
Graceful Degradation in Multi-Party Computation?

Martin Hirt1, Christoph Lucas1, Ueli Maurer1, and Dominik Raub2

1 Department of Computer Science, ETH Zurich, Switzerland
{hirt, clucas, maurer}@inf.ethz.ch

2 Department of Computer Science, University of Århus, Denmark
raub@cs.au.dk

Abstract. The goal of Multi-Party Computation (MPC) is to perform an arbitrary computation in a
distributed, private, and fault-tolerant way. For this purpose, a fixed set of n parties runs a protocol
that tolerates an adversary corrupting a subset of the participating parties, and still preserves certain
security guarantees.
Most MPC protocols provide security guarantees in an all-or-nothing fashion: Either the set of cor-
rupted parties is tolerated and the protocol provides all specified security guarantees, or the set of
corrupted parties is not tolerated and the protocol provides no security guarantees at all. Similarly,
corruptions are in an all-or-nothing fashion: Either a party is fully honest, or it is fully corrupted.
For example, an actively secure protocol is rendered completely insecure when just one party is cor-
rupted additionally to what is tolerated, even if all corrupted parties are only passive.
In this paper, we provide the first treatment of MPC with graceful degradation of both security and
corruptions. First of all, our protocols provide graceful degradation of security, i.e., different security
guarantees depending on the actual number of corrupted parties: the more corruptions, the weaker
the security guarantee. We consider all security properties generally discussed in the literature (se-
crecy, correctness, robustness, fairness, and agreement on abort). Furthermore, the protocols provide
graceful degradation with respect to the corruption type, by distinguishing fully honest parties, pas-
sively corrupted parties, and actively corrupted parties. Security can be maintained against more
passive corruptions than is possible for active corruptions.
We focus on perfect security, and prove exact bounds for which MPC with graceful degradation of
security and corruptions is possible for both threshold and general adversaries. Furthermore, we
provide protocols that meet these bounds. This strictly generalizes known results on hybrid security
and mixed adversaries.

Keywords: Multi-party computation, graceful degradation, hybrid security, mixed adversaries.

1 Introduction

1.1 Secure Multi-Party Computation

Multi-Party Computation (MPC) allows a set of n parties to securely perform an arbitrary com-
putation in a distributed manner, where security means that secrecy of the inputs and correct-
ness of the output are maintained even when some of the parties are dishonest. The dishonesty
of parties is typically modeled with a central adversary who corrupts parties. The adversary
can be passive, i.e., she can read the internal state of the corrupted parties, or active, i.e., she can
make the corrupted parties deviate arbitrarily from the protocol.

MPC was originally proposed by Yao [Yao82]. The first general solution was provided
in [GMW87], where, based on computational intractability assumptions, security against a pas-
sive adversary was achieved for t < n corruptions, and security against an active adversary
was achieved for t < n

2 corruptions. In [BGW88,CCD88], information-theoretic security was
achieved at the price of lower corruption thresholds, namely t < n

2 for passive and t < n
3

for active adversaries. The latter bound can be improved to t < n
2 if both broadcast channels

are assumed and a small error probability is tolerated [RB89,Bea89]. These results were gen-
eralized to the non-threshold setting, where the corruption capability of the adversary is not

? An extended abstract of this paper appeared at ICITS 11 [HLMR11]. This work was partially supported by the
Zurich Information Security Center.

specified by a threshold t, but rather by a so-called adversary structure Z , a monotone collec-
tion of subsets of the player set, where the adversary can corrupt the players in one of these
subsets [HM97].

All mentioned protocols achieve full security, i.e., secrecy, correctness, and robustness. Se-
crecy means that the adversary learns nothing about the honest parties’ inputs and outputs
(except, of course, for what she can derive from the corrupted parties’ inputs and outputs).
Correctness means that all parties either output the right value or no value at all. Robustness
means that the adversary cannot prevent the honest parties from learning their respective out-
puts. This last requirement turns out to be very strong. Therefore, relaxations of full secu-
rity have been proposed, where robustness is replaced by weaker output guarantees: Fairness
means that the adversary can possibly prevent the honest parties from learning their outputs,
but then also the corrupted parties do not learn their outputs. Agreement on abort means that
the adversary can possibly prevent honest parties from learning their output, even while cor-
rupted parties learn their outputs, but then the honest parties at least reach agreement on this
fact (and typically make no output). Note that for example [GMW87] achieves secrecy, cor-
rectness, and agreement on abort (but neither robustness nor fairness) for up to t < n active
corruptions.

1.2 Graceful Degradation

Most MPC protocols in the literature do not degrade very gracefully. They provide a very high
level of security up to some threshold t, but no security at all beyond this threshold. There are
no intermediate levels of security.3 Furthermore, a party is considered either fully honest or
fully corrupted. There are no intermediate levels of corruptions.

Note that many papers in the literature consider several corruption types, or even several
levels of security, but in separate protocols. For example, [BGW88] proposes a protocol for
passive security with t < n

2 , and another protocol for active security with t < n
3 . There is no

graceful degradation: If in the active protocol, some passive adversary corrupts dn
3 e parties, the

protocol is insecure.
Graceful degradation was first considered by Chaum [Cha89]: He proposed one protocol

with graceful degradation of security, namely from information-theoretic security (few cor-
ruptions) over computational security (more corruptions) to no security (many corruptions),
and another, independent protocol with graceful degradation of corruptions, namely by con-
sidering fully honest, passively corrupted, and actively corrupted parties in the same proto-
col execution. The former protocol (graceful degradation of security, often called hybrid se-
curity) was recently generalized in [FHHW03,FHW04,IKLP06,Kat07,LRM10]. The latter pro-
tocol (graceful degradation of corruptions, often called mixed security) was generalized and
extended in [DDWY93,FHM98,FHM99,BFH+08,HMZ08].

1.3 Our Focus

In this work, we consider simultaneously graceful degradation of security (i.e., hybrid secu-
rity) and graceful degradation of corruptions (i.e., mixed adversaries), both in the threshold
and in the general adversary setting. In the threshold setting, we consider protocols with four
thresholds tc (for correctness), ts (for secrecy), tr (for robustness), and tf (for fairness).4 We
assume that ts ≤ tc and tr ≤ tc, since secrecy and robustness are not well defined in a setting
without correctness. Furthermore, we assume that tf ≤ ts since in a setting without secrecy
the adversary inherently has an unfair advantage over honest parties.

3 The same observation holds for known protocols for general adversaries.
4 If the number of corruptions is below multiple thresholds, all corresponding security properties are achieved. In

particular, full security is achieved if the number of corruptions is below all thresholds.

2

Furthermore, we also consider graceful degradation with respect to the corruption type: We
consider, at the same time, honest parties, passively corrupted parties, and actively corrupted
parties (so-called mixed adversaries). Such an adversary is characterized by two thresholds ta
and tp, where up to tp parties can be passively corrupted, and up to ta of these parties can even
be corrupted actively. Note that tp denotes the upper bound on the total number of corruptions
(active as well as purely passive), and ta denotes the upper bound on the number of actively
corrupted parties (hence, ta ≤ tp).

In the non-threshold setting, security is characterized by four adversary structures Zc, Zs,
Zr, Zf , where correctness, secrecy, robustness, and fairness are guaranteed as long as the set
of corrupted players is contained in the corresponding adversary structure.5 As argued above,
we assume thatZs ⊆ Zc,Zr ⊆ Zc andZf ⊆ Zs. In order to model both passive and active cor-
ruptions, each adversary structure consists of tuples (D, E) of subsets of the player set, where E
is the set of passively (eavesdropping), and D ⊆ E is the set of actively (disruption) corrupted
parties. A protocol with adversary structure Z provides security guarantees for every adver-
sary actively corrupting the parties in D and passively corrupting the parties in E , for some
(D, E) ∈ Z .

Note that the notion of correctness for a security level without secrecy differs from the
usual interpretation: The adversary is rushing and may know the entire state of the protocol
execution. Hence, input-independence cannot be achieved. Furthermore, for the same reason,
we can have probabilistic computations only with adversarially chosen randomness.

1.4 Contributions

We provide the first MPC protocol with graceful degradation in multiple dimensions: We con-
sider all security properties generally discussed in the literature (secrecy, correctness, robust-
ness, fairness, and agreement on abort), and the most prominent corruption types (active, pas-
sive). We prove a tight bound on the feasibility of perfectly-secure MPC, both in the threshold
and the non-threshold setting, and provide efficient perfectly-secure general MPC protocols
matching these bounds.6 Our main results (Theorems 1 and 2) are a strict generalization of the
previous results for perfect MPC, which appear as special cases in our unified treatment. For
the sake of simplicity, we do not include fail corruption [BFH+08]. Note that fairness is not
discussed in the protocol descriptions, but in Section 4.

