
On the Instantiability of Hash-and-Sign RSA Signatures

Yevgeniy Dodis∗ Iftach Haitner† Aris Tentes‡

December 29, 2011

Abstract

The hash-and-sign RSA signature is one of the most elegant and well known signatures
schemes, extensively used in a wide variety of cryptographic applications. Unfortunately, the
only existing analysis of this popular signature scheme is in the random oracle model, where
the resulting idealized signature is known as the RSA Full Domain Hash signature scheme
(RSA-FDH). In fact, prior work has shown several “uninstantiability” results for various ab-
stractions of RSA-FDH, where the RSA function was replaced by a family of trapdoor random
permutations, or the hash function instantiating the random oracle could not be keyed. These
abstractions, however, do not allow the reduction and the hash function instantiation to use
the algebraic properties of RSA function, such as the multiplicative group structure of Z∗

n. In
contrast, the multiplicative property of the RSA function is critically used in many standard
model analyses of various RSA-based schemes.

Motivated by closing this gap, we consider the setting where theRSA function representation
is generic (i.e., black-box) but multiplicative, whereas the hash function itself is in the standard
model, and can be keyed and exploit the multiplicative properties of the RSA function. This
setting abstracts all known techniques for designing provably secure RSA-based signatures in
the standard model, and aims to address the main limitations of prior uninstantiability results.
Unfortunately, we show that it is still impossible to reduce the security of RSA-FDH to any
natural assumption even in our model. Thus, our result suggests that in order to prove the
security of a given instantiation of RSA-FDH, one should use a non-black box security proof,
or use specific properties of the RSA group that are not captured by its multiplicative structure
alone. We complement our negative result with a positive result, showing that the RSA-FDH
signatures can be proven secure under the standard RSA assumption, provided that the number
of signing queries is a-priori bounded.
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1 Introduction

Bellare and Rogaway [2] introduced the random oracle (RO) model, as a “paradigm for designing
efficient protocols”. When following this paradigm, one first builds a provably secure scheme
assuming that an access to a random function is given, and (possibly) assuming some “standard”
hardness assumption (e.g., factoring is hard). Then it instantiates the scheme by replacing the
random function with some concrete “hash function” (e.g., SHA-1). The intuition underlying
this paradigm is that a successful attack on the resulting scheme should indicate (unexpected)
weaknesses of the hash function used. This paradigm (also known as the random oracle heuristic)
has led to several highly efficient and widely used in practice constructions, such as the RSA
Full Domain Hash signature scheme (RSA-FDH) [2] and RSA Optimal Asymmetric Encryption
Padding scheme (RSA-OAEP) [3]. Typically, however, little is known about the provable security
of such popular schemes in the standard model. In particular, it is unknown whether we can reduce
their security to some “natural” assumption.

In this work we revisit this question once again, focusing, in particular, on the instantiability
of the RSA hash-and-sign signatures. The RSA signature [32] is one of the most elegant and well
known signatures schemes. It is extensively used in a wide variety of applications, and serves as
the basis of several existing standards such as PKCS #1 [33]. In its “textbook” form, the signature
σ of the message m is simply σ = md mod n, which can be verified by checking if σe ≡ m mod n,
where e is the public RSA exponent, and d = e−1 mod ϕ(n). Of course, the textbook variant is
completely insecure, as any σ is a valid signature of some message m = σe mod n. The traditional
fix, known as RSA hash-and-sign signature, is to hash the message m before signing it using some
“appropriate” hash function h (i.e., σ = h(m)d mod n). The key question is how to instantiate this
function h?

Bellare and Rogaway [2] showed that in the random oracle model, where h is modeled as a truly
random function (freely available to all the parties including the adversary), the resulting RSA
hash-and-sign signature (which they calledRSA Full Domain Hash, for short, RSA-FDH) is secure
assuming that the (standard) RSA assumption holds. When considering an actual instantiation
of h, though, a moment’s reflection shows that all known security notions for hash functions, such
as collision-resistance or pseudorandomness, do not appear to help. In fact, even more “esoteric”
notions, such as perfect one-way hash functions or verifiable random functions [5], are not sufficient
either. On the other hand, no significant attacks on RSA-FDH signatures are known when h is
instantiated using popular “cryptographic hash functions”, such as SHA-1. This gave rise to the
following important question, which is the main focus of this paper.

Is there an instantiation of RSA-FDH signature scheme (namely, of the hash function
h) that can be proven secure under a natural assumption in the standard model?

