is
bounded by a polynomial in the total uninvited flow coming into it.

Now, suppose we drop Constraint X. Recall Constraint C4 on the environment (see §4.3), that
is, the peer/ancestor free constraint. Because of Constraint C4, any “bogus” machines that the
adversary might create by means of flouting Constraint X would never “connect up” with any honest
machine, either directly (with one machine being a subroutine of the other), or indirectly (via an
ideal machine). Because of the polynomial-time assumption on ideal machines, it follows that
all of the computations performed by the “bogus” machines and their ideal peers is polynomially
bounded in the flow out of the environment. From this, it follows that Π is poly-time, even if we
drop Constraint X; moreover, we see that the computations performed by the “bogus” machines and
their ideal peers can be absorbed into the adversary, and this new adversary respects Constraint X
(and is bounded for Π).

That completes the argument that Constraint X is reasonable. Of course, this argument hinged
on Constraint C4, and one might ask if that is reasonable. Again, in an attack on a fully instantiated,
concrete protocol, the instances of the protocol that are created by the environment would typically
have SIDs with a very simple structure — there is no compelling reason for this to not be the case,
as any non-trivial structure typically arises only from protocol composition, and this protocol is
not intended to be used as a subprotocol. In particular, Constraint C4 should be trivially satisfied.
�

8.2 Ideal protocols and ideal functionalities

While our formal model allows ideal protocol machines to be used in other ways, the standard (and,
really, only) way we expect them to be used is to represent ideal protocols.

An ideal protocol is a special type of protocol. It defines a single program. When this program
is run by a regular protocol machine, the logic of the program makes the machine a simple dummy
party, which behaves as follows:

• It never invokes any subroutines, and its subroutine declaration is empty.

• All messages it receives from its caller are simply forwarded to its ideal peer, and are not
recorded in its state.

• All messages it receives from its ideal peer are simply forwarded to its caller, and are not
recorded in its state.

• All messages it receives from the adversary are deflected back to the adversary, and otherwise
ignored.

These are the rules that apply to a dummy party when it is not corrupted; assuming the standard
conventions for corruptions (see §8.1), the same rules apply to these machines as apply to any
regular protocol machine:
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• The dummy party becomes corrupted when it receives the special corrupt message from its
caller, at which point it sends a special message to the adversary which includes its state,
along with an invitation for an instruction to forward the special corrupt message via this
dummy party to its ideal peer. The state information of the dummy party will contain no
useful information.

• After the dummy party is corrupted, the adversary may send arbitrary messages via the
dummy party to its ideal peer; these messages include the special (invited) corrupt message,
but they may be quite arbitrary. In addition, any messages sent from the ideal peer to the
dummy party are forwarded directly to the adversary. In this way, the adversary may interact
with the ideal peer as if it were the dummy party, either with or without informing the ideal
peer that the dummy party is corrupt (but see Note 8.12 below).

Because the logic of the regular protocol machines is fixed, the only interesting logic is in the
ideal protocol machine itself. Therefore, in defining an ideal functionality, it suffices to define the
logic of the ideal machine itself. The program describing this logic is called an ideal functionality.
We will sometime be a bit sloppy in the use of the terms “ideal functionality” and “ideal protocols”.
For example, we might say that an ideal functionality F is poly-time, when what we mean is the
corresponding ideal protocol is poly-time; or we might say that a protocol Π emulates F , when
again, what we mean is that Π emulates the corresponding ideal protocol.

Besides ideal protocols, which define a program for which only the ideal machines perform any
non-trivial tasks, it is also useful to define IM programs for which only the regular machines are
relevant. Let us call an IM program totally regular if the behavior it defines for ideal machines
is as follows: whenever it receives a message of any kind, it simply sends an error message to the
adversary. For all practical purposes, such ideal machines can be safely ignored.

Although our formal model does not require it, typically, a protocol Π is a library defining a
collection of totally regular programs, along with some ideal functionalities, F1, . . . ,Fk, and no
other programs. In this case, we say that Π is an (F1, . . . ,Fk)-hybrid protocol; when k = 1, we
just say that Π is an F-hybrid protocol.

In §12.1, we discuss a number of typical ideal functionalities, and how they can be represented
in our framework.

Note 8.11. Observe that even in the non-erasure model (see Note 8.7), dummy parties do not
remember anything. This simplifies the definitions and simplifies reasoning about ideal protocols.
Moreover, nothing is lost, as the ideal functionality can provide to the adversary whatever infor-
mation is appropriate when the ideal functionality itself receives the special corrupt instruction.
�

Note 8.12. For a typical ideal functionality F used by some protocol Π as a subroutine, in designing
a simulator Π to show that Π emulates some other protocol, one can usually assume (without loss of
generality) that when the adversary attacking Π corrupts a dummy party belonging to an instance
of F , it immediately notifies the ideal peer. Indeed, for a typical, well-designed ideal functionality,
notifying the functionality that a dummy party is corrupt should only increase the rights and
privileges of the adversary, and not diminish them in any way. If this assumption holds, it can
simplify security proofs by reducing the number of cases that need to be considered. �

Note 8.13. Another observation that can simplify security proofs is the following. Typically,
the goal is to design a simulator for an (F1, . . . ,Fk)-hybrid protocol Π to show that Π emulates
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some other protocol, where Π defines just a single regular program π. Thus, in an execution of
Π, the only subroutines of a machine M running π will be dummy parties belonging to one of
the ideal functionalities. Without loss of generality, if an adversary attacking Π corrupts M , we
may assume that it immediately corrupts all the extant dummy parties. This always holds, and
for typical ideal functionalities, as discussed in the previous note, we may also assume that the
adversary immediately notifies all the corresponding ideal functionalities as well. In this way, when
M is corrupted, we can assume that it gets “completely corrupted”, which may simplify simulator
design, because all of the intermediate corruption states can be ignored. �

9 Protocols with joint state

9.1 Motivation and goal

Consider a protocol Π that uses as a subprotocol an ideal functionality F . Note that this means
that even a single instance of Π can use multiple instances of F . These subprotocol instances will
be independent, and thus their potential implementations will also be. Specifically, it is not possible
to implement several instances of an authentication functionality F using, say, the same signing
key.

In this section, we will be seeking to combine all instances of F into a single instance of a
suitable merged ideal functionality F̂ . This essentially only constitutes a rearranging of machines
and messages, such that a single instance of F̂ internally executes many instances of F . However,
now we can replace F̂ with a secure implementation that uses a joint state (such as reused signing
keys).

Of course, it has to be argued in the security proof for an implementation of F̂ that the potential
use of joint state does not affect the security of F-instances. This cannot be argued generically,
but depends on F and of course on its implementation. In this section, we provide the technical
means to argue about joint state implementations.

In §12.2, we present a detailed example of how the results in this section can be used to realize
secure channels using a PKI in our framework.

Our construction in this section is reminiscent of that in [CR03], although the details differ
significantly.

9.2 Multi-session functionalities

To formalize the situation informally described above, let F be an ideal functionality with protocol
name x. We define the multi-session extension F̂ of F as follows. Like F , F̂ is an ideal
functionality. F̂ thus defines only one program, which is named, say, x̂. Internally, F̂ will simulate
many instances of F (without the corresponding dummy parties of F).

Concretely, F̂ parses any incoming message m from a peer with ID 〈 pid , sid 〉 as m = 〈 vsid ,m′ 〉.
F̂ then forwards the “inner message” m′ to an internal simulation of a machine F with ID
〈 〈 ideal 〉, vsid 〉. This message is forwarded as if coming from a machine with ID 〈 pid , vsid 〉.
If no such F-instance exists, it is created. In this context, the SID vsid is called a virtual SID.
Similarly, messages of the form m = 〈 vsid ,m′ 〉 from the adversary are forwarded (with vsid re-
moved) to the internal F-simulation with ID 〈 〈 ideal 〉, vsid 〉.

Outgoing messages m′ (either to the adversary or to some peer with PID pid) of a simulated
machine with virtual SID vsid are encoded as 〈 vsid ,m′ 〉 and forwarded to the adversary, resp. F̂ ’s
own peer with PID pid . Intuitively, F̂ thus internally simulates many instances of F , with suitably
prefixed incoming and outgoing communication.
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To account for certain corner cases that can arise during the processing of inputs by F̂ , we
clarify and highlight a few fine points of the above definition:

F̂ ’s SID. An instance of F̂ expects its session parameter (see §4.1) to be 〈 〉, otherwise, all incoming
messages are flagged as an error and bounced to the adversary.

Malformed messages. With the exception of special corruption messages (see below), incoming
messages not of the form m = 〈 vsid ,m′ 〉 are flagged as an error and forwarded to the
adversary. Furthermore, messages with impossible virtual SIDs vsid are forwarded to the
adversary.

By a possible vsid , we mean that if the SID of this F̂ is 〈α1, . . . , αk−1, αk 〉, then vsid =
〈α1, . . . , αk−1, β1, . . . , β` 〉, where (i) β1, . . . , β` are syntactically valid basenames, (ii) β` spec-
ifies protocol name x, and (iii) none of β1, . . . , β`−1 specify protocol name x. Of course, we
say that vsid is impossible if it is not possible.

Corruption requests. Upon a special 〈 corrupt 〉message from a dummy party of F̂ with PID pid
(which can only be sent once that dummy party is actually corrupted), F̂ does the following.
Suppose that F̂ currently simulates k F-instances with virtual SIDs vsid1, . . . , vsidk that
have previously received a message whose apparent source PID is pid . Then, F̂ invites the
adversary to send messages 〈 corrupt, pid , vsid i 〉 (for i = 1, . . . , k) back to F̂ . Subsequently,
upon receipt of any message of the form 〈 corrupt, pid , vsid 〉, where vsid is possible, F̂ sends
a 〈 corrupt 〉 message to the corresponding F-instance, as if coming from ID 〈 pid , vsid 〉.
These invitations will be crucial when considering an implementation of F̂ , in which corrupt-
ing one regular machine might require a simulator to corrupt many virtual F-instances in F̂ .
Without these invitations, it would be difficult, if not impossible, for a simulator to maintain
the flow-boundedness constraint.

Virtual Constraint C5. We let F̂ enforce a “virtual version” of constraint C5 (see §4.4). Namely,
F̂ forwards messages from the adversary to internal F-instances only if the adversary has
already received a message from that machine. If the adversary attempts to send a message
to an F-instance it has not heard from yet, F̂ replies with an error message to the adversary.

Relayed invitations. Invitations from a simulated machine are translated into invitations from
F̂ . Concretely, if some simulated F-instance with virtual SID vsid invites the adversary to
send i1, . . . , ik, F̂ will invite the adversary to send 〈 vsid , i1 〉, . . . , 〈 vsid , ik 〉.

This completes our specification of F̂ .

Lemma 1. Suppose F is a poly-time ideal functionality. Then the multi-session extension F̂ of F
is poly-time as well.

