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Abstract. We propose a new approach to practical two-party computation secure against an active
adversary. All prior practical protocols were based on Yao's garbled circuits. We use an OT-based
approach and get e�ciency via OT extension in the random oracle model. To get a practical protocol
we introduce a number of novel techniques for relating the outputs and inputs of OTs in a larger
construction.
We also report on an implementation of this approach, that shows that our protocol is more e�cient
than any previous one: For big enough circuits, we can evaluate more than 20000 Boolean gates per
second. As an example, evaluating one oblivious AES encryption (∼ 34000 gates) takes 64 seconds, but
when repeating the task 27 times it only takes less than 3 seconds per instance.
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1 Introduction

Secure two-party computation (2PC), introduced by Yao [Yao82], allows two parties to jointly
compute any function of their inputs in such a way that 1) the output of the computation is correct
and 2) the inputs are kept private. Yao's protocol is secure only if the participants are semi-honest

(they follow the protocol but try to learn more than they should by looking at their transcript of the
protocol). A more realistic security de�nition considers malicious adversaries, that can arbitrarily
deviate from the protocol.

A large number of approaches to 2PC have been proposed, falling into three main types, those
based on Yao's garbled circuit techniques, those based on some form of homomorphic encryption
and those based on oblivious transfer. Recently a number of e�orts to implement 2PC in practice
have been reported on; In sharp contrast to the theory, almost all of these are based on one type of
2PC, namely Yao's garbled circuit technique. One of the main advantages of Yao's garbled circuits
is that it is primarily based on symmetric primitives: It uses one OT per input bit, but then uses
only a few calls to, e.g., a hash function per gate in the circuit to be evaluated. The other approaches
are heavy on public-key primitives which are typically orders of magnitude slower than symmetric
primitives.

However, in 2003 Ishai et al. introduced the idea of extending OTs e�ciently [IKNP03]�their
protocol allows to turn κ seed OTs based on public-key crypto into any polynomial ` = poly(κ)
number of OTs using only O(`) invocations of a cryptographic hash function. For big enough ` the
cost of the κ seed OTs is amortized away and OT extension essentially turns OT into a symmetric
primitive in terms of its computational complexity. Since the basic approach of basing 2PC on OT
in [GMW87] is e�cient in terms of consumption of OTs and communication, this gives the hope
that OT-based 2PC too could be practical. This paper reports on the �rst implementation made to
investigate the practicality of OT-based 2PC.

Our starting point is the e�cient passive-secure OT extension protocol of [IKNP03] and passive-
secure 2PC of [GMW87]. In order to get active security and preserve the high practical e�ciency
of these protocols we chose to develop substantially di�erent techniques, di�erentiating from other
works that were only interested in asymptotic e�ciency [HIKN08,Nie07,IPS08]. We report a number
of contributions to the theory and practice of 2PC:

1. We introduce a new technical idea to the area of extending OTs e�ciently, which allows to
dramatically improve the practical e�ciency of active-secure OT extension. Our protocol has
the same asymptotic complexity as the previously best protocol in [HIKN08], but it is only a
small factor slower than the passive-secure protocol in [IKNP03].

2. We give the �rst implementation of the idea of extending OTs e�ciently. The protocol is active-
secure and generates 500,000 OTs per second, showing that implementations needing a large
number of OTs can be practical.

3. We introduce new technical ideas which allow to relate the outputs and inputs of OTs in a
larger construction, via the use of information theoretic tags. This can be seen as a new �avor
of committed OT that only requires symmetric cryptography. In combination with our �rst
contribution, our protocol shows how to e�ciently extend committed OT. Our protocols assume
the existence of OT and are secure in the random oracle model.

4. We give the �rst implementation of practical 2PC not based on Yao's garbled circuit tech-
nique. Introducing a new practical technique is a signi�cant contribution to the �eld in itself. In
addition, our protocol shows favorable timings compared to the Yao-based implementations.
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1.1 Comparison with Related Work

The question on the asymptotical computational overhead of cryptography was (essentially) settled
in [IKOS08]. On the other hand, there is growing interest in understanding the practical overhead of
secure computation, and several works have perfected and implemented protocols based on Yao gar-
bled circuits [MNPS04,BDNP08,LPS08,KS08,PSSW09,HKS+10,MK10,LP11,SS11,HEK+11], pro-
tocols based on homomorphic encryption [IPS09,DO10,JMN10,BDOZ11] and protocols based on
OT [IPS08,LOP11,CHK+11].

Security Model Rounds Time

(a) DK [DK10] (3 parties) Passive SM O(d) 1.5s

(b) DK [DK10] (4 parties) Active SM O(d) 4.5s

(c) sS [SS11] Active SM O(1) 192s

(d) HEKM [HEK+11] Passive ROM O(1) 0.2s

(e) IPS-LOP [IPS08,LOP11] Active SM O(d) 79s

(f) This (single) Active ROM O(d) 64s

(g) This (27, amortized) Active ROM O(d) 2.5s

Table 1. Brief comparison with other implementations.

A brief comparison of the time needed for
oblivious AES evaluation for the best known
implementations are shown in Table 1.4 The
protocols in rows (a-b) are for 3 and 4 parties
respectively, and are secure against at most
one corrupted party. One of the goals of the
work in row (c) is how to e�ciently support
di�erent outputs for di�erent parties: in our
OT based protocol this feature comes for free.
The time in row (e) is an estimate made by
[LOP11] on the running time of their opti-

mized version of the OT-based protocol in [IPS08]. The column Round indicates the round com-
plexity of the protocols, d being the depth of the circuit while the column Model indicates whether
the protocol was proven secure in the standard model (SM) or the random oracle model (ROM).

The signi�cance of this work is shown in row (g). The reason for the dramatic drop between
row (f) and (g) is that in (f), when we only encrypt one block, our implementation preprocesses for
many more gates than is needed, for ease of implementation. In (g) we encrypt 27 blocks, which is
the minimum value which eats to up all the preprocessed values. We consider these results positive:
our implementation is as fast or faster than any other 2PC protocol, even when encrypting only one
block. And more importantly, when running at full capacity, the price to pay for active security is
about a factor 10 against the passive-secure protocol in (d). We stress that this is only a limited
comparison, as the di�erent experiments were run on di�erent hardware and network setups: when
several options were available, we selected the best time reported by the other implementations.
See Sect. 7 for more timings and details of our implementation.

1.2 Overview of Our Approach

We start from a classic textbook protocol for two-party computation [Gol04, Sec. 7.3]. In this
protocol, Alice holds secret shares xA, yA and Bob holds secret shares xB, yB of some bits x, y
s.t. xA ⊕ xB = x and yA ⊕ yB = y. Alice and Bob want to compute secret shares of z = g(x, y)
where g is some Boolean gate, for instance the AND gate: Alice and Bob need to compute a random
sharing zA, zB of z = xy = xAyA ⊕ xAyB ⊕ xByA ⊕ xByB. The parties can compute the AND of
their local shares (xAyA and xByB), while they can use oblivious transfer (OT) to compute the
cross products (xAyB and xByA). Now the parties can iterate for the next layer of the circuit, up
to the end where they will reconstruct the output values by revealing their shares.

4 Oblivious AES has become one of the most common circuits to use for benchmarking generic MPC protocols, due
to its reasonable size (about 30000 gates) and its relevance as a building block for constructing speci�c purpose
protocols, like private set intersection [FIPR05].
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This protocol is secure against a semi-honest adversary: assuming the OT protocol to be secure,
Alice and Bob learn nothing about the intermediate values of the computation. It is easy to see
that if a large circuit is evaluated, then the protocol is not secure against a malicious adversary: any
of the two parties could replace values on any of the internal wires, leading to a possibly incorrect
output and/or leakage of information.

F2PC

FDeal

aOT aAND

aBit

EQOT

Sect. 3

Sect. 5 and 6

Sect. 4

Fig. 1. Paper outline. This order of
presentation is chosen to allow the
best progression in introduction of
our new techniques.

To cope with this, we put MACs on all bits. The starting point
of our protocol is oblivious authentication of bits. One party, the
key holder, holds a uniformly random global key ∆ ∈ {0, 1}κ. The
other party, the MAC holder, holds some secret bits (x, y, say).
For each such bit the key holder holds a corresponding uniformly
random local key (Kx,Ky ∈ {0, 1}κ) and the MAC holder holds the
corresponding MAC (Mx = Kx ⊕ x∆, My = Ky ⊕ y∆). The key
holder does not know the bits and the MAC holder does not know
the keys. Note that Mx ⊕My = (Kx ⊕ Ky) ⊕ (x ⊕ y)∆. So, the
MAC holder can locally compute a MAC on x ⊕ y under the key
Kx ⊕Ky which is non-interactively computable by the key holder.
This homomorphic property comes from �xing ∆ and we exploit it
throughout our constructions. From a bottom-up look, our protocol
is constructed as follows (see Fig. 1 for the main structure):

Bit Authentication: We �rst implement oblivious authentication of bits (aBit). As detailed
in Sect. 4, to construct authenticated bits we start by extending a few (say κ = 640) seed(
2
1

)
-OTs into many (say ` = 220) OTs, using OT extension. Then, if A wants to get a bit x

authenticated, she can input it as the choice bit in an OT, while B can input (Kx,Kx ⊕ ∆),
playing the sender in the OT. Now A receives Mx = Kx ⊕ x∆. It should, of course, be ensured
that even a corrupted B uses the same value ∆ in all OTs. I.e., it should hold for all produced
OTs that the XORs of the o�ered message pairs are constant�this constant value is then taken
to be ∆. It turns out, however, that when using the highly e�cient passive-secure OT extender
in [IKNP03] and starting from seed OTs where the XORs of message pairs are constant, one also
produces OTs where the XORs of message pairs are constant, and we note that for this use the
protocol in [IKNP03] happens to be active-secure! Using cut-and-choose we ensure that most of
the XORs of message pairs o�ered in the seed OTs are constant, and with a new and inexpen-
sive trick we o�er privacy and correctness even if few of these XORs have di�erent values. This
cut-and-choose technique uses one call to a box EQ for checking equality.

Authenticated local AND: From aBits we then construct authenticated local ANDs (aAND),
where the MAC holder locally holds random authenticated bits a, b, c with c = ab. To create
authenticated local ANDs, we let one party compute c = ab for random a and b and get
authentications on a, b, c (when creating aANDs, we assume the aBits are already available).
The challenge is to ensure that c = ab. We construct an e�cient proof for this fact, again using
the box EQ once. This proof might, however, leak the bit a with small but noticeable probability.
We correct this using a combiner.

Authenticated OT: From aBits we also construct authenticated OT s (aOT), which are normal(
2
1

)
-OTs of bits, but where all input bits and output bits are obliviously authenticated. This is

done by letting the two parties generate aBits representing the sender messages x0, x1 and the
receiver choice bit c. To produce the receiver's output, �rst a random aBit is sampled. Then this
bit is �corrected� in order to be consistent with the run of an OT protocol with input messages
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x0, x1 and choice bit c. This correction might, however, leak the bit c with small but noticeable
probability. We correct this using an OT combiner. One call to the box EQ is used.

2PC: Given two aANDs and two aOTs one can evaluate in a very e�cient way any Boolean gate:
only 4 bits per gate are communicated, as the MACs can be checked in an amortized manner.

That e�cient 2PC is possible given enough aBits, aANDs and aOTs is no surprise. In some
sense, it is the standard way to base passive-secure 2PC on passive-secure OT enhanced with a
particular �avor of committed OT (as in [CvdGT95,Gar04]). What is new is that we managed to
�nd a particular committed OT-like primitive which allows both a very e�cient generation and a
very e�cient use: while previous result based on committed OT require hundreds of exponentiations
per gate, our cost per gate is in the order of hundreds of hash functions. To the best of our knowledge,
we present the �rst practical approach to extending a few seed OTs into a large number of committed
OT-like primitives. Of more speci�c technical contributions, the main is that we manage to do all
the proofs e�ciently, thanks also to the preprocessing nature of our protocol: Creating aBits, we get
active security paying only a constant overhead over the passive-secure protocol in [IKNP03]. In the
generation of aANDs and aOTs, we replace cut-and-choose with e�cient, slightly leaky proofs and
then use a combiner to get rid of the leakage: When we preprocess for ` gates and combine B leaky
objects to get each potentially unleaky object, the probability of leaking is (2`)−B = 2− log2(`)(B−1).
As an example, if we preprocess for 220 gates with an overhead of B = 6, then we get leakage
probability 2−100.

As a corollary to being able to generate any ` = poly(κ) active-secure aBits from O(κ) seed OTs
and O(`) calls to a hash-function, we get that we can generate any ` = poly(κ) active-secure

(
2
1

)
-OTs

of κ-bit strings from O(κ) seed OTs and O(`) calls to a hash-function, matching the asymptotic
complexity of [HIKN08] while dramatically reducing their hidden constants.

2 Preliminaries and Notation

We use κ (and sometimes ψ) to denote the security parameter. We require that a poly-time adversary
break the protocol with probability at most poly(κ)2−κ. For a bit-string S ∈ {0, 1}∗ we de�ne

0S
def

= 0|S| and 1S
def

= S. For a �nite set S we use s ∈R S to denote that s is chosen uniformly at
random in S. For a �nite distribution D we use x← D to denote that x is sampled according to D.

The UC Framework We prove our results static, active-secure in the UC framework [Can01],
and we assume the reader to be familiar with it. We will idiosyncratically use the word box instead
of the usual term ideal functionality. To simplify the statements of our results we use the following
terminology:

De�nition 1. We say that a box A is reducible to a box B if there exist an actively secure imple-

mentation π of A which uses only one call to B. We say that A is locally reducible to B if the parties

of π do not communicate (except through the one call to B). We say that A is linear reducible to B
if the computing time of all parties of π is linear in their inputs and outputs. We use equivalent to
denote reducibility in both directions.

It is easy to see that if A is (linear, locally) reducible to B and B is (linear, locally) reducible
to C, then A is (linear, locally) reducible to C.
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Hash Functions We use a hash function H : {0, 1}∗ → {0, 1}κ, which we model as a random
oracle (RO). We sometimes use H to mask a message, as in H(x) ⊕M . If |M | 6= κ, this denotes
prg(H(x)) ⊕M , where prg is a pseudo-random generator prg : {0, 1}κ → {0, 1}|M |. We also use a
collision-resistant hash function G : {0, 1}2κ → {0, 1}κ.

As other 2PC protocols whose focus is e�ciency [KS08,HEK+11], we are content with a proof
in the random oracle model. What is the exact assumption on the hash function that we need for
our protocol to be secure, as well as whether this can be implemented under standard cryptographic
assumption is an interesting theoretical question, see [AHI10,CKKZ11].

Oblivious Transfer We use a box OT(τ, `) which can be used to perform τ
(
2
1

)
-oblivious transfers

of strings of bit-length `. In each of the τ OTs the sender S has two inputs x0, x1 ∈ {0, 1}`, called
the messages, and the receiver R has an input c ∈ {0, 1}, called the choice bit. The output to R is
xc = c(x0 ⊕ x1)⊕ x0. No party learns any other information.

Equality Check We use a box EQ(`) which allows two parties to check that two strings of length
` are equal. If they are di�erent the box leaks both strings to the adversary, which makes secure
implementation easier. We de�ne and use this box to simplify the exposition of our protocol. In
practice we implement the box by letting the parties compare exchanged hash's of their values: this
is a secure implementation of the box in the random oracle model.

For completeness we give a protocol which securely implements EQ in the RO model. Let
H : {0, 1}∗ → {0, 1}κ be a hash function, modeled as a RO. Let κ be the security parameter.

1. A chooses a random string r ∈R {0, 1}κ, computes c = H(x||r) and sends it to B.

2. B sends y to A.

3. A sends x, r to B. A outputs x
?

= y.