Of course, for any concrete hash function, one can “reduce” the security of RSA-FDH signatures
to that of RSA-FDH signatures, which is not very useful. So it is important that the assumption
used to argue the security of the scheme should be considerably simpler than the chosen message
attack on RSA signatures. The best case scenario would be a reduction to the one-wayness of
the RSA function (i.e., the standard “RSA assumption”), which is indeed what happened in the
idealistic RO model. Unfortunately, we seem to be very far from this goal. In fact, several works,
which we survey next, showed various arguments suggesting that no such reduction is likely to
exist.
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Existing Impossibility Results. It is well known that in the general case the random oracle
heuristic is false. Specifically, there exist schemes secure in the random oracle model that cannot
be instantiated by any concrete hash function [7, 8, 27, 18, 4]. Most counter-examples of this kind,
however, are rather artificial, and do not shed much light on the security of concrete schemes used
in practice. The work that seems most relevant to the focus of this paper is those of [13] and [28]
described below (whereas other related work is discussed in Section 1.3).

Dodis et al. [13] considered a generalization of RSA-FDH signatures, known as (general) Full
Domain Hash (FDH) signatures. In such signatures, the signer has access to an arbitrary trapdoor
permutation f , and sets σ = f−1(h(m)).1 The main result of [13] rules out proving the security of
an instantiation FDH, by reducing it to the one-wayness of f (or more generally, to any assumption
on f that is satisfied by a random trapdoor permutation). Their result, however, does not capture
reductions that use additional assumptions about f . In particular, it seems likely that if a proof of
security of some instantiation of RSA-FDH does exist, then it would use the algebraic properties of
the RSA function. To demonstrate this point, we present (see Section 1.1) an instantiation of RSA-
FDH under the standard RSA assumption, that is secure as long as the number of signing queries
is a-priori bounded.2 Our reduction is black box, and critically uses the algebraic properties of
Z∗n. (Indeed, [13] showed that even one-time security of general FDH signatures cannot be black-
box reduced to the one-wayness of the trapdoor permutation.) In addition, the “RSA-based”
signatures [16, 10, 22], which can be proven secure in the standard model (but, alas, no longer
have the simple syntax of the RSA signature), critically use the algebraic properties of the RSA
function. Finally, even in the random oracle model, tighter security bounds are sometimes achieved
using the algebraic properties of RSA (cf., [9], as compared to the generic proofs from trapdoor
permutations [2, 12]).

More recently, Paillier [28] looked at the question of instantiating RSA-FDH using a fixed
hash function (as opposed to a keyed family), and showed that no such instantiation can be black-
box reduced to the traditional RSA assumption, assuming the so called “RSA non-malleability”
assumption. Informally, this assumption states that calling the RSA inverter on arbitrary “per-
mitted” inputs (n′, e′) ̸= (n, e) does not help in breaking the instance (n, e). We remark that, as
observed by Paillier [28], this assumption is false for various reasonable interpretations of “per-
mitted” tuples (n′, e′). More significantly, although the restriction to a fixed hash function h is
consistent with the existing use in practice, from a theoretical perspective this assumption is some-
what restrictive. For example, while the result of Paillier [28] rules out proving even one-time
security of RSA-FDH, our positive result (see Section 1.1) circumvents this impossibility result by
using a keyed hash family.

1.1 Our Results

Our main result is a new negative result regarding the instantiability of RSA-FDH, which addresses
some of the limitations of the previous negative results of [13, 28]. To motivate this result, we start
by describing our already mentioned positive result.

Theorem 1.1 (Informal). Under the standard RSA assumption, for every polynomial t there exists
an instantiation of RSA-FDH that is existentially unforgeable against t(k) signing queries (where

1As in the case of RSA-FDH signatures, FDH signatures are known to be secure when the hash function is
modeled as a truly random function [2].

2With a different motivation, the same result was independently obtained by [21].
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k is the security parameter). Furthermore, the reduction treats the group Z∗n and the potential
adversary in a black-box way.

The claimed construction is fully described in Section 6, but here we highlight some of its
features. First, the result on works for bounded values of t, since the constructed hash function
description length, is polynomial (quadratic) in the number of signing queries. Second, our con-
struction uses a keyed family of hash functions (which is needed to overcome the impossibility
result of [28]). Third, the hash function depends on the RSA modulus n and critically uses the
multiplicative structure of the RSA function (which is needed to overcome one of the impossibil-
ity result of [13]). Finally, our reduction does not use any other properties of the RSA function
besides its multiplicative homomorphism over Z∗n. Formally, this means that the reduction works
given only oracle access to the multiplication and the inversion operations of Z∗n.

We now turn to our main, negative result, which can be informally stated as follows:

Theorem 1.2 (Informal). It is impossible to reduce the security of an instantiation of RSA-
FDH to a “natural” assumption (and in particular to the hardness of RSA), provided that (1) the
reduction treats the potential adversary in a black-box way; (2) the public exponent e used by the
scheme is prime with non-negligible probability; (3) the instantiation only “uses the multiplicative
properties of Z∗n”, and should “relativize” to any group isomorphic to Z∗n.

