Efficient 2-Round General Perfectly Secure Message Transmission: A Minor Correction to Yang and Desmedt's Protocol*

Qiushi Yang and Yvo Desmedt

Department of Computer Science, University College London, UK {q.yang, y.desmedt}@cs.ucl.ac.uk

Abstract. At Asiacrypt '10, Yang and Desmedt proposed a number of perfectly secure message transmission protocols in the general adversary model. However, there is a minor flaw in the 2-round protocol in an undirected graph to transmit multiple messages. A small correction solves the problem. Here we fix the protocol and prove its security.

1 Brief Introduction

The aim of perfectly secure message transmission (PSMT) is to transmit messages from a sender S to a receiver R in a network graph with *perfect privacy* and *perfect reliability*. Suppose a *Byzantine adversary* exists in the network, perfect privacy means that the adversary learns no information about the message, and perfect reliability means that the receiver R can output the messages correctly.

We consider the general adversary model, in which the adversary is characterized by an *adversary structure* \mathcal{A} [1]. Our protocol uses the following techniques: *linear code, pseudo-basis and pseudo-dimension* and *randomness extractor*. Since the goal of this paper is to fix a small part of Yang and Desmedt's Asiacrypt paper, we refer to [2] for the other details, such as the model, the settings, etc.

2 Old 2-Round Undirected Protocol

Here we copy the 2-round undirected protocol for multiple message transmission in an undirected network graph [2, pp. 460].

2-round undirected protocol for $\ell = wt^{\mathcal{A}}(n - sz^{\mathcal{A}} - 1)$ messages s_1, \ldots, s_{ℓ}

Round 1 - R to S:

- 1. *R* chooses $wt^{\mathcal{A}}n$ random *k*-vectors $\mathbf{r}_1, \ldots, \mathbf{r}_{wt^{\mathcal{A}}n} \in \mathbb{F}^k$, and for each $1 \leq i \leq wt^{\mathcal{A}}n$, *S* encodes \mathbf{r}_i to get codeword $\mathbf{c}_i = EC(\mathbf{r}_i) = (c_{i1}, \ldots, c_{ih})$.
- 2. For each $1 \leq i \leq n$, R sends vectors $\mathbf{r}_{i+0 \cdot wt^{\mathcal{A}}}, \mathbf{r}_{i+1 \cdot wt^{\mathcal{A}}}, \dots, \mathbf{r}_{i+(wt^{\mathcal{A}}-1)wt^{\mathcal{A}}}$ via path w_i . R also sends codewords $\mathbf{c}_1, \dots, \mathbf{c}_{wt^{\mathcal{A}}n}$ via W with respect to ψ .

Round 2 - S to R:

- 1. S receives $wt^{\mathcal{A}}$ k-vectors $\mathbf{r}'_{i+0 \cdot wt^{\mathcal{A}}}, \mathbf{r}'_{i+1 \cdot wt^{\mathcal{A}}}, \dots, \mathbf{r}'_{i+(wt^{\mathcal{A}}-1)wt^{\mathcal{A}}}$ on each path w_i $(1 \le i \le n)$, and also receives $wt^{\mathcal{A}}n$ h-vectors $\mathbf{x}_1, \dots, \mathbf{x}_{wt^{\mathcal{A}}n}$ from W. For each $1 \le i \le wt^{\mathcal{A}}n$, let $\mathbf{x}_i = (x_{i1}, \dots, x_{ih})$.
- 2. For each $1 \leq i \leq wt^{\mathcal{A}}n$, S uses the pseudo-basis construction scheme to construct a pseudo-basis B from $\mathbf{x}_1, \ldots, \mathbf{x}_{wt^{\mathcal{A}}n}$. Let b be the pseudo-dimension of B, then $b \leq wt^{\mathcal{A}}$.

^{*} This result was originally going to appear in the full version of [2]. However, as required by some recent studies of this model, we show this correction on Cryptology ePrint Archive in advance.