4. B outputs (H(x||r) ?

= c) ∧ (x
?

= y).

This is a secure implementation of the EQ(`) functionality in the RO model. If A is corrupted,
the simulator extracts x, r from the simulated call to the RO, if the hash function was queried with
an input which yielded the c sent by A. Then, it inputs x to EQ and receives (x, y) from the ideal
functionality (if x 6= y). If the hash function was not queried with an input which yielded the c sent
by A, then the simulator inputs a uniformly random x to EQ and receives (x, y). It then sends y
to the corrupted A. On input x′, r′ from A, if (x′, r′) 6= (x, r) the simulator inputs �abort� to the
EQ functionality on behalf of A, or �deliver� otherwise. If (x′, r′) = (x, r), simulation is perfect. If
they are di�erent, the only way that the environment can distinguish is by �nding (x′, r′) 6= (x, r)
s.t. H(x||r) = H(x′||r′) or by �nding (x′, r′) such that c = H(x′||r′) for a c which did not result from
a previous query. In the random oracle both events happen with probability less than poly(κ)2−κ,
as the environment is only allowed a polynomial number of calls to the RO.

If B is corrupted, then the simulator sends a random value c ∈R {0, 1}` to B. Then, on input y
from B it inputs this value to the EQ box and receives (x, y). Now, it chooses a random r ∈R {0, 1}κ
and programs the RO to output c on input x||r, and sends x and r to B. Simulation is perfect,
and the environment can only distinguish if it had already queried the RO on input x||r, and this
happens with probability poly(κ)2−κ, as r ∈ {0, 1}κ is uniformly random, and the environment is
only allowed a polynomial number of calls to the RO.
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Leakage Functions We use a notion of a class L of leakage functions on τ bits. The context is that
there is some uniformly random secret value ∆ ∈R {0, 1}τ and some adversary A wants to guess ∆.
To aid A, she can do an attack which might leak some of the bits of ∆. The attack, however, might
be detected. Each L ∈ L is a poly-time sampleable distribution on (S, c) ∈ 2{1,...,τ} × {0, 1}. Here
c speci�es if the attack was detected, where c = 0 signals detection, and S speci�es the bits to be
leaked if the attack was not detected. We need a measure of how many bits a class L leaks. We do
this via a game for an unbounded adversary A.

1. The game picks a uniformly random ∆ ∈R {0, 1}τ .
2. A inputs L ∈ L.
3. The game samples (S, c)← L. If c = 0, A loses. If c = 1, the game gives {(i,∆i)}i∈S to A.
4. Let S = {1, . . . , τ}\S. A inputs the guesses {(i, gi)}i∈S . If gi = ∆i for all i ∈ S, A wins, otherwise

she loses.

We say that an adversary A is optimal if she has the highest possible probability of winning the
game above. If there were no leakage, i.e., S = ∅, then it is clear that the optimal A wins the game
with probability exactly 2−τ . If A is always given exactly s bits and is never detected, then it is
clear that the optimal A can win the game with probability exactly 2s−τ . This motivates de�ning
the number of bits leaked by L to be leakL

def

= log2(successL) + τ , where successL is the probability
that the optimal A wins the game. It is easy (details below) to see that if we take expectation over
random (S, c) sampled from L, then leakL = maxL∈L log2

(
E
[
c2|S|

])
.

We say that L is κ-secure if τ − leakL ≥ κ, and it is clear that if L is κ-secure, then no A can
win the game with probability better than 2−κ.

We now rewrite the de�nition of leakL to make it more workable.
It is clear that the optimal A can guess all∆i for i ∈ S with probability exactly 2|S|−τ . This means

that the optimal A wins with probability
∑τ

s=0 Pr [(S, c)← L : |S| = s ∧ c = 1] 2s−τ . To simplify this
expression we de�ne index variables Is, Js ∈ {0, 1} where Is is 1 i� c = 1 and |S| = s and Js is 1 i�
|S| = s. Note that Is = cJs and that

∑
s Js2

s = 2|S|. So, if we take expectation over (S, c) sampled
from L, then we get that

τ∑
s=0

Pr [(S, c)← L : |S| = s ∧ c = 1] 2s =
τ∑
s=0

E [Is] 2
s

= E

[
τ∑
s=0

Is2
s

]
= E

[
τ∑
s=0

cJs2
s

]

= E

[
c

τ∑
s=0

Js2
s

]
= E

[
c2|S|

]
.

Hence successL = 2−τ E
[
c2|S|

]
is the probability of winning when using L and playing optimal.

Hence successL = maxL∈L(2
−τ E

[
c2|S|

]
) and log2(successL) = −τ + log2maxL∈L

(
E
[
c2|S|

])
, which

shows that
leakL = max

L∈L
log2

(
E
[
c2|S|

])
,

as claimed above.

3 The Two-Party Computation Protocol
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F2PC

FDeal

aOT aANDaBit

Fig. 2. Sect. 3 outline.

We want to implement the box F2PC for Boolean two-party secure com-
putation as described in Fig. 4. We will implement this box in the FDeal-
hybrid model of Fig. 5. This box provides the parties with aBits, aANDs
and aOTs, and models the preprocessing phase of our protocol. We intro-
duce notation in Fig. 3 for working with authenticated bits. The protocol
implementing F2PC in the dealer model is described in Fig. 6. The dealer
o�ers random authenticated bits (to A or B), random authenticated local AND triples and random
authenticated OTs. Those are all the ingredients that we need to build the 2PC protocol. Note
that the dealer o�ers randomized versions of all commands: this is not a problem as the �standard�
version of the commands (the one where the parties can specify their input bits instead of getting
them at random from the box) are linearly reducible to the randomized version, as can be easily
deduced from the protocol description. The following result is proven in App. B:

Theorem 1. The protocol in Fig. 6 securely implements the box F2PC in the FDeal-hybrid model

with security parameter κ.

Global Key: We call ∆A,∆B ∈ {0, 1}κ the two global keys, held by B and A respectively.
Authenticated Bit: We write [x]A to represent an authenticated secret bit held by A. Here B knows a key

Kx ∈ {0, 1}κ and A knows a bit x and a MAC Mx = Kx ⊕ x∆A ∈ {0, 1}κ. Let [x]A
def
= (x,Mx,Kx).

a

If [x]A = (x,Mx,Kx) and [y]A = (y,My,Ky) we write [z]A = [x]A ⊕ [y]A to indicate [z]A = (z,Mz,Kz)
def
=

(x⊕ y,Mx ⊕My,Kx ⊕Ky). Note that no communication is required to compute [z]A from [x]A and [y]A.
It is possible to authenticate a constant bit (a value known both to A and B) b ∈ {0, 1} as follows: A sets

Mb = 0κ, B sets Kb = b∆A, now [b]A
def
= (b,Mb,Kb). For a constant b we let [x]A ⊕ b

def
= [x]A ⊕ [b]A, and we

let b[x]A be equal to [0]A if b = 0 and [x]A if b = 1.
We say that A reveals [x]A by sending (x,Mx) to B who aborts if Mx 6= Kx ⊕ x∆A. Alternatively we say
that A announces x by sending x to B without a MAC.
Authenticated bits belonging to B are written as [y]B and are de�ned symmetrically, changing side of all the
values and using the global value ∆B instead of ∆A.

Authenticated Share: We write [x] to represent the situation where A and B hold [xA]A, [xB ]B and x = xA⊕xB ,
and we write [x] = ([xA]A, [xB ]B) or [x] = [xA|xB ].
If [x] = [xA|xB ] and [y] = [yA|yB ] we write [z] = [x] ⊕ [y] to indicate [z] = ([zA]A, [zB ]B) = ([xA]A ⊕
[yA]A, [xB ]B ⊕ [yB ]B). Note that no communication is required to compute [z] from [x] and [y].
It is possible to create an authenticated share of a constant b ∈ {0, 1} as follows: A and B create [b] = [b|0].
For a constant value b ∈ {0, 1}, we de�ne b[x] to be equal to [0] if b = 0 and [x] if b = 1.
When an authenticated share is revealed, the parties reveal to each other their authenticated bits and abort
if the MACs are not correct.

a Since ∆A is a global value we will not always write it explicitly. Note that in x∆A, x represents a value, 0 or 1,
and that in [x]A, Kx andMx it represents a variable name. I.e., there is only one key (MAC) per authenticated
bit, and for the bit named x, the key (MAC) is named Kx (Mx). If x = 0, then Mx = Kx. If x = 1, then
Mx = Kx ⊕∆A.

Fig. 3. Notation for authenticated and shared bits.

Why the global key queries? The FDeal box (Fig. 5) allows the adversary to guess the value
of the global key, and it informs it if its guess is correct. This is needed for technical reasons:
When FDeal is proven UC secure, the environment has access to either FDeal or the protocol
implementing FDeal. In both cases the environment learns the global keys∆A and∆B. In particular,
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Rand: On input (rand, vid) from A and B, with vid a fresh identi�er, the box picks r ∈R {0, 1} and stores
(vid , r).

Input: On input (input,P, vid , x) from P ∈ {A,B} and (input,P, vid , ?) from the other party, with vid a fresh
identi�er, the box stores (vid , x).

XOR: On command (xor, vid1, vid2, vid3) from both parties (if vid1, vid2 are de�ned and vid3 is fresh), the box
retrieves (vid1, x), (vid2, y) and stores (vid3, x⊕ y).

AND: As XOR, but store (vid3, x · y).
Output: On input (output,P, vid) from both parties, with P ∈ {A,B} (and vid de�ned), the box retrieves

(vid , x) and outputs it to P.

At each command the box leaks to the environment which command is being executed (keeping the value x in
Input secret), and delivers messages only when the environment says so.

Fig. 4. The box F2PC for Boolean Two-party Computation.

Initialize: On input (init) from A and (init) from B, the box samples ∆A,∆B ∈ {0, 1}κ, stores them and
outputs ∆B to A and ∆A to B. If A (resp. B) is corrupted, she gets to choose ∆B (resp. ∆A).

Authenticated Bit (A): On input (aBIT,A) from A and B, the box samples a random [x]A = (x,Mx,Kx)
with Mx = Kx⊕ x∆A and outputs it (x,Mx to A and Kx to B). If B is corrupted he gets to choose Kx. If
A is corrupted she gets to choose (x,Mx), and the box sets Kx = Mx ⊕ x∆A.

Authenticated Bit (B): On input (aBIT,B) from A and B, the box samples a random [x]B = (x,Mx,Kx)
with Mx = Kx⊕x∆B and outputs it (x,Mx to B and Kx to A). As in Authenticated Bit (A), corrupted
parties can choose their own randomness.

Authenticated local AND (A): On input (aAND,A) from A and B, the box samples random [x]A,[y]A and
[z]A with z = xy and outputs them. As in Authenticated Bit (A), corrupted parties can choose their own
randomness.

Authenticated local AND (B) De�ned symmetrically.
Authenticated OT (A-B): On input (aOT,A,B) from A and B, the box samples random [x0]A,[x1]A,[c]B and

[z]B with z = xc = c(x0 ⊕ x1) ⊕ x0 and outputs them. As in Authenticated Bit, corrupted parties can
choose their own randomness.

Authenticated OT (B-A): De�ned symmetrically.a

Global Key Queries: The adversary can at any point input (A,∆) and be told whether ∆ = ∆B . And it can
at any point input (B,∆) and be told whether ∆ = ∆A.

a The dealer o�ers aOTs in both directions. Notice that the dealer could o�er aOT only in one direction and
the parties could then �turn� them: as regular OT, aOT is symmetric as well.

Fig. 5. The box FDeal for dealing preprocessed values.

the environment learns ∆A even if B is honest. This requires us to prove the sub-protocol for FDeal
secure to an adversary knowing ∆A even if B is honest: to be be able to do this, the simulator
needs to recognize ∆A if it sees it�hence the global key queries. Note, however, that in the context
where we use FDeal (Fig. 6), the environment does not learn the global key ∆A when B is honest:
A corrupted A only sees MACs on one bit using the same local key, so all MACs are uniformly
random in the view of a corrupted A, and B never makes the local keys public.

Amortized MAC checks. In the protocol of Fig. 6, there is no need to send MACs and check
them every time we do a �reveal�. In fact, it is straightforward to verify that before an Output

command is executed, the protocol is perfectly secure even if the MACs are not checked. Notice
then that a keyholder checks a MAC Mx on a bit x by computing M ′x = Kx ⊕ x∆ and comparing
M ′x to the Mx which was sent along with x. These equality checks can be deferred and amortized.
Initially the MAC holder, e.g. A, sets N = 0κ and the key holder, e.g. B, sets N ′ = 0κ. As long
as no Output command is executed, when A reveals x she updates N ← G(N,H(Mx)) for the
MAC Mx she should have sent along with x, and B updates N ′ ← G(N ′, H(M ′x)). Before executing
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Initialize: When activated the �rst time, A and B activate FDeal and receive ∆B and ∆A respectively.
Rand: A and B ask FDeal for random authenticated bits [rA]A, [rB ]B and stores [r] = [rA|rB ] under vid .
Input: If P = A, then A asks FDeal for an authenticated bit [xA]A and announces (i.e., no MAC is sent together

with the bit) xB = x⊕ xA, and the parties build [xB ]B and de�ne [x] = [xA|xB ]. The protocol is symmetric
for B.

XOR: A and B retrieve [x], [y] stored under vid1, vid2 and store [z] = [x]⊕ [y] under vid3. For brevity we drop
explicit mentioning of variable identi�ers below.

AND: A and B retrieve [x], [y] and compute [z] = [xy] as follows:
1. The parties ask FDeal for a random AND triplet [u]A, [v]A, [w]A with w = uv.

A reveals [f ]A = [u]A ⊕ [xA]A and [g]A = [v]A ⊕ [yA]A.
The parties compute [xAyA]A = f [yA]A ⊕ g[xA]A ⊕ [w]A ⊕ fg.

2. Symmetrically the parties compute [xByB ]B.
3. The parties ask FDeal for a random authenticated OT [u0]A, [u1]A, [c]B, [w]B with w = uc.

They also ask for an authenticated bit [rA]A.
Now B reveals [d]B = [c]B ⊕ [yB ]B.
A reveals [f ]A = [u0]A ⊕ [u1]A ⊕ [xA]A and [g]A = [rA]A ⊕ [u0]A ⊕ d[xA]A.
Compute [sB ]B = [w]B ⊕ f [c]B ⊕ g. Note that at this point [sB ]B = [rA ⊕ xAyB ]B.

4. Symmetrically the parties compute [sA]A = [rB ⊕ xByA]A.
A and B compute [zA]A = [rA]A⊕ [sA]A⊕ [xAyA]A and [zB ]B = [rB ]B⊕ [sB ]B⊕ [xByB ]B and let [z] = [zA|zB ].

Output: The parties retrieve [x] = [xA|xB ]. If A is to learn x, B reveals xB . If B is to learn x, A reveals xA.

Fig. 6. Protocol for F2PC in the FDeal-hybrid model

an Output, A sends N to B who aborts if N 6= N ′. Security of this check is easily proved in the
random oracle model. The optimization brings the communication complexity of the protocol down
from O(κ|C|) to O(|C|+ oκ), where o is the number of rounds in which outputs are opened. For a
circuit of depth O(|C|/κ), the communication is O(|C|).

Implementing FDeal. In the following sections we show how to implement FDeal. In Sect. 4 we
implement just the part with the commandsAuthenticated Bits. In Sect. 5 we show how to extend
with the Authenticated OT commands, by showing how to implement many aOTs from many
aBits. In Sect. 6 we then show how to extend with the Authenticated local AND commands, by
showing how to implement many aANDs from many aBits. We describe the extensions separately,
but since they both maintain the value of the global keys, they will produce aANDs and aOTs with
the same keys as the aBits used, giving an implementation of FDeal.