We now explain this result in more detail. First, our result holds even if the hash function h
is allowed to be keyed, and, moreover, to depend on the RSA modulus n (which was used in our
positive result). More significantly, we allow both the hash function and the hypothetical security
reduction R to use the multiplicative structure of Z∗n. Finally, we not only rule out reductions to
the standard RSA assumption, but also to other non-interactive “RSA-type” assumptions, such
as the “strong RSA assumption”.

However, our result also has three limitations, (1)-(3). First, and least important, is the as-
sumption that the reduction must treat the adversary in a black-box way. This limitation is met by
most existing reductions, and also quite standard in most black-box impossibility results. Techni-
cally, it means that the reduction should work given oracle access to any (even inefficient) attacker
breaking the security of RSA-FDH. Second, and more significant, is the fact that our current proof
relies on the fact that the instantiation will use a prime exponent e (at least with non-negligible
probability). Although this limitation appears to be an odd artifact of our specific proof technique,
and also seems to be met by most known RSA instantiations, it does leave a possibility for a secure
RSA-FDH instantiation always using some composite exponent e. Finally, and most significantly,
we assume that the reduction “treats the multiplicative RSA group Z∗n in a black-box manner”.
This is formalized (see Section 3) using the notion of generic groups [35, 26, 24]. Informally, though,
it means that nothing is assumed about a group element, apart from what was revealed through
the performed group operations (i.e., multiplication, inverse and equality check). In particular, an
algorithm that treats Z∗n in a black-box way should perform equally well given oracle access to any
group isomorphic to Z∗n (without knowing the isomorphism).

With this intuition in mind, we can interpret Theorem 1.2 as an indication that in order to prove
the security of a given instantiation of RSA-FDH, one should use a non-black box security proof,
or use properties of the RSA group, that are not captured by the generic group abstraction. To the
best of our knowledge, all known positive results on building “RSA-type” signatures — including
our new positive result in Theorem 1.1, the standard model constructions of [16, 10, 22], and the
random-oracle based analysis of [2, 9] — treat Z∗n as a black-box, and only use its multiplicative
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structure. Thus, although still restrictive, our result rules out all known techniques for proving the
security of RSA-based signatures, which was not the case for the previous results of [13, 28]. Still,
the restriction of the reduction to only use the multiplicative structure of Z∗n is quite significant,
which raises the question if this restriction could be relaxed.

Removing Generic Groups? Unfortunately, removing (or even relaxing) the above mentioned
restriction appears to be very challenging. Intuitively, with our current techniques (see more below)
we must be able to construct an algorithm Forger which, given any (family of) hash function(s)
h, should be able to (1) break the RSA-FDH instantiation using this h, and, yet, (2) do so
by only forging the signature which the reduction R must already “know” (so that Forger never
helps R compute something which R does not know to begin with, potentially helping R to break
some hardness assumption). In particular, satisfying conflicting properties (1) and (2) seems to
require some kind of “reverse-engineering” (or “de-obfuscation”) techniques on h which seem to be
completely beyond our current capabilities, without placing any restriction on the reductions we
allow. Indeed, the introduction of the generic group model was precisely the step which (a) allowed
our forger to “reverse engineer” the given hash function h (so as to provably satisfy properties
(1)-(2) above), and, yet, (b) allowed the reduction to use the algebraic properties of Z∗n.

1.2 Our Technique

On a very high level, our proof follows the approach of Dodis et al. [13] used to prove that there
exists no fully black-box reduction from (general) FDH signature schemes to the one-wayness of
random functions. [13] defined an oracle Forger relative to which no FDH signature scheme is
secure, yet Forger does not help inverting a random function. In more detail, on input (h, {σi}i∈[t]),
Forger checks that (1) {σi} are valid signatures for the messages 1, . . . , t (i.e., f(σi) = h(i) for every
i ∈ [t], where f is the random function), (2) the evaluation of h(1), . . . , h(t) does not query f on
any element of {σi}, and (3) t is at least equal to |h| – the description size of h. If positive, Forger
returns the signature of 0 (i.e., f−1(h(0))).

It is clear that Forger can be used to break the existential security of any FDH scheme: the
attacker uses Sign, the signer of the scheme, to compute {σi}i∈[t] for some t ≥ |h|, and then calls
Forger on (h, {σi}), where we assume without loss of generality that condition (2) above holds with
respect to this query (otherwise, faking a signature without Forger is easy). On the other hand,
[13] showed that an efficient algorithm (with oracle access to f , but not to Sign) cannot provide all
these signatures. Thus, Forger is useless in these settings, and in particular a black-box reduction
(i.e., algorithm) cannot make use of Forger for inverting a random function, proving the main result
of [13].