- 3. For each $1 \leq i \leq wt^{\mathcal{A}}n$, S encodes \mathbf{r}'_i to get codeword $\mathbf{c}'_i = EC(\mathbf{r}'_i) = (c'_{i1}, \ldots, c'_{ih})$. S then constructs a set D_i such that for each $1 \leq j \leq h$, iff $x_{ij} \neq c'_{ij}$, then $(c'_{ij}, j) \in D_i$.
- 4. For each $1 \leq i \leq wt^A n$, S decodes $r'_i = DC(\mathbf{r}'_i)$. S then constructs a set T such that iff $|D_i| \leq wt^A$, then $r'_i \in T$. S uses the randomness extractor to get $(z_1, \ldots, z_\ell) = RE(T)$, and for each $1 \leq i \leq \ell$, S computes $\sigma_i = s_i + z_i$.
- 5. S broadcasts the pseudo-basis B and $\sigma_1, \ldots, \sigma_\ell$. For each $1 \le i \le wt^A n$, if $|D_i| > wt^A$, then S broadcasts "ignore *i*"; else, then S broadcasts D_i .

Recovery Phase

- 1. R finds the final error locator F from B.
- 2. For each D_i that R receives on W, R constructs an h-vector $\mathbf{c}''_i = (c''_{i1}, \ldots, c''_{ih})$ such that for each $1 \leq j \leq h$, if $(c'_{ij}, j) \in D_i$, then $c''_{ij} = c'_{ij}$; else, then $c''_{ij} = c_{ij}$. R then decodes the information r''_i of \mathbf{c}''_i such that for any $j \in F$, c''_{ij} is not used for decoding. R puts r''_i in a set T'.
- 3. *R* uses the randomness extractor to get $(z'_1, \ldots, z'_{\ell}) = RE(T')$, and for each $1 \le i \le \ell$, *R* computes $s'_i = \sigma_i - z'_i$. End.

The original design of this protocol is to enable $c''_{ij} = c'_{ij}$ for each $j \notin F$ $(1 \leq j \leq h)$ in the Recovery Phase. However, due to the existence of the *invalid error vector* [2], it is possible that $c'_{ij} \neq c_{ij}$ for some $j \notin F$ and $(c'_{ij}, j) \notin D_i$. In this case $c''_{ij} = c_{ij} \neq c'_{ij}$. This may make the decoding unreliable. A minor correction can solve this problem, thus we fix this protocol in the next section.

3 Fixed 2-Round Undirected Protocol

Here we give a fixed PSMT protocol which guarantees that T' = T, and hence the protocol is perfectly reliable. The protocol is almost the same as the original one. The *only* modifications are in Step 3 of Round 2 and Step 2 of the Recovery Phase. We emphasize the modifications using **bold** font and footnotes.

Fixed 2-round undirected protocol for $\ell = wt^{\mathcal{A}}(n - sz^{\mathcal{A}} - 1)$ messages s_1, \ldots, s_{ℓ}

Round 1 - R to S:

- 1. *R* chooses $wt^{\mathcal{A}}n$ random *k*-vectors $\mathbf{r}_1, \ldots, \mathbf{r}_{wt^{\mathcal{A}}n} \in \mathbb{F}^k$, and for each $1 \leq i \leq wt^{\mathcal{A}}n$, *S* encodes \mathbf{r}_i to get codeword $\mathbf{c}_i = EC(\mathbf{r}_i) = (c_{i1}, \ldots, c_{ih})$.
- 2. For each $1 \leq i \leq n$, R sends vectors $\mathbf{r}_{i+0 \cdot wt^{\mathcal{A}}}, \mathbf{r}_{i+1 \cdot wt^{\mathcal{A}}}, \dots, \mathbf{r}_{i+(wt^{\mathcal{A}}-1)wt^{\mathcal{A}}}$ via path w_i . R also sends codewords $\mathbf{c}_1, \dots, \mathbf{c}_{wt^{\mathcal{A}}n}$ via W with respect to ψ .