Proof. First, recall that if F is poly-time, then it is also multi-poly-time (Theorem 2). The theorem
will then follow from this claim:

Claim. Suppose Z is a well-behaved environment rooted at x̂. Then there exists an environment
Z ′ that is well-behaved and multi-rooted at x, such that if

• f̂ is the flow out of Z in [F̂ , Ad, Z],

• t̂ is the running time of F̂ in [F̂ , Ad, Z],

• f is the flow out of Z ′ in [F , Ad, Z
′], and
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• t is the running time of all the F-instances in [F , Ad, Z
′],

then for fixed polynomials p1 and p2, we have t̂ ≤ p1(t+ f̂) and f ≤ p2(f̂), with probability 1.

Note that by flow, we mean, as usual, uninvited flow. Also, in comparing random variables
between the two experiments, we assume that all the machines in both experiments obtain their
random bits from a common point ω ∈ {0, 1}∞ in the sample space. To prove the claim, we need
to show how to construct Z ′ given Z. For the most part, Z and Z ′ are the same, except for some
simple message translation.

We leave it to the reader to verify the details. However, one technical point that needs to be
considered is that when Z sends the special corrupt message through a corrupted dummy party to
F̂ , it receives invitations to send corresponding corrupt messages to certain F-instances inside F̂ ;
the corresponding corrupt messages in the execution of [F , Ad, Z

′] will not be invited. However,
each of these F-instances in [F , Ad, Z

′] have already received an uninvited message from Z ′. Thus,
the extra uninvited corrupt messages that Z ′ needs to send will not increase the uninvited flow by
a substantial amount, which allows one to establish the stated flow bound.

Another technical point to be considered is that in our formal model, each activation of F̂ ,
even in response to an invited message, will require the entire state of F̂ to be read, and this state
includes the state information of all the virtual F-instances. Nevertheless, the stated running-time
bound can be shown to hold, by first verifying that the total flow (invited and uninvited) out of Z
is bounded by a polynomial in t+ f̂ .

Finally, one needs to verify that the constructed Z ′ satisfies all the necessary constraints. This is
mostly straightforward, but we remark that the definition of impossible virtual SID will guarantee
that Z ′ satisfies Constraint C4 in §4.3.

To finish the proof of the lemma, first observe that we have t ≤ q(f) with overwhelming
probability, for some polynomial q, by virtue of the fact that F is multi-poly-time. We may assume
that q, p1, and p2 are non-negative and non-decreasing. Thus, with overwhelming probability, we
have

t̂ ≤ p1(t+ f̂) ≤ p1(q(f) + f̂) ≤ p1(q(p2(f̂)) + f̂),

which proves the lemma. �

9.3 Boxed protocols

Observe that access to a multi-session functionality F̂ as defined above is essentially the same as
access to many instances of the single-session protocol F . So now consider a larger protocol Π
(rooted at r) that uses F (rooted at x) as a subprotocol. By our constraints, each instance of F
has a unique caller. However, this may no longer hold once we subsume many F-instances in a
single F̂-instance: each caller of any F-instance is now a caller of F̂ .

To avoid a violation of our hierarchical protocol structure, we will thus have to put any protocol
Π that uses F̂ into a special form. Loosely speaking, we will let one single program internally execute
virtual machines belonging to Π \ x, where calls to F are “trapped” and handed off to F̂ .

More formally, assume an F-hybrid protocol Π (such that in particular, Π uses no ideal machines
beyond F) which is rooted at r. Then, the boxed protocol [Π]F consists of only two programs,
named r and x̂. Here, the program named x̂ is given by the multi-session extension F̂ of F ; the
program named r declares x̂ as its (only) subroutine and proceeds as follows. For clarity, we will call
a machine running r in [Π]F a [Π\x]-machine. A [Π\x]-machine internally simulates the execution
of tree of regular machines belonging Π, including the dummy parties of F . Concretely, any input
directly passed to a [Π \ x]-machine by its caller is relayed to a simulation of Π’s root program
r. We call such simulated Π-machines virtual machines. When a virtual machine invokes a
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subroutine, a suitable virtual machine is created and simulated inside the [Π\x]-machine. If one of
these virtual machines represents a dummy party of F , a message from that virtual dummy party
to the corresponding instance of F is processed by sending a corresponding message to F̂ ; the
corresponding message is prefixed with the SID of the virtual dummy party, and sent to F̂ (via an
actual dummy party that is the unique subroutine of the [Π \ x]-machine). Messages going from F̂
to the [Π\x]-machine (via this actual dummy party) are routed to the appropriate virtual machine
inside the [Π \ x]-machine, after stripping the virtual SID. Similarly, communication between the
[Π\x]-machine and the adversary is dealt with by prefixing and stripping virtual SIDs, and routing
messages to/from appropriate virtual machines inside the [Π \ x]-machine.

As with F̂ , illegally addressed incoming communication is bounced back to the adversary.
Furthermore, each [Π \ x]-machine enforces a “virtual constraint C5”: adversarial messages sent
to internal virtual machines that have not yet spoken to the adversary are answered with an error
message to the adversary. Finally, invitations from simulated machines within a [Π \ x]-machine
are translated into corresponding invitations from the [Π \ x]-machine.

Intuitively, the boxed protocol [Π]F is a compartmentalized version of protocol Π. In each
[Π \ x]-machine, all computations corresponding to F-calls are outsourced into one multi-session
functionality F̂ . The remaining part of Π is executed in one [Π \ x]-machine. Fig. 6 illustrates the
construction. In Fig. 6(a) we see a dynamic call graph of a single instance of a two-party protocol.
The circles are regular machines, and the rectangles are ideal functionalities. In Fig. 6(b), we see
the corresponding dynamic call graph for the boxed version of the protocol. For each party, all
of its regular machines become virtual machines inside of a single [Π \ x]-machine (the two large
ovals). Each such [Π \ x]-machine has a single subroutine, which is a dummy party of F̂ . In the
figure, one sees the virtual instances of F inside the large rectangular box, which represents one
instance of F̂ . The dotted lines in Fig. 6(b) now represent virtual communication lines between
the virtual dummy parties inside the [Π \ x]-machines, and the corresponding virtual F-instances
inside F̂ .

9.4 The JUC theorem

We are now ready to present the main result of this section. In other frameworks commonly referred
to as joint state composition theorem or simply JUC theorem.

Theorem 9 (JUC theorem). Suppose F is a poly-time ideal functionality, and that Π is a
poly-time F-hybrid protocol. Then [Π]F is poly-time and emulates Π.

Proof. We focus on proving that [Π]F emulates Π; the fact that [Π]F is poly-time will fall out
naturally from the proof. We assume that Π is rooted at r and F is rooted at x. By Theorem 5,
it suffices to construct an adversary A that is bounded for Π such that

Exec[Π, A, Z] ≈ Exec[[Π]F , Ad, Z]. (11)

for every well-behaved environment Z rooted at r.
We will construct A in two steps.
We begin by constructing an adversary A′ such that

Exec[[Π]F , A
′, Z] = Exec[[Π]F , Ad, Z] (12)

for all well-behaved Z, so that the execution of [[Π]F , A
′, Z] much more closely resembles an exe-

cution of Π.
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(a) (b)

Figure 6: (a) unboxed dynamic call graph, (b) boxed dynamic call graph

Before we describe A′, recall that communication between a [Π \ x]-machine and the F̂ (via
a dummy party) consists of messages 〈 vsid ,m′ 〉, where vsid denotes a virtual SID of a simulated
F-instance the simulation inside F̂ . We call such a vsid Π-impossible if it is impossible in the
(more syntactic) sense defined above, or if it extends the SID of the [Π\x]-machine in a way that is
not allowed by Π’s static call graph. Messages with Π-impossible vsids have no counterpart in an
execution of the unboxed protocol Π. Furthermore, Π-impossible vsids can never occur in messages
from an uncorrupted [Π \ x]-machine in [Π]F . However, as soon as a [Π \ x]-machine corrupted,
the adversary may send messages to F̂ , apparently from the [Π \ x]-machine (actually, its dummy
party subroutine) with Π-impossible vsids. Unfortunately, since F̂ does not know anything about
its superprotocol Π, it can only check for impossibility (but not Π-impossibility) of virtual SIDs.
We will hence need to take special care of Π-impossible virtual SIDs. The key observation is that
such “impossible” F-instances will never connect up with any uncorrupted machines, and so can
simply be absorbed into the adversary.

In addition to dealing with these Π-impossible virtual SIDs, A′ will clean up a couple of other
issues as well. Specifically, A′ does the following:

• Whenever Z sends a message with an impossible virtual SID, A′ just responds to Z with an
appropriate error message.

• Whenever Z sends a message with a Π-impossible (but not impossible) virtual SID (through a
corrupted [Π\x]-machine) to F̂ , A′ processes this message itself, maintaining its own internal
simulated instance of F . This is justified by the remark above that such “impossible” F-
instances will never connect up with any uncorrupted party.

• Normally, a [Π \ x]-machine has a unique subroutine, which itself is a dummy party that is
a peer of an instance of F̂ , and this dummy party and F̂-instance have a particular SID,
uniquely determined by that of the [Π \ x]-machine. Once a machine [Π \ x]-machine is
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corrupted, Z may attempt to create other subroutines (e.g., with different SP parts of their
SID) of the [Π \ x]-machine, which would be dummy parties of other instances of F̂ . These
other instances of F̂ would have inappropriate SIDs, and so any interaction with them would
simply result in an error message. Whenever this would happen, we just have A′ generate
the error message immediately, without actually creating any new instances of F̂ in the first
place.

• Whenever Z sends a message that would violate virtual Constraint C5, A′ just sends back an
appropriate error message to Z. Recall that Constraint C5 (see §4.4) says that the adversary
can only send messages to machines from which it has previously heard. Protocol [Π]F already
enforces this constraint, but let us move this enforcement into A′, so that [Π]F is never even
bothered with such messages.

It should be clear by construction that (12) holds. All we have done, essentially, is to move
some computations out of [Π]F into A′.

The next step is to construct an adversary A such that

Exec[Π, A, Z] = [[Π]F , A
′, Z] (13)

for all well-behaved Z.
Adversary A will be interacting with an instance of Π and Z. It will internally run a copy of

A′, so that messages from Z are first sent to this internal copy of A′. Environment-bound messages
from A′ are sent to Z, and protocol bound messages from A′ (who “thinks” he is talking to an
instance of [Π]F ) are processed by A.

Here is how A works:

SID translation and message passing. Generally, A will translate any message coming from a
Π-machine with SID sid into a message with virtual SID vsid = sid , and pass it to A′, as if
coming from a corresponding [Π \ x]-machine, or from F̂ . For this, A will have to compute
the correct “base SID” of the corresponding [Π \ x]-machine F̂ . However, since Π is rooted
at r and its static call graph is acyclic, this base SID will have to be the longest prefix of
sid that ends in r, in the case of a [Π \ x]-machine, or this prefix extended by a particular
component, in the case of F̂ .

Conversely, A will translate messages from A′ addressed to some [Π \ x]-machine or to F̂
into the appropriate Π-messages. Because of the design of A′, Constraint C5 will never be
violated.