4 Bit Authentication

aBit

WaBit

LaBit

OTEQ

Fig. 7. Sect. 4 outline.

In this section we show how to e�ciently implement (oblivious) bit au-
thentication, i.e., we want to be in a situation where A knows some bits
x1, . . . , x` together with MACs M1, . . . ,M`, while B holds a global key
∆A and local keys K1, . . . ,K` s.t.Mi = Ki⊕xi∆A, as described in FDeal
(Fig. 5). Given the complete symmetry of FDeal, we only describe the
case where A is MAC holder.

If the parties were honest, we could do the following: A and B run an
OT where B inputs the two messages (Ki,Ki ⊕∆A) and A chooses xi, to receive Mi = Ki ⊕ xi∆A.
However, if B is dishonest he might not use the same ∆A in all OTs. The main ideas that make the
protocol secure against cheating parties are the following:

1. For reasons that will be apparent later, we will actually start in the opposite direction and let
B receive some authenticated bits yi using an OT, where A is supposed to always use the same
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global key ΓB. Thus an honest A inputs (Li, Li⊕ΓB) in the OTs and B receives Ni = Li⊕yiΓB.
To check that A is playing honest in most OTs, the authenticated bits are randomly paired and
a check is performed, which restricts A to cheat in at most a few OTs.

2. We then notice that what A gains by using di�erent ΓB's in a few OTs is no more than learning
a few of B's bits yi. We call this a leaky aBit, or LaBit.

3. We show how to turn this situation into an equivalent one where A (not B) receives authenticated
random bits xi's (none of which leaks to B) under a �slightly insecure� global key ΓA. The
insecurity comes from the fact that the leakage of the yi's turns into the leakage of a few bits of
the global key ΓA towards A. We call this an aBit with weak global key, or WaBit.

4. Using privacy ampli�cation, we amplify the previous setting to a new one where A receives
authenticated bits under a (shorter) fully secure global key ∆A, where no bits of ∆A are known
to A, �nally implementing the aBit command of the dealer box.

We will proceed in reverse order and start with step 4 in the previous description: we will start with
showing how we can turn authenticated bits under an �insecure� global key ΓA into authenticated
bits under a �secure� (but shorter) global key ∆A.

4.1 Bit Authentication with Weak Global Key (WaBit)

We will �rst de�ne the box providing bit authentication, but where some of the bits of the global
key might leak. We call this box WaBit (bit authentication with weak global key) and we formally
describe it in Fig. 8. The box WaBitL(`, τ) outputs ` bits with keys of length τ . The box is also
parametrized by a class L of leakage functions on τ bits. The box aBit(`, ψ) is the box WaBitL(`, ψ)
where L is the class of leakage functions that never leak.

Honest Parties:
1. The box samples ΓA ∈R {0, 1}τ and outputs it to B.
2. The box samples and outputs [x1]A, . . . , [x`]A. Each [xi]A = (xi,M

′
i ,K

′
i) ∈ {0, 1}1+2τ s.t.M ′i = K′i⊕xiΓA.

Corrupted Parties:
1. If A is corrupted, then A may choose a leakage function L ∈ L. Then the box samples (S, c) ← L. If

c = 0 the box outputs fail to B and terminates. If c = 1, the box outputs {(i, (ΓA)i)}i∈S to A.
2. If A is corrupted, then A chooses the xi and the M ′i and then K′i =M ′i ⊕ xiΓA.
3. If B is corrupted, then B chooses ΓA and the K′i.

Global Key Queries: The adversary can input Γ and will be told if Γ = ΓA.

Fig. 8. The box WaBitL(`, τ) for Bit Authentication with Weak Global Key

1. The parties invoke WaBitL(`, τ) with τ = 22
3
ψ. The output to A is ((M ′1, x1), . . . , (M

′
`, x`)). The output to

B is (ΓA,K
′
1, . . . ,K

′
`).

2. B samples A ∈R {0, 1}ψ×τ , a random binary matrix with ψ rows and τ columns, and sends A to A.
3. A computes Mi = AM ′i ∈ {0, 1}ψ and outputs ((M1, x1), . . . , (M`, x`)).
4. B computes ∆A = AΓA and Ki = AK′i and outputs (∆A,K1, . . . ,K`).

Fig. 9. Subprotocol for reducing aBit(`, ψ) to WaBitL(`, τ).

In Fig. 9 we describe a protocol which takes a box WaBit, where one quarter of the bits of the
global key might leak, and ampli�es it to a box aBit where the global key is perfectly secret. The
protocol is described for general L and it is parametrized by a desired security level ψ. The proof
of the following theorem can be found in App. C.
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Theorem 2. Let τ = 22
3 ψ and L be a

(
3
4τ
)
-secure leakage function on τ bits. The protocol in Fig. 9

securely implements aBit(`, ψ) in the WaBitL(`, τ)-hybrid model with security parameter ψ. The
communication is O(ψ2) and the work is O(ψ2`).

4.2 Bit Authentication with Leaking Bits (LaBit)

We now show another insecure box for aBit. The new box is insecure in the sense that a few of
the bits to be authenticated might leak to the other party. We call this box an aBit with leaking
bits, or LaBit and formally describe it in Fig. 10. The box LaBitL(τ, `) outputs τ authenticated bits
with keys of length `, and is parametrized by a class of leakage functions L on τ -bits. We show that
WaBitL can be reduced to LaBitL. In the reduction, a LaBit that outputs authenticated bits [yi]B
to B can be turned into a WaBit that outputs authenticated bits [xj ]A to A, therefore we present the
LaBit box that outputs bits to B. The reduction is strongly inspired by the OT extension techniques
in [IKNP03].

Honest Parties:
1. The box samples ΓB ∈R {0, 1}` and outputs it to A.
2. The box samples and outputs [y1]B, . . . , [yτ ]B. Each [yi]B = (yi, Ni, Li) ∈ {0, 1}1+2` s.t. Ni = Li ⊕ yiΓB .

Corrupted Parties:
1. If A is corrupted, then A may input a leakage function L ∈ L. Then the box samples (S, c)← L. If c = 0

the box outputs fail to B and terminates. If c = 1, the box outputs {(i, yi)}i∈S to A.
2. Corrupted parties get to specify their outputs as in Fig. 8.

Choice Bit Queries: The adversary can input ∆ and will be told if ∆ = (y1, . . . , yτ ).

Fig. 10. The box LaBitL(τ, `) for Bit Authentication with Leaking Bits

1. A and B invoke LaBitL(τ, `). B learns ((N1, y1), . . . , (Nτ , yτ )) and A learns (ΓB , L1, . . . , Lτ ).
2. A lets xj be the j-th bit of ΓB and Mj the string consisting of the j-th bits from all the strings Li,

i.e. Mj = L1,j ||L2,j || . . . ||L`,j .
3. B lets ΓA be the string consisting of all the bits yi, i.e. ΓA = y1||y2|| . . . ||y`, and lets Kj be the string

consisting of the j-th bits from all the strings Ni, i.e. Kj = N1,j ||N2,j || . . . ||N`,j .
4. A and B now hold [xj ]A = (xj ,Mj ,Kj) for j = 1, . . . , `.

Fig. 11. Subprotocol for reducing WaBitL(`, τ) to LaBitL(τ, `)

Theorem 3. For all `, τ and L the boxes WaBitL(`, τ) and LaBitL(τ, `) are linear locally equivalent,
i.e., can be implemented given the other in linear time without interaction.

Proof. The �rst direction (reducing WaBit to LaBit) is shown in Fig. 11. The other direction
(LaBit is linear locally reducible to WaBit) will follow by the fact that the local transformations
are reversible in linear time. One can check that for all j = 1, . . . , τ , [xj ]A is a correct authenticated
bit. Namely, from the box LaBit we get that for all i = 1, . . . , `, Ni = Li ⊕ yiΓB. In particular
the j-th bit satis�es Ni,j = Li,j ⊕ yi(ΓB)j , which can be rewritten (using the same renaming as
in the protocol) as Kj,i = Mj,i ⊕ (ΓA)ixj , and therefore Mj = Kj ⊕ xjΓA, as we want. It is easy
so see (as the protocol only consists of renamings) that leakage on the choice bits is equivalent to
leakage on the global key under this transformation, and guesses on ΓA are equivalent to guesses
on (y1, . . . , yτ ), so giving a simulation argument is straight-forward when L is the same for both
boxes. 2
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Note that since we turn LaBitL(`, τ) into WaBitL(τ, `), if we choose ` = poly(ψ) we can turn
a relatively small number (τ = 22

3 ψ) of authenticated bits towards one player into a very larger
number (`) of authenticated bits towards the other player.

4.3 A Protocol For Bit Authentication With Leaking Bits

In this section we show how to construct authenticated bits starting from OTs. The protocol ensures
that most of the authenticated bits will be kept secret, as speci�ed by the LaBit box in Fig. 10.

The main idea of the protocol, described in Fig. 12, is the following: many authenticated bits
[yi]B for B are created using OTs, where A is supposed to input messages (Li, Li ⊕ ΓB). To check
that A is using the same ΓB in every OT, the authenticated bits are randomly paired. Given a pair
of authenticated bits [yi]B, [yj ]B, A and B compute [zi]B = [yi]B ⊕ [yj ]B ⊕ di where di = yi ⊕ yj is
announced by B. If A behaved honestly, she knows the MAC that B holds on zi, otherwise she has 1
bit of entropy on this MAC, as shown below. The parties can check if A knows the MAC using the
EQ box described in App. 2. As B reveals yi⊕yj , they waste [yj ]B and only use [yi]B as output from
the protocol�as yj is uniformly random yi ⊕ yj leaks no information on yi. Note that we cannot
simply let A reveal the MAC on zi, as a malicious B could announce 1 ⊕ zi: this would allow B to
learn a MAC on zi and 1⊕ zi at the same time, thus leaking ΓB. Using EQ forces a thus cheating
B to guess the MAC on a bit which he did not see, which he can do only with negligible probability
2−`.

1. A samples ΓB ∈R {0, 1}` and for i = 1, . . . , T samples Li ∈R {0, 1}`, where T = 2τ .
2. B samples (y1, . . . , yT ) ∈R {0, 1}T .
3. They run T OTs, where for i = 1, . . . , T party A o�ers (Yi,0, Yi,1) = (Li, Li ⊕ ΓB) and B selects yi and

receives Ni = Yi,yi = Li ⊕ yiΓB . Let [y1]B, . . . , [yT ]B be the candidate authenticated bits produced so far.
4. B picks a uniformly random pairing π (a permutation π : {1, . . . , T } → {1, . . . , T } where ∀i, π(π(i)) = i),

and sends π to A. Given a pairing π, let S(π) = {i|i ≤ π(i)}, i.e., for each pair, add the smallest index to
S(π).

5. For all τ indices i ∈ S(π):
(a) B announces di = yi ⊕ yπ(i).
(b) A and B compute [zi]B = [yi]B ⊕ [yπ(i)]B ⊕ di.
(c) Let Zi and Wi be the MAC and the local key for zi held by A respectively B. They compare these using

EQ and abort if they are di�erent.
The τ comparisons are done using one call on the τ`-bit strings (Zi)i∈S(π) and (Wi)i∈S(π).

6. For all i ∈ S(π) A and B output [yi]B.

Fig. 12. The protocol for reducing LaBit(τ, `) to OT(2τ, `) and EQ(τ`).

Note that if A uses di�erent ΓB in two paired instances, Γi and Γj say, then the MAC held by B
on yi⊕ yj (and therefore also zi) is (Li⊕ yiΓi)⊕ (Lj ⊕ yjΓj) = (Li⊕Lj)⊕ (yi⊕ yj)Γj ⊕ yi(Γi⊕Γj).
Since (Γi ⊕ Γj) 6= 0` and yi ⊕ yj is �xed by announcing di, guessing this MAC is equivalent to
guessing yi. As A only knows Li, Lj , Γi, Γj and yi ⊕ yj , she cannot guess yi with probability better
than 1/2. Therefore, if A cheats in many OTs, she will get caught with high probability. If she only
cheats on a few instances she might pass the test. Doing so con�rms her guess on yi in the pairs
where she cheated. Now assume that she cheated in instance i and o�ered (Li, Li ⊕ Γ ′B) instead of
(Li, Li ⊕ ΓB). After getting her guess on yi con�rmed she can explain the run as an honest run: If
yi = 0, the run is equivalent to having o�ered (Li, Li⊕ΓB), as B gets no information on the second
message when yi = 0. If yi = 1, then the run is equivalent to having o�ered (L′i, L

′
i ⊕ ΓB) with
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L′i = Li ⊕ (ΓB ⊕ Γ ′B), as L′i ⊕ ΓB = Li ⊕ ΓB and B gets no information on the �rst message when
yi = 1. So, any cheating strategy of A can be simulated by letting her honestly use the same ΓB in
all pairs and then let her try to guess some bits yi. If she guesses wrong, the deviation is reported
to B. If she guesses right, she is told so and the deviation is not reported to B. This, in turn, can
be captured using some appropriate class of leakage functions L. Nailing down the exact L needed
to simulate a given behavior of A, including de�ning what is the �right� ΓB, and showing that the
needed L is always κ-secure is a relatively straight-forward but very tedious business. The proof of
the following theorem can be found in App. D.

Theorem 4. Let κ = 3
4τ , and let L be a κ secure leakage function on τ bits. The protocol in Fig. 12

securely implements LaBitL(τ, `) in the (OT(2τ, `),EQ(τ`))-hybrid model. The communication is

O(τ2). The work is O(τ`).

Corollary 1. Let ψ denote the security parameter and let ` = poly(ψ). The box aBit(`, ψ) can be

reduced to (OT(443 ψ,ψ),EQ(ψ)). The communication is O(ψ`+ ψ2) and the work is O(ψ2`).

Proof. Combining the above theorems we have that aBit(`, ψ) can be reduced to
(OT(443 ψ, `),EQ(223 ψ`)) with communication O(ψ2) and work O(ψ2`). For any polynomial `, we can
implement OT(443 ψ, `) given OT(443 ψ,ψ) and a pseudo-random generator prg : {0, 1}ψ → {0, 1}`.
Namely, seeds are sent using the OTs and the prg is used to one-time pad encrypt the messages. The
communication is 2`. If we use the RO to implement the pseudo-random generator and count the
hashing of κ bits as O(κ) work, then the work is O(`ψ). We can implement EQ(223 ψ`) by comparing
short hashes produced using the RO. The work is O(ψ`). 2

Since the oracles (OT(443 ψ,ψ),EQ(ψ)) are independent of `, the cost of essentially any reasonable
implementation of them can be amortized away by picking ` large enough. See App. A for a more
detailed complexity analysis.

E�cient OT Extension: We notice that the WaBit box resembles an intermediate step of the
OT extension protocol of [IKNP03]. Completing their protocol (i.e., �hashing away� the fact that
all messages pairs have the same XOR), gives an e�cient protocol for OT extension, with the same
asymptotic complexity as [HIKN08], but with dramatically smaller constants. See App. E for details.

5 Authenticated Oblivious Transfer

In this section we show how to implement aOTs. We implemented aBits in Sect. 4, so what re-
mains is to show how to implement aOTs from aBits i.e., to implement the FDeal box when it
outputs [x0]A, [x1]A, [c]B, [z]B with z = c(x0⊕x1)⊕x0 = xc. Because of symmetry we only show the
construction of aOTs from aBits with A as sender and B as receiver.

aOT

LaOT

aBit EQ

Fig. 13. Sect. 5 outline.

We go via a leaky version of authenticated OT, or LaOT, described
in Fig. 14. The LaOT box is leaky in the sense that choice bits may leak
when A is corrupted: a corrupted A is allowed to make guesses on choice
bits, but if the guess is wrong the box aborts revealing that A is cheating.
This means that if the box does not abort, with very high probability A
only tried to guess a few choice bits.