Intuitively, Forger is useless for an algorithm with no access to Sign, for the following reason.
Fix some efficient oracle-aided algorithm R and let {0, 1}n be the domain of the random function
f . Since a random function is one way, the only elements that R can invert are those elements it
previously received as answers to its f -queries. Hence (since f is random), R only knows how to
invert random elements inside {0, 1}n. Since it takes at least t bits to describe t random elements
in {0, 1}n (actually, it takes tn bits) and since the evaluation of h(1), . . . , h(t) does not query f
on elements inside {σi}i∈[t], there must exist h(i) ∈ {h(1), . . . , h(t)} that R does not know how to
invert, and thus cannot provide a valid signature for the message i.

Moving to our setting, we focus for concreteness on fully black-box reductions from RSA-
FDH to the hardness of RSA (i.e., such reductions use the multiplicative RSA group Z∗n and the
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adversary in a black-box way). The blackboxness in the RSA group tells us that such a reduction
should work with respect to any group isomorphic to Z∗n. In particular, it should work well with
respect to the group π(Z∗n), obtained by renaming the elements of Z∗n according to a random
permutation π over Z∗n (i.e., a · b is defined as π(π−1(a) · π−1(b) mod n)).

Given the above understanding, the first attempt would be to define Forger analogously to that
of [13]. Namely, on input (n, e, h, {σi}i∈[t]), Forger checks that (1) σe

i ≡ h(i) for every i ∈ [t], (2) the
evaluation of h(1), . . . , h(t) does not compute σi for some i ∈ [t], and (3) t ≥ |h|. If positive, Forger
returns the signature of 0 (i.e., h(0)d, for d = e−1 mod ϕ(n), where all group operations are over
the group π(Z∗n).

We would like to argue that if π is chosen at random, then the only way to make a non-
aborting query to Forger is via using Sign, the signer of the scheme. It would then follow that
Forger is useless for an algorithm R that has no access to Sign (and in particular to a black-box
reduction). It turns out, however, that in our settings such R can make non aborting calls to
Forger. The issue is that unlike in the setting of [13], R can make use of the algebraic structure
of Z∗n to construct a non-aborting query to Forger. For instance, R can compute {je}j∈[ℓ], and
assuming some reasonable mapping M from [t = ℓ2] to {j · k}j,k∈[ℓ], let h(i) = M(i)e mod n and
σi = M(i). Since the evaluation of h(1), . . . , h(t) does not query an element of {σi}i∈[t]), it follows
that (n, e, h, {σi}i∈[t]) is a non-aborting query.3 Alternatively, if R can break the RSA assumption

over π(Z∗n) (say, if it knows the factorization of n), then it can set h(i) = i and compute σi = h(i)d

(using the factorization of n to compute d).
Fortunately, we manage to prove that a non-aborting query of R is either “degenerated” (as in

the first example) or indicates that R knows the factorization of n. To handle the first case, we
change Forger to identify and abort on degenerated queries. Where we also show that it is easy to
forge a signature with respect to a degenerated h (i.e., h that is part of a degenerated query), even
without the help of Forger. Namely, we show that there is no secure RSA-FDH scheme relative to
the modified Forger. We then show that with respect to this modified Forger, one can efficiently
extract the factorization of n from an algorithm that produces a non-aborting query. It follows
that for any efficient algorithm R with oracle access to Forger, there exists an efficient algorithm,
with no access to Forger, that emulates RForger well. In other words, we prove that Forger is useless
for the class of efficient algorithms with no oracle access to Sign.

Proving the above intuition is the main challenge of this work, and we achieve that using a
novel adaptation of the Gennaro and Trevisan [15] short description paradigm, described below, to
the generic groups realm.4

1.2.1 The Gennaro and Trevisan short description paradigm and its adaption to
generic groups

Loosely, Gennaro and Trevisan [15] show that an efficient algorithm that inverts a random function
too well, can be used to give a too short description for a random function (and thus cannot exist).
This elegant approach has turned to be an extremely powerful approach for proving impossibility
results in the random functions realm, which typically imply black-box impossibility results for
one-way functions/permutations based constructions. While the Gennaro and Trevisan paradigm

3Note that to describe h it suffices to describe the set {je}j∈[ℓ]. Thus |h| ∈ O(ℓ logn), which is smaller than t for
large enough ℓ.

4A side benefit of this proof technique, is an alternative proof to the equivalence of RSA and factoring over generic
groups, firstly proven by Aggarwal and Maurer [1] ([1], however, also prove it over “generic rings”).
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(from now on, the GT paradigm) has several extensions (e.g., [17, 37, 20, 19, 31]), all are given in
the random functions realm.