Corruption of Π. When a root machine of Π is corrupted (by receiving the special corrupt mes-
sage from Z), A is informed of this, and obtains the internal state of that machine. A then
corrupts all regular machines that are descendents of this machine in the dynamic call graph.
This can all be done using invited messages (see Note 8.4). Using the information collected,
A can construct a simulation of the current internal state of the corresponding [Π\x]-machine
of [Π]F , sending this to A′ as a part of a notification that the [Π \ x]-machine is corrupted.
This implicitly assumes that [Π]F is designed in such a way that this simulation is feasible,
which is not hard to do.

Instructions to corrupted [Π \ x]-machines. Once A′ is informed that some [Π \x]-machine is
corrupted, it may corrupt the subroutine of this [Π \ x]-machine, which is a dummy party of
F̂ . After this, A′ may instruct this dummy party to send a corrupt message to F̂ . And after

54



this, A′ may instruct F̂ to send arbitrary messages to corresponding virtual instances of F
inside F̂ . By the design of A′, these virtual F-instances will not have Π-impossible virtual
SIDs. So A will be able to communicate with corresponding instances of F in the execution
of Π, by generating a suitable chain of corrupted machines, if necessary, to connect up to that
instance. Because the virtual SID is not Π-impossible, it will be compatible with the static
call graph of Π, and so this is a legal operation of A.

In addition, in the design of F̂ , after a corruption, A′ is invited to send certain corruption
messages to F̂ . When A′ sends these invited messages, A will have to send corresponding
corruption messages to F-instances in Π. However, A will already have received invitations
for these. These observations are critical in proving that A is flow-bounded for Π.

By construction it is clear that (13) holds. From (12) and (13), it follows that (11) holds.
To complete the proof of the theorem, we have to argue that A is bounded for Π and that [Π]F

is poly-time.
Observe the computations performed by Π and A in [Π, A, Z] are essentially the same as those

performed by [Π]F in [[Π]F , Ad, Z]. Therefore, up to simulation overhead, the running times of
these computations are the same. So it will suffice to show that A is time- and flow-bounded for
Π.

Flow-boundedness should be clear from the construction, taking into account the remarks above
in the description of processing instructions to corrupted [Π \x]-machines. From flow-boundedness
and the fact that Π is poly-time, it follows that the running time of Π in [Π, A, Z] is polynomially
bounded in the flow out of Z. To finish the proof, one has to take into account the time spent by
A in [Π, A, Z] simulating “impossible” F-instances. However, because F is poly-time, and hence
multi-poly-time (by Theorem 2), it is not hard to show (as in Lemma 1) that these simulations are
polynomially bounded. �

10 An extension: common functionalities

We now present an extension to our framework, introducing the notion of common functionalities.
This extension will involve revisions to some of the definitions and theorems in the previous sections.

The goal is to build into the framework the ability for protocol machines that are not necessarily
peers, and also (potentially) for the environment, to have access to a “shared” or “common”
functionality.

For example, such a common functionality may represent a system parameter generated by a
trusted party that is accessible to all machines in the system (and, in practice, is just “hardwired”
into their code). Our revisions will allow us to optionally restrict the environment’s access to such
a system parameter, allowing it to only access it indirectly via the adversary. With this restriction,
a system parameter essentially becomes a common reference string (CRS) — the difference being
that a simulator is allowed to “program” a CRS, but not a system parameter.

It is well known that without some kind of a set up assumption, such as a CRS, it is impossible
to realize many interesting and important ideal functionalities [CF01]. Moreover, with a CRS, it is
feasible to realize any “reasonable” ideal functionality [CLOS02] under reasonable computational
assumptions.

One can model a CRS simply as an ideal functionality (as in [CF01, CLOS02]). However, if
this is done, a different CRS is needed for every instance of a protocol that uses the CRS, which
is unrealistic and impractical. One way around this problem is to use the JUC theorem (see §9).
However, this is somewhat limiting and awkward (in particular, it may be difficult, if not impossible,
to use such a CRS in the construction in [BCL+05], which is discussed in §12.3).
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Therefore, we have chosen to build the necessary mechanisms into the model, so that a CRS
that is accessible by all protocol machines and by the adversary (but not by the environment).
While the simulator may still “program” the CRS (in the sense that it may invent a CRS for an
environment), the composition of protocols becomes more intricate (see below). Moreover, the
same mechanism we use to model CRSs allows us to model system parameters as well, with no
extra complications.

In contrast to CRSs, system parameters are useful mainly to allow for more practical protocols
in a variety of situations. Indeed, it may be convenient to assume that a trusted party generates
an elliptic curve or RSA modulus once and for all, which may be used across many protocols. Such
parameters may also be used in the definition of ideal functionalities. For example, the relation
associated with a zero knowledge functionality may be parameterized in terms of such a system
parameter — a CRS would really not make any sense here.

While our notion of common functionalities allows us to model system parameters and CRSs,
as well as some other useful types of common functionalities (such as non-programmable and pro-
grammable random oracles), it is by no means completely general — it is not nearly as general as
the Generalized UC framework [CDPW07]. Simply put: given the complexities of designing a con-
sistent framework, we have opted for a limited and conservative extension to our basic framework.
Designing a more elaborate extension is perhaps a project for the future.

10.1 Changes to §4 (structured systems)

We begin with some changes to the definitions in §4. In addition to the three basic classes of
machines (environment, adversary, and protocol), we introduce a fourth class: common func-
tionality.

Syntactically, a common functionality is distinguished by its machine ID, which is of the form
〈 com-name 〉, where name is an arbitrary string. The name map of a structured system will map
such a machine ID to the program name com-name. Such a program name is called a common
functionality name (in contrast to the program names of protocol machines, which we call protocol
names). It follows from this syntax that in any execution of a structured system, there will be only
one machine executing a common functionality with a given name.

We now introduce a rule that will essentially make common functionalities behave as servers
that are oblivious to the identity of their client. Namely, we shall require that the program of a
common functionality is structured as a sandbox and an inner core, as follows: when activated
on input 〈 id , state, id0,msg0 〉, the sandbox passes the string 〈 id , state,msg0 〉 to the inner core
(stripping the ID of the client); when the inner core outputs a string 〈 state ′,msg1 〉, the sandbox
outputs 〈 state ′, id0,msg1 〉 (which will direct msg1 back to the client).

Constraints C1 and C2 do not change. In particular, common functionalities cannot send
invitations.

Constraint C3 is changed to allow the environment to send messages to common functionalities
(which may or may not be defined by the library).

Constraint C5 is changed to allow the adversary to send messages to common functionalities,
without restriction.

Constraint C6 is changed to allow ideal protocol machines to send messages to common func-
tionalities, subject to some restrictions (see below Constraint C9 below).

Constraint C8 is changed to allow regular protocol machines to send messages to common
functionalities, subject to some restrictions (see below Constraint C9 below).

Constraint C9 is modified as follows. Similar to the subroutine declarations, we require that
the program for a protocol machine declare the common functionalities that it is allowed to use.
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Both ideal and regular machines running the program will allow the machine to access only those
common functionalities that are declared by the program.

To differentiate it from the notion of a structured system, defined in §4, we will call this new
type of system an extended structured system. For emphasis, structured systems as defined in
§4, may be called basic structured systems.

10.2 Changes to §5 (protocols)

The defining properties P1–P4 of a protocol (§5.1) are modified as follows:

• P1 is modified to allow common functionality names, in addition to protocol names.

• P2 is modified to include those constraints that apply to common functionalities.

• P3 is modified to require that all declared common functionalities are defined by the library.

• The definition static call graph is modified so that the set of nodes includes the common
functionality names defined by the library, and so that an edge in the graph is included for
each declaration of a common functionality. Thus, there will be edges from protocol names
to common functionality names.

P4 is changed to read as follows: the static call graph is acyclic and has a unique node of
in-degree 0, and that node is a protocol name.

This implies that all common functionalities defined in the library are actually declared by
some program in the library. It also implies that the root of a protocol is a protocol name
(not a common functionality name).

The definitions of subprotocols and substitutability (§5.2) do not change at all.

The definitions regarding protocol execution (§5.3) do not change at all. However, we note that
in the discussion of the dynamic call graph, we do not consider common functionalities to be nodes
in this graph. We do not consider common functionalities to belong to any protocol instance. Also,
note that during an epoch, when Z is activated, control may pass back and forth between Z and
various common functionalities, before passing from Z to a protocol machine or A.

The definition of the dummy adversary (§4.7) needs to be changed: when the dummy adversary
receives a message 〈 id ,m 〉 from the environment, if id is of the form 〈 comName 〉 for some common
functionality name comName, the dummy adversary forwards this message m to the indicated
common functionality (regardless of whether the library even defines it). The response from the
common functionality will be processed by the dummy adversary as usual (although the response
could be an “error message” from the “master machine”, rather than from the common functionality,
if the latter is not defined).

10.3 Changes to §6 (resource bounds)

The definitions measuring time and flow in §6 are modified as follows. We modify the definition
of Flow∗Z [Π, A, Z](λ) so as to include the flow from Z into any common functionalities. None of
the other definitions measuring time and flow change at all ; in particular, they do not count the
running time of, or the flows into or out of, any common functionalities. These are dealt with
separately.

The definition of a well-behaved environment (see Definition 1) stays precisely as is.
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In the definition of a poly-time protocol (see Definition 2), the only additional requirement is
that each common functionality defined by Π is multi-activation polynomial-time and I/O-bounded
(see §3.3).

Theorems 1 and 2 remain valid, precisely as stated. The proofs are almost identical, as we leave
to the reader to verify.

10.4 Changes to §7 (protocol emulation)

With all of these modifications in place, all of the definitions in §7 can be left to stand without any
changes, and all the theorems in §7 remain valid, precisely as stated.

Most of the proofs are quite straightforward adaptations of the originals. However, the proofs of
the emulates =⇒ multi-emulates theorem (Theorem 6) and the composition theorem (Theorem 7)
in this setting deserve some comment.

In Theorem 6:

• In this theorem, we do not insist that the of the common functionalities in Π and Π1 are
defined consistently. Indeed, they may be defined differently, at least syntactically; however,
because we are assuming that Π1 emulates Π, any differences between the behavior of the
common functionalities must be computationally indistinguishable; that is, no well-behaved
environment that only invokes common functionalities (and no other machines) can effectively
distinguish them.

• Let Π̃1 be the same as Π1, but with common functionalities as defined in Π. From the
observation above that the common functionalities are computationally indistinguishable, it
can easily be shown that (i) Π̃1 is poly-time (and hence multi-poly-time), (ii) Π1 multi-
emulates Π̃1, and (iii) Π̃1 emulates Π1 (and hence emulates Π).

• The proof that Π̃1 multi-emulates Π follows just as in the proof of Theorem 6 — the only
thing to note is that in the simulator A∗, any instruction to the dummy adversary to access
a common functionality is processed directly by A∗. The point is, in the hybrid argument,
we are using the same common functionalities throughout. Combining this with (ii) above
proves the theorem.

In Theorem 7:

• We are assuming that we have an adversary A′ that is multi-bounded for Π′ such that
for every well-behaved environment Z that is multi-rooted at x, we have Exec[Π′, A′, Z] ≈
Exec[Π′1, Ad, Z].