The protocol to construct a leaky aOT (described in Fig. 15) proceeds
as follows: First A and B get [x0]A, [x1]A (A's messages), [c]B (B's choice bit) and [r]B. Then A
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Honest Parties: For i = 1, . . . , `, the box outputs random [xi0]A, [x
i
1]A, [c

i]B, [z
i]B with zi = ci(xi0 ⊕ xi1)⊕ xi0.

Corrupted Parties:
1. If B is corrupted he gets to choose all his random values.
2. If A is corrupted she gets to choose all her random values. Also, she may, at any point before B received

his outputs, input (i, gi) to the box in order to try to guess ci. If ci 6= gi the box will output fail

and terminate. Otherwise the box proceeds as if nothing has happened and A will know the guess was
correct. She may input as many guesses as she desires.

Global Key Queries: The adversary can at any point input (A,∆) and will be returned whether ∆ = ∆B .
And it can at any point input (B,∆) and will be returned whether ∆ = ∆A.

Fig. 14. The Leaky Authenticated OT box LaOT(`)

transfers the message z = xc to B in the following way: B knows the MAC for his choice bit
Mc, while A knows the two keys Kc and ∆B. This allows A to compute the two possible MACs
(Kc,Kc ⊕ ∆B) respectively for the case of c = 0 and c = 1. Hashing these values leaves A with
two uncorrelated strings H(Kc) and H(Kc ⊕∆B), one of which B can compute as H(Mc). These
values can be used as a one-time pad for A's bits x0, x1 (and some other values as described later),
and B can retrieve xc and announce the di�erence d = xc ⊕ r and therefore compute the output
[z]B = [r]B ⊕ d.

The protocol runs ` times in parallel, here described for a single leaky authenticated OT.

1. A and B get [x0]A, [x1]A, [c]B, [r]B from the dealer.
2. Let [x0]A = (x0,Mx0 ,Kx0), [x1]A = (x1,Mx1 ,Kx1), [c]B = (c,Mc,Kc), [r]B = (r,Mr,Kr).
3. A chooses random strings T0, T1 ∈ {0, 1}κ.
4. A sends (X0, X1) to B where X0 = H(Kc)⊕ (x0||Mx0 ||Tx0) and X1 = H(Kc ⊕∆B)⊕ (x1||Mx1 ||Tx1).
5. B computes (xc||Mxc ||Txc) = Xc ⊕H(Mc). B aborts if Mxc 6= Kxc ⊕ xc∆A. Otherwise, let z = xc.
6. B announces d = z ⊕ r to A and the parties compute [z]B = [r]B ⊕ d. Let [z]B = (z,Mz,Kz).
7. A sends (I0, I1) to B where I0 = H(Kz)⊕ T1 and I1 = H(Kz ⊕∆B)⊕ T0.
8. B computes T1⊕z = Iz ⊕H(Mz). Notice that now B has both (T0, T1).
9. A and B both input (T0, T1) to EQ. The comparisons are done using one call to EQ(`2κ).
10. If the values are the same, they output [x0]A, [x1]A, [c]B, [z]B.

Fig. 15. The protocol for authenticated OT with leaky choice bit

In order to check if A is transmitting the correct bits x0, x1, she will transfer the respective
MACs together with the bits: as B is supposed to learn xc, revealing the MAC on this bit does not
introduce any insecurity. However, A can now mount a selective failure attack: A can check if B's
choice bit c is equal to, e.g., 0 by sending x0 with the right MAC and x1 together with a random
string. Now if c = 0 B only sees the valid MAC and continues the protocol, while if c = 1 B aborts
because of the wrong MAC. A similar attack can be mounted to check if c = 1. We will �x this later
by randomly partitioning and combining a few LaOTs together.

On the other hand, if B is corrupted, he could be announcing the wrong value d. In particular,
A needs to check that the authenticated bit [z]B is equal to xc without learning c. In order to do
this, we have A choosing two random strings T0, T1, and append them, respectively, to x0, x1 and
the MACs on those bits, so that B learns Tc together with xc. After B announces d, we can again
use the MAC and the keys for z to perform a new transfer: A uses H(Kz) as a one-time pad for T1
and H(Kz ⊕ ∆B) as a one-time pad for T0. Using Mz, the MAC on z, B can retrieve T1⊕z. This
means that an honest B, that sets z = xc, will know both T0 and T1, while a dishonest B will not
be able to know both values except with negligible probability. Using the EQ box A can check that
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B knows both values T0, T1. Note that we cannot simply have B openly announce these values, as
this would open the possibility for new attacks on A's side. The proof of the following theorem can
be found in App. F.

Theorem 5. The protocol in Fig. 15 securely implements LaOT(`) in the (aBit(4`, κ),EQ(2`κ))-
hybrid model.

To deal with the leakage of the LaOT box, we let B randomly partition the LaOTs in small
buckets: all the LaOTs in a bucket will be combined using an OT combiner (as shown in Fig. 16), in
such a way that if at least one choice bit in every bucket is unknown to A, then the resulting aOT
will not be leaky. The overall protocol is secure because of the OT combiner and the probability
that any bucket is �lled only with OTs where the choice bit leaked is negligible, as shown in App. G.

1. A and B generate `′ = B` authenticated OTs using LaOT(`′). If the box does not abort, name the outputs

{[xi0]A, [xi1]A, [ci]B, [zi]B}`
′
i=1.

2. B sends a B-wise independent permutation π on {1, . . . , `′} to A. For j = 0, . . . , ` − 1, the B quadruples

{[xπ(i)0 ]A, [x
π(i)
1 ]A, [c

π(i)]B, [z
π(i)]B}jB+B

i=jB+1 are de�ned to be in the j'th bucket.

3. We describe how to combine two OTs from a bucket, call them [x10]A, [x
1
1]A, [c

1]B, [z
1]B and

[x20]A, [x
2
1]A, [c

2]B, [z
2]B. Call the result [x0]A, [x1]A, [c]B, [z]B. To combine more than two, just iterate by taking

the result and combine it with the next leaky OT.
(a) A reveals d = x10 ⊕ x11 ⊕ x20 ⊕ x21.
(b) Compute: [c]B = [c1]B ⊕ [c2]B, [z]B = [z1]B ⊕ [z2]B ⊕ d[c1]B, [x0]A = [x10]A ⊕ [x20]A, [x1]A = [x10]A ⊕ [x21]A.

Fig. 16. From Leaky Authenticated OTs to Authenticated OTs

Theorem 6. Let aOT(`) denote the box which outputs ` aOTs as in FDeal. If (log2(`)+1)(B−1) ≥
ψ, then the protocol in Fig. 16 securely implements aOT(`) in the LaOT(B`)-hybrid model with

security parameter ψ.

6 Authenticated local AND
aAND

LaAND

aBit EQ

Fig. 17. Sect. 6 outline.

In this section we show how to generate aAND, i.e., how to implement
the dealer box when it outputs [x]A, [y]A, [z]A with z = xy. As usual, as
aAND for B is symmetric, we only present how to construct aAND for A.

We �rst construct a leaky version of aAND, or LaAND, described in
Fig. 18. Similar to the LaOT box the LaAND box may leak the value x to
B, at the price for B of being detected. The intuition behind the protocol
for LaAND, described in Fig. 19, is to let A compute the AND locally and then authenticate the
result. A and B then perform some computation on the keys and MACs, in a way so that A will
be able to guess B's result only if she behaved honestly during the protocol: A behaved honestly
(sent d = z ⊕ r) i� she knows W0 = (Kx||Kz) or W1 = (Kx ⊕ ∆A||Ky ⊕Kz). In fact, she knows
Wx. As an example, if x = 0 and A is honest, then z = 0, so she knows Mx = Kx and Mz = Kz.
Had she cheated, she would know Mz = Kz ⊕ ∆A instead of Kz. B checks that A knows W0 or
W1 by sending her H(W0)⊕H(W1) and ask her to return H(W0). This, however, allows B to send
H(W0) ⊕ H(W1) ⊕ E for an error term E 6= 0κ. The returned value would be H(W0) ⊕ xE. To
prevent this attack, they use the EQ box to compare the values instead. If B uses E 6= 0κ, he must
now guess x to pass the protocol. However, B still may use this technique to guess a few x bits. We
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�x this leakage later in a way similar to the way we �xed leakage of the LaOT box in Sect. 5. The
proof of the following theorem can be found in App. H.

Theorem 7. The protocol in Fig. 19 securely implements LaAND(`) in the (aBit(3`, κ),EQ(`κ))-
hybrid model.

Honest Parties: For i = 1, . . . , `, the box outputs random [xi]A, [yi]A, [zi]A with zi = xiyi.
Corrupted Parties:

1. If A is corrupted she gets to choose all her random values.
2. If B is corrupted he gets to choose all his random values, including the global key ∆A. Also, he may,

at any point prior to output being delivered to A, input (i, gi) to the box in order to try to guess xi.
If gi 6= xi the box will output fail to A and terminate. Otherwise the box proceeds as if nothing has
happened and B will know the guess was correct. He may make as many guesses as he desires.

Global Key Queries: The adversary can input ∆ and will be told if ∆ = ∆A.

Fig. 18. The box LaAND(`) for ` Leaky Authenticated local AND.

The protocol runs ` times in parallel. Here described for a single leaky authenticated local AND:

1. A and B ask the dealer for [x]A, [y]A, [r]A. (The global key is ∆A).
2. A computes z = xy and announces d = z ⊕ r.
3. The parties compute [z]A = [r]A ⊕ d.
4. B sends U = H(Kx||Kz)⊕H(Kx ⊕∆A||Ky ⊕Kz) to A.
5. If x = 0, then A lets V = H(Mx||Mz). If x = 1, then A lets V = U ⊕H(Mx||My ⊕Mz).
6. A and B call the EQ box, with inputs V and H(Kx||Kz) respectively. All the ` calls to EQ are handled using

a single call to EQ(`κ).
7. If the strings were not di�erent, the parties output [x]A, [y]A, [z]A.

Fig. 19. Protocol for authenticated local AND with leaking bit

We now handle a few guessed x bits by random bucketing and a straight-forward combiner. In
doing this e�ciently, it is central that the protocol was constructed such that only x could leak.
Had B been able to get information on both x and y we would have had to do the ampli�cation
twice.

The protocol is parametrized by positive integers B and `.

1. A and B call LaAND(`′) with `′ = B`. If the call to LaAND aborts, this protocol aborts. Otherwise, let

{[xi]A, [yi]A, [zi]A}`
′
i=1 be the outputs.

2. A picks a B-wise independent permutation π on {1, . . . , `′} and sends it to B. For j = 0, . . . , ` − 1, the B
triples {[xπ(i)]A, [yπ(i)]A, [zπ(i)]A}jB+B

i=jB+1 are de�ned to be in the j'th bucket.
3. The parties combine the B LaANDs in the same bucket. We describe how to combine two LaANDs, call

them [x1]A, [y
1]A, [z

1]A and [x2]A, [y
2]A, [z

2]A into one, call the result [x]A, [y]A, [z]A:
(a) A reveals d = y1 ⊕ y2.
(b) Compute [x]A = [x1]A ⊕ [x2]A, [y]A = [y1]A and [z]A = [z1]A ⊕ [z2]A ⊕ d[x2]A.
To combine all B LaANDs in a bucket, just iterate by taking the result and combine it with the next element
in the bucket.

Fig. 20. From Leaky Authenticated local ANDs to Authenticated local ANDs
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Similar to the the way we removed leakage in Sect. 5 we start by producing B` LaANDs. Then
we randomly distribute the B` LaANDs into ` buckets of size B. Finally we combine the LaANDs
in each bucket into one aAND which is secure if at least one LaAND in the bucket was not leaky.
The protocol is described in Fig. 20. The proof of Thm. 8 can be found in App. I.

Theorem 8. Let aAND(`) denote the box which outputs ` aANDs as in FDeal. If (log2(`)+1)(B−
1) ≥ ψ, then the protocol in Fig. 20 securely implements aAND(`) in the LaAND(B`)-hybrid model

with security parameter ψ.

This completes the description of our protocol. For the interested reader, a diagrammatic recap
of the construction is given in App. J.

7 Experimental Results

We did a proof-of-concept implementation in Java. The hash function in our protocol was im-
plemented using Java's standard implementation of SHA256. The implementation consists of a
circuit-independent protocol for preprocessing all the random values output by FDeal, a framework
for constructing circuits for a given computation, and a run-time system which takes preprocessed
values, circuits and inputs and carry out the secure computation.

We will not dwell on the details of the implementation, except for one detail regarding the
generation of the circuits. In our implementation, we do not compile the function to be evaluated
into a circuit in a separate step. The reason is that this would involve storing a huge, often highly
redundant, circuit on the disk, and reading it back. This heavy disk access turned out to constitute
a signi�cant part of the running time in an earlier of our prototype implementations which we
discarded. Instead, in the current prototype, circuits are generated on the �y, in chunks which are
large enough that their evaluation generate large enough network packages that we can amortize
away communication latency, but small enough that the circuit chunks can be kept in memory
during their evaluation. A circuit compiled is hence replaced by a succinct program which generates
the circuit in a streaming manner. This circuit stream is then sent through the runtime machine,
which receives a separate stream of preprocessed FDeal-values from the disk and then evaluates the
circuit chunk by chunk in concert with the runtime machine at the other party in the protocol. The
stream of preprocessed FDeal-values from the disk is still expensive, but we currently see no way to
avoid this disk access, as the random nature of the preprocessed values seems to rule out a succinct
representation.

For timing we did oblivious ECB-AES encryption. (Both parties input a secret 128-bit keyKA re-
spectivelyKB, de�ning an AES keyK = KA⊕KB. A inputs a secret `-block message (m1, . . . ,m`) ∈
{0, 1}128`. B learns (EK(m1), . . . , EK(m`)).) We used the AES circuit from [PSSW09] and we thank
Benny Pinkas, Thomas Schneider, Nigel P. Smart and Stephen C. Williams for providing us with
this circuit.

The reason for using AES is that it provides a reasonable sized circuit which is also reason-
ably complex in terms of the structure of the circuit and the depth, as opposed to just running
a lot of AND gates in parallel. Also, AES has been used for benchmark in previous implementa-
tions, like [PSSW09], which allows us to do a crude comparison to previous implementations. The
comparison can only become crude, as the experiments were run in di�erent experimental setups.

In the timings we ran A and B on two di�erent machines on Anonymous University's intranet
(using two Intel Xeon E3430 2.40GHz cores on each machine). We recorded the number of Boolean
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` G σ Tpre Tonl Ttot/` G/Ttot

1 34,520 55 38 4 44 822
27 922,056 55 38 5 1.6 21,545
54 1,842,728 58 79 6 1.6 21,623
81 2,765,400 60 126 10 1.7 20,405

108 3,721,208 61 170 12 1.7 20,541
135 4,642,880 62 210 15 1.7 20,637

` G σ Tpre Tonl Ttot/` G/Ttot

256 8,739,200 65 406 16 1.7 20,709
512 17,478,016 68 907 26 1.8 18,733

1,024 34,955,648 71 2,303 52 2.3 14,843
2,048 69,910,912 74 5,324 143 2.7 12,788
4,096 139,821,440 77 11,238 194 2.8 12,231
8,192 279,642,496 80 22,720 258 2.8 12,170

16,384 559,284,608 83 46,584 517 2.9 11,874

Fig. 21. Timings. Left table is average over 5 runs. Right table is from single runs. Units are as follows: ` is number
of 128-bit blocks encrypted, G is Boolean gates, σ is bits of security, Tpre, Tonl, Ttot are seconds.

gates evaluated (G), the time spent in preprocessing (Tpre) and the time spent by the run-time
system (Tonl). In the table in Fig. 21 we also give the amortized time per AES encryption (Ttot/`

with Ttot
def

= Tpre+Tonl) and the number of gates handled per second (G/Ttot). The time Tpre covers
the time spent on computing and communicating during the generation of the values preprocessed
by FDeal, and the time spent storing these value to a local disk. The time Tonl covers the time
spent on generating the circuit and the computation and communication involved in evaluating the
circuit given the values preprocessed by FDeal.