We would like to apply a similar approach for arguing that an algorithm that makes a non-
aborting query to Forger, can be either used to factor n, or to “compress” the random permutation
π (which defines the group π(Z∗n)). Since compressing π is impossible, it follows that a non-aborting
query of such an algorithm can be used to factor n. Hence, such queries can be answered efficiently,
yielding the existence of an efficient emulator (without access to Forger) for any efficient algorithm.5

Extending the GT paradigm to our settings involves many complications. The main part of
the GT paradigm is using the (hypothetical) attacker to reconstruct a random function using (too)
short advice. This reconstruction involves emulating the attacker, where the key point is to do this
without “wasting information”: any bit used to emulate, should give a bit of information about the
(random) function. Doing the latter is quite easy for random functions; the answer to any query of
the attacker gives the same amount of information about the function (i.e., the info that it maps the
query input to the provided output). The only subtlety is that there are repeated queries (which
are clearly wasteful), but handling such queries is easy: simply keep track of the query history on
the emulation.

In our setting, however, things get much more complicated. To begin with, there might be
non-repeating queries whose answers yield very little information about the random group π(Z∗n)
(and therefore about π). For instance, for some n’s there are only four possible answers for the
query aϕ(n)/4 over π(Z∗n). Thus, roughly speaking, the answer for this query contains only two
bits of information about π. More generally, it appears that one can create much more intricate
examples; e.g., when the answer to the query follows a very complicated distribution, based on the
answers given so far.

An even more challenging task is proving the dichotomy that a non-aborting query can either be
used to (efficiently) factor n, or implies a (too) short description of π. Handling the above challenges
requires an intimate understanding of the algebraic structure of the group Z∗n, in particular of the
set of solutions for linear equations over this group, and critically uses the fact that factoring is
solvable in sub-exponential time [11, 36].

1.3 Other Related Work

We briefly mention other known results concerning the uninstantiability of popular signature and
encryption schemes that can be proven secure in the random oracle model. Paillier and Vergnaud
[29] showed that many popular discrete log based signatures (including ElGamal, DSA and Schnorr)
cannot be reduced to the discrete log assumption in the standard model, using the so called “alge-
braic” reductions. (Similar results also hold for related GQ signatures under the RSA assumption.)
Although technically incomparable to our “generic group” modeling, conceptually such reductions
are related to our assumption that the reduction can only use the multiplicative structure of a
given group. Indeed, in both cases the “meta-reduction” can eventually figure out the multiplica-
tive relations used be the reduction R in its queries to the attacker. The main difference applies in
the way the reduction can prepare its queries to the attacker. While the generic group modeling
allows the reduction R to use some “hidden values” related to the assumption that R is trying to
break, “algebraic” reduction do not allow this flexibility. Thus, much of the technical difficulties in

5In addition, since non-aborting queries are easy to generate assuming that RSA is easy over π(Z∗
n), the above

would immediately yield that RSA is equivalent to factoring over (random) π(Z∗
n), and thus over generic groups.
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the generic group modeling (e.g., extracting the hidden representations computed by the reduction
“on the side”) are somewhat trivialized when restricted to “algebraic” reductions. Additionally,
the results of [29] are specific to reductions from a concrete assumption (e.g., discrete log), and
are conditional on another assumption (e.g., “one-more” discrete log). In contrast, our results are
unconditional and rule out all starting assumptions, but only in the generic group model.

Finally, in the realm of factoring/RSA-based CCA encryption, Paillier and Villar [30] and
Brown et al. [6], showed uninstantiability results analogous to already-mentioned RSA signature
result of Paillier [28].

Paper Organization

Section 2 contains basic notation and some basic linear algebra facts, where in Section 3 we formally
define RSA-FDH and its security in the generic group model. Our main result, regarding the
impossibility of existentially unforgeable RSA-FDH against unbounded number of signing queries,
is proven in Section 4, where in Section 5 we prove our main technical lemma using the GT
short description paradigm. Finally, in Section 6 we present our construction of an existentially
unforgeable RSA-FDH scheme against a bounded number of signing queries.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and matrices, and lower-
case for values. Given a random variable X, X(t) = (X1, . . . , Xt) consists of t independent copies of
X, where for a set S, S(t) = (S1, . . . ,St) denotes the t’th direct product of S. For integer n ∈ N, we
let [n] = {1, · · · , n}. Given a matrix M ∈ Ut×q and a set of indices I ⊆ [q], the matrix MI ∈ Ut×|I|
denotes the restriction of M to the columns in I.

We let poly denote the set of polynomial, and let ppt denote the set of probabilistic algorithms
(i.e., Turing machines) that run in strict polynomial time. A function µ : N → [0, 1] is negligible
if µ(n) = n−ω(1), where neg denotes the family of negligible functions. Throughout the text we
sometimes abuse notation and view poly and neg also as arbitrary members of the families they
represent (e.g., we write f(n) = neg(n) to denote f ∈ neg and f(n) > neg(n) for f /∈ neg).