• Additionally, we should assume (which we may, without loss of generality) that A′ does not
attempt to call any common functionalities not defined in Π′. So in the design of A, whenever
A′ calls a common functionality, A simply carries this out on behalf of A.

The idea is we want to ensure that A′ does not call any common functionalities defined in
Π \ x that are not defined in Π′.

• We also need to define how A handles an instruction from Z to send a message m to a common
functionality. This should be done as follows: if the common functionality is defined in Π \x,
A sends m directly to the functionality, returning the result (properly translated) back to Z;
otherwise, A forwards the instruction to A′.
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This modified framework allows us to directly model system parameters. Moreover, although
common functionalities are oblivious to the identity of their callers, the environment may still play
a privileged role, based on the fact that it is the initial machine in the system (i.e., is activated first).
By exploiting this fact, we can model system parameters in which the adversary is allowed to see
the randomness used to generate the system parameter (called a “public coin system parameter”
in [CCGS10]), or to even specify the system parameter (perhaps subject to certain constraints).

10.5 Restricted emulation

This modified framework does not, however, by itself, allow us to model CRSs. To this end, we
introduce a new notion of emulation.

We begin with the following definition. Let S be a finite set of common functionality names. We
say that an environment Z is restricted by S if it never sends messages directly to any common
functionality named in S.

Definition 8 (restricted emulation). Let Π and Π1 be (multi-)poly-time protocols rooted at r.
We say that Π1 (multi-)emulates Π restricted by S if the following holds: for every adversary
A1 that is (multi-)bounded for Π1, there exists an adversary A that is (multi-)bounded for Π, such
that for every well-behaved environment Z that is restricted by S and (multi-)rooted at r, we have

Exec[Π, A, Z] ≈ Exec[Π1, A1, Z].

We note that the only difference between this and Definition 7 is that we quantify only over
all environments that are restricted by S. Of course, if S = ∅, these two definitions are equivalent.
Also, it is clear that if S ⊂ S′, then (multi)-emulation restricted by S implies (multi)-emulation
restricted by S′.

The analogs of the four central theorems (Theorems 5–8) must now be reconsidered.
Theorem 5 essentially remains valid, with the appropriate modifications:

Theorem 10 (completeness of the dummy adversary). Let Π and Π1 be (multi-)poly-time
protocols rooted at r. Let S be a finite set of common functionality names. Suppose that there
exists an adversary A that is (multi-)bounded for Π, such that for every well-behaved environment
Z that is restricted by S and (multi-)rooted at r, we have Exec[Π, A, Z] ≈ Exec[Π1, Ad, Z]. Then
Π1 (multi-)emulates Π restricted by S.

The proof of this theorem is almost identical to that of Theorem 5, as we leave for the reader
to verify.

Theorem 6 (emulates implies multi-emulates) simply has no valid analog. To establish that
one protocol multi-emulates another restricted by S, when S 6= ∅, one will simply have to prove it
directly (although there may be some general tools that could be developed to simplify the analysis
certain types of protocols). Because of this, while the notion of restricted multi-emulation is useful,
the notion of restricted emulation is not very useful.

Theorem 7 essentially remains valid, with the appropriate modifications:

Theorem 11 (composition theorem). Let S be a finite set of common functionality names.
Suppose Π is a poly-time protocol rooted at r. Suppose Π′ is a poly-time subprotocol of Π rooted at
x. Suppose Π′1 is a poly-time protocol also rooted at x that multi-emulates Π′ restricted by S and
that is substitutable for Π′ in Π. In addition, suppose that the domain of Π \ x is disjoint from S.
Then Π1 := Π[Π′/Π′1] is poly-time and multi-emulates Π restricted by S.
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Note the essential differences are the hypothesis and conclusion are stated in terms of restricted
multi -emulation, and we have the additional hypothesis that the domain of Π \ x is disjoint from
S. The proof follows the same lines as discussed in §10.4.

Finally, Theorem 8 essentially remains valid, with the appropriate modifications:

Theorem 12 (reflexivity and transitivity of emulation). Let Π, Π1, and Π2 be poly-time
protocols, and let S and S1 be finite sets of common functionality names. Then Π (multi-)emulates
Π restricted by S. In addition, if Π2 (multi-)emulates Π1 restricted by S1, and Π1 (multi-)emulates
Π restricted by S, then Π2 (multi-)emulates Π restricted by S1 ∪ S.

The proof of this theorem is almost identical to that of Theorem 8, as we leave for the reader
to verify.

CRSs can be modeled as common functionalities, but where we consider emulation restricted
by the set consisting of their names. Thus, we do not give the environment direct access to CRSs
— only indirect access via the adversary. This allows an adversary to “program” a simulated CRS,
which is a common technique used in security proofs.

We also mention that whether or not a common functionality represents a CRS or system
parameter can be dependent on context, which may be convenient. For example, we may design
a protocol that securely evaluates arithmetic circuits modulo N , where N is a system parameter
(assumed to be generated according to a certain distribution). In this context, we may view N
as a system parameter, using the usual notion of unrestricted emulation. We might then use this
protocol to design a protocol that, say, performs some other task in which N is really not a part of
the description of the task, but is best viewed as an implementation detail. This can be done by
simply using the notion of restricted multi-emulation.

10.6 The JUC theorem

The changes to the JUC theorem construction in §9 are quite straightforward. We simply augment
the definition of boxed protocols F̂ and [Π]F , so that when any of the internally simulated virtual
machines call a common functionality, these calls are simply passed through. Because common
functionalities are oblivious to the identities of their callers, this will not really change anything.

With this simple modification, Theorem 9 holds verbatim, even with common functionalities.

10.7 Common functionalities as a means to enforce static corruptions

Common functionalities provide a simple and technically clean way to capture static corruptions.
Namely, consider the following common functionality CSscor, parameterized with a probabilistic
polynomial-time algorithm S that generates a list of IDs. Upon its first (and only its first) activation,
CSscor runs L := 〈 〈 pid1, sid1 〉, . . . , 〈 pidn, sidn 〉 〉 ← S(1λ) using random coins coins ∈ {0, 1}∗, stores
the list L. If explicitly requested by the caller, it returns 〈L, coins 〉; otherwise, it returns just 〈L 〉.
In any subsequent activation, CSscor returns only 〈L 〉 to its caller.

Intuitively, L specifies which machines may be corrupted. (A machine with ID 〈 pid , sid 〉 may
be corrupted if there is an entry 〈 pid ′, sid ′ 〉 in L with pid = pid ′, and such that sid extends sid ′.)
To give Z any potential trapdoor information to the choice of L itself, the random coins coins used
to generate L may be obtained by the first caller of CSscor — since Z goes first in any execution, it
always has the option of getting this trapdoor information.

We enforce the corruption restriction induced by L by changing the default behavior of regular
protocol machines. Namely, upon its first activation, a regular machine M will first query CSscor
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for the list L. If M may be corrupted according to L, then M will send an error message to its
caller upon all incoming messages except upon a 〈 corrupt 〉 message from its caller (which leads
to a corruption of M as usual). If M may not be corrupted according to L, then M will proceed
as usual, except that all incoming 〈 corrupt 〉 messages lead to an error message to M ’s caller.

Emulation with respect to static corruptions is then defined as emulation with respect to all CSscor

for probabilistic polynomial-time S. Note that with this definition, emulation implies emulation
with respect to static corruptions.

11 Comparison with UC05 and other frameworks

In this section, we compare our proposed UC framework with Canetti’s UC05 framework [Can05],
and (more briefly) with some other frameworks. The comparison with UC05 relies on a number of
specific details in [Can05], all of which can be found on pages 27–30, 32–33, and 39–42 in [Can05].

11.1 Libraries vs explicit programs

In our framework, we use a statically defined library to associate programs with machines. In UC05,
the program of a machine M is specified by the machine N that creates M — N is, by definition,
the machine that first sends any type of message to M (and N can may be the environment, the
adversary, a caller of M , or even a subroutine of M).

In our framework, protocol composition is a static operation on libraries, whereas in UC05,
protocol composition is an action that occurs at runtime, explicitly replacing one program by
another.

This is mainly a matter of taste, but we believe the library mechanism more directly corresponds
to how protocols are designed and deployed in the real world.

11.2 Binding IDs to programs

In our framework, there is an explicit binding of machine IDs to programs, and moreover, the
subroutine/caller relationship is explicitly encoded in the machine ID. In UC05, there is no such
binding. In particular, when the adversary sends a message to or receives a message from a
machine M , the adversary knows the ID of M but it does not (in general) know which program M
is running, nor does the adversary know which machines are subroutines of M , or which machines
M is a subroutine of.

This lack of information available to the adversary makes the composition theorem difficult,
if not impossible, to prove. The proof of the composition theorem in [Can05] describes the con-
struction of a simulator whose job it is to route messages that belong to an instance of a given
subprotocol to an appropriate simulator. This is, in fact, the crux of the entire proof. However,
because of the lack of information, it is not at all clear how this is to be done; the description in
[Can05] is simply incomplete in this regard.

Indeed, we claim that the UC05 composition theorem is simply false. Here is a counter-example.
We start with a one-party protocol Π′ that works as follows. It expects an initialization message

from the environment Z, which it forwards to A. After this, it awaits a bit b from A, which it
forwards to Z. If it does not receive precisely these messages in precisely this order, Π′ sends
a special error message to Z, and any further messages it receives also result in the same error
message to Z.

We next define a protocol Π′1, which works exactly the same as Π′, except that upon receipt of
the bit b from A, it sends 1− b to Z.
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We hope that the reader agrees that Π′1 emulates Π′ in the UC05 framework. The corresponding
simulator would work as follows. As usual, the simulator A′ is attacking Π′, and uses an internal
copy of an adversary A′1 that is supposed to be attacking Π′1. When A′1 attempts to send a bit b
to Π′1, A′ instead sends the bit 1− b to Π′.

We believe that any reasonable UC framework (including UC05) should allow the above claim
to be proved along the lines suggested.

So now consider a one-party protocol Π that works as follows. Π expects an initial message
from Z, specifying a bit c; if c = 0, it initializes a subroutine running Π′, and if c = 1, it initializes
a subroutine running Π′1. However, the machine ID assigned to the subroutine is the same in either
case. When Π receives a bit from its subroutine, it forwards that bit to Z. Any deviation from
these message flows results in an error message to Z.

The composition theorem says that we should be able to substitute Π′1 for Π′ in Π, obtaining a
protocol Π1 that emulates Π. Note that in Π1, the subroutine called is Π′1, regardless of the value
of c.

Now consider an environment Z, designed to interact with Π1 and the dummy adversary Ad,
that works as follows. Z chooses c ∈ {0, 1} at random, and invokes Π1 with input c. Control
will pass to the subroutine, and then to the dummy adversary, who will forward the ID of this
subroutine to Z. Z responds to this by sending to the subroutine (via the dummy adversary) the
bit 0. After this, the subroutine sends a bit b to Π1, which is passed to Z. Finally, Z outputs 1 of
b = 1, and it outputs 0 if b = 0 or if it receives any unexpected message.