Previous results for perfectly secure MPC considered graceful degradation only of corrup-
tion levels, i.e., the known protocols always provide full security. Usually, the intuition behind
the different corruption types is that passively corrupted parties only aim to break secrecy,
whereas actively corrupted parties aim to break correctness (and/or robustness). However,
this analogy does not readily extend to mixed adversaries that simultaneously perform pas-
sive and active corruptions. Our model separates the different security properties, and there-
fore allows to make precise statements formalizing the above intuition. This indicates that our
model is both natural and appropriate.

1.5 Motivating Example

The strength of our result is the possibility to provide protocols that are tailored much more
precisely to the security requirements of a specific setting than previous solutions: As a simple
example consider voting. A solution based on a traditional perfectly secure MPC protocol,
e.g. [BGW88], achieves secrecy and correctness for up to t < n

3 corrupted parties, but provides

5 As in the threshold case, if the set of corrupted parties is contained in multiple adversary structures, all corre-
sponding security properties are achieved.

6 The protocols are efficient in the input length, i.e. the threshold protocol is efficient in the number of parties and
the size of the circuit to be computed, whereas the protocol for general adversaries is efficient in the size of the
adversary structure and the size of the circuit.

3

no guarantees if t ≥ n
3 . However, in voting it is generally much more important that the final

tally is correct than to protect the secrecy of votes. Our protocol allows to reduce secrecy to
t = n

8 corrupted parties, while guaranteeing correctness for t < 3n
4 actively corrupted parties

(and additionally arbitrarily many passively corrupted parties). This protocol is robust for
up to t = n

8 corruptions. It is also possible to trade correctness for robustness: By reducing
the correctness guarantee to t < n

2 corruptions, robustness is guaranteed for up to t = 3n
8

corruptions.

1.6 Model

We consider n parties 1, . . . , n, connected by pairwise synchronous secure channels, who want
to compute some probabilistic function over a finite field F, represented as a circuit with input,
addition, multiplication, random, and output gates. This function can be reactive, where par-
ties can provide further inputs after having received some intermediate outputs. In the main
body of this paper, we assume that authenticated broadcast channels are given. The model
without broadcast channels is treated in Appendix B.

There is a central adversary with unlimited computing power who corrupts some parties
passively (and reads their internal state) or even actively (and makes them misbehave arbi-
trarily). We denote the actual sets of actively (passively) corrupted parties by D∗ (E∗), where
D∗ ⊆ E∗. Uncorrupted parties are called honest, non-active parties are called correct. The secu-
rity of our protocols is perfect, i.e., information-theoretic with no error probability. The level of
security (secrecy, correctness, fairness, robustness, agreement on abort) depends on (D∗, E∗).

For ease of notation, we assume that if a party does not receive an expected message (or
receives an invalid message), a default message is used instead.

1.7 Outline of the Paper

Our paper is organized as follows: As a main technical contribution, we generalize known
protocols for threshold and general adversaries in Sections 2 and 3. In Section 4, we state opti-
mal bounds for MPC, together with proofs of sufficiency. Tightness of the bounds is proven in
Section 5.

2 A Parametrized Protocol for Threshold Adversaries

In this section, we generalize the perfectly secure MPC protocol of [BGW88] by introducing
two parameters. On an abstract level, our modifications can be described as follows: First,
we define the state that is held in the protocol in terms of a parameter that influences the
secrecy. In case of [BGW88], this is the degree d of the sharing polynomial (see also [FHM98]).
Second, given the parameter d for secrecy, we express the reconstruct protocol in terms of
an additional parameter determining the amount of error correction taking place. Traditional
protocols correct as many errors as possible. By using a parameter, our protocol may stay
below the theoretical limit, thereby providing extended error detection. In case of [BGW88],
this parameter is the number e of corrected errors during reconstruction. To our knowledge,
such a second parameter has not been considered before. The two parameters must fulfill d +
2e < n. Note that by choosing d + 2e 6= n − 1, it is possible to reduce robustness for extended
correctness. In [BGW88], both parameters are set to d = e = t, the maximum number of actively
corrupted parties.

In the following, we present the parametrized protocols and analyze them with respect to
correctness, secrecy, and robustness. Note that fairness is discussed in Section 4.

4

2.1 The Underlying Verifiable Secret Sharing

The state of the protocol is maintained with a Shamir sharing [Sha79] of each value. We assume
that each party i is assigned a unique and publicly known evaluation point αi ∈ F \ {0}. This
implies that the field F must have more than n elements.

Definition 1 (d-Sharing). A value s is d-shared when there is a share polynomial ŝ(x) of degree d
with ŝ(0) = s, and every party i holds a share si = ŝ(αi). We denote a d-sharing of s with [s], and the
share si with [s]i. A sharing degree d is t-permissive if the shares of all but t parties uniquely define
the secret, i.e., n− t > d.

Lemma 1. Let d < n be the sharing degree. A d-sharing is secret if |E∗| ≤ d, and uniquely defines a
value if d is |D∗|-permissive.

Proof. It follows directly from the properties of a polynomial of degree d that secrecy is guar-
anteed if the number |E∗| of (actively or passively) corrupted parties is at most d. Furthermore,
n− |D∗| > d implies that there are at least d + 1 correct parties whose shares uniquely define a
share polynomial. ut

The share protocol takes as input a secret s from a dealer, and outputs a d-sharing [s] (see
Figure 1).

SHARE: Given input s from the dealer, SHARE computes a d-sharing [s] of this value.

1. The dealer chooses a random (2-dimensional) polynomial g(x, y) with g(0, 0) = s, of degree d in both
variables, and sends to party i (for i = 1, . . . , n) the (1-dimensional) polynomials ki(y) = g(αi, y) and
hi(x) = g(x, αi).

2. For each pair of parties (i, j), party i sends hi(αj) to party j, and party j checks whether hi(αj) = kj(αi). If
this check fails, it broadcasts a complaint, and the dealer has to broadcast the correct value.

3. If some party i observes an inconsistency between the polynomials received in Step 1 and the broadcasted
value in Step 2, it accuses the dealer. The dealer has to answer the accusation by broadcasting both ki(y)
and hi(x). Now, if some other party j observes an inconsistency between the polynomial received in Step 1
and these broadcasted polynomials, it also accuses the dealer. This step is repeated until no additional party
accuses the dealer.

4. If the dealer does not answer some complaint or accusation, or if the broadcasted values contradict, the
parties output a default d-sharing. Otherwise, each party i outputs si := ki(0), and the dealer outputs
ŝ(x) := g(x, 0).7

Fig. 1. The Share Protocol.

Lemma 2. Let d < n be the sharing degree. On input s from the dealer, SHARE correctly, secretly, and
robustly computes a d-sharing. If d is |D∗|-permissive, and if the dealer is correct, the sharing uniquely
defines the secret s.

Proof. Secrecy: In Step 1, the dealer distributes a bivariate polynomial g(x, y), that contains a
d-sharing of its input s. It follows from the properties of a bivariate polynomial that g(x, y)
reveals no more information about s than the d-sharing. After Step 1, the adversary does not
obtain any additional information. Hence, the protocol does not leak more information than
the specified output, and thus always provides secrecy.

Correctness: First, we have to show that the protocol outputs a valid d-sharing. Due to the
bilateral consistency checks, the shares held by correct parties are always consistent, which
implies already a valid d-sharing. Second, we have to show that if d is |D∗|-permissive and if

7 That means, in general we discard the second dimension of g(x, y). Yet, in a special context, we will subsequently
make use of it.

5

the dealer is correct, then the shared value equals the input of the dealer. A correct dealer can
always consistently answer all complains and accusations with the correct values. Hence, if d
is |D∗|-permissive, the unique value defined by the sharing is the secret s.