Given a random variable X taking values in a finite set U , we write x ← X to indicate that
x is selected according to X. Similarly given a set S ⊆ U , we let s ← S denote that s is selected
according to the uniform distribution on S. We adopt the convention that when the same random
variable occurs several times in an expression, all occurrences refer to a single sample. For example,
Pr[f(X) = X] is defined to be the probability that when x ← X, we have f(x) = x. We write
Un to denote the random variable distributed uniformly over {0, 1}n. A distribution ensemble
D = {Dk}k∈N is of polynomial-length, if every element of Dk is described using poly(k) bits. The
statistical distance of two distributions P and Q over U is defined as

SD(P,Q) :=
1

2

∑
u∈U
|P (u)−Q(u)|

We let P denote the prime numbers, and for n ∈ N let Z∗n denote the group of elements in [n] that
are relatively prime to n, where multiplication mod n is the group operation. Let C be a circuit,
then by |C| we denote the length of the binary description of C.
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2.2 Useful Linear Algebra Facts

Definition 2.1. Let M be an integer matrix with rows {v1, . . . , vt}, and let e ∈ P.

• The rows of M are linearly dependent if there exist not all zeros real numbers {ai}i∈[t], such
that

∑
i∈[t] ai · vi = 0.

• The rows of M are linearly dependent modulo e, if there exist not all zeros numbers in Ze

{ai}i∈[t], such that
∑

i∈[t] aivi = 0 mod e.

• rank(M) is the maximum number of rows of M that are linearly independent.

• ranke(M) is the maximum number of rows of M that are linearly independent modulo e.

The rank of any integer matrixM can be efficiently computed using Gaussian Elimination, which
computes the reduced row Echelon form M̃ of M such that rank(M) is the number of non zero rows

of M̃ . Similarly we can compute ranke(M), but now every computation is done mod e. Notice that
the latter is a well defined computation since every element in Ze has an inverse. Moreover, the
analogue of many properties of rank(M) are also true for ranke(M), because working mod e simply
means working in another field (Ze instead of Q or R). In particular, we have the following:

Fact 2.2. The following holds for every e ∈ P:

• Let M ∈ Zt×ℓ. If ranke(M) = s, then there exists a (polynomial-time computable) submatrix
M ′ ∈ Zs×s of M with det(M ′) ̸≡0 mod e.

• Let M ∈ Zs×s, then ranke(M) = s iff det(M )̸≡0 mod e.

3 RSA-FDH in the Generic Group Model

We start by recalling the standard notion of RSA-FDH signature scheme.

3.1 RSA-FDH Signature Scheme

Definition 3.1 (RSA-FDH). An RSA-FDH signature scheme Σ consists of the following triplet
(KeyGen,Sign,Verify) of polynomial-time algorithms:

• On security parameter 1k, KeyGen outputs a “public key” (n, e, h), where n is a product of
two primes, e is a element in Z∗ϕ(n) and h is a (hash) function, represented as an oracle-aided

circuit, mapping values to Z∗n, and a “secret key” d = e−1 mod ϕ(n).

• On input n ∈ N, d ∈ Z∗ϕ(n), a circuit h mapping values into Z∗n and a “message” m in the

domain of h, Sign outputs the “signature” h(m)d mod n.

• On input n ∈ N, e ∈ Z∗ϕ(n), a circuit h mapping values into Z∗n, a “message” m in the domain

of h and σ ∈ Z∗n, Verify outputs one iff σe ≡ h(m) mod n.

Now let us see what it means that an RSA-FDH signature scheme is existentially unforgeable
under unbounded and bounded chosen message attack (EU-CMA-secure and t-EU-CMA-secure):
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Definition 3.2 (security of RSA-FDH). An oracle-aided algorithm F breaks the security of an
RSA-FDH signature scheme Σ = (KeyGen,Sign,Verify), if

Pr(sk,pk)←KeyGen(1k)[(m,σ)← F Sign(sk,pk,·)(pk) : (1)

Verify(σ,m, pk) = 1 ∧ Sign was not queried on (sk, pk,m)] > neg(k)

A signature scheme Σ is EU-CMA-secure, if no (oracle-aided) ppt breaks its security, where Σ is
t-EU-CMA-secure, if no ppt breaks its security when restricted to query Sign at most t(k) times.