Clearly, by construction, [Π1, Ad, Z] outputs 1 with probability 1.
But now consider [Π, A, Z] for any simulator A. A’s view is independent of c — it sees exactly

the same information, regardless of the program being run by the subroutine. So, whatever bit the
adversary sends to the subroutine, it will get flipped with probability 1/2. Hence the probability
that Z outputs 1 in this experiment is (at most) 1/2.

To make this counter-example more complete, there are a few details to take care of. The first
is that in UC05, it is required that Z invokes the adversary before any protocol machines. This we
can do, by just having Z send some junk message to the adversary first. Second, in designing a
simulator A, since A will get control before any protocol machines are created, one might attempt
to have A first create a subroutine with a program of its choice (this is allowed in UC05, but not
in our framework). However, this will not work: in UC05, when Π invokes its subroutine, if the
subroutine already exists but is running the wrong program, then Π will receive an error signal,
which it can forward to Z.

Note that any fix to this problem must involve more than just providing a mechanism that
informs the adversary of the code of any machine that sends it a message. To prove the composition
theorem, the adversary essentially must be able to determine the entire protocol stack associated
with a given machine, in order to determine whether it belongs to the relevant subprotocol or not.
But this ultimately leads to a solution much like the one presented here.

11.3 A trust hierarchy

In our framework, the machine IDs not only explicitly describe the subroutine/caller relationship,
the rules for creating and corrupting machines ensures a corresponding hierarchy of trust. Specifi-
cally,

if any subroutine of a machine M is corrupt, then M itself should be viewed as corrupt.

We believe this is a general trust principle to which any reasonable UC framework should adhere.
Philosophically, a protocol is only as good as its subprotocols, and if the latter are unreliable, then
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so is the former. In addition to this, it is clear that security proofs in the literature assume this
principle, even if it is never stated explicitly.

Here is a more concrete example that will illustrate the point. Suppose that we have some
typical multi-party protocol for a typical task, such as secure function evaluation, and moreover,
assume that this protocol uses a secure channel ideal functionality as a subroutine. If the adversary
is allowed to corrupt a party’s secure channel subroutines, then from that point forward, the
adversary can essentially replace that party for the remainder of the execution of the protocol.
If the adversary does this for sufficiently many parties sufficiently early in the protocol, then the
adversary will be in complete control — it will be able to learn all inputs of all remaining parties,
and to force the function to evaluate to a value of its choice. So even though the adversary never
explicitly corrupted any machines of the secure evaluation protocol, but only subroutines thereof, we
must obviously view the corresponding machines of the function evaluation protocol to be corrupt
as well.

The UC05 framework does not adhere to this trust hierarchy principle at all. Because of this,
many (if not most) typical security claims in the literature are simply false. Two different issues
will serve to illustrate this point.

The first issue is one of simple mechanics. In UC05, a machine M is corrupted when the
adversary sends a special corrupt message to a M . When this happens, no machine other than
M is corrupted. (UC05 certainly does not define any notion of PID-wise corruption, nor is it even
clear how such a notion should be defined, even though this does not stop some authors from using
the notion, e.g., [CDPW07].) In addition, the adversary is only allowed to corrupt M after the
environment sends the adversary a special message that authorizes this — this special authorization
message explicitly names the machine ID of M .

Consider again the secure function evaluation example above. We are assuming that Π is a
concrete protocol that uses as a subroutine a secure channels ideal functionality G, and that the goal
is to prove that Π emulates F , where F is the secure function evaluation ideal functionality. So we
are given an adversary A, and want to define a simulator S such that Exec[Π, A, Z] ≈ Exec[F , S, Z]
for all Z. Again, consider an attack as above where Z instructs A to corrupt many machines
belonging to G. This means that Z sends a number of authorization messages to A — but these
authorizations name machines that belong to G, and do not name any machines that belong to
F . So this means that in the execution of [F , S, Z], the simulator S is not allowed to corrupt any
machines belonging to F . Clearly, given this constraint, it will be impossible for S to do its job.

The second issue is more subtle, and relates to the mechanism by which machines are created in
UC05. In UC05, an adversary is allowed to create machines as it pleases, specifying their machine
IDs and their programs. In our running example, then, the adversary may create machines that
“look like” dummy parties of G (i.e., they have machine IDs that are compatible with whatever
naming scheme Π uses), but are really completely under the control of the adversary. Also, we
observe that in UC05, an ideal machine of G carries out its task based solely on the IDs of the
dummy parties, and not their programs — indeed, in UC05, an ideal machine of G cannot discover
the program of any of its peers. So in this way, the adversary can arrange to “hijack” many secure
channels, without formally corrupting any machines. Now, in UC05, when the adversary sets the
program of a subroutine in this way, its caller will detect this and receive an error signal. Thus,
parties with hijacked subroutines will be able to detect that this has happened, but other parties
will not be able to know this. Therefore, the same attack will work.

There may be ways to design a protocol that makes the attack in the above paragraph more
difficult to carry out. However, few (if any) protocols in the literature are so designed. Moreover,
we feel that in any reasonable UC framework, the issue should simply not arise. Fundamentally,
the problem is that many ideal functionalities, such as secure channels, zero knowledge, and others,
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all use machine IDs to identify parties — however, since in UC05 there is no strong binding
between machine IDs and their programs, and no correspondence between machine IDs and the
subroutine/caller relationship, these machine IDs do not carry much, if any, useful information that
would imply any meaningful security guarantees.

One might consider trying to fix the problem by changing the framework so that a machine
that receives a message, at least in certain situations, is told the program of the sender. This would
prevent the above attack — but it would be easy to still come up with others. Indeed, consider
the more general situation where we have a protocol stack, at the bottom of which is the secure
channels functionality. The secure channels ideal functionality could verify the code of its dummy
parties, but still, the adversary could hijack any machine above this machine in the protocol stack,
and carry out the same type of attack. To prevent this more general type of attack, one would
have to introduce conventions by which machines would securely maintain a stack of programs and
machine IDs, representing the protocol stack down to that machine, and the secure channels ideal
functionality would transmit all of this information, which could be inspected by the receiver. All
of this could be done, but one would end up with a mechanism not much different from that which
we have proposed here.

11.4 Joint subroutines

In our framework, every subroutine has a unique caller. In UC05, this is not necessarily the case.
While it may be convenient to allow subroutines with multiple callers, some issues arise that need
to be carefully addressed.

Recall our trust hierarchy principle, discussed in §11.3. Assume the following relationships
among machines. Machine M has two subroutines, N1 and N2, and P is a subroutine of both N1

and N2. Now suppose the following machines are corrupted, in this order: M , N1, P . The question
is, should N2 be considered corrupt or not? Our trust hierarchy principle would say yes, but none
of the rules in UC05 address this. We would advocate that if a framework allows a joint subroutine,
such as P , then before P is corrupted, all of its callers must be corrupted as well — in this example,
it means that both N1 and N2 must be corrupted before P is corrupted.

While one could add fully general support for joint subroutines to our framework, we have
chosen not to, for the sake of simplicity; moreover, we believe our framework is sufficiently expressive
without them.

One fundamental application of joint subroutines that is found in the literature is in the JUC
theorem construction. Using the notation in §9, the construction in [CR03, Can05] makes F̂ a joint
subroutine of many machines in Π \ x. Instead, we put all of the machines in Π \ x inside a single
[Π \ x]-machine, so that all of the machines belonging to Π \ x become virtual machines running
inside of the [Π \ x]-machine. Formally, this has very little impact, except for the following: when
a single [Π \ x]-machine becomes corrupted, in effect, all of its internal virtual machines become
corrupted as well. This may seem extreme, but yet, in light of the trust hierarchy principle, it is the
right thing to do, because it forces all of these virtual machines belonging to Π \ x to be corrupted
before F̂ is corrupted. Indeed, consider the example where F̂ implements many authenticated
channels using one signing key. Once F̂ is corrupted and the signing key is exposed, all of the
machines above it must be considered corrupt as well, and this is precisely what the mechanics of
our approach ensures.
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11.5 Restrictiveness of session IDs

Our framework places much greater restrictions on the format of session IDs than does UC05. The
question is: are these restrictions excessive? We believe not.

First, one should not conflate our session IDs, which represent a logical, UC-specific protocol
stack, with an actual protocol stack running on a real-world machine. These may be quite different.
Typically, the UC-specific protocol stack would be determined, e.g., by the PKI (see §12.2).

Second, the virtual boxing technique in §9 can be used, if necessary, to break the naming
conventions, so that the virtual, boxed machines use a different set of SIDs than those outside of
the box. One example of this is discussed in §12.3, in the context of the construction of Barak et
al. for secure computation without authentication [BCL+05].

11.6 Uniform vs non-uniform computation

In UC05, the environment receives an additional external input, which may be an arbitrary string;
in contrast, our framework does not allow this.

What this means, essentially, is that the UC05 system execution is a non-uniform computation,
whereas ours is uniform. In particular, to prove the security of protocols in UC05, one would
typically have to make non-uniform complexity assumptions, whereas in our framework, one would
only have to make uniform complexity assumptions.

We believe this choice is mostly a matter of taste. We have opted for the uniform model, mainly
because it is simpler. It is not clear if the non-uniform model truly captures any attacks in the real
world not captured by the uniform model — this seems more of a philosophical debate. Nevertheless,
we believe that modifying our framework to make it non-uniform should be straightforward.

11.7 Running time

Our definition of a poly-time protocol is completely different than that in UC05. Before going
further, we summarize the definition in UC05.

In UC05, each machine has an input tape, a subroutine output tape, and a communication
tape. The idea is that when a machine calls a subroutine, the former writes the input message
on the latter’s input tape; when the subroutine wishes to pass an output to its caller, the former
writes the output message on the subroutine output tape of the latter; the communication tape
is used to send and receive “network” messages; more specifically, all communication between a
protocol machine and the adversary is done via communication tapes. Additionally, for the sake of
these definitions, the adversary is considered a subroutine of the environment, and ideal machines
are considered to be (joint) subroutines of their regular peers.

In UC05, a machine is poly-time essentially if it runs in time polynomial in ∆, where ∆ is
equal to the number of bits received on its input tape minus the number of bits sent as input to its
subroutines. Actually, the definition in UC05 is slightly more complicated, but for our purposes,
the definition we give here is sufficient.

Finally, in UC05, a protocol is poly-time if all of the machines comprising it are poly-time.
When considering the execution of a system consisting of a protocol, adversary, and environment,
the protocol must be poly-time, as well as the adversary and environment.

One nice thing about this definition is that it is fairly simple. However, we argue that it is overly
restrictive. The paper [HUMQ09] gives a number of reasons why. One reason, given in [HUMQ09],
is most easily seen by way of an example. Consider two parties P and Q that wish to use a secure
channels ideal functionality F to communicate. P may receive a very long message m from the
environment, and attempt to send m to Q via F . The problem is that Q receives m as an output
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from a subroutine. In fact, Q may have received little or no input so far. Because of this, Q will
not have enough time to even read m.

The only solution to this, and similar types of problems, is to use some kind of artificial padding
mechanism. That is, the environment must feed Q some long string as input just to give it enough
“juice” to read m.