Robustness: By inspection, the protocol always outputs some correct d-sharing. ut

The public reconstruction of a d-shared value s uses techniques from coding theory, which
allow a more intuitive understanding of the trade-off between correctness and robustness. It
follows from coding theory that a d-sharing is equivalent to a code based on the evaluation
of a polynomial of degree d. Such a code has minimal distance n − d. Hence, the decoding
algorithm can detect up to n − d − 1 errors and abort (for correctness), or correct up to n−d−1

2
errors (for robustness). In our protocol, we trade correctness for robustness by introducing the
correction parameter e < n−d

2 : Our decoding algorithm provides error correction for up to e
errors, and error detection for up to (n − d) − e − 1 errors. Note that this trade-off is optimal:
If the distance to the correct codeword is greater than (n − d) − e − 1, the distance to the next
codeword is at most e, and the decoding algorithm would decode to the wrong codeword.

The public reconstruction protocol (Figure 2) proceeds as follows: First, each party broad-
casts its share si. Then, each party locally “decodes” the broadcasted shares to the closest code-
word, and aborts if the Hamming distance between the shares and the decoded codeword is
larger than e. Note that during public reconstruction, there is no secrecy requirement.

PUBLIC RECONSTRUCTION : Given a d-sharing [s] of some value s, PUBLIC RECONSTRUCTION reconstructs s to
all parties.

1. Each party i broadcasts its share si. Let s = (s1, ..., sn) denote the vector of broadcasted shares.
2. Each party identifies the closest codeword sc (e.g. using the Berlekamp-Welch algorithm). If the Hamming

distance between sc and s is larger than e, the protocol is aborted. Otherwise, each party interpolates the
entries in sc with a polynomial ŝc(x) of degree d, and outputs ŝc(0).8

Fig. 2. The Public Reconstruction Protocol.

Lemma 3. Let d be the sharing degree, and e be the correction parameter, where d + 2e < n. Given a
d-sharing [s] of some value s, PUBLIC RECONSTRUCTION is correct if |D∗| < (n − d) − e, is robust
if |D∗| ≤ e, and always guarantees agreement on abort.

Proof. Only actively corrupted parties broadcast incorrect shares. Hence, the Hamming dis-
tance between the broadcasted shares and the correct codeword is at most |D∗|.

Correctness: The minimal distance between two codewords is (n − d), and the decoding
algorithm corrects up to e errors. Hence, if |D∗| + e < (n − d), the decoding algorithm never
decodes to the incorrect codeword.

Robustness: If |D∗| ≤ e, the Hamming distance between the shares and the correct codeword
is at most e and the decoding cannot be aborted.

Agreement on abort: The abort decision is only based on broadcasted values. Hence, either
all correct parties abort, or all correct parties continue. ut

During PUBLIC RECONSTRUCTION, all parties learn the value under consideration. PRIVATE

RECONSTRUCTION, where a value s is disclosed only to a single party k, can be reduced to
PUBLIC RECONSTRUCTION using a simple blinding technique ([CDG88]): Party k first shares
a uniform random value, which is added to s before PUBLIC RECONSTRUCTION is invoked.
Hence, PRIVATE RECONSTRUCTION provides the same security guarantees as PUBLIC RECON-
STRUCTION, and additionally provides secrecy of the reconstructed value. Note that the trivial
solution, where each party sends its share to party k, does not achieve agreement on abort.

8 That means, in general we discard the vector of corrected shares sc. Yet, in a special context, we will subsequently
make use of it.

6

2.2 Addition, Multiplication, and Random Values

Linear functions (and in particular additions) can be computed locally, since d-sharings are
linear: Given sharings [a] and [b], and a constant c, one can easily compute the sharings [a]+[b],
c[a], and [a]+c. Computing a shared random value can be achieved by letting each party i share
a random value ri, and computing [r] = [r1] + . . . + [rn].

The multiplication protocol is more involved. The product c of two shared values a and b
is computed as follows [GRR98]: Each party multiplies its shares ai and bi, obtaining vi = aibi.
This results in a sharing of c with a polynomial v̂(x) of degree 2d. We reduce the degree by
having each party d-share its value vi (resulting in [vi]), and employing Lagrange interpolation
to distributedly compute v̂(0). This results in a d-sharing of the product c.

This protocol is secure only against passive adversaries. An active adversary could share
a wrong value v′i 6= vi. Therefore, each party has to prove that it shared the correct value
vi = aibi. This proof requires that ai and bi are d-shared, which we achieve by upgrading the
d-sharings of a and b, resulting in [ai] and [bi] for all i.

Given [ai], [bi], and [vi], it remains to show that aibi = vi, which is equivalent to z = 0 for
[z]2d := [ai][bi] − [vi], where [z]2d is a 2d-sharing. Party i knows the sharing polynomial g(x)
corresponding to [z]2d. However, party i cannot simply broadcast g(x), since this would violate
secrecy (the adversary could obtain information about other shares). Therefore, we blind [z]2d

by adding a uniformly random 2d-sharing of 0.
Finally, all parties (locally) check whether z = 0, and whether party i broadcasted the

correct polynomial g(x), i.e. for party j whether g(αj) = [z]2d
j . Two polynomials of degree 2d

are equal if they coincide in 2d + 1 points. So, if party i broadcasts an incorrect g(x), and if
there are at least 2d + 1 correct parties, at least one correct party detects the cheating attempt
and raises an accusation. To prove the accusation, the shares of the corresponding party are
reconstructed.

MULTIPLICATION : Given [a] and [b], the multiplication protocol computes [c] for c = ab.

1. Each party i computes vi = aibi, and invokes SHARE on vi, resulting in [vi].
2. Invoke UPGRADE on [a] and [b], resulting in [ai] and [bi] for i = 1, . . . , n.
3. For i = 1, . . . , n, all parties invoke ABC-PROOF on [ai], [bi], and [vi]. If the proof is rejected, invoke PUBLIC

RECONSTRUCTION on [ai] and [bi], and use a default d-sharing of vi := aibi.
4. All parties distributedly compute the Lagrange interpolation9 on [v1], . . . , [vn] for c = v(0), and output the

resulting [c].

Fig. 3. The Multiplication Protocol.

Lemma 4. Let d be the sharing degree, and e be the correction parameter, where d + 2e < n. Given
d-sharings of a and b, MULTIPLICATION outputs a correct d-sharing of the product c = ab if 2d < n
and if the subprotocols are correct, is secret if the subprotocols are secret and correct, and robust if the
subprotocols are robust.

Proof. By assumption, all subprotocols are secure. In Step 4, the parties interpolate a polyno-
mial of degree 2d using n evaluation points. This interpolation computes the correct result only
if 2d < n, which is given by assumption. Hence, security of the multiplication protocol follows
straightforwardly.

We first present the UPGRADE protocol (Figure 4): Given a d-sharing [s] for some value s, the
UPGRADE protocol computes d-sharings [si] of all shares si.

9 Note that Lagrange interpolation is a linear and therefore local computation on the shares of v1, . . . , vn.

7

UPGRADE: Given [s], UPGRADE computes [si] for i = 1, . . . , n.

1. All parties jointly compute a sharing of a random value r, such that each share rj is also shared with a
d-sharing:
(a) Each party i chooses a uniformly random value r(i), and invokes SHARE on r(i). By keeping the second

dimension at the end of SHARE, this results in a d-sharing [r(i)], where additionally every share r
(i)
j is

d-shared with [r
(i)
j].

(b) All parties compute [r] =
Pn

i=1[r
(i)] and [rj] =

Pn
i=1[r

(i)
j] for j = 1, . . . , n.

2. All parties compute [q] := [r] − [s] and invoke PUBLIC RECONSTRUCTION on [q]. Denote by q1, . . . , qn the
(error-corrected) shares, which are known to all parties.

3. For j = 1 . . . n, all parties compute [s′j] = [rj] − qj , where s′j is a share of some value s′.
4. Each party i outputs its share s′i of s′, a d-sharing [s′i] of s′i, and for all j a share-share of s′j .

Fig. 4. Upgrading a d-sharing.

Lemma 5. Let d be the sharing degree, and e be the correction parameter, where d + 2e < n, and
assume that SHARE and PUBLIC RECONSTRUCTION are secure. Given a d-sharing of some value s,
UPGRADE correctly, robustly, and secretly computes a d-sharing of each share si.

Proof. The proof follows directly from the observation that the protocol is as secure as SHARE

and PUBLIC RECONSTRUCTION: Let ĝ(x, y) be the polynomial with which r is shared, and
ŝ(x) be the polynomial with which s is shared. Correctness follows from the observation that
in Step 3 the parties compute ĥ(x, y) = ĝ(x, y) − q̂(x) = ĝ(x, y) − (ĝ(x, 0) − ŝ(x)). Hence,
ĥ(x, 0) = ŝ(x) (and s′i = si and s′ = s) and h(αi, y) is a random10 polynomial of degree d,
as required. Note that secrecy is guaranteed in the sense that the protocol does not leak more
information than the specified output.