We work with two security parameters. The computational security parameter κ speci�es that
a poly-time adversary should have probability at most poly(κ)2−κ in breaking the protocol. The
statistical security parameter σ speci�es that we allow the protocol to break with probability 2−σ

independent of the computational power of the adversary. As an example of the use of κ, our keys
and therefore MACs have length κ. This is needed as the adversary learns H(Ki) and H(Ki⊕∆) in
our protocols and can break the protocol given ∆. As an example of the use of σ, when we generate
` gates with bucket size B, then σ ≤ (log2(`) + 1)(B − 1) due to the probability (2`)1−B that
a bucket might end up containing only leaky components. This probability is independent of the
computational power of the adversary, as the components are being bucketed by the honest party
after it is determined which of them are leaky.

In the timings, the computational security parameter has been set to 120. Since our implemen-
tation has a �xed bucket size of 4, the statistical security level depends on `. In the table, we specify
the statistical security level attained (σ means insecurity 2−σ). At computational security level 120,
the implementation needs to do 640 seed OTs. The timings do not include the time needed to do
these, as that would depend on the implementation of the seed OTs, which is not the focus here.
We note, however, that using, e.g., the implementation in [PSSW09], the seed OTs could be done
in around 20 seconds, so they would not signi�cantly a�ect the amortized times reported.

The dramatic drop in amortized time from ` = 1 to ` = 27 is due to the fact that the preproces-
sor, due to implementation choices, has a smallest unit of gates it can preprocess for. The largest
number of AES circuits needing only one, two, three, four and �ve units is 27, 54, 81, 108 and 135,
respectively. Hence we preprocess equally many gates when ` = 1 and ` = 27.

As for total time, we found the best amortized behavior at ` = 54, where oblivious AES encryp-
tion of one block takes amortized 1.6 seconds, and we handle 21,623 gates per second. As for online
time, we found the best amortized behavior at ` = 2048, where handling one AES block online takes
amortized 32 milliseconds, and online we handle 1,083,885 gates per second. We �nd these timings
encouraging and we plan an implementation in a more machine-near language, exploiting some of
the �ndings from implementing the prototype.
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A Complexity Analysis

We report here on the complexity analysis of our protocol. As showed in Corollary 1, the protocol
requires an initial call to an ideal functionality for (OT(443 ψ,ψ),EQ(ψ)). After this, the cost per
gate is only a number of invocations to a cryptographic hash function H. In this section we give
the exact number of hash functions that we use in the construction of the di�erent primitives. As
the �nal protocol is completely symmetric, we count the total number of calls to H made by both
parties.

Equality EQ: The EQ box can be securely implemented with 2 calls to a hash function H.
Authenticated OT aOT: Every aOT costs 4B calls to aBit, 2B calls to EQ, and 6B calls to H,

where B is the �bucket size�.
Authenticated AND aAND: Every aAND costs 3B calls to aBit, B calls to EQ, and 3B calls to

H, where B is the �bucket size�.
2PC Protocol, Input Gate: Input gates cost 1 aBit.
2PC Protocol, AND Gate: AND gates cost 2 aOT, 2 aAND, 2 aBit.
2PC Protocol, XOR Gate: XOR gates require no calls to H.

The cost per aBit, in the protocol described in the paper, requires 59 calls to H. However, using
some further optimizations (that are not described in the paper, as they undermine the modularity
of our constructions) we can take this number down to 8.

By plugging in these values we get that the cost per input gate is 59 calls to H (8 with opti-
mizations), and the cost per AND gate is 856B + 118 calls to H (142B + 16 with optimizations).
The implementation described in Sect. 7 uses the optimized version of the protocol and buckets of
�xed size 4, and therefore the total cost per AND gate is 584 calls to H.

As described in Sect. 3 we can greatly reduce communication complexity of our protocol by
deferring the MAC checks. However, this trick comes at cost of two calls to H (one for each player)
every time we do a �reveal�. This adds 2B hashes for each aOT and aAND and in total adds 8B+20
hashes to the cost each AND gate. This added cost is not a�ected by the optimization mentioned
above.

B Proof of Thm. 1

The simulator can be built in a standard way, incorporating the FDeal box and learning all the
shares, keys and MACs that the adversary was supposed to use in the protocol.

In a little more detail, knowing all outputs from FDeal to the corrupted parties allows the
simulator to extract inputs used by corrupted parties and input these to the box F2PC on behalf
of the corrupted parties. As an example, if A is corrupted, then learn the xA sent to A by FDeal
in Input and observe the value xB sent by A to B. Then input x = xA ⊕ xB to F2PC. This is the
same value as shared by [x] = [xA|xB] in the protocol.

Honest parties are run on uniformly random inputs, and when a honest party (A say) is supposed
to help open [x], then the simulator learns from F2PC the value x′ that [x] should be opened to.
Then the simulator computes the share xB that B holds, which is possible from the outputs of
FDeal to B. Then the simulator learns the key KxA that B uses to authenticate xA, which can also
be computed from the outputs of FDeal to B. Then the simulator lets xA = x′ ⊕ xB and and lets
MxA = KxA ⊕ xAKxA and sends (xA,MxA) to B.

23



The simulator aborts if the adversary ever successfully sends some inconsistent bit, i.e., a bit
di�erent from the bit it should send according to the protocol and its outputs from FDeal.

It is easy to see that the protocol is passively secure and that if the adversary never sends an
inconsistent bit, then it is perfectly following the protocol up to input substitution. So, to prove
security it is enough to prove that the adversary manages to send an inconsistent bit with negligible
probability. However, sending an inconsistent bit turns out to be equivalent to guessing the global
key ∆.

We now formalize the last claim. Consider the following game aI,I played by an attacker A:

Global key: A global key ∆ ← {0, 1}κ is sampled with some distribution and A might get side
information on ∆.

MAC query I: If A outputs a query (mac, b, l), where b ∈ {0, 1} and l is a label which A did not
use before, sample a fresh local key K ∈R {0, 1}κ, give M = K ⊕ b∆ to A and store (l,K, b).

Break query I: If A outputs a query (break, a1, l1, . . . , ap, lp,M
′), where p is some positive integer

and values (l1,K1, b1), . . . , (lp,Kp, bp) are stored, then let K = ⊕pi=1aiKi and b = ⊕pi=1aibi. If
M ′ = K ⊕ (1⊕ b)∆, then A wins the game. This query can be used only once.

We want to prove that if any A can win the game with probability q, then there exist an adversary
B which does not use more resources than A and which guesses ∆ with probability q without doing
any MAC queries. Informally this argues that breaking the scheme is linear equivalent to guessing
∆ without seeing any MAC values.

For this purpose, consider the following modi�ed game aII,II played by an attacker A:

Global key: No change.

MAC query II: If A outputs a query (mac, b, l,M), where b ∈ {0, 1} and l is a label which A did
not use before and M ∈ {0, 1}κ, let K =M ⊕ b∆ and store (l,K, b).

Break query II: If A outputs a query (break, ∆′) where ∆′ = ∆, then A wins the game. This
query can be used only once.

We let aII,I be the hybrid game with MAC query II and Break query I.

We say that an adversary A is no stronger than adversary B if A does not perform more queries
than B does and the running time of A is asymptotically linear in the running time of B.

Lemma 1. For any adversary AI,I for aI,I there exists an adversary AII,I for aII,I which is no

stronger than AI,I and which wins the game with the same probability as AI,I .

Proof. Given an adversary AI,I for aI,I , consider the following adversary AII,I for aII,I . The
adversary AII,I passes all side information on ∆ to AI,I . If AI,I outputs (mac, b, l), then AII,I
samples M ∈R {0, 1}κ, outputs (mac, b, l,M) to aII,I and returns M to AI,I . If AI,I outputs
(break, a1, l1, . . . , ap, lp,M

′), then AII,I outputs (break, a1, l1, . . . , ap, lp,M
′) to aII,I . It is easy to

see that AII,I makes the same number of queries as AI,I and has a running time which is linear in
that of AI,I , and that AII,I wins with the same probability as AI,I . Namely, in aI,I the value K is
uniform and M = K ⊕ b∆. In aII,I the value M is uniform and K =M ⊕ b∆. This gives the exact
same distribution on (K,M). 2

Lemma 2. For any adversary AII,I for aII,I there exists an adversary AII,II for aII,II which is no

stronger than AII,I and which wins the game with the same probability as AII,I .
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Proof. Given an adversary AII,I for aII,I , consider the following adversary AII,II for aII,II . The
adversary AII,II passes any side information on ∆ to AII,I . If AII,I outputs (mac, b, l,M), then AII,II
outputs (mac, b, l,M) to aII,II and stores (l,M, b). If AII,I outputs (break, a1, l1, . . . , ap, lp,M

′),
where values (l1,M1, b1), . . . , (lp,Mp, bp) are stored, then let M = ⊕pi=1aiMi and b = ⊕pi=1aibi and
output (break,M ⊕M ′). For each (li,Mi, bi) let Ki be the corresponding key stored by aII,II . We
have that Mi = Ki ⊕ bi ⊕ ∆, so if we let K = ⊕pi=1aiKi, then M = K ⊕ b∆. Assume that AII,I
would win aII,I , i.e., M ′ = K⊕ (1⊕ b)∆. This implies that M ⊕M ′ = K⊕ b∆⊕K⊕ (1⊕ b)∆ = ∆,
which means that AII,II wins aII,II . 2

Consider then the following game aII played by an attacker A:

Global key: No change.

MAC query: No MAC queries are allowed.

Break query II: No change.

Lemma 3. For any adversary AII,II for aII,II there exists an adversary AII for aII which is no

stronger than AII,II and which wins the game with the same probability as AII,II .

Proof. Let AII = AII,II . The game aII simply ignores the MAC queries, and it can easily be seen
that they have no e�ect on the winning probability, so the winning probability stays the same. 2

Corollary 2. For any adversary AI,I for aI,I there exists an adversary AII for aII which is no

stronger than AI,I and which wins the game with the same probability as AI,I .

This formalizes the claim that the only way to break the scheme is to guess ∆.

C Proof of Thm. 2

The simulator answers a global key query Γ to WaBit by doing the global key query AΓ on the
ideal functionality aBit and returning the reply. This gives a perfect simulation of these queries,
and we ignore them below.

Correctness of the protocol is straightforward: We have that M ′i = K ′i ⊕ xiΓA, so Mi = AM ′i =
AK ′i ⊕ xiAΓA = Ki ⊕ xi∆A. Clearly the protocol leaks no information on the xi's as there is only
communication from B to A. It is therefore su�cient to look at the case where A is corrupted. We
are not going to give a simulation argument but just show that ∆A is uniformly random in the view
of A except with probability 22−ψ. Turning this argument into a simulation argument is straight
forward.

We start by proving three technical lemmas.

Assume that L is a class of leakage functions on τ bits which is κ-secure. Consider the following
game.

1. Sample ΓA ∈R {0, 1}τ .
2. Get L ∈ L from A and sample (S, c)← L.

3. Give {(j, (ΓA)j)}j∈S to A.

4. Sample A ∈R {0, 1}ψ×τ and give A to A.

5. Let ∆A = AΓA.
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We want to show that ∆A is uniform to A except with probability 22−ψ. When we say that ∆A

is uniform to A we mean that ∆A is uniformly random in {0, 1}ψ and independent of the view of
A. When we say except with probability 22−ψ we mean that there exists a failure event F for which
it holds that

1. F occurs with probability at most 22−ψ and
2. when F does not occur, then ∆A is uniform to A.

For a subset S ⊂ {1, . . . , τ} of the column indices, let AS be the matrix where column j is equal
to Aj if j ∈ S and column j is the 0 vector if j 6∈ S. We say that we blind out column j with 0's
if j 6∈ S. Similarly, for a column vector v we use the notation vS to mean that we set all indices vi
where i 6∈ S to be 0. Note that AvS = ASv. Let S = {1, . . . , τ} \ S.

Lemma 4. Let S be the indices of the bits learned by A and let A be the matrix in the game above.

If AS spans {0, 1}ψ, then ∆A is uniform to A.

Proof. We start by making two simple observations. First of all, if A learns (ΓA)j for j ∈ S, then it

learns (ΓA)S
5, so it knows A(ΓA)S = ASΓA. The second observation is that AΓA = ASΓA+A

SΓA,

as A = AS+AS . The lemma follows directly from these observations and the premise: We have that

ASΓA is uniformly random in {0, 1}ψ when the columns of AS span {0, 1}ψ. Since ASΓA = A(ΓA)S
and (ΓA)S is uniformly random and independent of the view of A it follows that ASΓA is uniformly

random and independent of the view of A. Since ASΓA is known by A it follows that ASΓA+ASΓA
is uniform to A. The proof concludes by using that ∆A = ASΓA +ASΓA. 2

Lemma 5. Let W be the event that |S| ≥ τ − n and c = 1. Then Pr [W ] ≤ 2−ψ.

Proof. We use that

� κ = 3
4τ ,

� τ = αn for α = 44
27 ,

� n = 9
2ψ,

� L is κ-secure on τ bits.

Without loss of generality we can assume that A plays an optimal L ∈ L, i.e., log2(E
[
c2|S|

]
) = leakL.

Since L is κ secure on τ bits, it follows that leakL ≤ τ − κ = 1
4τ . This gives that

E
[
c2|S|

]
≤ 2

1
4
τ , (1)

which we use later.
Now let W be the event that W does not happen. By the properties of conditional expected

value we have that

E
[
c2|S|

]
= Pr [W ] E

[
c2|S||W

]
+ Pr

[
W
]
E
[
c2|S||W

]
.

When W happens, then |S| ≥ τ −n = (α− 1)n and c = 1, so c2|S| = 2|S| ≥ 2(α−1)n. This gives that

E
[
c2|S||W

]
≥ 2(α−1)n .

5 Here we are looking at the string ΓA as a column vector of bits.
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Hence
E
[
c2|S|

]
≥ Pr [W ] 2(α−1)n .

Combining with (1) we get that

Pr [W ] ≤ 2
1
4
τ−(α−1)n .

It is, therefore, su�cient to show that 1
4τ − (α− 1)n = −ψ, which can be checked to be the case by

de�nition of τ, α, n and ψ. 2

Lemma 6. Let x1, . . . , xn ∈R {0, 1}ψ. Then x1, . . . , xn span {0, 1}ψ except with probability 21−ψ.

Proof. We only use that

� n = 9
2ψ.

De�ne random variables Y1, . . . , Yn where Yi = 0 if x1, . . . , xi−1 spans {0, 1}ψ or the span of
x1, . . . , xi−1 does not include xi. Let Yi = 1 in all other cases. Note that if x1, . . . , xi−1 spans
{0, 1}ψ, then Pr [Yi = 1] = 0 ≤ 1

2 and that if x1, . . . , xi−1 does not span {0, 1}ψ, then they span at
most half of the vectors in {0, 1}ψ and hence again Pr [Yi = 1] ≤ 1

2 . This means that it holds for
all Yi that Pr [Yi = 1] ≤ 1

2 independently of the values of Yj for j 6= i. This implies that if we let
Y =

∑n
i=1 Yi, then

Pr [Y ≥ 1

2
(a+ n)] ≤ 2e−a

2/2n ,

using the random walk bound. Namely, let Xi = 2Yi − 1. Then Xi ∈ {−1, 1} and it holds for
all i that Pr [Xi = 1] ≤ 1

2 independently of the other Xj . If the Xi had been independent and
Pr [Xi = 1] = Pr [Xi = −1] = 1

2 , and X =
∑n

i=1Xi, then the random walk bound gives that

Pr [X ≥ a] ≤ 2e−a
2/2n .