Such padding issues arise in several places in UC05. The dummy adversary, when it receives
a long message from a protocol machine, will not, in general, have enough juice to forward that
message to the environment. The same applies to dummy parties associated with ideal functional-
ities. Similarly, achieving any notion of liveness (see Note 7.5) will be difficult, since an adversary
may flood a protocol machine with useless messages — to be able to keep up with this flood, the
machine will need padding.

Dealing with all of this padding would lead to a great deal of complexity if one attempted to
actually specify a protocol completely. We believe this would be quite impractical, if one wanted
to actually design, build, and deploy a protocol using the framework. Many (if not most) protocols
in the literature that are designed to use the UC05 framework completely leave out such padding
details.

In addition to the sheer complexity, there is also a modularity issue. Suppose we want to design
a protocol Π for some task, and to prove that it emulates some ideal functionality G. The protocol
Π may be designed to use many subroutines, and all of these subroutine calls will reduce the amount
of juice available to Π to do any work. In fact, without extra padding, Π may not have time to any
work at all, other than call subroutines. The only solution, again, is padding. Π will have to be fed
some padding from the environment to do its work. Since the environment’s interface to Π must
look exactly the same as the environment’s interface to G, all of these padding messages must be in
the interface to G, as well. In general, the amount of padding required will depend on the details of
Π. So if we want to have a single ideal functionality G that supports multiple implementations, each
with its own padding requirement, the specification of G will become somewhat delicate, although
it can be done.

There are other technical problems with the definition of poly-time in UC05. For example,
because of time-related issues, the theorem in [Can05] that states that the dummy adversary is
complete in UC05 is simply false — [HUMQ09] provides a counter-example. This theorem is used
in an essential way in the proof of the composition theorem, and so this gives us another fundamental
problem with the composition theorem in UC05.

We also raise a somewhat philosophical objection. Namely, the definition in UC05 is not robust
with respect to data encodings, which is a generally desirable property in defining resource bounds
in general. Specifically, since the running-time bound is determined by the difference of the length
of two strings, it becomes very sensitive to encodings; for example, this difference may be positive
or negative, depending on whether some numbers are encoded in decimal or binary. This goes
against the general “robustness principle” in complexity theory, which say that such definitions
should be relatively independent of encoding details.

Our definition is closely related to, and inspired by, the definition in [HUMQ09]. Both definitions
avoid all of the problems discussed above with the UC05 definition. Except in a few very unusual
use cases, no artificial padding should be required. The main advantage of our definition over that
in [HUMQ09] is that it is closed under composition of protocols. To compare, in the composition
theorem in [HUMQ09] (the analog of our Theorem 7), it must be assumed as a hypothesis, rather
than derived as a conclusion (as in our theorem), that Π1 is poly-time. This is a significant
advantage, as it allows for a purely modular protocol design — in [HUMQ09], one must (in general)
carry out a run-time analysis “from scratch” whenever one applies the composition theorem. There
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is a trade-off, however. In our definition, we have the flow-boundedness restriction on adversaries,
which can lead to difficulties. Our “invitation” mechanism mitigates these difficulties to some
degree, but nevertheless, there can still be some challenging cases — see §12.1 for some examples
of the issues and how to deal with them. While dealing with the flow-boundedness restrictions may
require some care in designing ideal functionalities, based on our experience so far, it very rarely
requires any artificial modification of actual protocols.

To put all of this in perspective, we summarize the main goals we tried to achieve in devising
our notion of poly-time:

(i) It should be natural and non-restrictive; in particular, common situations as described above,
such as sending a message over a secure channel, should not require special padding or other
“hacks”.

(ii) It should be preserved under composition.

We believe we have come reasonably close to achieving all of these goals. Arguably, the flow-
boundedness restriction is not ideal, but we believe it is not a major drawback: in the use cases
we have studied, it seem that it usually causes no problem at all, and even when it does, easy fixes
are at hand.

11.8 Comparison to the IITM framework

In [Küs06], Küsters presents the IITM framework for the modeling and analysis of multi-party
protocols (including several theorems for securely composing protocols). Syntactically, the IITM
framework is very different from UC05 and our framework. As such, direct comparison is somewhat
difficult. Nevertheless, we can make the following observations:

• The IITM framework does not directly support protocols with an unbounded number of
parties. While it may be possible to implement such “many-party” protocols on top of his
framework (e.g., [KT09] points in this direction), this would involve a significant amount of
work, in terms of developing appropriate conventions and theorems.

• The IITM framework does not define corruptions, leaving this completely up to the logic of
the protocol. One could establish conventions regarding corruptions, but this has not been
done.

• The IITM definition of poly-time closely resembles that if UC05, and is subject to many of
the same padding issues.

• While it is ultimately a matter of taste, we believe that our framework (like UC05) is more
closely aligned with the methodology of protocol design traditionally used by practitioners,
and as such, may perhaps be easier to use.

11.9 Comparison to the Reactive Simulatability framework

In [BPW07] (see also [PW01]), Backes, Pfitzmann, and Waidner put forward the Reactive Simu-
latability (RS) framework for multi-party protocols. Like the IITM framework, the RS framework
is syntactically quite different from UC05. Furthermore, RS is traditionally used rather for the
formulation of computational soundness results (e.g., [BPW03]) than for the analysis of concrete
protocol constructions. A few more specific observations follow:
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• Like the IITM framework, the plain RS framework does not support an unbounded number
of parties. Now, there exist RS generalizations which support a variable number of parties
(e.g., [BPW04]); however, these generalizations are rather formalistic and seem like a proof
of concept. In particular, to the best of our knowledge, these generalizations have not been
used to model or analyze cryptographic protocols.

• In the original RS framework, parties halt after a (fixed) polynomial number of overall steps.
This requires a somewhat inconvenient parameterization of functionalities over a number of
usages, or concrete running time bounds. This can be somewhat mitigated by adapting the
notion of poly-time, e.g., as in [HMQU05].

• Like UC05, the RS framework does not define any form of trust hierarchy.

11.10 Comparison to Prabhakaran’s framework

In [Pra05], Prabhakaran proposes a variation of the UC framework. His variation differs from UC05
in several aspects:

• The execution model in [Pra05] explicitly considers the running machines belonging to differ-
ent parties concurrently. Such a concurrent execution model would seem more realistic, and
potentially more powerful; however, is actually no more powerful than ours, provided certain
restrictions on the use of ideal and common functionalities are observed.

Consider an attack on a “concrete protocol”, as deployed in the “real world”. In particular, the
attack is carried out via the dummy adversary. If there are no ideal or common functionalities,
then we can always reschedule a concurrent execution into a nonconcurrent one, without
changing the behavior of any protocol machine — this is because no direct communication is
allowed between machines belonging to different parties.

Now suppose there are, in fact, ideal functionalities. We stress that any ideal functionality
that exists in this setting directly models a trusted party in the real world, and not some
functionality that is to be instantiated with a more concrete protocol (an example would be
a certificate authority, as discussed in §12.2). In order to ensure that concurrency does not
help, we need to ensure that machines belonging to different parties could not communicate
via an ideal functionality “behind the back” of the attacker (i.e., the environment/dummy
adversary). This can be done by making one of the following restrictions: (1) whenever the
ideal functionality is activated by one of its regular peers, the ideal functionality cedes control
to the adversary, rather than to a regular peer; (2) the ideal functionality is structured so
that it processes messages from different parties independently.

Now suppose there are common functionalities. By definition, a common functionality always
returns control immediately to their caller. Again, in order to ensure that concurrency does
not help, we can make one of the following restrictions: (1) whenever a protocol machine
invokes the common functionality, it immediately cedes control to the adversary; (2) the
common functionality is structured so that its behavior in processing requests in independent
of the ordering f the requests. For typical applications of common functionalities, such as
system parameters, common reference strings, or random oracles, restriction (2) is already
satisfied.

With these restrictions on the behavior of ideal and common functionalities, adding concur-
rency would not yield a stronger security model. For simplicity, we have chosen not to include
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these constraints in our framework; however, we would strongly encourage that protocols ad-
here to them.

• The notion of efficiency in [Pra05] is relatively strict; for instance, each protocol must have a
context-independent polynomial bound p(λ) on its maximal input size. This disallows already
simple ideal functionalities like our Fach or Fsch functionalities for authenticated, resp. secure
channels (see section 12).

• Additionally, [Pra05] proposes a UC security notion with external “angels” (i.e., unbounded
machines to which only a simulator has access). We do not consider such a “relativized”
notion of security in this work.

12 Examples

In this section, we give some examples that illustrate the use of our framework.

12.1 Some fundamental ideal functionalities

We present here some fundamental ideal functionalities, designed in a way that is compatible with
our framework. These are similar to corresponding functionalities in [CCGS10]; among other things,
they have been modified to mesh well with our poly-time and flow-boundedness requirements.

Before we begin, we recall that the machine ID of any protocol machine (regular or ideal) is of
the form 〈 pid , sid 〉, where pid is called the party ID (PID) and sid is called the session ID (SID).
A session ID is of the form 〈 . . . , basename 〉, and a basename is of the form 〈 protName, sp 〉. Here,
protName is the name of the program run by the machine, and sp is an application specific session
parameter (or SP).

Typically, the behavior of an ideal functionality should not depend in any significant way on
its protocol name. While this could be formalized, we refrain from doing so. More generally, we
would expect that protocols and simulators do not depend in any significant way on the protocol
name. Again, this could be formalized, but we do not do so here.

From the above discussion, it follows that when describing a protocol or ideal functionality, the
only part of the SID that requires description is the session parameter.

12.1.1 Authenticated Channels

We present here an ideal functionality for an authenticated channel. This ideal functionality is
called Fach.

The SP for this functionality is of the form 〈Ppid, Qpid, label 〉, where P is the sender and Q is
the receiver, and label is an arbitrary string that may be used to distinguish different channels. To
be clear, P and Q are dummy parties that are peers of the ideal functionality (so they all share
the same SID) whose PIDs are Ppid and Qpid, respectively. We now present the logic of the ideal
functionality Fach, interacting with an adversary A. The notation is explained below.

send: accept 〈 send, x 〉 from P ; x̄← x; send 〈 send, x 〉 to A.

ready: accept 〈 ready 〉 from Q; send 〈 ready 〉 to A.

done [send]: accept 〈 done 〉 from A; send 〈 done 〉 to P .
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deliver [send∧ ready]: accept 〈 deliver, x 〉 from A, where x = x̄; send 〈 deliver, x̄ 〉
to Q.

corrupt-sender: accept 〈 corrupt 〉 from P ; send 〈 corrupt-sender 〉 to A.

reset [corrupt-sender]: accept 〈 reset, x 〉 from A; x̄← x.

Note 12.1. Each step is labeled by a name. By convention, each step may only be triggered once.
A logical expression in [· · · ] is a guard that must be satisfied in order to trigger the step; a step
name in such an expression denotes the event that the corresponding step has been triggered. Each
step begins with an accept clause, which describes the form of the message that triggers this step;
such an accept clause may itself have logical conditions which must be satisfied in order to trigger
the step.