Next, we present a protocol that allows to prove that a given sharing contains the product of
the values of two other given sharings (Figure 5).

ABC-PROOF : Given [ai], [bi], and [vi] that are known to party i, ABC-PROOF checks whether vi = aibi.

1. All parties compute a 2d-sharing of 0, such that party i knows the sharing polynomial [BGW88]:
(a) Party i chooses uniformly random values r1, . . . , rd and invokes SHARE with degree d on each of the

values, resulting in [r1], . . . , [rd].
(b) All parties compute [0]2d = xd[rd] + . . . + x1[r1].

(i.e. each party j computes [0]2d
j = αd

j [rd]j + . . . + α1
j [r1]j)

2. (a) All parties compute [w]2d := [ai][bi], i.e. each party j locally computes wj := [ai]j [bi]j .
(b) All parties compute [z]2d := [0]2d + [w]2d − [vi].

(Note that party i knows the sharing polynomial g(x) of [z]2d.)
3. Party i broadcasts g(x). If g(x) has a degree greater than 2d or g(0) 6= 0, all parties output reject.
4. Each party j checks that g(αj) = [z]2d

j . If this check fails, it raises a complaint.
5. For each complaining party j, all parties open the four shares [ai]j , [bi]j , [vi]j , and [0]2d

j . The complaint holds
if g(αj) 6= [0]2d

j + [ai]j [bi]j − [vi]j .
For the opening of [ai]j , invoke UPGRADE on [ai], and then PUBLIC RECONSTRUCTION on the d-sharing of
the share [ai]j ([bi]j and [vi]j accordingly). Opening of [0]2d

j is done by opening [r1]j , . . . , [rd]j , and comput-
ing [0]2d

j = αd
j [rd]j + . . . + α1

j [r1]j .
6. If any complaint holds, output reject. Otherwise output correct.

Fig. 5. A Protocol for proving that c = ab.

Lemma 6. Let d be the sharing degree, and e be the correction parameter, where d + 2e < n, and
assume that SHARE and PUBLIC RECONSTRUCTION are secure. Given d-sharings [ai], [bi], and [vi],

10 Actually, the d-sharings [si] are only (d + 1)-wise independent. However, this does not affect security.

8

ABC-PROOF is correct if |D∗| < n− 2d, is secret given that the subprotocols are correct, and is always
robust.

Proof. Secrecy: If party i is correct, then [0]2d (Step 1) is a uniformly random 2d-sharing of the
value 0 [BGW88]. Hence, the same holds for the sharing [z]2d computed in Step 2. If in Step 5
the shares of a party j are reconstructed, either party i or party j are actively corrupted. Hence,
the adversary knew these shares already beforehand.

Correctness: We are guaranteed that the sharing degree of [ai], [bi], and [vi] is d, that g(x) is a
polynomial of degree 2d, and that [0]2d is a 2d-sharing containing the value 0 (by construction),
Now, if g(x) = 0 and g(x) is the sharing polynomial corresponding to [z]2d = [0]2d + [ai][bi] −
[vi], then vi = aibi. Therefore, we only need to verify that the broadcasted polynomial g(x) is
correct.

In Step 3, the sharing polynomial of [z]2d is fixed. Assume that, in this step, party i broad-
casts a wrong polynomial g′(x).11 Note that g′(x) has to be also of degree 2d. Now, if two
polynomials of degree 2d coincide in at least 2d + 1 points, then they are equal. Hence, if
n− |D∗| ≥ 2d + 1 (i.e. if there are at least 2d + 1 correct parties), and if for each correct party j
it holds that g(αj) = [z]2d

j , the polynomials must be equal.
Furthermore, correctness can be violated if the adversary can provoke a correct proof to be

rejected. For this purpose, the adversary has to provoke an incorrect opening in Step 5, which
is excluded by assumption.

Robustness and Agreement on abort: Both security requirements depend only on the subpro-
tocols.

2.3 The Security of the Parametrized Protocol

Considering the security of the protocols described above, we can derive the security of the
parametrized protocol, denoted by πd,e (proof ommitted):

Lemma 7. Let d be the sharing degree, and e be the correction parameter, where d + 2e < n. Protocol
πd,e guarantees correctness if |D∗| < (n − d) − e and |D∗| < n − 2d, secrecy if |E∗| ≤ d and
correctness is guaranteed, robustness if |D∗| ≤ e, and agreement on abort always.

3 A Parametrized Protocol for General Adversaries

For general adversaries, we proceed along the lines of the threshold case: We generalize the
protocol of [Mau02] and introduce the sharing specification S = (S1, . . . , Sk) (corresponding
to the sharing degree d), and the correction structure C = {C1, . . . , Cl} (corresponding to the
correction parameter e), both collections of subsets of P .

3.1 The Underlying Verifiable Secret Sharing

The state of the protocol is maintained with a k-out-of-k sharing, where each party holds sev-
eral summands.

Definition 2 (S-Sharing). A value s is S-shared for sharing specification S = (S1, . . . , Sk) if there
are values s1, . . . , sk, such that s1 + . . . + sk = s and, for all i, every (correct) party j ∈ Si holds the
summand si. A sharing specification S is D-permissive, if each summand is held by at least one party
outside D, i.e. ∀i : Si \ D 6= ∅.

Lemma 8. Let S be the sharing specification. An S-sharing is secret if ∃Si ∈ S : Si ∩ E∗ = ∅, and
uniquely defines a value if S is D∗-permissive.
11 E.g. one that hides the fact that vi 6= ab, i.e. the adversary sets g′(0) = 0 and selects 2d evaluation points α where

g′(α) = g(α).

9

Proof. Secrecy follows from the fact that E∗ lacks at least one summand si. Furthermore, given
that S isD∗-permissive, each summand si is held by at least one correct party. Hence, the secret
s is uniquely defined by s = s1 + . . . + sk. ut

The share protocol takes as input a secret s from a dealer, and outputs an S-sharing of the
secret s (see Figure 6).

SHAREGA : Given input s from the dealer, SHAREGA computes an S-sharing of this value.

1. Let k = |S|. The dealer chooses uniformly random summands s1, . . . , sk−1 and computes sk = s +
Pk−1

i=1 si.
Then, the dealer sends si to every party j ∈ Si.

2. For all Si ∈ S: Every party j ∈ Si sends si to every other party in Si. Then, every party in Si broadcasts a
complaint bit, indicating whether it observed an inconsistency.

3. The dealer broadcasts each summand si for which inconsistencies were reported, and the players in Si accept
this summand. If the dealer does not broadcast a summand si, the parties use si = 0.

4. Each party j outputs its share {si | j ∈ Si}.

Fig. 6. The Share Protocol for General Adversaries.

Lemma 9. Let S be the sharing specification. On input s from the dealer, SHAREGA correctly, secretly
and robustly computes an S-sharing. If S is D∗-permissive, and if the dealer is correct, the sharing
uniquely defines the secret s.

Proof. Secrecy: Given a correct dealer, a valid S-sharing is distributed in the first step. In the
remaining protocol run, no additional information is revealed to the adversary: A summand si

is broadcasted only if a party j with j ∈ Si reported an inconsistency. Yet, such an inconsistency
occurs only if one of the parties in Si is actively corrupted, i.e., when the adversary knew the
value already beforehand.

Correctness: First, we have to show that the protocol outputs a valid S-sharing. Due to the
bilateral checks, the summands held by correct parties are always consistent, which implies
already a valid S-sharing. Second, we have to show that if S is D∗-permissive and if the dealer
is correct, then the shared value equals the input of the dealer. A correct dealer always responds
on reported inconsistencies with the original summands. Hence, the unique value defined by
the sharing is the secret s.

Robustness: It follows from inspection that the protocol cannot be aborted. ut

For the public reconstruction12 of a shared value, we modify the reconstruction protocol of
[Mau02]. In our protocol, we trade correctness for robustness by introducing a correction struc-
ture C. First, each summand si is broadcasted by all parties in Si. Then, if the inconsistencies
can be explained with a faulty set C ∈ C, the values from parties in C are ignored (corrected),
and reconstruction proceeds. Otherwise, the protocol is aborted.