Round 2 - S to R:

- 1. S receives $wt^{\mathcal{A}}$ k-vectors $\mathbf{r}'_{i+1\cdot wt^{\mathcal{A}}}, \mathbf{r}'_{i+1\cdot wt^{\mathcal{A}}}, \dots, \mathbf{r}'_{i+(wt^{\mathcal{A}}-1)wt^{\mathcal{A}}}$ on each path w_i $(1 \le i \le n)$, and also receives $wt^{\mathcal{A}}n$ h-vectors $\mathbf{x}_1, \dots, \mathbf{x}_{wt^{\mathcal{A}}n}$ from W. For each $1 \le i \le wt^{\mathcal{A}}n$, let $\mathbf{x}_i = (x_{i1}, \dots, x_{ih})$.
- 2. For each $1 \leq i \leq wt^{\mathcal{A}}n$, S uses the pseudo-basis construction scheme to construct a pseudo-basis B from $\mathbf{x}_1, \ldots, \mathbf{x}_{wt^{\mathcal{A}}n}$. Let b be the pseudo-dimension of B, then $b \leq wt^{\mathcal{A}}$.
- 3. For each $1 \leq i \leq wt^{\mathcal{A}}n$, S encodes \mathbf{r}'_i to get codeword $\mathbf{c}'_i = EC(\mathbf{r}'_i) = (c'_{i1}, \ldots, c'_{ih})$. S then constructs a set D_i such that for each $1 \leq j \leq h$, iff $x_{ij} \neq c'_{ij}$, then $(c'_{ij}, x_{ij}, j) \in D_i$.¹
- 4. For each $1 \leq i \leq wt^{\mathcal{A}}n$, S decodes $r'_i = DC(\mathbf{r}'_i)$. S then constructs an ordered set T such that iff $|D_i| \leq wt^{\mathcal{A}}$, then $r'_i \in T$. S uses the randomness extractor to get $(z_1, \ldots, z_\ell) = RE(T)$, and for each $1 \leq i \leq \ell$, S computes $\sigma_i = s_i + z_i$.

¹ The only difference is that each tuple $(c'_{ij}, x_{ij}, j) \in D_i$ has 3 elements now. In the old protocol the entry x_{ij} was not involved. A careful re-reading shows that a pair, i.e., $((c'_{ij} - x_{ij}), j)$, can also be used, but here we use the 3-tuple for a simpler presentation.

5. S broadcasts the pseudo-basis B and $\sigma_1, \ldots, \sigma_\ell$. For each $1 \le i \le wt^A n$, if $|D_i| > wt^A$, then S broadcasts "ignore *i*"; else, then S broadcasts D_i .

Recovery Phase

- 1. R finds the final error locator F from B.
- 2. For each D_i that R receives on W, R constructs an h-vector $\mathbf{c}''_i = (c''_{i1}, \ldots, c''_{ih})$ such that for each $1 \leq j \leq h$, $if(c'_{ij}, x_{ij}, j) \in D_i$, ¹then $c''_{ij} = c'_{ij} (x_{ij} c_{ij})$; ²else $c''_{ij} = c_{ij}$.³ R then decodes the information r''_i of \mathbf{c}''_i such that for any $j \in F$, c''_{ij} is not used for decoding. R puts r''_i in a set T'.
- 3. R uses the randomness extractor to get $(z'_1, \ldots, z'_\ell) = RE(T')$, and for each $1 \le i \le \ell$, R computes $s'_i = \sigma_i - z'_i$. End.

Theorem 1 The fixed 2-round undirected protocol is a PSMT protocol for multiple messages.

Proof. Without loss of generality, we assume that the adversary corrupts the set of paths $\{w_1, \ldots, w_t\} \in \mathcal{A}$; i.e., $t \leq sz^{\mathcal{A}}$.