Since we have that Pr [Xi = 1] ≤ 1
2 independently of the other Xj , the upper bound applies also to

our setting. Then use that X = 2Y − n.
If we let a = 5

2ψ, then
1
2(a + n) = 7

2ψ = n − ψ and 2e−a
2/2n = 2e−(

5
2
ψ)

2
/2 9

2
ψ = 2e−

25
36
ψ, and

e−
25
36 < 1

2 . It follows that Pr [Y ≥ n− ψ] ≤ 21−ψ. When Y ≤ n−ψ, then Yi = 0 for at least ψ values
of i. This is easily seen to imply that x1, . . . , xn contains at least ψ linear independent vectors. 2

Recall that W is the event that |S| ≥ τ − n and c = 1. By Lemma 5 we have that Pr [W ] ≤
2−n ≤ 2−ψ. For the rest of the analysis we assume that W does not happen, i.e., |S| ≤ τ − n and
hence |S| ≥ τ = 9

2ψ. Since A is picked uniformly at random and independent of S it follows that
9
2ψ of the columns in AS are uniformly random and independent. Hence, by Lemma 6, they span
{0, 1}ψ except with probability 21−ψ. We let D be the event that they do not span. If we assume
that D does not happen, then by Lemma 4 ∆A is uniform to A. I.e., if the event F = W ∪D does
not happen, then ∆A is uniform to A. And, Pr [F ] ≤ Pr [W ] + Pr [D] ≤ 2−ψ + 21−ψ ≤ 22−ψ.

D Proof of Thm. 4

Notice that since we have to prove that we implement LaBit, which has the global key queries, it
would be stronger to show that we implement a version of LaBit′ which does not have these global
key queries. This is what we do below, as we let LaBit denote this stronger box.
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Given a pairing π, let S(π) = {i|i < π(i)}, i.e., for each pair we add the smallest indexed to
S(π).

The cases where no party is corrupted and where B is corrupted is straight forward, so we will
focus on the case that A is corrupted.

The proof goes via a number of intermediary boxes, and for each we show linear reducibility.

Approximating LaBit, Version 1 This box captures the fact that the only thing a malicious A
can manage is to use di�erent Γ 's in a few bit authentications.

Honest-Parties: As in LaBit.
Corrupted Parties:

1. If B is corrupted: As in LaBit.
2. (a) If A is corrupted, then A inputs a functions col : {1, . . . , T } → {1, . . . , T }. We think of col as assigning

colors from {1, . . . , T } to T balls named 1, . . . , T . In addition A inputs Λ1, . . . , ΛT ∈ {0, 1}` and
L1, . . . , LT ∈ {0, 1}`.

(b) Then the box samples a uniformly random pairing π : {1, . . . , T } → {1, . . . , T } and outputs π to A.
We think of π as pairing the T balls. Let S = S(π) and letM = {i ∈ S| col(i) 6= col(π(i))}. We call
i ∈M a mismatched ball.

(c) Now A inputs the guesses {(i, gi)}i∈M.
(d) The box samples (y1, . . . , yT ) ∈R {0, 1}T . Then the box lets c = 1 if gi = yi for i ∈ M, otherwise

it lets c = 0. If c = 0 the box outputs fail to B and terminates. Otherwise, for i ∈ S it computes
Ni = Li ⊕ yiΛcol(i) and outputs {((Ni, yi)}i∈S to B.

Fig. 22. The First Intermediate Box IB1

Lemma 7. IB1 is linear reducible to (OT(2τ, `),EQ(τ`)).

Proof. By observing A's inputs to the OTs, the simulator learns all (Yi,0, Yi,1). Let Li = Yi,0 and
Γi = Yi,0 ⊕ Yi,1.

Let f = |{Γi}Ti=1| and pick distinct Λ1, . . . , Λf and col : {1, . . . , T } → {1, . . . , T } such that
Γi = Λcol(i). By construction

Yi,1 = Yi,0 ⊕ (Yi,0 ⊕ Yi,1)
= Li ⊕ Γi
= Li ⊕ Λcol(i) .

Input col and Λ1, . . . , Λf and L1, . . . , LT to IB1 on behalf of A and receive π. Send π to A as if
coming from B along with uniformly random {di}i∈S .

Then observe the inputs Zi from A to the EQ box.
The simulator must now pick the guesses gi for i ∈ M. Note that i ∈ M implies that Λcol(i) 6=

Λcol(π(i)), which implies that Γi 6= Γπ(i). We use this to pick gi, as follows: after seeing di, A knows
that either (yi, yπ(i)) = (0, di) or (yi, yπ(i)) = (1, 1 ⊕ di). Hence an honest B would input to the
comparison the following value depending on yi

Wi(yi) = (Li ⊕ Lπ(i) ⊕ diΛcol(π(i)))⊕ yi(Λcol(i) ⊕ Λcol(π(i))) .

As i ∈M, the mismatched set, Λcol(i) 6= Λcol(π(i)) and therefore Wi(0) 6=Wi(1). Therefore if A's
input to the EQ box Zi is equal to Wi(0) (resp. Wi(1)), the simulator inputs a guess gi = 0 (resp.
gi = 1). In any other case, the simulator outputs fail and aborts.
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Notice that in the real-life protocol, if gi = yi, then Ni = Wi(yi) = Zi and A passes the test. If
gi 6= yi, then Ni =Wi(1⊕ ci) 6= Zi and A fails the test. So, the protocol and the simulation fails on
the same event. Note then that when the box does not fail, then it outputs

Ni = Li ⊕ yiΛcol(i)

= Yi,0 ⊕ yiΓi
= Yi,0 ⊕ yi(Yi,0 ⊕ Yi,1)
= Yi,yi ,

exactly as the protocol. Hence the simulation is perfect. 2

Approximating LaBit, Version 2 We now formalize the idea that a wrong Γ -value is no worse
that a leaked bit.

We �rst need a preliminary de�nition of the most common color called col0. If several colors are
most common, then arbitrarily pick the numerically largest one. To be more precise, for each color
c, let C(c) = {j ∈ {1, . . . , T }| col(j) = c}, let a0 = maxc |C(c)| and let col0 = max{c|C(c) = a0|}.

Consider the following box IB2 in Fig. 23 for formalizing the second idea.

Honest-Parties: As in LaBit.
Corrupted Parties:

1. If B is corrupted: As in LaBit.
2. (a) If A is corrupted, then A inputs a function col : {1, . . . , T } → {1, . . . , T }.

(b) Then the box samples a uniformly random pairing π : {1, . . . , T } → {1, . . . , T } and outputs π to A.
Let S = S(π) andM = {i ∈ S| col(i) 6= col(π(i))}.

(c) Now A inputs the guesses {(i, gi)}i∈M.
(d) The box lets c = 1 if gi = yi for i ∈ M, otherwise it lets c = 0. If c = 0 the box outputs fail to A

and terminates. Otherwise, the box determines col0.
Then for i ∈ S, if col(i) 6= col0, the box outputs (i, yi) to A. Then A inputs L1, . . . , LT ∈ {0, 1}` and
ΓB ∈ {0, 1}` and for i ∈ S the box computes Ni = Li ⊕ yiΓB . Then it outputs {(Ni, yi)}i∈S to B.

Fig. 23. The Second Intermediate Box IB2

Lemma 8. IB2 is linear locally reducible to IB1.

Proof. The implementation of IB2 consist simply of calling IB1.

The case where B or no party is corrupted is trivial, so assume that A is corrupted. Note that
the simulator must simulate IB2 to the environment and is the one simulating IB1 to the corrupted
A.

First the simulator observes the inputs col, Λ1, . . . , ΛT ∈ {0, 1}` and L1, . . . , LT ∈ {0, 1}` of A∗
to IB1 and inputs col to IB2.

Then IB2 outputs π and the simulator inputs π to A∗ as if coming from IB1, and computesM
as IB1 and IB2 would have done.

Then the simulator observes the guesses {(i, gi)}i∈M from A∗ to IB1 and inputs {(i, gi)}i∈M to
IB2. If IB2 outputs fail to B the simulation is over, and it is perfect as IB1 and IB2 fail based
on the same event. If IB2 does not fail it determines col0 and for i ∈ M, if col(i) 6= col0, the box
outputs (i, yi) to the simulator. The simulator can also determine col0.
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Now let ΓB = Λcol0 and for i ∈M, if col(i) = col0, let L
′
i = Li. Then for i ∈M, if col(i) 6= col0,

let L′i = (Li ⊕ yiΛcol(i))⊕ yiΓB. Then input L′i, . . . , L
′
T and ΓB to IB2.

As a result IB2 will for i ∈ S where col(i) = col0, output L
′
i ⊕ yiΓB = Li ⊕ yiΛcol0 , and for for

i ∈ S where col(i) 6= col0 it will output L′i ⊕ yiΓB = Li ⊕ yiΛcol(i). Hence IB2 gives exactly the
outputs that IB1 would have given after interacting with A∗, giving a perfect simulation. 2

Approximate LaBit, Version 3 We now massage IB2 a bit to make it look like LaBit. As a step
towards this, consider the box IB3 in Fig. 24.

Honest-Parties: As in LaBit.
Corrupted Parties:

1. Corrupted B: As in LaBit.
2. (a) If A is corrupted, then A inputs a function col : {1, . . . , T } → {1, . . . , T }.

(b) Then the box samples a uniformly random pairing π : {1, . . . , T } → {1, . . . , T } and outputs π to
A. LetM = {i ∈ S| col(i) 6= col(π(i))}. The box �ips a coin c ∈ {0, 1} with c = 1 with probability
2−|M|. If c = 0 the box outputs fail to B and terminates. Otherwise, the box outputs success and
the game proceeds.

(c) Now A inputs the guesses {(i, gi)}i∈M.
(d) The box updates yi ← gi for i ∈ M. Then the box determines col0. Then for i = S \ M, if

col(i) 6= col0, the box outputs i to A who inputs gi ∈ {0, 1} and the box updates yi ← gi.
(e) Then A inputs L1, . . . , LT ∈ {0, 1}` and ΓB ∈ {0, 1}` and for i ∈ S the box computes Ni = Li⊕yiΓB .

Then it outputs {(Ni, yi)}i∈S to B.

Fig. 24. The third Intermediate Box, IB3

Lemma 9. IB3 is linear locally reducible to IB2.

Proof. It is easy to see that IB3 is linear locally reducible to IB2�again the implementation consist
simply of calling IB2. To see this, consider �rst the change in how the box fails and how the yi for
i ∈ M are set. In IB2 the box fails exactly with probability 2−|M| as the probability that gi = yi
for i ∈ M is exactly 2−|M|. Furthermore, if IB2 does not fail, then yi = gi for i ∈ M. So, this is
exactly the same behavior as IB3, hence this change is really just another way to implement the
same box. As for the second change, the simulator will input a uniformly random gi ∈R {0, 1} to
IB3 when IB3 outputs i and will then show (i, yi) to the corrupted A∗ expecting to interact with
IB2. 2

We then argue that we can de�ne a class L such that LaBitL is linear locally reducible to IB3.
Let L be the following class.

� A leakage function is speci�ed by L = col, where col : {1, . . . , T } → {1, . . . , T }.
� To sample a leakage function L = col, sample a uniformly random pairing π : {1, . . . , T } →
{1, . . . , T }, let S = S(π), let Π : S(π) → {1, . . . , τ} be the order preserving permutation, let
M = {j ∈ S| col(j) 6= col(π(j))}, let c = 1 with probability 2−|M| and c = 0 otherwise, let col0
be the most common color as de�ned before, let S′ = M∪ {j ∈ S| col(j) 6= col0}, S = π(S′)
and output (c, S).

Playing with IB3 and LaBitL will give the same failure probability and will allow to specify the
same bits. The only di�erence is that when playing with LaBitL, the corrupted A∗ does not get
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to see π, as LaBitL does not leak the randomness used to sample the leakage function L. Below
we argue that given c and S one can e�ciently sample a uniformly random pairing π which would
lead to S given c. Turning this into a simulation argument is easy: the simulator will know c and S
and will sample π from these and show this π to A∗, hence perfectly simulating IB3. This gives the
following lemma.

Lemma 10. LaBitL(τ, `) is linear locally reducible to IB3.

The simulator knows col and S and it can determine col0. From col0 the simulator can also
compute

T = S \ {j ∈ {1, . . . , T }| col(j) 6= col0}
=M∩ {j ∈ {1, . . . , T }| col(j) = col0}
= {j ∈ {1, . . . , T }| col(j) = col0 ∧ col(j) 6= col(π(j))}
= {j ∈ {1, . . . , T }| col(j) = col0 ∧ col(π(j)) 6= col0} .

This restriction is meet i� π has the property that col(π(j)) 6= col0 for j ∈ T and col(π(j)) = col0
for j ∈ C0 \ T , where C0 = {j| col(j) = col0}. Furthermore, any π meeting this restrictions would
lead to the observed value of π. It is hence su�cient to show that we can sample a uniformly random
π meeting these restrictions.

Let C0 = {1, . . . , T } \C0. Pick π0 : T → C0 to be a uniformly random injection on the speci�ed
domains. Pick π1 : C0 \ T → C0 similarly. Let π2 : T ∪C0 → {1, . . . , τ} be de�ned by π2(j) = π0(j)
for j ∈ T and π2(j) = π1(j) for j ∈ C0 ∪ T . Since π0 and π1 map into disjoint sets, this is again an
injection. Now let π3 : {1, . . . , τ} \ (C0∪T )→ {1, . . . , τ} \ img(π2) be a random permutation on the
speci�ed domains. De�ne π from π2 and π3 as we de�ned π2 from π0 and π1. Then it is easy to see
that π is a uniformly random permutation meeting the restrictions. The de�nition of π shows how
to sample it e�ciently.

Concluding the Proof Using the above theorem and lemmata and the fact that linear reducibility
is transitive, we now have the following theorem.

Corollary 3. LaBitL(τ, `) is linear reducible to (OT(2τ, `),EQ(τ`)).

We now show that if we set κ = 3
4τ , then L is κ-secure. For this purpose we assign a price to

each ball j ∈ S(π).
1. If col(j) 6= col(π(j)), then let pricecol,π(j) = 1.
2. If col(j) = col(π(j)) = col0, then let pricecol,π(j) = 1.
3. If col(j) = col(π(j)) 6= col0, then let pricecol,π(j) = 0.

Let pricecol,π =
∑

j∈S pricecol,π(j).

Lemma 11. Consider an adversary A playing the game against L and assume that it submits

L = col. Assume that the game uses π. Then the success probability of A is at most 2− pricecol,π .

Proof. De�ne price1col,π(j) as pricecol,π(j) except that if col(j) = col(π(j)) = col0, then

price1col,π(j) = 0. De�ne price2col,π(j) as pricecol,π(j) except that if col(j) 6= col(π(j)), then

pricecol,π(j) = 0. Then pricecol,π(j) = price1col,π(j) + price2col,π(j). De�ne price1col,π and price2col,π
by summing over j ∈ S. Then pricecol,π = price1col,π +price2col,π. Note that |M| = pricecol,π(j)

and note that |S′| = τ − price2col,π(j),
6 as the only balls j ∈ S which do not enter S′ are

6 Recall that S′ is de�ned during the de�nition of L above.
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those for which col(j) = col(π(j)) = col0. We have that A wins if c = 1 and he guesses
yΠ(j) for j ∈ S \ S′. The probability that c = 1 is 2−|M| = 2− pricecol,π(j). We have that
|S\S′| = |S|−|S′| = τ−(τ−price2col,π(j)) = price2col,π(j). So, the probability that A guesses correctly

is 2− price2col,π(j). So, the overall success probability is 2− price1col,π(j)2−price2col,π(j) = 2− pricecol,π(j). 2

Now let π be chosen uniformly at random and let pricecol(j) be the random variable describing
pricecol,π(j). Let pricecol =

∑
j∈S pricecol(j). It is then easy to see that the probability of winning

the game on L = col is at most

successcol =
τ∑
p=0

Pr [pricecol = p] 2−p .