Note that, whenever two sets of possibly actively corrupted parties cover a set Si ∈ S,
i.e. Si ⊆ D1 ∪ D2, and the parties in D1 contradict the parties in D2, then it is impossible
to decide which is the correct value. This observation implies an upper bound on C, namely
∀S ∈ S, C1, C2 ∈ C : S 6⊆ C1 ∪ C2. However, instead of always correcting as many errors
as possible, the protocol allows to select a structure C that remains below this upper bound
(i.e. contains smaller sets C). Now, when correcting errors in a set C ∈ C, we can detect errors
in sets D where ∀Si ∈ S, C ∈ C : Si 6⊆ D∪C. Hence, this approach provides a tradeoff between
reduced robustness and extended correctness.

Lemma 10. Let S be the sharing specification, and C be the correction structure, where ∀S ∈ S, C1, C2 ∈
C : S 6⊆ C1 ∪ C2. Given an S-sharing of some value s, PUBLIC RECONSTRUCTIONGA is correct if
∀C ∈ C, S ∈ S : S \ C 6⊆ D∗, is robust if D∗ ∈ C, and always guarantees agreement on abort.
12 The reduction of private to public reconstruction can be done along the lines of the threshold case.

10

PUBLIC RECONSTRUCTIONGA : Given an S-sharing of some value s, PUBLIC RECONSTRUCTIONGA reconstructs
s to all parties.

1. For each summand si:
(a) Each party j ∈ Si broadcasts si. For j ∈ Si, let s

(j)
i denote the value (for si) broadcasted by party j.

(b) Each party (locally) reconstructs the summand si: If there is a value si such that there exists C ∈ C with
s
(j)
i = si for all j ∈ Si \ C, use si. Otherwise abort.

2. Each party outputs the secret s = s1 + . . . + sk.

Fig. 7. The Public Reconstruction Protocol for General Adversaries.

Proof. Correctness: The condition ∀C ∈ C, S ∈ S : S \ C 6⊆ D∗ states that for every summand si

and every set C ∈ C, there is at least one correct party whose summand is not ignored. Hence,
if a value si is chosen, it must be the correct one.

Robustness: When reconstructing the summand si, all but the actively corrupted parties in
D∗ broadcast the same summand si. If D∗ ∈ C, these inconsistencies can be explained with a
set in C. Hence, the corresponding set can be ignored and reconstruction terminates without
abort.

Agreement on abort: The abort decision is based only on broadcasted values. Hence, either
all correct parties abort, or all correct parties continue. ut

3.2 Addition, Multiplication, and Random Values

Linear functions (and in particular additions) can be computed locally, since S-sharings are
linear. In particular, given sharings of a and b, and a constant c, one can easily compute the
sharings of a + b, ca, and a + c. Computing a shared random value can be achieved by letting
each party i share a random value ri, and computing a sharing of r = r1 + . . . + rn.

For the multiplication of two values a and b, we use the protocol from [Mau02], based on
our modified share and reconstruct protocols. The multiplication protocol exploits the fact that
ab =

∑k
i=1

∑k
j=1 aibj : For each aibj , first, all parties who know ai and bj compute aibj and share

it. Then, all parties choose a (correct) sharing of aibj . In the end, each party locally computes
the linear function described above. In order to choose a correct sharing of aibj , the protocol
checks whether all parties that computed aibj shared the same value. If this holds, and if at
least one correct party shared aibj , all sharings contain the correct value, and an arbitrary one
can be chosen. Otherwise, at least one party is actively corrupted, and the summands ai and bj

can be reconstructed without violating secrecy.

MULTIPLICATIONGA : Given S-sharings of some values a =
Pk

i=1 ai and b =
Pk

i=1 bi, MULTIPLICATION com-
putes an S-sharing of the product c = ab.

1. For each pair Si, Sj ∈ S:
(a) Each party in Si ∩ Sj computes aibj and invokes SHAREGA on it.
(b) All parties (distributedly) compute the difference of the value shared by the party with the smallest

index in Si ∩ Sj and each other party in Si ∩ Sj , and invoke PUBLIC RECONSTRUCTIONGA on it.
(c) If all these opened differences are 0, then the sharing by the party with the smallest index in

Si ∩ Sj is used as the sharing of aibj . Otherwise, ai and bj are reconstructed along the lines of
PUBLIC RECONSTRUCTIONGA, and a default sharing of aibj is used.

2. The parties (distributedly) compute the sum of their sharings of all terms aibj , resulting in a sharing of
c = ab.

Fig. 8. The Multiplication Protocol for General Adversaries.

Lemma 11. Let S be the sharing and C be the correction structure, where ∀S ∈ S, C1, C2 ∈ C : S 6⊆
C1 ∪ C2. Given S-sharings of a and b, MULTIPLICATION outputs a correct S-sharing of the product

11

c = ab if ∀Si, Sj ∈ S : Si ∩ Sj 6⊆ D∗ and the subprotocols are correct,13 is secret if the subprotocols are
secret and correct, and is robust if the subprotocols are robust.

Proof. Secrecy: To break secrecy, the adversary has to provoke the reconstruction of summands
ai and bj where (Si ∩ Sj) ∩ D∗ = ∅, i.e. where the adversary either did not know ai or did
not know bj beforehand. Since (Si ∩ Sj) ∩ D∗ = ∅, only correct parties share the product aibj

(Step 1). Hence, given correct reconstruction (Step 2), all differences in Step 3 are 0, and the
summands are not reconstructed.

Correctness: Correctness for the summand of the product aibj is guaranteed given that re-
construction is correct, and if there is at least one correct party in Si∩Sj that correctly computes
and shares this value, which is guaranteed by the premise in the lemma.

Robustness and Agreement on abort: Both security requirements depend only on
PUBLIC RECONSTRUCTIONGA and SHAREGA.

3.3 The Security of the Generalized Protocol from [Mau02]

Considering the security of the protocols described above, we can derive the security of the
protocol described above, denoted by πS,C (proof ommitted):

Lemma 12. Let S be the sharing specification, and C be the correction structure, where ∀S ∈ S, C1, C2 ∈
C : S 6⊆ C1∪C2. The protocol πS,C guarantees correctness if ∀Si, Sj ∈ S : Si∩Sj 6⊆ D∗ and ∀C ∈
C, S ∈ S : S \C 6⊆ D∗, secrecy if ∃Si ∈ S : Si ∩ E∗ = ∅ and correctness is guaranteed, robustness if
D∗ ∈ C, and agreement on abort always.

4 The Main Results

The following theorems state the optimal bounds for perfectly secure MPC with graceful
degradation of both security (allowing for hybrid security) and corruptions (allowing for mixed
adversaries) for threshold as well as for general adversaries, given broadcast.14 Furthermore,
we show that the bounds are sufficient for MPC by providing parameters for the generalized
protocols introduced in Sections 2 and 3, respectively. In the following section, we prove that
the bounds are also necessary.

4.1 Threshold Adversaries

We consider a mixed adversary, which is characterized by a pair of thresholds (ta, tp): He may
corrupt up to tp parties passively, and up to ta of these parties even actively. The level of se-
curity depends on the number (|D∗|, |E∗|) of actually corrupted parties; the fewer parties are
corrupted, the more security is guaranteed. We consider four security properties, namely cor-
rectness, secrecy, robustness, and fairness. Depending on the actual number of corrupted par-
ties, different security properties are achieved. This is modeled with four pairs of thresholds,
one for each security requirement, specifying the upper bound on the number of corruptions
that the adversary may perform, such that the security requirement is still guaranteed. More
specifically, we consider the four pairs of thresholds (tca, t

c
p), (tsa, t

s
p), (tra, t

r
p), (tfa , tfp) and we as-

sume that (tra, t
r
p) ≤ (tca, t

c
p) and (tfa , tfp) ≤ (tsa, t

s
p) ≤ (tca, t

c
p),15 as secrecy and robustness are not

well defined without correctness, and as fairness cannot be achieved without secrecy. Then,
correctness with agreement on abort is guaranteed for (|D∗|, |E∗|) ≤ (tca, t

c
p), secrecy is guaran-

teed for (|D∗|, |E∗|) ≤ (tsa, t
s
p), robustness is guaranteed for (|D∗|, |E∗|) ≤ (tra, t

r
p), and fairness

is guaranteed for (|D∗|, |E∗|) ≤ (tfa , tfp). Trivially, if several of these conditions are satisfied, all

13 In particular ∀Si, Sj ∈ S : Si ∩ Sj 6= ∅, since otherwise no party can compute aibj .
14 The model without broadcast channels is treated in Appendix B.
15 We write (ts

a, ts
p) ≤ (tc

a, tc
p) as shorthand for ts

a ≤ tc
a and ts

p ≤ tc
p.