Remark 3.3 (Discussion). Definition 3.1 allows the hash function h to be chosen as part of the
public key, where h needs to be described as a circuit.6 In practice, however, a fixed hash function
(e.g., SHA-1) defined over any string is used. Since any secure scheme (according to Definition 3.2)
of the type used in practice trivially yields a secure scheme of the type considered in Definition 3.1,
for the sake of impossibility results it suffices to consider Definition 3.1. Furthermore, a positive
result according to Definitions 3.1 and 3.2, can be easily extended to output hash functions defined
over all strings: first hash the message using a secure collision-resistant hash function (assuming
such function exists), and then apply the bounded length scheme.

Additional restriction of Definition 3.1 is that it requires the range of the hash function h to
be a subset of Z∗n, where in practice the range of h is an arbitrary subset of Zn. Notice, however,
that it is easy to forge the signature of a given message m with h(m) ∈ Zn \ Z∗n: if h(m) = 0,
its signature is simply 0, otherwise gcd(h(m), n) implies a factorization of n, which in turn can be
used to forge the signature of any message. It follows that by modifying the hash function used in
a given RSA-FDH scheme to set h(x) = 1 whenever h(x) /∈ Z∗n, one does not hurt the security of
the scheme. In particular, for the sake of impossibility results it suffices to consider hash functions
whose range is a subset of Z∗n.

In the following we first formally define what we mean by generic group model, and then extend
Definitions 3.1 and 3.2 to this model.

3.2 The Generic Group Model

There are different ways to interpret what it means to “treat the multiplicative RSA group Z∗n in
a black-box way” (see Theorem 1.2). In the generic algorithm model due to Maurer [24], “generic”
algorithms do not have a direct access to the group elements, but rather to a “black box” containing
each element. The only operations allowed with these boxes, are the group operations (inverse and
multiplication) and comparing two boxes for equality. The formulation we have chosen here, which
we simply call the generic group model, is somewhat less abstract. An algorithm in our model
has an oracle access to a group isomorphic to Z∗n (specifically, the group resulting by renaming the
elements of Z∗n according to some random permutation), through which it can perform the group
operations. Unlike the generic algorithm model, however, in our model algorithms we do have
access to the representation of the group elements and can manipulate them.

Since any algorithm that “works well” in the generic algorithm model (e.g., breaks the RSA
assumption) implies an algorithm that works equally well in our model with respect to any group
isomorphic to Z∗n, an impossibility result in our model implies a similar result in the model of
Maurer. Namely, our model can be viewed as a model for proving impossibility results in the
generic algorithm model.

6Alternatively, h can described as a Turing Machine running in time poly(k), where k being the security parameter.
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We formally define our model as follows: for n ∈ N, let Πϕ(n) be the set of all permutations
from Z∗n to Z∗n. For π ∈ Πϕ(n), we denote with π(Z∗n) the group induced by the group Z∗n where
each element of Z∗n is renamed according to π. More specifically, the group operations over π(Z∗n)
are defined as follows: the inverse of a ∈ Z∗n is π((π−1(a))−1 mod n) and the (group) product of
a, b ∈ π(Z∗n) is π(π−1(a) · π−1(b) mod n). By Π(Z∗n) we denote the multiset of all groups π(Z∗n),
where G = {G = {Gn : Gn ∈ Π(Z∗n)}n∈N} (i.e., G consists of sets of groups, where each set contains
a group of Π(Z∗n) for every n ∈ N).

Abusing notation, we view G ∈ G as an oracle that given as input n ∈ N and one [resp., two
elements] of Gn (i.e., of Z∗n), returns the group inverse [resp., the group product] of the element (if
the oracle G is given as input an element outside Gn, it returns ⊥), and let Gn(·) = G(n, ·). Given
a sequence of group operations (e.g., a ·b−1), we sometimes add the term [Gn], to indicate that the
operations are done with respect to the group Gn. In the following, abusing notation again, we will
write G← G, where this sampling is not well defined because G is an infinite set. However, we can
assume lazy sampling, namely for every query which contains a new n, Gn is sampled uniformly at
random from Π(Z∗n) (which is a finite set).

3.3 RSA-FDH Signature Schemes in the Generic Group Model

RSA-FDH signature schemes over G ∈ G is defined as follows:

Definition 3.4 (RSA-FDH signature scheme in the generic group model). An RSA-FDH signa-
ture scheme ΣG in the generic group model, consists of the following triplet of oracle-aided ppt ’s
(KeyGen,Sign,Verify):

• Given oracle access to G ∈ G and input 1k, KeyGenG outputs a “public key” (n, e, h), where
n ∈ N is a product of two primes, e ∈ Z∗ϕ(n) and h is a (hash) function, represented as an

oracle-aided circuit mapping values into Z∗n, and a “secret key” d = e−1 mod ϕ(n).

• Given oracle access to G ∈ G, input n ∈ N, d ∈ Z∗ϕ(n), a circuit h mapping values into Z∗n
and a “message” m in the domain of h, SignG outputs the “signature” hG(m)d [Gn].