For each price p, let Pp be an index variable which is 1 if pricecol = p and which is 0 otherwise.
Note that E [Pp] = Pr [pricecol = p], and note that

∑τ
p=0 Pp2

−p = 2− pricecol as Pp = 0 for p 6= pricecol
and Pp = 1 for p = pricecol. Then

successcol =
τ∑
p=0

Pr [pricecol = p] 2−p

=
τ∑
p=0

E [Pp] 2
−p

= E

 τ∑
p=0

Pp2
−p


= E

[
2−pricec

]
= E

[
2−

∑
j∈S pricec(j)

]
.

Now let φ(x) = 2−x, and we have that

successcol = E

φ(∑
j∈S

pricecol(j))

 .

Since φ(x) is concave it follows from Jensen's inequality that

E

φ(∑
j∈S

pricecol(j))

 ≤ φ
E

∑
j∈S

pricecol(j)

 .

Hence

successcol ≤ 2−E[
∑τ
j=1 pricecol(Π

−1(j))] = 2−
∑τ
j=1 E[pricecol(Π−1(j))] = 2−

∑
j∈S E[pricecol(j)] .

It follows that if we can compute m0 = mincol
∑

j∈S E [pricecol(j)], then 2−m0 is an upper bound on
the best success rate.

We say that L = col is optimal if
∑

j∈S E [priceL(j)] = m0, and now �nd an optimal L.
We �rst show that there is no reason to use balls of color col0 in the optimal strategy.
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Lemma 12. Let L = col be an optimal leakage function and let col0 = col0(col). Then there exist

j such that col(j) 6= col0.

Proof. Assume for the sake of contradiction that col(j) = col0 for j = 1, . . . , T . Then clearly∑
j∈S E [pricecol(j)] = τ , and it is easy to see that there are strategies which do better than 2−τ , so

L cannot be optimal. 2

Let col1, . . . , colT be an enumeration of the colors di�erent from col0, i.e., {col0, col1, . . . , colT } =
{1, . . . , T }. Let Ci be the balls with color coli, i.e., Ci = {j ∈ {1, . . . , T }| col(j) = coli}. Note that
{1, . . . , T } is a disjoint union of C1, . . . , CT . Let ai be the number of balls of color coli, i.e., ai = |Ci|.
Note that T =

∑T
i=1 ai.

With these de�nitions we have that

T∑
j=1

E [pricecol(j)] =
T∑
i=1

∑
j∈Ci

E [pricecol(j)] .

For a ball j ∈ C0 of color col0 we always have pricecol(j) =
1
2 , by de�nition of the price, so∑

j∈C0

E [pricecol(j)] =
∑
j∈C0

1

2
=

1

2
a0 .

For a ball j ∈ Ci for i > 0 we have pricecol(j) = 0 if col(π(j)) = coli and pricecol(j) = 1
2 if

col(π(j)) 6= coli. We have that π(j) is uniform on {1, . . . , T } \ {j}. Since col(j) = coli there are
ai − 1 balls k ∈ {1, . . . , T } \ {j} for which col(k) = coli. So,

E [pricecol(j)] =
1

2

(T − 1)− (ai − 1)

T − 1

=
1

2

T − ai
T − 1

,

which implies that ∑
j∈Ci

E [pricecol(j)] = ai
1

2

T − ai
T − 1

=
1

2

1

T − 1
(T ai − a2i ) .

It follows that

T −1∑
i=1

∑
j∈Ci

E [pricecol(j)] =
1

2

1

T − 1

T −1∑
i=1

(T ai − a2i )

=
1

2

1

T − 1
(T
T −1∑
i=1

ai −
T −1∑
i=1

a2i )

=
1

2

1

T − 1
(T (T − a0)−

T −1∑
i=1

a2i ) .
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All in all we now have that

T −1∑
i=0

∑
j∈Ci

E [pricecol(j)] =
1

2
a0 +

1

2

1

T − 1
(T (T − a0)−

T −1∑
i=1

a2i )

=
1

2
a0 −

1

2

T
T − 1

a0 +
1

2

1

T − 1
(T T −

T −1∑
i=1

a2i )

=
1

2
(
−a0
T − 1

) +
1

2

1

T − 1
(T 2 −

T −1∑
i=1

a2i )

=
1

2

T 2

T − 1
− 1

2

1

T − 1
(a0 +

T −1∑
i=1

a2i ) .

To minimize this expression we have to maximize a0 +
∑T −1

i=1 a2i . Recall that col0 is de�ned to be
the most common color, so we must adhere to a0 ≥ ai for i > 0. Under this restriction it is easy to
see that a0 +

∑T −1
i=1 a2i is maximal when a0 = a1 = T /2 and a2 = · · · aT = 0, in which case it has

the value T /2 + (T /2)2. So,

E [pricecol] =
1

2

T 2

T − 1
− 1

2

1

T − 1
(T /2 + (T /2)2)

=
1

2

T 2 − T /2 + (T /2)2

T − 1

=
1

2

4τ2 − τ − τ2

2τ − 1
=

1

2

3τ2 − τ
2τ − 1

=
1

2
τ
3τ − 1

2τ − 1
>

1

2
τ
3τ

2τ
=

3

4
τ = κ .

E E�cient OT Extension

In this section we show how we can produce a virtually unbounded number of OTs from a small
number of seed OTs. The amortized work per produced OT is linear in κ, the security parameter.

A similar result was proved in [HIKN08]. In [HIKN08] the amortized work is linear in κ too, but
our constants are much better than those of [HIKN08]. In fact, our constants are small enough to
make the protocol very practical.7 Since [HIKN08] does not attempt to analyze the exact complexity
of the result, it is hard to give a concrete comparison, but since the result in [HIKN08] goes over
generic secure multiparty computation of non-trivial functionalities, the constants are expected to
be huge compared to ours.

Let κ be the security parameter. We show that OT(`, κ) is linear reducible to (OT(83κ, κ),
EQ(43κ

2)) for any ` = poly(κ), i.e., given 8
3κ active-secure OTs of κ-bit strings we can produce an

essentially unbounded number of active-secure OTs of κ-bit strings. The amortized work involved
in each of these ` OTs is linear in κ, which is optimal.

The approach is as follows.

1. Use OT(83κ, κ) and a pseudo-random generator to implement OT(83κ, `).

7 As an example, our test run (see Sect. 7) with ` = 54 involved generating 44,826,624 aBits, each of which can
be turned into one OT using two applications of a hash function. The generation took 85 seconds. Using these
numbers, gives an estimate of 527,372 actively secure OTs per second. Note, however, that the generation involved
many other things than generating the aBits, like combining them to aOTs and aANDs.
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2. Use OT(83κ, `) and EQ(43κ`) to implement WaBitL for ` authentications with 4
3κ-bit keys and

MACs and with L being κ-secure.
3. Use a random oracle H : {0, 1}

4
3
κ → {0, 1}κ and WaBitL for ` authentications with 4

3κ-bit keys
to implement OT(`, κ), as described below.

Here, as in [HIKN08], we consider a hashing of O(κ) bits to be linear work. The pseudo-random
generator can be implemented with linear work using H.

From WaBit to OT. As a �rst step, we notice that the aBit box described in Sect. 4.2 resembles
an intermediate step of the passive-secure OT extension protocol of [IKNP03]: an aBit can be seen
as a random OT, where all the sender's messages are correlated, in the sense that the XOR of the
messages in any OT is a constant (the global key of the aBit). This correlation can be easily broken
using the random oracle. In fact, even if few bits of the global di�erence ∆ leak to the adversary,
the same reduction is still going to work (for an appropriate choice of the parameters). Therefore,
we are able to start directly from the box for authenticated bits with weak key, or WaBit described
in Sect. 4.1.

1. For the sender S the box samples Xi,0, Xi,1 ∈R {0, 1}κ for i = 1, . . . , `. If S is corrupted, then it gets to
specify these inputs.

2. For the receiver R the box samples b = (b1, . . . , b`) ∈R {0, 1}`. If R is corrupted, then it gets to specify these
inputs.

3. The box outputs ((X1,b1 , b1), . . . , (X`,bl , b`)) to R and ((X1,0, X1,1), . . . , (X`,0, X`,1)) to S.

Fig. 25. The Random OT box ROT(`, κ)

1. Call WaBitL(`, 4
3
κ). The output to R is ((M1, b1), . . . , (M`, b`)). The output to S is (∆,K1, . . . ,K`).

2. R computes Yi = H(Mi) and outputs ((Y1, b1), . . . , (Y`, b`)).
3. S computes Xi,0 = H(Ki) and Xi,1 = H(Ki ⊕∆) and outputs ((X1,0, X1,1), . . . , (X`,0, X`,1)).

Fig. 26. The protocol for reducing ROT(`, κ) to WaBitL(`, 4
3
κ)

Here κ is the security level, i.e., we want to implement OT with insecurity poly(κ)2−κ. We are
to use an instance of WaBitL with slightly larger keys. Speci�cally, let τ = 4

3κ, as we know how to
implement a box WaBitL with τ -bit keys and where L is κ-secure for κ = 3

4τ . We implemented such
a box in Sect. 4.1. The protocol is given in Fig. 26. It implements the box for random OT given in
Fig. 25.

We have that Mi = Ki⊕ bi∆, so Yi = H(Mi) = H(Ki⊕ bi∆) = Xi,bi . Clearly the protocol leaks
no information on the bi as there is no communication from R to S. It is therefore su�cient to look
at the case where R is corrupted. We are not going to give a simulation argument but just show
that Xi,1⊕bi is uniformly random to R except with probability poly(κ)2−κ.

Since Xi,1⊕bi = H(Ki⊕ (1⊕ bi)∆) and H is a random oracle, it is clear that Xi,1⊕bi is uniformly
random to R until R queries H on Q = Ki ⊕ (1 ⊕ bi)∆. Since Mi = Ki ⊕ bi∆ we have that
Q = Ki ⊕ (1 ⊕ bi)∆ would imply that Mi ⊕Q = ∆. So, if we let R query H, say, on Q ⊕Mi each
time it queries H on some Q, which would not change its asymptotic running time, then we have
that all Xi,1⊕bi are uniformly random to R until it queries H on ∆. It is not hard to show that the
probability with which an adversary running in time t = poly(κ) can ensure that WaBitL does not
fail and then query H on ∆ is poly(κ)2−κ. This follows from the κ-security of L.
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F Proof of Thm. 5

The simulator answers global key queries to the dealer by doing the identical global key queries
on the ideal functionality LaOT(`) and returning the reply from LaOT(`). This gives a perfect
simulation of these queries, and we ignore them below.

For honest sender and receiver correctness of the protocol follows immediately from correctness
of the aBit box and the EQ box.

Lemma 13. The protocol in Fig. 15 securely implements LaOT(`) against corrupted A.

Proof. We consider the case of a corrupt sender A∗ running the above protocol against a simulator
Sim. We show how to simulate one instance.

1. First Sim receives A∗'s input (Mx0 , x0), (Mx1 , x1), Kc,Kr and ∆B to the dealer. Then Sim
samples a bit y ∈R {0, 1}, sets Kz = Kr ⊕ y∆B and inputs (Mx0 , x0), (Mx1 , x1), Kc,Kz and
∆B to a LaOT box. The box outputs ∆A, (Mc, c), (Mz, z), Kx0 and Kx1 to the honest B as
described in the protocol.

2. A∗ outputs the message (X0, X1). The simulator knows ∆B and Kc and can therefore compute

X0 ⊕H(Kc) = (x0||Mx0 ||T ′x0)

and
X1 ⊕H(Kc ⊕∆B) = (x1||Mx1 ||T ′x1) .

For all j ∈ {0, 1} Sim tests if (Mxj , xj) = (Mxj , xj). If, for some j, this is not the case Sim
inputs a guess to the LaOT box guessing that c = (1− j) to the LaOT box. If the box outputs
fail Sim does the same and aborts the protocol. Otherwise Sim proceeds by sending y to A∗.
Notice that if Sim does not abort but does guess the choice bit c it can perfectly simulate the
remaining protocol. In the following we therefore assume this is not the case.

3. Similarly Sim gets (I0, I1) from A∗ and computes

I0 ⊕H(Kz) = T ′′1

and
I1 ⊕H(Kz ⊕∆B) = T ′′0 .

4. When Sim receives A∗'s input (T0, T1) for the EQ box it �rst tests if (T ′j , T
′′
1⊕xj ) = (Txj , T1⊕xj )

for all j ∈ {0, 1}. If, for some j, this is not the case Sim inputs a guess to the LaOT box guessing
that c = (1 − j). If the box outputs fail, Sim outputs fail and aborts. If not, the simulation
is over.

For analysis of the simulation we denote by F the event that for some j ∈ {0, 1} A∗ computes values
M∗xj ∈ {0, 1}

κ and x∗j ∈ {0, 1} so that (M∗xj , x
∗
j ) 6= (Mxj , xj) and M∗xj = Kxj ⊕ x∗j∆A. In other

words, F is the event that A∗ computes a MAC on a message bit it was not supposed to know. We
will now show that, assuming F does not occur, the simulation is perfectly indistinguishable from
the real protocol. We then show that F only occurs with negligible probability and therefore that
simulation and the real protocol are indistinguishable.

From the de�nition of the LaOT box we have that (Mxj , xj) = (Mxj , xj) implies Mxj = Kxj ⊕
xj∆A. Given the assumption that F does not occur clearly we have that (Mxj , xj) 6= (Mxj , xj) also
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impliesMxj 6= Kxj ⊕xj∆A. This means that Sim aborts in step 2 with exactly the same probability
as the honest receiver would in the real protocol. Also, in the real protocol we have y = z ⊕ r for
r ∈R {0, 1} thus both in the real protocol and the simulation y is distributed uniformly at random
in the view of A∗.

Next in step 4 of the simulation notice that in the real protocol, if c = j ∈ {0, 1}, an honest B
would input T ′j and T

′′
1⊕xj to EQ (sorted in the correct order). The protocol would then continue if

and only if (T ′j , T
′′
1⊕xj ) = (Txj , T1⊕xj ) and abort otherwise. I.e., the real protocol would continue if

and only if (T ′j , T
′′
1⊕xj ) = (Txj , T1⊕xj ) and c = j, which is exactly what happens in the simulation.

Thus we have that given F does not occur, all input to A∗ during the simulation is distributed
exactly as in real protocol. In other words the two are perfectly indistinguishable.

Now assume F does occur, that is for some j ∈ {0, 1} A∗ computes valuesM∗xj and x
∗
j as described

above. In that case A∗ could compute the global key of the honest receiver as M∗j ⊕Mxj = ∆A.
However, since all inputs to A∗ are independent from ∆A (during the protocol), A∗ can only guess
∆A with negligible probability (during the protocol) and thus F can only occur with negligible
probability (during the protocol). After the protocol A∗, or rather the environment, will receive
outputs and learn ∆A, but this does not change the fact that guessing ∆A during the protocol can
be done only with negligible probability. 2

Lemma 14. The protocol in Fig. 15 securely implements LaOT(`) against corrupted B.

Proof. We consider the case of a corrupt receiver B∗ running the above protocol against a simulator
Sim. The simulation runs as follows.