12

corresponding security properties are guaranteed. In particular, full security is guaranteed if
the conditions for all four security properties are fulfilled.

Theorem 1. In the secure channels model with broadcast and threshold adversaries, perfectly secure
MPC among n parties with thresholds (tca, t

c
p), (tsa, t

s
p), (tra, t

r
p), and (tfa , tfp), where (tra, t

r
p) ≤ (tca, t

c
p)

and (tfa , tfp) ≤ (tsa, t
s
p) ≤ (tca, t

c
p), is possible if(

tca + tsp + tra < n ∧ tca + 2tsp < n
)

∨ tsp = 0.

This bound is tight: If violated, there are (reactive) functionalities that cannot be securely computed.

Proof (Proof, Sufficiency). If tsp = 0, there is no secrecy requirement, and we can directly use the
trivial non-secret protocol described in Appendix A. Otherwise, we employ the parametrized
version πd,e of the protocol of [BGW88] described in Section 2 with d := tsp and e := max(tra, t

f
a).

The precondition of Lemma 7 is that d + 2e < n. Note that e = max(tra, t
f
a) ≤ tca. Hence for

our choice of parameters d and e, we have that d+e+e ≤ tsp+tca+max(tra, t
f
a). If max(tra, t

f
a) = tra,

the precondition of the lemma follows from the left-hand side of the condition in the theo-
rem. Otherwise, it follows from the right-hand side (note that tfa ≤ tsp). Hence, we can apply
the lemma to derive correctness, secrecy and robustness: Given the bound in the theorem,
the choice of the parameters d and e, and the fact that (|D∗|, |E∗|) is below the corresponding
threshold, it is easy to verify that the condition for each property is fulfilled.

For fairness, note that tfa ≤ e. Hence, for (|D∗|, |E∗|) ≤ (tfa , tfp) the protocol is robust, and
the adversary cannot abort. ut

The necessity of the bound in Theorem 1 is proven in Section 5. Note that the bound holds for
any (tfa , tfp) ≤ (tsa, t

s
p), and we can always have (tfa , tfp) = (tsa, t

s
p).

4.2 General Adversaries

The above characterization for threshold adversaries can be extended to general adversaries
by providing one adversary structure consisting of tuples (D, E) of subsets of P for each secu-
rity requirement, denoted by Zc, Zs, Zr, and Zf , respectively. Again, we have the assumption
that Zr ⊆ Zc and Zf ⊆ Zs ⊆ Zc, as secrecy and robustness are not well defined without cor-
rectness, and as fairness cannot be achieved without secrecy. Then, correctness with agreement
on abort is guaranteed for (D∗, E∗) ∈ Zc, secrecy is guaranteed for (D∗, E∗) ∈ Zs, robustness is
guaranteed for (D∗, E∗) ∈ Zr, and fairness is guaranteed for (D∗, E∗) ∈ Zf . Trivially, if several
of these conditions are satisfied, all corresponding security properties are guaranteed. In par-
ticular, full security is guaranteed if the conditions for all four security properties are fulfilled.

Theorem 2. In the secure channels model with broadcast and general adversaries, perfectly secure
MPC among n parties with respect to (Zc,Zs,Zr,Zf), where Zr ⊆ Zc and Zf ⊆ Zs ⊆ Zc, is
possible if

∀(Dc, ·) ∈ Zc, (·, Es
1), (·, Es

2) ∈ Zs, (Dr, ·) ∈ Zr : Dc ∪ Es
1 ∪ Dr 6= P ∧ Dc ∪ Es

1 ∪ Es
2 6= P

∨ Zs = {(∅, ∅)}.

This bound is tight: If violated, there are (reactive) functionalities that cannot be securely computed.

Proof (Proof, Sufficiency). If Zs = {(∅, ∅)}, there is no secrecy requirement, and we can di-
rectly use the trivial non-secret protocol described in Appendix A. Otherwise, we employ
the parametrized version πS,C of the protocol of [Mau02] described in Section 3. We set S :=
{Es | (·, Es) ∈ Zs} and C = {D | (D, ·) ∈ Zr ∪ Zf}.

13

The precondition of Lemma 12 is that ∀S ∈ S, C1, C2 ∈ C : S 6⊆ C1∪C2, which is equivalent
to ∀S ∈ S, C1, C2 ∈ C : S ∪ C1 ∪ C2 6= P . Note that Zr ∪ Zf ⊆ Zc. Hence, for our choice
of parameters S and C, we have that for all S, C1, and C2, there are sets Es and Dc, such that
S∪C1∪C2 ⊆ Es∪Dc∪C2. By construction of C, (C2, ·) is either from Zr or from Zf . Therefore,
the inequality follows either from the left-hand side (if (C2, ·) ∈ Zr) or from the right-hand
side (if (C2, ·) ∈ Zf ⊆ Zs) of the condition in the theorem. Hence, we can apply the lemma
to derive correctness, secrecy and robustness: Given the bound in theorem, the choice of the
structures S and C, and the fact that (D∗, E∗) is an element of the corresponding adversary
structure, it is easy to verify that the condition for each property is fulfilled.

As in the threshold case, note that for fairness we have ∀(Df , ·) ∈ Zf : Df ∈ C. Hence, for
(D∗, E∗) ∈ Zf the protocol is robust, and the adversary cannot abort. ut

The necessity of the bound in Theorem 2 is proven in Section 5. Note that the bound holds for
any Zf ⊆ Zs, and we can always have Zf = Zs.

5 Proofs of Necessity

In this section, we prove that the bounds in Theorem 1 and 2 are necessary, i.e., if violated,
some (reactive) functionalities cannot be securely computed. Trivially, the impossibility for
threshold adversaries follows from the impossibility for general adversaries. The bound for
general adversaries (Theorem 2) is violated if
Zs 6= {(∅, ∅)} ∧ ∃(Dc, ·) ∈ Zc, (·, Es

1), (·, Es
2) ∈ Zs, (Dr, ·) ∈ Zr : Dc∪Es

1∪Dr = P ∨ Dc∪Es
1∪Es

2 =
P .
Due to monotonicity, we can assume that the sets Dc, Es

1 , Es
2 , and Dr are disjoint. Furthermore,

sinceZs 6= {(∅, ∅)}, we can assume that Es
1 6= ∅. We can split the condition according to whether

Dc ∪ Es
1 ∪ Dr = P or Dc ∪ Es

1 ∪ Es
2 = P .

1. ∃(Dc, ·) ∈ Zc, (·, Es
1) ∈ Zs, (Dr, ·) ∈ Zr : Dc ∪ Es

1 ∪ Dr = P ∧ Es
1 6= ∅. We further split

this case according to whether Dc = ∅ or Dr = ∅. Note that, since Zr ⊆ Zc, the case where
Dc = ∅ ∧ Dr 6= ∅ is subsumed by Case 1(b).
(a) ∃(Dc, ·) ∈ Zc, (·, Es

1) ∈ Zs, (Dr, ·) ∈ Zr : Dc ∪ Es
1 ∪ Dr = P ∧ Es

1 6= ∅ ∧ Dc 6= ∅ ∧ Dr 6= ∅
(Section 5.1)

(b) ∃(Dc, ·) ∈ Zc, (·, Es
1) ∈ Zs : Dc ∪ Es

1 = P ∧ Es
1 6= ∅ ∧ Dc 6= ∅ (Section 5.2)

(c) ∃(·, Es
1) ∈ Zs : Es

1 = P ∧ Es
1 6= ∅: Due to monotonicity and |P| ≥ 2, this implies

∃(·, Es
1), (·, Es

2) ∈ Zs : Es
1 ∪ Es

2 = P ∧ Es
1 6= ∅ ∧ Es

2 6= ∅ ∧ Es
1 ∩ Es

2 = ∅, which is identical to
Case 2(b).