First we prove that the protocol is perfectly private. In Round 1, the adversary can learn $wt^{\mathcal{A}}t$ random k-vectors:

$$\mathbf{r}'_{i+0\cdot wt^{\mathcal{A}}}, \mathbf{r}'_{i+1\cdot wt^{\mathcal{A}}}, \dots, \mathbf{r}'_{i+(wt^{\mathcal{A}}-1)wt^{\mathcal{A}}}$$

for $1 \leq i \leq t$. With the pseudo-basis B broadcast in Round 2, the adversary can learn (at most) extra b codewords, and hence extra b random k-vectors. Now if a pair $(c'_{ij}, x_{ij}, j) \in D_i$, then either \mathbf{r}'_i or x_{ij} is corrupted, or both are corrupted. Either way, the adversary knows c'_{ij} already before the broadcast in Round 2. That is, the broadcast in Round 2 does not reveal any extra information. Thus in total, the adversary can learn at most $wt^A t + b$ ($\leq wt^A(sz^A + 1)$) random k-vectors that R has chosen in Round 1. Since $wt^A n - (wt^A t + b) \geq wt^A(n - sz^A - 1) = \ell$, there are at least ℓ k-vectors that remain secret. For any k-vector \mathbf{r}_i that remains secret, it is straightforward that $|D_i| \leq wt^A$, and hence $r'_i \in T$ and r'_i is secret to the adversary. Thus the adversary has no knowledge on at least ℓ elements in T. We can then use the randomness extractor to get ℓ perfectly private randomnesses. That is, there are enough number of secret pads z_1, \ldots, z_ℓ to be used to encrypt the messages, thus the protocol is perfectly private.

Next we prove that the protocol is perfectly reliable. First, we show that for each D_i that R receives, R gets $r''_i = r'_i$. First, for each $1 \le i \le wt^A$, we have $\mathbf{x}_i = \mathbf{c}_i + \mathbf{e}_i$ where \mathbf{e}_i is an error vector. From Theorem 2 of [2], we know that the information of \mathbf{c}_i can be decoded from \mathbf{x}_i if the final error locator F is given. Let $\mathbf{e}_i = (e_{i1}, \ldots, e_{ih})$, for each $1 \le j \le h$, we have $x_{ij} = c_{ij} + e_{ij}$. Now in the Recovery Phase, if $(c'_{ij}, x_{ij}, j) \in D_i$, then $c''_{ij} = c'_{ij} - (x_{ij} - c_{ij}) = c'_{ij} - e_{ij}$; else (which means $x_{ij} = c'_{ij})$, $c''_{ij} = c_{ij} = x_{ij} - e_{ij} = c'_{ij} - e_{ij}$. Thus in either case, for each $1 \le j \le h$, we have $c''_{ij} = c'_{ij} - e_{ij}$, and hence $\mathbf{c}''_i = \mathbf{c}'_i - \mathbf{e}_i$. Therefore, as we showed above, if the final error locator F is given, then the information of \mathbf{c}'_i can be decoded from \mathbf{c}''_i . Thus R can get $r''_i = r'_i$ for each D_i received, and simultaneously get $(z'_1, \ldots, z'_\ell) = (z_1, \ldots, z_\ell)$ to recover the messages with perfect reliability.

Since we only changed the number of elements from 2 to 3 in each vector of each D_i , the transmission complexity (TC) of the protocol remains $O(hn\ell)$ as shown in [2].

References

- 1. M. Hirt and U. M. Maurer. Player simulation and general adversary structures in perfect multiparty computation. J. Cryptology, 13(1):31–60, 2000.
- Q. Yang and Y. Desmedt. General perfectly secure message transmission using linear codes. In Proc. Asiacrypt '10, volume 6477 of LNCS, pages 448–465, 2010.

² The only difference is that if $(c'_{ij}, x_{ij}, j) \in D_i$, then the fixed protocol computes $c''_{ij} = c'_{ij} - (x_{ij} - c_{ij})$ instead of $c''_{ij} = c'_{ij}$.

³ Note that c'' is not a codeword. Instead, it is a corrupted decoding-end-vector, but correct information can be decoded from it.