Any message that the ideal functionality receives that does not trigger one of these steps is
processed by simply sending an error message to A.

These notational conventions shall be in force in all of the descriptions of ideal functionalities
presented here. �

Note 12.2. Note that in the deliver step, A is required to send the message 〈 deliver, x̄ 〉.
Including x̄ in this message would seem unnecessary; however, including it forces A to inject some
flow into Fach, which will help to maintain the flow-boundedness condition in the analysis of higher-
level protocols.

It is expected that in any protocol Π that emulates Fach, any adversary attacking Π must inject
flow whose length is polynomially related to that of x̄; thus, in designing a simulator to prove that
Π that emulates Fach, the flow-boundedness constraint will be easily satisfied.

By adhering to analogous conventions in designing ideal functionalities, it should be straight-
forward, in most cases, to maintain the flow-boundedness condition when composing protocols. We
will see more examples of this below. �

Note 12.3. The done step is there to allow control to return to P directly from the ideal function-
ality, rather than from P ’s caller. This may be convenient in the design of higher-level protocols,
in that it makes Fach behave more like a traditional subroutine, with a call and a return step. One
could certainly design a variant of Fach which leaves out this step. �

Note 12.4. Like the corresponding functionality in [Can05, Section 6], this one allows delivery of
a single message per session. Multiple sessions should be used to send multiple messages. Alterna-
tively, one could also define a multi-message functionality. �

Note 12.5. Unlike the corresponding functionality in [Can05, Section 6], the receiver here must
explicitly initialize the channel before receiving a message. This conforms to our constraints (see
Constraint C6 in §4.5). In [Can05], the sender can essentially spontaneously create a party on
the receiving end just by sending it a message via the ideal functionality. While in some settings
such behavior may be convenient or even necessary, this seems to add significant complexity to the
model. Moreover, such behavior makes denial-of-service attacks much easier, since the receiving
side may be forced to start executing arbitrarily complex protocols (not just the communication
protocol, but protocols “up the stack” which may be triggered by it) that are entirely unrelated to
any computation it actually wants to perform. �

Note 12.6. If P ′ is an arbitrary regular protocol machine that wants to send a message to a peer
Q′, then P ′ and Q′ must invoke subroutines P and Q, where P and Q are dummy parties of the
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Fach functionality with the same session ID. This means that P ′ and Q′ must agree (typically by
some simple, protocol-specific convention) to identify the channel using the label in the session
parameter. In many cases, a trivial numbering scheme will suffice. �

Note 12.7. In describing the corruption rule, we mean the reaction of Fach when it receives the
special corrupt message from one of its peers. The peer itself may be corrupted without the ideal
functionality being notified of this, and no special actions occur at that time. However, in typical
security proofs, one may assume without loss of generality that both events occur, one right after
the other. A similar comment applies to all the ideal functionalities presented here. �

12.1.2 Secure channels

Secure channels provide both authentication and secrecy. We present a ideal functionality Fsch

that is tuned to adhere to our conventions. It is designed so that it can be realized assuming secure
erasures.

An SP for Fsch has the same form as that of Fach, that is, 〈Ppid, Qpid, label 〉, where P is the
sender and Q is the receiver. Also, Fsch is parameterized by a “leakage” function ` : Σ∗ → Σ∗, so
that `(x) represents the information (such as length) that is allowed to be leaked when the message
x is sent over the channel. The length of `(x) should be polynomially related to the length of x;
for example, `(x) = 1|x| is a likely candidate function. For an adversary A, the ideal functionality
Fsch runs as follows.

send: accept 〈 send, x 〉 from P ; x̄← x; send 〈 send, `(x) 〉 to A.

ready: accept 〈 ready 〉 from Q; send 〈 ready 〉 to A.

lock [send ∧ ready]: accept 〈 lock 〉 from A; send 〈 〉 to A.

done [lock]: accept 〈 done 〉 from A; send 〈 done 〉 to P .

deliver [lock]: accept 〈 deliver, L 〉 from A, where L = `(x̄) ∨ corrupt-receiver;
send 〈 deliver, x̄ 〉 to Q.

corrupt-sender: accept 〈 corrupt 〉 from P ; send 〈 corrupt-sender 〉 to A, along with
an invitation for the message 〈 expose 〉.

corrupt-receiver: accept 〈 corrupt 〉 from Q; send 〈 corrupt-receiver 〉 to A.

reset [¬lock ∧ corrupt-sender]: accept 〈 reset, x 〉 from A; x̄← x; send 〈 〉 to A.

expose [send ∧ ¬lock ∧ corrupt-sender]: accept 〈 expose 〉 from A; send 〈 expose, x̄ 〉
to A.

Note 12.8. For flow-related reasons similar to those in Fach, A must inject flow corresponding to
P ’s input into the functionality already at the deliver step, but only if Q is not already corrupted.
In any reasonable implementation, this flow will certainly be available when the simulator needs it.
Note that if Q is corrupted before the deliver step, A may obtain P ’s input (via Q) by triggering
the deliver step (after the lock step), but without having to inject the extra flow. �

Note 12.9. As in Fach, this functionality only allows a single message per session to be transmitted.
�
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Note 12.10. As in Fach, a message can only be delivered to a receiver who has initialized the
channel. �

Note 12.11. The locking and corruption logic implies the following security properties:

• after the done step, corrupting P will not allow P ’s input to be exposed or reset;

• after the deliver step, corrupting either P or Q will not expose P ’s input.

�

Note 12.12. Fsch can be easily realized using Fach and some cryptography — for example, Diffie-
Hellman key exchange, and a one-time pad and a one-time MAC to actually encrypt and authen-
ticate the message. Such an implementation crucially depends on secure erasures. The lock step
in Fsch would correspond to a step in the implementation in which the sender P erases both the
one-time pad and the one-time MAC key (along with any ephemeral, unerased Diffie-Hellman secret
keys), and then sends (in either order) the done message to its caller, and the MAC-authenticated
ciphertext to the adversary (for eventual delivery to Q). �

Note 12.13. Note the use of invitations in the corrupt-sender step; this streamlines the specifi-
cation of Fsch, but could be avoided. �

12.1.3 Zero knowledge

Let R be a binary relation, consisting of pairs (x,w): for such a pair, x is called the “statement”
and w is called the “witness”. We describe an ideal functionality Fzk, parameterized by the relation
R, as well as a “leakage” function ` : Σ∗ → Σ∗. Again, the length of `(x) should be polynomially
related to the length of x; however, to facilitate implementation, it may be useful to include some
information about the “structure” of x. We stress that this functionality is designed to be realized in
the secure erasures model. It provides somewhat stronger security guarantees than more traditional
zero-knowledge notions.

An SP for Fzk is of the form 〈Ppid, Qpid, label 〉, where P is the prover and Q is the verifier.
Interacting with an adversary A, the ideal functionality Fzk runs as follows.

send: accept 〈 send, x, w 〉 from P , where (x,w) ∈ R; x̄← x; w̄ ← w; send 〈 send, `(x) 〉
to A.

ready: accept 〈 ready 〉 from Q; send 〈 ready 〉 to A.

lock [send ∧ ready]: accept 〈 lock 〉 from A; send 〈 〉 to A.

done [lock]: accept 〈 done 〉 from A; send 〈 done 〉 to P .

deliver [lock]: accept 〈 deliver, L 〉 from A, where L = `(x̄, w̄) ∨ corrupt-receiver;
send 〈 deliver, x̄ 〉 to Q.

corrupt-sender: accept 〈 corrupt 〉 from P ; send 〈 corrupt-sender 〉 to A, along with
an invitation for the message 〈 expose 〉.

corrupt-receiver: accept 〈 corrupt 〉 from Q; send 〈 corrupt-receiver 〉 to A.
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reset [¬lock ∧ corrupt-sender]: accept 〈 reset, x, w 〉 from A, where (x,w) ∈ R;
x̄← x; w̄ ← w; send 〈 〉 to A.

expose [send∧¬lock∧corrupt-sender]: accept 〈 expose 〉 from A; send 〈 expose, x̄, w̄ 〉
to A.

Note the similarity with our secure channels functionality.
In the above, the relation R was considered to be a fixed relation — more precisely, there is

one relation per value of the security parameter. However, for many applications, it is convenient
to let R be parameterized by a some system parameter (see §10), such as a prime number, an RSA
modulus, or an elliptic curve. Fzk can be efficiently realized in the CRS model for many useful
relations using Fsch and techniques such as those in [MY04, JL00, CKY09].

12.1.4 Commitment

Here is an ideal functionality Fcom for commitment. Again, it is parameterized by a leakage function
` : Σ∗ → Σ∗, and is designed to be realized in the secure erasures model.

An SP for Fcom is of the form 〈Ppid, Qpid, label 〉, where P is the sender and Q is the receiver.
Interacting with an adversary A, the ideal functionality Fcom runs as follows.

send: accept 〈 send, x 〉 from P ; x̄← x; send 〈 send, `(x) 〉 to A.

ready1: accept 〈 ready1 〉 from Q; send 〈 ready1 〉 to A.

done1 [send]: accept 〈 done1 〉 from A; send 〈 done1 〉 to P .

commit [send ∧ ready1]: accept 〈 commit, L 〉 from A, where L = `(x̄); send 〈 commit 〉
to Q.

open [send]: accept 〈 open 〉 from P ; send 〈 open, x̄ 〉 to A.

done2 [open]: accept 〈 done2 〉 from A; send 〈 done2 〉 to P .

ready2 [commit]: accept 〈 ready2 〉 from Q; send 〈 ready2 〉 to A.

deliver [open ∧ ready2]: accept 〈 deliver 〉 from A; send 〈 deliver, x̄ 〉 to Q.

corrupt-sender: accept 〈 corrupt 〉 from P ; send 〈 corrupt-sender 〉 to A, along with
an invitation for the message 〈 expose 〉.

reset [¬commit ∧ corrupt-sender]: accept 〈 reset, x 〉 from A; x̄← x; send 〈 〉 to A.

expose [send ∧ corrupt-sender]: accept 〈 expose 〉 from A; send 〈 expose, x̄ 〉 to A.

Note 12.14. This commitment functionality does not preserve the secrecy of the sender’s input
x. In that sense, it is more like Fach than Fsch. �

Note 12.15. Variants of this general Fcom may restrict the set of inputs from P to a specific set,
typically reflecting limitations of the expected implementation. �

Note 12.16. A must inject flow corresponding to P ’s input into the functionality already at the
commit step. In any reasonable implementation, this flow will certainly be available when the
simulator needs it, unless Q is already corrupted; however, if Q is already corrupted, there is no
need for A to ever trigger this step. Moreover, having this flow injected at this time facilitates
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the maintenance of the flow-boundedness constraint in the analysis of protocols that use Fcom as a
subroutine.