2. ∃(Dc, ·) ∈ Zc, (·, Es
1), (·, Es

2) ∈ Zs : Dc ∪ Es
1 ∪ Es

2 = P ∧ Es
1 6= ∅. Again, we further split this

case according to whether Dc = ∅ or Es
2 = ∅. Note that the case where Dc 6= ∅ ∧ Es

2 = ∅ is
identical to Case 1(b), and the case where Dc = ∅ ∧ Es

2 = ∅ is identical to Case 1(c).
(a) ∃(Dc, ·) ∈ Zc, (·, Es

1), (·, Es
2) ∈ Zs : Dc ∪ Es

1 ∪ Es
2 = P ∧ Es

1 6= ∅ ∧ Es
2 6= ∅ ∧ Dc 6= ∅

(Section 5.3)
(b) ∃(·, Es

1), (·, Es
2) ∈ Zs : Es

1 ∪ Es
2 = P ∧ Es

1 6= ∅ ∧ Es
2 6= ∅ (Section 5.4)

5.1 Case 1(a): ∃(Dc, ·) ∈ Zc, (·, Es
1) ∈ Zs, (Dr, ·) ∈ Zr :

Dc ∪ Es
1 ∪ Dr = P ∧ Es

1 6= ∅ ∧ Dc 6= ∅ ∧ Dr 6= ∅

A state is a requirement for reactive functionalities. We first prove that it is impossible to hold
a state in a specific 3-party setting. This proof is inspired by [BFH+08].

Definition 3 (State). A state for n parties 1, . . . , n is a tuple (s1, . . . , sn) that defines a bit s, where
party i holds si. A state is secret if the state information held by corrupted parties contains no informa-
tion about the bit s. A state is correct if it uniquely defines either s or ⊥. A state is robust if it uniquely
defines either 0 or 1.

14

Lemma 13. Three parties A, B, and C cannot hold a state (sA, sB, sC) that defines a bit s providing
secrecy in case of a passively corrupted A, correctness and robustness in case of an actively corrupted
B, and correctness in case of an actively corrupted C.

Proof. To arrive at a contradiction, assume that (a, b, c) is a state for s = 0. Due to secrecy in
case of a passively corrupted A, there exists b′ and c′ such that (a, b′, c′) is a valid state for
s = 1. Due to correctness and robustness in case of an actively corrupted B, the state (a, ·, c)
must define the value 0 (where · is a placeholder for an arbitrary state information held by B).
Due to correctness in case of an actively corrupted C, the state (a, b′, ·) defines either 1 or ⊥. As
a consequence, with probability greater 0, the state (a, b′, c) can be achieved if s = 0 and B is
actively corrupted, and it can be achieved if s = 1 and C is actively corrupted. Hence, it must
define both 0 and either 1 or ⊥, which is a contradiction. ut

Given Lemma 13, we can prove the desired bound by reducing the n-party setting to the 3-
party setting specified there: Assume we have a perfectly secure n-party state (s1, . . . , sn) for
the case ∃(Dc, ·) ∈ Zc, (·, Es

1) ∈ Zs, (Dr, ·) ∈ Zr : Dc ∪ Es
1 ∪Dr = P ∧ Es

1 6= ∅ ∧ Dc 6= ∅ ∧ Dr 6= ∅.
By assumption we have that Dc, Es

1 , and Dr are disjoint.
We obtain a 3-party state (sA, sB, sC) from (s1, . . . , sn) by having A, B, and C emulate the

parties in Es
1 , Dr, and Dc respectively. The state (s1, . . . , sn) tolerates passive corruption of all

parties in Es
1 while maintaining secrecy, active corruption of all parties in Dr while maintain-

ing correctness and robustness, and active corruption of all parties in Dc while maintaining
correctness. Hence, the resulting state (sA, sB, sC) is secure for the specific corruption setting
specified in Lemma 13, which is a contradiction.

5.2 Case 1(b): ∃(Dc, ·) ∈ Zc, (·, Es
1) ∈ Zs : Dc ∪ Es

1 = P ∧ Es
1 6= ∅ ∧ Dc 6= ∅.

Analogously to the previous section, we prove that it is impossible to hold a state in a specific
2-party setting:

Lemma 14. Two parties A and B cannot hold a state (sA, sB) that defines a bit s providing secrecy in
case of a passively corrupted A, and correctness in case of an actively corrupted B.

Proof. For a contradiction, assume that (a, b) is a state for s = 0. Due to secrecy in case of a
passively corrupted A, there exists b′ such that (a, b′) is a valid state for s = 1. As a consequence,
with probability greater 0, an actively corrupted B can chose between the state (a, b) and (a, b′),
violating correctness. ut

Given Lemma 14, we can prove the desired bound by reducing the n-party setting to the 2-
party setting specified there, along the lines of the previous section.

5.3 Case 2(a): ∃(Dc, ·) ∈ Zc, (·, Es
1), (·, Es

2) ∈ Zs :
Dc ∪ Es

1 ∪ Es
2 = P ∧ Es

1 6= ∅ ∧ Es
2 6= ∅ ∧ Dc 6= ∅

We first prove impossibility of computing the logical “and” in a specific 3-party setting.

Lemma 15. Consider protocols for three parties A (with input a ∈ {0, 1}), B (with input b ∈ {0, 1}),
and C (without input) that compute the logical “and” z = a ∧ b and output it to all parties. There is
no such protocol providing secrecy when A or B are passively corrupted, and correctness when C is
actively corrupted.

Proof. To arrive at a contradiction, assume that a secure protocol exists. We consider the ran-
dom variables TAB , TAC and TBC describing the transcripts of the channels connecting parties
A and B, A and C, and B and C, respectively, and T describing the transcript of the broadcast
channel, for honest protocol executions.

15

First, observe that for a = 0, we have z = 0 independent of b, hence I(b;TAB, TAC , T |a =
0) = 0. Analogously, for a = 1, A must learn z = b, hence H(b|TAB, TAC , T, a = 1) = 0. We
distinguish two cases, namely when H(b|TAB, T, a = 1) is zero (i) or non-zero (ii).

In case (i), it follows from I(b;TAB, TAC , T |a = 0) = 0, that in particular we must have
I(b;TAB, T |a = 0) = H(b|a = 0) − H(b|TAB, T, a = 0) = 0, and hence H(b|TAB, T, a = 0) =
H(b|a = 0) > 0. Furthermore, by assumption we have H(b|TAB, T, a = 1) = 0. That means that
party B can decide if a = 0 or a = 1 by observing the transcripts TAB and T . This contradicts
the secrecy in presence of a passively corrupted party B.

In case (ii), let (tAB, tAC , tBC , t) be a list of transcripts corresponding to a protocol run with
a = 1 and b = 0. It follows from H(b|TAB, T, a = 1) > 0 that there are transcripts t′AC and t′BC ,
such that (tAB, t′AC , t′BC , t) is a list of transcripts corresponding to a protocol run with a = 1
and b = 1. Thus, when observing tAB , t′AC , and t, party A cannot distinguish whether b = 1
and all parties behave correctly, or whether b = 0 and party C is actively corrupted provoking
a wrong transcript t′AC (which C achieves with non-zero probability). In the first scenario, due
to completeness, A must output 1. In the second scenario, due to correctness, party A must
output 0 (or abort). This is a contradiction. ut

Given Lemma 15, we can prove the desired bound by reducing the n-party setting to the 3-
party setting specified there along the lines of the previous sections.

5.4 Case 2(b): ∃(·, Es
1), (·, Es

2) ∈ Zs : Es
1 ∪ Es

2 = P ∧ Es
1 6= ∅ ∧ Es

2 6= ∅.

As stated in [BGW88,Kil00], it is impossible to compute the logical “and” with perfect secrecy
in a 2-party setting. Again, we can prove the desired bound by reducing the n-party setting to
the 2-party setting along the lines of the previous sections.

6 Conclusions and Open Problems

We have provided the first MPC protocols with graceful degradation in multiple dimensions,
namely graceful degradation of security, as well as graceful degradation with respect to the
corruption type. This covers all common security notions for MPC (correctness, secrecy, ro-
bustness, fairness, and agreement on abort), as well as the most prominent corruption types
(honest, passive, active), for both threshold and general adversaries. The protocols are strict
generalizations (and combinations) of hybrid-secure MPC and mixed adversaries. We derived
tight bounds for the existence of perfectly secure MPC protocols for the given settings, and
provided protocols that achieve these bounds.

A different perspective on our results reveals that our protocols provide an additional de-
gree of freedom: Ben-Or et al. [BGW88] prove that in a setting with full security, the condition
3t < n is optimal, where t denotes the number of actively corrupted parties. This condition
leaves a single optimal choice for t. Fitzi et al. [FHM98] consider mixed adversaries, and thus
generalize the original condition to 2tp + ta < n. This condition allows to choose a threshold tp,
thereby fixing an optimal value for ta. The bound in Theorem 1 illustrates that our work further
generalizes the known results: Our treatment of graceful degradation provides an additional
degree of freedom, allowing to choose thresholds tsp for secrecy and tra for robustness, thereby
fixing an optimal threshold tca for correctness. A similar observation holds for our main result
for general adversaries (Theorem 2). As a consequence, we provided the most comprehensive
treatment, integrating the previous results on perfect security.

