
Efficient 2-Round General Perfectly Secure Message
Transmission: A Minor Correction to Yang and

Desmedt’s Protocol?

Qiushi Yang and Yvo Desmedt

Department of Computer Science, University College London, UK
{q.yang, y.desmedt}@cs.ucl.ac.uk

Abstract. At Asiacrypt ’10, Yang and Desmedt proposed a number of perfectly secure
message transmission protocols in the general adversary model. However, there is a minor
flaw in the 2-round protocol in an undirected graph to transmit multiple messages. A
small correction solves the problem. Here we fix the protocol and prove its security.

1 Brief Introduction

The aim of perfectly secure message transmission (PSMT) is to transmit messages from a
sender S to a receiver R in a network graph with perfect privacy and perfect reliability. Suppose
a Byzantine adversary exists in the network, perfect privacy means that the adversary learns
no information about the message, and perfect reliability means that the receiver R can output
the messages correctly.

We consider the general adversary model, in which the adversary is characterized by an
adversary structure A [1]. Our protocol uses the following techniques: linear code, pseudo-basis
and pseudo-dimension and randomness extractor. Since the goal of this paper is to fix a small
part of Yang and Desmedt’s Asiacrypt paper, we refer to [2] for the other details, such as the
model, the settings, etc.

2 Old 2-Round Undirected Protocol

Here we copy the 2-round undirected protocol for multiple message transmission in an undi-
rected network graph [2, pp. 460].

2-round undirected protocol for ` = wtA(n− szA − 1) messages s1, . . . , s`

Round 1 - R to S:
1. R chooses wtAn random k-vectors r1, . . . , rwtAn ∈ Fk, and for each 1 ≤ i ≤ wtAn, S

encodes ri to get codeword ci = EC(ri) = (ci1, . . . , cih).
2. For each 1 ≤ i ≤ n, R sends vectors ri+0·wtA , ri+1·wtA , . . . , ri+(wtA−1)wtA via path wi.
R also sends codewords c1, . . . , cwtAn via W with respect to ψ.

Round 2 - S to R:
1. S receives wtA k-vectors r′i+0·wtA , r

′
i+1·wtA , . . . , r

′
i+(wtA−1)wtA on each path wi (1 ≤ i ≤

n), and also receives wtAn h-vectors x1, . . . ,xwtAn from W . For each 1 ≤ i ≤ wtAn, let
xi = (xi1, . . . , xih).

2. For each 1 ≤ i ≤ wtAn, S uses the pseudo-basis construction scheme to construct a
pseudo-basis B from x1, . . . ,xwtAn. Let b be the pseudo-dimension of B, then b ≤ wtA.

? This result was originally going to appear in the full version of [2]. However, as required by some
recent studies of this model, we show this correction on Cryptology ePrint Archive in advance.

3. For each 1 ≤ i ≤ wtAn, S encodes r′i to get codeword c′i = EC(r′i) = (c′i1, . . . , c
′
ih). S

then constructs a set Di such that for each 1 ≤ j ≤ h, iff xij 6= c′ij , then (c′ij , j) ∈ Di.
4. For each 1 ≤ i ≤ wtAn, S decodes r′i = DC(r′i). S then constructs a set T such that iff
|Di| ≤ wtA, then r′i ∈ T . S uses the randomness extractor to get (z1, . . . , z`) = RE(T),
and for each 1 ≤ i ≤ `, S computes σi = si + zi.

5. S broadcasts the pseudo-basis B and σ1, . . . , σ`. For each 1 ≤ i ≤ wtAn, if |Di| > wtA,
then S broadcasts “ignore i”; else, then S broadcasts Di.

Recovery Phase
1. R finds the final error locator F from B.
2. For each Di that R receives on W , R constructs an h-vector c′′i = (c′′i1, . . . , c

′′
ih) such

that for each 1 ≤ j ≤ h, if (c′ij , j) ∈ Di, then c′′ij = c′ij ; else, then c′′ij = cij . R then
decodes the information r′′i of c′′i such that for any j ∈ F , c′′ij is not used for decoding.
R puts r′′i in a set T ′.

3. R uses the randomness extractor to get (z′1, . . . , z
′
`) = RE(T ′), and for each 1 ≤ i ≤ `,

R computes s′i = σi − z′i. End.

The original design of this protocol is to enable c′′ij = c′ij for each j /∈ F (1 ≤ j ≤ h) in
the Recovery Phase. However, due to the existence of the invalid error vector [2], it is possible
that c′ij 6= cij for some j /∈ F and (c′ij , j) /∈ Di. In this case c′′ij = cij 6= c′ij . This may make the
decoding unreliable. A minor correction can solve this problem, thus we fix this protocol in the
next section.

3 Fixed 2-Round Undirected Protocol

Here we give a fixed PSMT protocol which guarantees that T ′ = T , and hence the protocol is
perfectly reliable. The protocol is almost the same as the original one. The only modifications
are in Step 3 of Round 2 and Step 2 of the Recovery Phase. We emphasize the modifications
using bold font and footnotes.

Fixed 2-round undirected protocol for ` = wtA(n− szA − 1) messages s1, . . . , s`

Round 1 - R to S:
1. R chooses wtAn random k-vectors r1, . . . , rwtAn ∈ Fk, and for each 1 ≤ i ≤ wtAn, S

encodes ri to get codeword ci = EC(ri) = (ci1, . . . , cih).
2. For each 1 ≤ i ≤ n, R sends vectors ri+0·wtA , ri+1·wtA , . . . , ri+(wtA−1)wtA via path wi.
R also sends codewords c1, . . . , cwtAn via W with respect to ψ.