1. The simulation starts by Sim getting B∗'s input to dealer ∆A, (Mc, c), (Mr, r), Kx0 and Kx1 .
Then Sim simply inputs ∆A, (Mc, c),Mz =Mr, Kx0 and Kx1 to the LaOT box. The box outputs
z to Sim and ∆B, (Mx0 , x0), (Mx1 , x1), Kc and Kz to the sender as described above.

2. Like the honest sender Sim samples random keys T0, T1 ∈R {0, 1}κ. Since Sim knows
Mc,Kx0 ,Kx1 , ∆A, c and z = xc it can compute Xc = H(Mc) ⊕ (z||Mz||Tz) exactly as the
honest sender would. It then samples X1⊕c ∈R {0, 1}2κ+1 and inputs (X0, X1) to B∗.

3. The corrupt receiver B∗ replies by sending some y ∈ {0, 1}.
4. Sim sets z = r ⊕ y, computes Iz = H(Mz) ⊕ T1⊕z and samples I1⊕z ∈R {0, 1}κ. It then inputs

(I0, I1) to B∗.
5. B∗ outputs some (T 0, T 1) for the EQ box and Sim continues or aborts as the honest A would in

the real protocol, depending on whether or not (T0, T1) = (T 0, T 1).

For the analysis we denote by F the event that B∗ queries the RO onKc⊕(1⊕c)∆B orKz⊕(1⊕z)∆B.
We �rst show that assuming F does not occur, the simulation is perfect. We then show that F only
occurs with negligible probability (during the protocol) and thus the simulation is indistinguishable
from the real protocol (during the protocol). We then discuss how to simulate the RO after outputs
have been delivered.

First in the view of B∗ step 1 of the simulation is clearly identical to the real protocol. Thus the
�rst deviation from the real protocol appears in step 2 of the simulation where the X1⊕c is chosen
uniformly at random. However, assuming F does not occur, B∗ has no information on H(Kc ⊕
(1 ⊕ c)∆B) thus in the view of B∗, X1⊕c in the real protocol is a one-time pad encryption of
(x1⊕c||Mx1⊕c ||Tx1⊕c). In other words, assuming F does not occur, to B∗, X1⊕c is uniformly random
in both the simulation and the real protocol, and thus all input to B∗ up to step 2 is distributed
identically in the two cases.
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For steps 3 to 5 notice that in the real protocol an honest sender would set Kz = Kr⊕ y∆B and
we would have

(Kr ⊕ y∆B)⊕ z∆B = Kr ⊕ r∆B =Mr .

Thus we have that the simulation generates Iz exactly as in the real protocol. An argument similar
to the one above for step 2 then gives us that the simulation is perfect given the assumption that
F does not occur.

We now show that B∗ can be modi�ed so that if F does occur, then B∗ can �nd ∆B. However,
since all input to B∗ are independent of ∆B (during the protocol), B∗ only has negligible probability
of guessing ∆B and thus we can conclude that F only occurs with negligible probability.

The modi�ed B∗ keeps a list Q = (Q1, . . . , Qq) of all B∗'s queries to H. Since B∗ is e�cient
we have that q is a polynomial in κ. To �nd ∆B the modi�ed B∗ then goes over all Qk ∈R Q and
computes Qk ⊕Mz = ∆′ and Qk ⊕Mc = ∆′′. Assuming that F does occur there will be some
Qk′ ∈ Q s.t. ∆′ = ∆B or ∆′′ = ∆B. The simulator can therefore use global key queries to �nd ∆B

if F occurs.

We then have the issue that after outputs are delivered to the environment, the environment
learns ∆B, and we have to keep simulating H to the environment after outputs are delivered. This
is handled exactly as in the proof of Thm. 7 in App. I using the programability of the RO. 2

G Proof of Thm. 6

We want to show that the protocol in Fig. 16 produces secure aOTs, having access to a box that
produces leaky aOTs. Remember that a leaky aOT or LaOT, is insecure in the sense that a corrupted
sender can make guesses at any of the choice bits: if the guess is correct, the box does nothing and
therefore the adversary knows that the guess was correct. If the guess is wrong, the box alerts the
honest receiver about the cheating attempt and aborts.

In the protocol the receiver randomly partitions `B leaky OTs in ` buckets of size B. First we
want to argue that the probability that every bucket contains at least one OT where the choice
bit is unknown to the adversary is overwhelming. Repeating the same calculations as in the proof
of Thm. 8 it turns out that this happens with probability bigger than 1− (2`)(1−B).

Once we know that (with overwhelming probability) at least one OT in every bucket is secure
for the receiver (i.e., at least one choice bit is uniformly random in the view of the adversary),
the security of the protocol follows from the fact that we use a standard OT combiner [HKN+05].
Turning this into a simulation proof can be easily done in a way similar to the proof of Thm. 8
in App. H.

H Proof of Thm. 7

Proof. The simulator answers global key queries to the dealer by doing the identical global key
queries on the ideal functionality LaAND(`) and returning the reply from LaAND(`). This gives a
perfect simulation of these queries, and we ignore them below.

Notice that for honest sender and receiver correctness of the protocol follows immediately from
correctness of the aBit box.

Lemma 15. The protocol in Fig. 19 securely implements the LaAND box against corrupted A.
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Proof. We �rst focus on the simulation of the protocol before outputs are given to the environment.
Notice that before outputs are given to the environment, the global key ∆A is uniformly random to
the environment, as long as B is honest.

We consider the case of a corrupt sender A∗ running the above protocol against a simulator Sim
for honest B.

1. First Sim receives A∗'s input (Mx, x), (My, y), (Mr, r) for the dealer.
Then Sim receives the bit d ∈R {0, 1}.

2. Sim samples a random U ∈R {0, 1}2κ and sends it to A∗. Then Sim reads V , A∗'s input to the
EQ box. If V 6= (1−x)H(Mx,Mz)⊕x(U ⊕H(Mx,My⊕Mz)) or d⊕y 6= xy, Sim outputs abort,
otherwise, it inputs (x, y, z,Mx,My,Mz =Mr) to the LaAND box.

The �rst di�erence between the real protocol and the simulation is that U = H(Kx,Kz) ⊕
H(Kx ⊕ ∆A,Ky ⊕ Kz) in the real protocol and U is uniformly random in the simulation. Since
H is a random oracle, this is perfectly indistinguishable to the adversary until it queries on both
(Kx,Kz) and (Kx ⊕ ∆A,Ky ⊕ Kz). Since ∆A is uniformly random to the environment and the
adversary during the protocol, this will happen with negligible probability during the protocol. We
later return to how we simulate after outputs are given to the environment.

The other di�erence between the protocol and the simulation is that the simulation always
aborts if z 6= xy. Assume now that A∗ manages, in the real protocol, to make the protocol continue
with z = xy ⊕ 1. If x = 0, this means that A∗ queried the oracle on (Kx,Kz) = (Mx,Mz ⊕ ∆A),
and since Sim knows the outputs of corrupted A, which include Mz, and see the input Mz ⊕∆A to
the RO H, if A∗ queries the oracle on (Kx,Kz) = (Mx,Mz ⊕∆A), Sim can compute ∆A. If x = 1
then A∗ must have queried the oracle on (Kx⊕∆A,Ky ⊕Kz) = (Mx,My ⊕Mz ⊕∆A), which again
would allow Sim to compute ∆A. Therefore, in both cases we can use such an A∗ to compute the
global key ∆A and, given that all of A∗'s inputs are independent of ∆A during the protocol, this
happens only with negligible probability.

Consider now the case after the environment is given outputs. These outputs include ∆A. It
might seem that there is nothing more to simulate after outputs are given, but recall that H is a
random oracle simulated by Sim and that the environment might keep querying H. Our concern is
that U is uniformly random in the simulation and U = H(Kx,Kz)⊕H(Kx⊕∆A,Ky⊕Kz) in the real
protocol. We handle this as follows. Each time the environment queries H on an input of the form
(Q1, Q2) ∈ {0, 1}2κ, go over all previous queries (Q3, Q4) of this form and let ∆ = Q1⊕Q3. Then do
a global key query to aBit(3`, κ) to determine if ∆ = ∆A. If Sim learns ∆A this way, she proceeds
as described now. Note that since A is corrupted, Sim knows all outputs to A, i.e., Sim knows all
MACs M and all bits b. If b = 0, then Sim also knows the key, as K =M when b = 0. If b = 1, Sim
computes the key as K = M ⊕∆A. So, when Sim learns ∆A, she at the same time learns all keys.
Then for each U she simply programs the RO such that U = H(Kx,Kz)⊕H(Kx ⊕∆A,Ky ⊕Kz).
This is possible as Sim learns ∆A no later than when the environment queries on two pairs of inputs
of the form (Q1, Q2) = (Kx,Kz) and (Q3, Q4) = (Kx ⊕ ∆A,Ky ⊕ Kz). So, when Sim learns ∆A,
either H(Kx,Kz) or H(Kx ⊕ ∆A,Ky ⊕ Kz) is still unde�ned. If it is H(Kx,Kz), say, which is
unde�ned, Sim simply set H(Kx,Kz)← U ⊕H(Kx ⊕∆A,Ky ⊕Kz). 2

Lemma 16. The protocol described in Fig. 19 securely implements the LaAND box against cor-

rupted B.

Proof. We consider the case of a corrupt B∗ running the above protocol against a simulator Sim.
The simulation runs as follows.
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1. The simulation starts by Sim getting B∗'s input to the dealer Kx,Ky,Kr and ∆A.

2. The simulator samples a random d ∈R {0, 1}, sends it to B∗ and computes Kz = Kr ⊕ d∆A.

3. Sim receives U from B∗, and reads V , B∗'s input to the equality box.

4. If U = H(Kx,Kz) ⊕ H(Kx ⊕ ∆A,Ky ⊕ Kz) and V = H(Kx,Kz), input (Kx,Ky,Kz) to the
box for LaAND and complete the protocol (this is the case where B∗ is behaving as an honest
player). Otherwise, if U 6= H(Kx,Kz) ⊕ H(Kx ⊕ ∆A,Ky ⊕ Kz) and V = H(Kx,Kz) or V =
U ⊕H(Kx ⊕∆A,Kz ⊕Kz), input g = 0 or g = 1 resp. into the LaAND box as a guess for the
bit x. If the box output fail, output fail and abort, and otherwise complete the protocol.

The simulation is perfect: the view of B∗ consists only of the bit d, that is uniformly distributed
both in the real game and in the simulation, and in the aborting condition, that is the same in the
real and in the simulated game. 2

I Proof of Thm. 8

Proof. The simulator answers global key queries to LaAND(B`) by doing the identical global key
queries on the ideal functionality aAND(`) and returning the reply. This gives a perfect simulation
of these queries, and we ignore them below.

It is easy to check that the protocol is correct and secure if both parties are honest or if A is
corrupted.

What remains is to show that, even if B is corrupted and tries to guess some x's from the LaAND
box, the overall protocol is secure.

We argue this in two steps. We �rst argue that the probability that B learns the x-bit for all
triples in the same bucket is negligible. We then argue that when all buckets contain at least one
triple for which x is unknown to B, then the protocol can be simulated given LaAND(B`).

Call each of the triples a ball and call a ball leaky if B learned the x bit of the ball in the call
to LaAND(`′). Let γ denote the number of leaky balls.

For B of the leaky balls to end up in the same bucket, there must be a subset S of balls with
|S| = B consisting of only leaky balls and a bucket i such that all the balls in S end up in i.

We �rst �x S and i and compute the probability that all balls in S end up in i. The probability
that the �rst ball ends up in i is B

B` . The probability that the second balls ends up in i given that
the �rst ball is in i is B−1

B`−1 , and so on. We get a probability of

B

B`
· B − 1

B`− 1
· · · 1

B`−B + 1
=

(
B`

B

)−1
that S ends up in i.

There are
(
γ
B

)
subsets S of size B consisting of only leaky balls and there are ` buckets, so by a

union bound the probability that any bucket is �lled by leaky balls is upper bounded by(
γ

B

)
`

(
B`

B

)−1
.

This is assuming that there are exactly γ leaky balls. Note then that the probability of the protocol
not aborting when there are γ leaky balls is 2−γ . Namely, for each bit x that B tries to guess, he
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is caught with probability 1
2 . So, the probability that B undetected can introduce γ leaky balls and

have them end up in the same bucket is upper bounded by

α(γ, `, B) = 2−γ
(
γ

B

)
`

(
B`

B

)−1
.

It is easy to see that

α(γ + 1, `, B)

α(γ, `, B)
=

γ + 1

2(γ + 1−B)
.

So, α(γ+1, `, B)/α(γ, `, B) > 1 i� γ < 2B−1, hence α(γ, `, B) is maximized in γ at γ = 2B−1.
If we let α′(B, `) = α(2B−1, `, B) it follows that the success probability of the adversary is at most

α′(B, `) = 2−2B+1`
(2B − 1)!(B`−B)!

(B − 1)!(B`)!
.

Writing out the product (2B−1)!(B`−B)!
(B−1)!(B`)! it is fairly easy to see that for 2 ≤ B < ` we have that

(2B − 1)!(B`−B)!

(B − 1)!(B`)!
<

(2B)B

(B`)B
,

so

α′(B, `) ≤ 2−2B+1`
(2B)B

(B`)B
= (2`)1−B.

We now prove that assuming each bucket has one non-leaky triple the protocol is secure even
for a corrupted B∗.

We look only at the case of two triples, [x1]A, [y
1]A, [z

1]A and [x2]A, [y
2]A, [z

2]A, being combined
into [x]A, [y]A, [z]A. It is easy to see why this is su�cient: Consider the iterative way we combine
the B triples of a bucket. At each step we combine two triples where one may be the result of
previous combinations. Thus if a combination of two triples, involving a non-leaky triple, results in
a non-leaky triple, the subsequent combinations involving that result will all result in a non-leaky
triple.

In the real world a corrupted B∗ will input keys Kx1 ,Ky1 ,Kz1 and Kx2 ,Ky2 ,Kz2 and ∆A,
and possibly some guesses at the x-bits to the LaAND box. Then B∗ will see d = y1 ⊕ y2 and
Md = (Ky1 ⊕ Ky2) ⊕ d∆A and A will output x = x1 ⊕ x2, y = y1 , z = z1 ⊕ z2 ⊕ dx2 and
Mx = (Kx1 ⊕Kx2)⊕x∆A, My = Ky1 ⊕ y∆A, Mz = (Kz1 ⊕Kz2 ⊕dKx2)⊕ z∆A to the environment.

Consider then a simulator Sim running against B∗ and using an aAND box. In the �rst step
Sim gets all B∗'s keys like in the real world. If B∗ submits a guess (i, gi) Sim simply outputs
fail and terminates with probability 1

2 . To simulate revealing d, Sim samples d ∈R {0, 1}, sets
Md = Ky1 ⊕ Ky2 ⊕ d∆A and sends d and Md to B∗. Sim then forms the keys Kx = Kx1 ⊕ Kx2 ,
Ky = Ky1 and Kz = Kz1 ⊕Kz2 ⊕ dKx2 and inputs them to the aAND box on behalf of B∗. Finally
the aAND box will output random x, y and z = xy and Mx = Kx ⊕ x∆A, My = Ky ⊕ y∆A,
Mz = Kz ⊕ z∆A.

We have already argued that the probability of B∗ guessing one of the x-bits is exactly 1
2 , so Sim

terminates the protocol with the exact same probability as the LaAND box in the real world. Notice
then that, given the assumption that B∗ at most guesses one of the x-bits, all bits d, x and y are
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uniformly random to the environment both in the real world and in the simulation. Thus because
Sim can form the keys Kx, Ky and Kz to the aAND box exactly as they would be in the real world
the simulation will be perfect.

2

J Full Overview Diagram
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Fig. 27. Full paper outline.
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