For example, suppose we have a version of Fcom that allows commitment to strings of a particular
form (but whose the length is not a priori bounded). Using this, we can easily build a protocol that
securely performs commitment to a pair of such strings: the protocol performs the commitment
to each string, one after the other. The sender could be corrupted after having committed to the
first string, but not to the second. The simulator should be able to reset the input pair of the
sender — it will only be able to reset the second element of the pair, but the specification requires
it to give the entire pair. Fortunately, the simulator will already have flow corresponding to the
committed first element, and the flow for the second will naturally come from the environment.
Without having this flow from the already committed first element, it would not be possible to
design a simulator that maintained flow-boundedness. This illustrates how flow-boundedness can
be maintained using appropriate conventions. One could have also dealt with this issue by defining
a more ad hoc specification of Fcom; however, we believe the general conventions outlined here are
simpler, and more generally useful. �

Note 12.17. A generally useful convention for designing ideal functionalities that maintain flow
bounds runs something like this: whenever any reasonable implementation would inject a certain
amount of flow into the protocol, the ideal functionality should force the simulator to inject a cor-
responding (polynomially related) amount of flow into the functionality. Of course, such a strategy
may make ideal functionalities somewhat dependent on their implementation; however, such de-
pendencies are hard to completely avoid in general; moreover, these particular dependencies only
affect the adversary/functionality interface, and not the (more important) environment/protocol
(i.e., I/O) interface. �

12.1.5 Secure function evaluation

Here is an ideal functionality Feval for secure two-party function evaluation. Again, it is pa-
rameterized by a leakage function ` : Σ∗ → Σ∗, as well as a poly-time computable function
f : Σ∗ ×Σ∗ → Σ∗. As above, it is designed to be realized in the secure erasures model.

An SP for Feval is of the form 〈P (0)
pid , P

(1)
pid , label 〉, where P (0) and P (1) are the participants.

Interacting with an adversary A, the ideal functionality Feval runs as follows. As the functionality
is symmetric, most of the rules come in pairs, as indicated by the notation “(i = 0, 1)”.

(i = 0, 1) input-i: accept 〈 input, x 〉 from P (i); x̄i ← x; send 〈 input-i, `(x) 〉 to A.

(i = 0, 1) commit-i [input-i]: accept 〈 commit-i, L 〉 from A, where L = `(x̄i) ∨
corrupt-(1− i); send 〈 〉 to A.

lock [commit-0 ∧ commit-1]: accept 〈 lock 〉 from A; ȳ ← f(x̄0, x̄1); send 〈 〉 to A.

(i = 0, 1) output-i [lock]: accept 〈 output-i 〉 from A; send ȳ to P (i).

(i = 0, 1) corrupt-i: accept 〈 corrupt 〉 from P (i); send 〈 corrupt-i 〉 to A, along with
an invitation for the message 〈 expose-i 〉.

(i = 0, 1) expose-i [corrupt-i∧input-i]: accept 〈 expose-i 〉 from A; send 〈 expose-i, x̄i 〉
to A.

(i = 0, 1) reset-i [corrupt-i ∧ ¬commit-i]: accept 〈 reset-i, x 〉 from A; x̄i ← x; send
〈 〉 to A.
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Note 12.18. Variants of this general Feval may restrict the set of inputs from P (0) and P (1) to
specific sets, and also specify two different functions f0 and f1, in place of f , so that P (0) and P (1)

receive different outputs. �

Note 12.19. As in Fcom, A is required to inject flow corresponding to the input of each party
when that party commits (at least when the other party is not already corrupt). Again, in any
reasonable implementation, this flow should be available to the simulator, and injecting this flow
will help to preserve flow bounds in the analysis of higher-level protocols. �

12.1.6 Some problematic functionalities

There are some ideal functionalities which may cause some trouble with respect to flow-boundedness
and running time. Two such functionalities are Fsig and Fpke, which are meant to model signatures
and encryption, respectively. We will not present these functionalities in detail, but rather, we
refer the reader to §7.2 of [Can05]. Nevertheless, we can sketch the problem, and suggest several
different solutions.

In the formulation of Fsig (resp., Fpke) in [Can05], the ideal-world adversary sends the signing
(resp., encryption) algorithm to the functionality. In the intended implementation, nothing like this
happens — the algorithm is a part of the implementation, and no corresponding interaction occurs
between the implementation and the real-world adversary. So the problem is that any simulator
used to show that the implementation realizes the ideal functionality will send a message to the
ideal functionality that was not provoked by any corresponding message from the environment, and
thus, will not be flow-bounded (and we saw in Note 7.2 how precisely this type of situation can
lead to very real running-time problems).

Here are three possible work-arounds.

1. Simply do not use these functionalities: in practice (i.e., the practice of proving security
theorems), these functionalities tend to be no easier to use than directly using the security
definitions of the primitives themselves.

2. Parameterize the functionalities by the algorithms: instead of having the ideal-world adver-
sary deliver the algorithm, just have the algorithm “hardwired” into the functionality, so that
the functionality is really a family of functionalities parameterized by such algorithms. Such
parameterizations are nothing new — in fact, in the formulations of these functionalities in
[Can05] are parameterized by a “message space”. Again, in practice, parameterizing these
functionalities in this way should not make them any harder to use in proving the security of
protocols that use them as subprotocols.

3. Modify the implementation: insist that the implementation requests from the real-world
adversary some string long enough to ensure that flow bounds will be preserved in the security
proof. This makes the implementation look much more like the ideal functionality. One
possible objection to this approach is that this extra interaction may somehow “weaken” the
security of the implementation. However, this is a spurious objection, since presumably, only
the properties of the ideal functionality, and not the implementation, will be used in the
analysis of higher-level protocols.

Work-around (3) requires the implementation to be modified, introducing some artificial
“padding”. Based on our experience so far, this is the only type of example we have yet encountered
of a protocol that requires any such artificial modification in order to satisfy our flow-boundedness
constraint.
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Besides these flow problems, there is another running-time-related problem with these ideal
functionalities, namely, the ideal functionality will execute a program supplied by the adversary,
and the running time of this program may not be bounded in any reasonable way so as to ensure
the ideal functionality is itself poly-time (under any reasonable definition of poly-time). This is a
problem for the framework in [Can05] as well as for ours. Work-arounds (1) and (2) above will also
solve this problem, and there are probably other work-arounds as well.

12.2 Modeling a PKI

We sketch here a simple method for modeling a public-key infrastructure (PKI).
We start with an ideal functionality Fca, representing a certificate authority. This function-

ality is parameterized by a secure signature scheme (so different signature schemes yield different
functionalities). The SP for Fca is empty. The behavior of Fca is quite simple. Upon its first
activation, it generates a verification/signing key pair (vk , sk) for the signature scheme. When it
receives a message 〈 request,m 〉 from a peer with machine ID id , it signs the message 〈 id ,m 〉
using its signing key sk , obtaining the signature σ, and returns the message 〈 response, σ, vk 〉 to
that machine. Any other messages it receives are ignored (which means an error message is sent to
the adversary).

Unlike most ideal functionalities, which are best thought of as imaginary machines that exist
for the purposes of modular protocol design and analysis, Fca directly models a real-world service.
For this model to be valid, the communication links between Fca and its peers must be securely
authenticated, in both directions. How this is done is outside the model, but may, for example,
be realized using physical assumptions. The point is that these authenticated links may be quite
costly to use, but each user in the system will only have to interact with Fca once.

Now let F = Fach be the authenticated channel functionality described above in §12.1.1. Using
Fca, it is easy to realize the multi-session extension F̂ of F , as discussed in the context of the JUC
theorem in §9. The idea is straightforward. A participant in the protocol F̂ , whose machine ID is
id , generates its own verification/signing key pair (vk ′, sk ′) using a secure signature scheme (not
necessarily the same scheme used by Fca) and calls Fca to obtain σ and vk , where σ is a signature
on the message 〈 id , vk ′ 〉 and vk is the verification key of Fca. In this way, σ plays the role of a
certificate. Authenticated messages can be sent between participants of F̂ by using these signing
keys and certificates. The messages signed by the participants should be augmented to include the
corresponding virtual SID.

Given a realization of F̂ , we can then apply the JUC theorem (Theorem 9). The idea is this.
We start with an F-hybrid protocol Π. The protocol Π may itself have been derived by successive
applications of the composition theorem, successively refining the protocol until a very concrete
protocol, which only depends on the authenticated channels ideal functionality, is obtained. In
addition, the protocol Π may represent a suite of useful protocols, with the top-level machine in Π
serving as a multiplexer to instances of the various protocols in the suite. This multiplexer could
also assist in establishing session IDs for its subroutines, for example, by exchanging random nonces
with its peers, and concatenating these together to form a unique identifier embedded in the session
ID of the subroutine (the nonce would be chosen locally by the multiplexer’s caller). Moreover,
the derivation of Π might itself involve the JUC theorem: given relatively slow, signature-based
authenticated channels, some subprotocols may use these, along with a key-exchange protocol, to
get very fast secure channels based on symmetric-key cryptography.

So we apply the JUC theorem to Π and F , obtaining [Π]F , and use the ordinary composition
theorem to replace F̂ by the instantiation based on Fca described above. The resulting protocol
is an Fca-hybrid protocol that quite closely resembles the way such protocols are traditionally
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designed in practice.

12.3 Secure computation without authentication

It should be straightforward to translate the results in [BCL+05] into our framework, using a variant
of the virtual boxing technique from our JUC theorem construction (see §9); however, a careful
verification of this claim should be the subject of future work.

In a nutshell, the idea in [BCL+05] is to design protocols that work without any authentication
infrastructure (like a PKI), but still offer some meaningful security. The results hold in a multi-party
setting, but for simplicity, consider just a two-party protocol. Suppose F is some authenticated
or secure channels ideal functionality, and that Π is a two-party F-hybrid protocol that emulates
some ideal functionality G.

Now, using a very simple construction, one can transform Π into a protocol Π′ that uses no
ideal functionalities, and emulates an ideal functionality G′, which is (roughly) defined as follows:
if P and Q are the participants in the protocol, then the adversary A must first decide if P and Q
are to be isolated or joined, and inform G′ of this decision. Subsequently, if P and Q are joined,
then G′ behaves essentially like G. If they are isolated, G′ internally runs two independent virtual
copies of G, where in one copy, A is allowed to play the role of P , and in the other, A is allowed to
play the role of Q.

In the implementation, each party running Π′ first performs “handshake protocol” that in effect
establishes an “ephemeral PKI”. Then, using the results of this step, each party internally runs
a simulated copy of Π, but with an appropriately “mangled” virtual SID. Whenever the virtual
copy of Π needs to use F , the ephemeral PKI is used to implement it. The idea is that if both
parties end up using the same virtual SID, they will effectively be joined, and otherwise, they will
be isolated.

Apart from the ephemeral PKI and the name mangling, the construction is not much different
from that in §12.2. This construction can be used to get interesting and quite practical authentica-
tion and key exchange protocols, based on passwords or other types of credentials (see [CCGS10]).
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[KT09] Ralf Küsters and Max Tuengerthal. Computational soundness for key exchange pro-
tocols with symmetric encryption. In Ehab Al-Shaer, Somesh Jha, and Angelos D.
Keromytis, editors, ACM CCS 09: 16th Conference on Computer and Communications
Security, pages 91–100, Chicago, Illinois, USA, November 9–13, 2009. ACM Press.
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