We leave as an open problem to combine additional dimensions of graceful degradation
(like, e.g., efficiency) with graceful degradation of security and corruption types (e.g. fail-
corruption), as well as to consider other security models (e.g. computational security). Fur-
thermore, in this work, we focus on MPC including reactive functionalities. The bounds for
secure function evaluation (SFE) might be slightly weaker.

16

References

[Bea89] Donald Beaver. Multiparty protocols tolerating half faulty processors. In CRYPTO ’89, pages 560–572.
Springer-Verlag, 1989.

[BFH+08] Zuzana Beerliova-Trubiniova, Matthias Fitzi, Martin Hirt, Ueli Maurer, and Vassilis Zikas. MPC vs.
SFE: Perfect security in a unified corruption model. In TCC 2008, pages 231–250. Springer-Verlag, 2008.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards optimal distributed consensus (extended
abstract). In FOCS ’89, pages 410–415. IEEE, 1989.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In STOC ’88, pages 1–10. ACM, 1988.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols. In
STOC ’88, pages 11–19. ACM, 1988.

[CDG88] David Chaum, Ivan Damgård, and Jeroen van de Graaf. Multiparty computations ensuring privacy of
each party’s input and correctness of the result. In CRYPTO ’87, pages 87–119. Springer-Verlag, 1988.

[Cha89] David Chaum. The spymasters double-agent problem: Multiparty computations secure uncondition-
ally from minorities and cryptographically from majorities. In CRYPTO ’89, pages 591–602. Springer-
Verlag, 1989.

[CW89] Brian A. Coan and Jennifer L. Welch. Modular construction of nearly optimal Byzantine agreement
protocols. In PODC ’89, pages 295–305. ACM, 1989.

[DDWY93] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure message transmission.
Journal of the ACM, 40(1):17–47, 1993.

[FHHW03] Matthias Fitzi, Martin Hirt, Thomas Holenstein, and Jürg Wullschleger. Two-threshold broadcast and
detectable multi-party computation. In EUROCRYPT 2003, pages 51–67. Springer-Verlag, 2003.

[FHM98] Matthias Fitzi, Martin Hirt, and Ueli Maurer. Trading correctness for privacy in unconditional multi-
party computation (extended abstract). In CRYPTO ’98, pages 121–136. Springer-Verlag, 1998.

[FHM99] Matthias Fitzi, Martin Hirt, and Ueli Maurer. General adversaries in unconditional multi-party compu-
tation. In ASIACRYPT ’99, pages 232–246. Springer-Verlag, 1999.

[FHW04] Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger. Multi-party computation with hybrid secu-
rity. In EUROCRYPT 2004, pages 419–438. Springer-Verlag, 2004.

[FM98] Matthias Fitzi and Ueli Maurer. Efficient Byzantine agreement secure against general adversaries. In
DISC ’98, pages 134–148. Springer-Verlag, 1998.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In STOC ’87, pages 218–229. ACM, 1987.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track multiparty computa-
tions with applications to threshold cryptography. In PODC ’98, pages 101–111. ACM, 1998.

[HLMR11] Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub. Graceful degradation in multi-party
computation. In ICITS 2011. Springer-Verlag, 2011.

[HM97] Martin Hirt and Ueli Maurer. Complete characterization of adversaries tolerable in secure multi-party
computation. In PODC ’97, pages 25–34. ACM, 1997.

[HMZ08] Martin Hirt, Ueli Maurer, and Vassilis Zikas. MPC vs. SFE: Unconditional and computational security.
In ASIACRYPT 2008, pages 1–18. Springer-Verlag, 2008.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining privacy with guar-
anteed output delivery in secure multiparty computation. In CRYPTO 2006, pages 483–500. Springer-
Verlag, 2006.

[Kat07] Jonathan Katz. On achieving the ”best of both worlds” in secure multiparty computation. In STOC ’07,
pages 11–20. ACM, 2007.

[Kil00] Joe Kilian. More general completeness theorems for secure two-party computation. In STOC ’00, pages
316–324. ACM, 2000.

[Lam83] Leslie Lamport. The weak Byzantine generals problem. Journal of the ACM, 30(3):668–676, 1983.
[LRM10] Christoph Lucas, Dominik Raub, and Ueli Maurer. Hybrid-secure MPC: Trading information-theoretic

robustness for computational privacy. In PODC ’10, pages 219–228. ACM, 2010.
[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals problem. ACM

Transactions on Programming Languages and Systems, 4(3):382–401, 1982.
[Mau02] Ueli Maurer. Secure multi-party computation made simple. In SCN ’02, pages 14–28. Springer-Verlag,

2002.
[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority.

In STOC ’89, pages 73–85. ACM, 1989.
[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
[Yao82] Andrew C. Yao. Protocols for secure computations (extended abstract). In FOCS ’82, pages 160–164.

IEEE, 1982.

17

A A Trivial Non-Secret Protocol

If there is no secrecy requirement (i.e. tsp = 0, respectively Zs = {(∅, ∅)}), each party can simply
broadcast its inputs, and all parties locally compute the output.

Non-Secret Protocol

Input: Party i provides input s by broadcasting s to all parties.
Addition and Multiplication: Each party locally performs all computations on the broadcasted values.
Random values: Party 1 broadcasts a random value r.
Output: Each party simply outputs the value computed before.

Fig. 9. A protocol without secrecy.

Trivially, this protocol achieves correctness and robustness for any number of corrupted par-
ties. As mentioned in Section 1.3, in a setting without secrecy, we do not achieve the traditional
interpretation of correctness: We can obtain neither input-independence nor true randomness.
Yet, the output is guaranteed to be consistent with the input of the correct parties.

B The Model without Broadcast Channel

We now turn to a model where no broadcast channels are given, but only a complete net-
work of pairwise secure channels. In this model, we obtain essentially the same bound as in
the model with broadcast channels, with an additional limitation on the number of actively
corrupted parties to at most one third of all parties.

Corollary 1. In the secure channels model without broadcast and with threshold adversaries, perfectly
secure MPC among n parties with thresholds (tca, t

c
p), (tsa, t

s
p), (tra, t

r
p), and (tfa , tfp), where (tsa, t

s
p) ≤

(tca, t
c
p) and (tra, t

r
p) ≤ (tfa , tfp) ≤ (tca, t

c
p), is possible if((

tca + tsp + tfa < n ∧ tca + 2tsp < n
)

∨ tsp = 0
)

∧ 3tca < n

This bound is tight: If violated, there are (reactive) functionalities that cannot be securely computed.

Proof. The sufficiency of the bound follows directly by basing the protocol of Section 2 on the
perfectly secure broadcast protocol of [BGP89,CW89] tolerating |D∗| < n

3 actively corrupted
parties.

The necessity of the bound follows from the necessity of Theorem 1 and from [LSP82,Lam83]:
As broadcast is a special type of MPC, a general MPC protocol must be able to achieve broad-
cast. Yet, even non-robust but correct broadcast (or weak Byzantine agreement as it is more
commonly called in the literature) cannot be realized with perfect security in presence of
|D∗| ≥ n

3 actively corrupted parties [Lam83]. Thus, perfectly secure MPC without broadcast
requires 3tca < n, in addition to the bound of Theorem 1.

An analogous statement holds for the general adversary case.

Corollary 2. In the secure channels model without broadcast and with general adversaries, perfectly
secure MPC among n parties with respect to (Zc,Zs,Zr,Zf), where Zr ⊆ Zf ⊆ Zc and Zs ⊆ Zc,
is possible if((
∀(Dc, ·) ∈ Zc, (·, Es

1), (·, Es
2) ∈ Zs, (Df , ·) ∈ Zf : Dc ∪Es

1 ∪Df 6= P ∧Dc ∪Es
1 ∪Es

2 6= P
)
∨Zs =

{(∅, ∅)}
)

∧ ∀(Dc
1, ·), (Dc

2, ·), (Dc
3, ·) ∈ Zc : Dc

1 ∪ Dc
2 ∪ Dc

3 6= P.

This bound is tight: If violated, there are (reactive) functionalities that cannot be securely computed.

18

Proof. The sufficiency of the bound follows directly by basing the protocol of Section 3 on the
perfectly secure broadcast protocol of [FM98]. The necessity of the bound follows along the
lines of the threshold case.

19