Round 2 - S to R:
1. S receives wtA k-vectors r′i+0·wtA , r

′
i+1·wtA , . . . , r

′
i+(wtA−1)wtA on each path wi (1 ≤ i ≤

n), and also receives wtAn h-vectors x1, . . . ,xwtAn from W . For each 1 ≤ i ≤ wtAn, let
xi = (xi1, . . . , xih).

2. For each 1 ≤ i ≤ wtAn, S uses the pseudo-basis construction scheme to construct a
pseudo-basis B from x1, . . . ,xwtAn. Let b be the pseudo-dimension of B, then b ≤ wtA.

3. For each 1 ≤ i ≤ wtAn, S encodes r′i to get codeword c′i = EC(r′i) = (c′i1, . . . , c
′
ih). S

then constructs a set Di such that for each 1 ≤ j ≤ h, iff xij 6= c′ij , then (c′ij , xij , j) ∈
Di.1

4. For each 1 ≤ i ≤ wtAn, S decodes r′i = DC(r′i). S then constructs an ordered set
T such that iff |Di| ≤ wtA, then r′i ∈ T . S uses the randomness extractor to get
(z1, . . . , z`) = RE(T), and for each 1 ≤ i ≤ `, S computes σi = si + zi.

1 The only difference is that each tuple (c′
ij , xij , j) ∈ Di has 3 elements now. In the old protocol the

entry xij was not involved. A careful re-reading shows that a pair, i.e., ((c′
ij − xij), j), can also be

used, but here we use the 3-tuple for a simpler presentation.

2

5. S broadcasts the pseudo-basis B and σ1, . . . , σ`. For each 1 ≤ i ≤ wtAn, if |Di| > wtA,
then S broadcasts “ignore i”; else, then S broadcasts Di.

Recovery Phase
1. R finds the final error locator F from B.
2. For each Di that R receives on W , R constructs an h-vector c′′i = (c′′i1, . . . , c

′′
ih) such

that for each 1 ≤ j ≤ h, if (c′ij , xij , j) ∈ Di,1then c′′ij = c′ij−(xij−cij);2 else c′′ij = cij .3

R then decodes the information r′′i of c′′i such that for any j ∈ F , c′′ij is not used for
decoding. R puts r′′i in a set T ′.

3. R uses the randomness extractor to get (z′1, . . . , z
′
`) = RE(T ′), and for each 1 ≤ i ≤ `,

R computes s′i = σi − z′i. End.

Theorem 1 The fixed 2-round undirected protocol is a PSMT protocol for multiple messages.

Proof. Without loss of generality, we assume that the adversary corrupts the set of paths
{w1, . . . , wt} ∈ A; i.e., t ≤ szA.

First we prove that the protocol is perfectly private. In Round 1, the adversary can learn
wtAt random k-vectors:

r′i+0·wtA , r
′
i+1·wtA , . . . , r

′
i+(wtA−1)wtA

for 1 ≤ i ≤ t. With the pseudo-basis B broadcast in Round 2, the adversary can learn (at most)
extra b codewords, and hence extra b random k-vectors. Now if a pair (c′ij , xij , j) ∈ Di, then
either r′i or xij is corrupted, or both are corrupted. Either way, the adversary knows c′ij already
before the broadcast in Round 2. That is, the broadcast in Round 2 does not reveal any extra
information. Thus in total, the adversary can learn at most wtAt+ b (≤ wtA(szA+ 1)) random
k-vectors that R has chosen in Round 1. Since wtAn − (wtAt + b) ≥ wtA(n − szA − 1) = `,
there are at least ` k-vectors that remain secret. For any k-vector ri that remains secret, it
is straightforward that |Di| ≤ wtA, and hence r′i ∈ T and r′i is secret to the adversary. Thus
the adversary has no knowledge on at least ` elements in T . We can then use the randomness
extractor to get ` perfectly private randomnesses. That is, there are enough number of secret
pads z1, . . . , z` to be used to encrypt the messages, thus the protocol is perfectly private.

Next we prove that the protocol is perfectly reliable. First, we show that for each Di that R
receives, R gets r′′i = r′i. First, for each 1 ≤ i ≤ wtA, we have xi = ci + ei where ei is an error
vector. From Theorem 2 of [2], we know that the information of ci can be decoded from xi if the
final error locator F is given. Let ei = (ei1, . . . , eih), for each 1 ≤ j ≤ h, we have xij = cij +eij .
Now in the Recovery Phase, if (c′ij , xij , j) ∈ Di, then c′′ij = c′ij − (xij − cij) = c′ij − eij ; else
(which means xij = c′ij), c′′ij = cij = xij−eij = c′ij−eij . Thus in either case, for each 1 ≤ j ≤ h,
we have c′′ij = c′ij − eij , and hence c′′i = c′i−ei. Therefore, as we showed above, if the final error
locator F is given, then the information of c′i can be decoded from c′′i . Thus R can get r′′i = r′i
for each Di received, and simultaneously get (z′1, . . . , z

′
`) = (z1, . . . , z`) to recover the messages

with perfect reliability. ut
Since we only changed the number of elements from 2 to 3 in each vector of each Di, the

transmission complexity (TC) of the protocol remains O(hn`) as shown in [2].

References

1. M. Hirt and U. M. Maurer. Player simulation and general adversary structures in perfect multiparty
computation. J. Cryptology, 13(1):31–60, 2000.

2. Q. Yang and Y. Desmedt. General perfectly secure message transmission using linear codes. In
Proc. Asiacrypt ’10, volume 6477 of LNCS, pages 448–465, 2010.

2 The only difference is that if (c′
ij , xij , j) ∈ Di, then the fixed protocol computes c′′

ij = c′
ij− (xij−cij)

instead of c′′
ij = c′

ij .
3 Note that c′′ is not a codeword. Instead, it is a corrupted decoding-end-vector, but correct information

can be decoded from it.

3