• Given oracle access to G ∈ G, input n ∈ N, e ∈ Z∗ϕ(n), a circuit h mapping values into Z∗n, a
“message” m in the domain of h and σ ∈ Z∗n, VerifyG outputs one iff σe ≡ hG(m) [Gn].

For G ∈ G, we let ΣG be the instantiation of ΣG with G.

3.3.1 Security definition

The following definition realizes the security of bounded and unbounded existential unforgeability
under chosen message attack of an RSA-FDH signature in the generic group model, analogously
to that of the standard model.

Definition 3.5 (security of RSA-FDH signature in the generic group model). An oracle-aided
algorithm F breaks the security of an RSA-FDH signature scheme ΣG = (KeyGen,Sign,Verify), if

PrG←G,(sk,pk)←KeyGenG(1k)[(m,σ)← FG,SignG(sk,pk,·)(pk) :

VerifyG(σ,m, pk) = 1 ∧ Sign was not queried on (sk, pk,m)] > neg(k)
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A signature scheme ΣG is EU-CMA-secure, if no (oracle-aided) ppt breaks its security, where ΣG

is t-EU-CMA-secure, if no ppt breaks its security when restricted to query Sign at most t(k) times.

Since we would like to rule out an EU-CMA-secure scheme, we ask the security proof of the
scheme to be realized via a “black-box reduction” (as discussed in the introduction, we have very
little chance to rule out a general proof of security). On the other hand, we consider a very weak
form of such a reduction (which strengthens our main impossibility result).

Definition 3.6 (weakly black-box proof of security of RSA-FDH). An RSA-FDH signature
scheme ΣG = (KeyGen,Sign,Verify) in the generic group model has a weakly black-box proof of
security based on an assumption X, if there exists an oracle-aided ppt R such that if X is true,
then the following holds: let F be a (possibly unbounded) adversary that breaks the security of ΣG

(see Definition 3.5), then for any ppt Emul there exists a polynomial-length distribution ensemble
D = {Dk}k∈N such that

SD
(
(x,RG,FG

(1k, x)), (x,EmulG(1k, x))
)
G←G,x←Dk

> neg(k).7

Remark 3.7 (A black-box proof implies a weakly black-box proof). Assuming that X is true, the
above intuitively asks that a security breach of ΣG implies that a (slightly) non-trivial task can be
performed. Specifically, an efficient oracle-aided algorithm can use a breaker of the scheme (in a
black-box way) to sample some unsamplable distribution. Note that this is a very modest demand
and indeed, it is implied by most black-box proofs of security one can think of.

Consider for instance a proof of security R that black-box reduces the security of a scheme
ΣG to an assumption X, say to the hardness of factoring. It follows that given any adversary
F to ΣG, the algorithm RG,FG

factors integers too well. Assume without loss of generality that
RG,FG

(x), if succeeds, outputs the factorization of the integer x, let Dk be the distribution that
outputs an integer x = pq, for two randomly chosen k-bits prime, and consider the distribution
ξk = (x,RG,FG

(1k, x))G←G,x←Dk
it induces. Now if factoring is hard, then there is no efficient

Emul such that (x,EmulG(1k, x))G←G,x←Dk
is (even computationally) close to ξk. Namely, there is

no weakly black-box proof of security for ΣG based on factoring.
Now if factoring is hard, then there is no efficient Emul such that (x,EmulG(1k, x))G←G,x←Dk

is (even computational) close to ξk. Namely, there is no weakly black-box proof of security for ΣG

based on factoring.8

For completeness, we give the following natural adaptation of the RSA assumption to the
generic group model.

Definition 3.8 (The RSA assumption in the generic group model). There exists an oracle
aided ppt Gen, which on input 1k outputs (n, e), where n ∈ N is a product of two primes and
gcd(e, ϕ(n)) = 1 such that the following holds for any oracle-aided ppt A:

PrG←G,(n,e)←GenG(1k),x←Z∗
n

[
(AG(1k, n, e, x))e ≡ x [Gn]

]
= neg(k).

7Note that F is an adversary which expects oracle access to Sign and R can control the responses of these queries
of F . The same does not hold for the queries of F to G.

8Note that there nothing specific to the hardness of factoring in the above discussion, but rather it seems to be
generic to “any” hardness assumption (e.g., strong RSA).
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4 There Exists No RSA-FDH with a Weakly Black-Box Proof

In this section we prove the main result of this paper.

Theorem 4.1 (Theorem 1.2, restated). Let ΣG = (KeyGen,Sign,Verify) be an RSA-FDH signature
scheme in the generic group model in which PrG←G,(n,e,h)←KeyGenG(1k)[e ∈ P] > neg(k). If ΣG has a

weakly black-box proof of security based on (an assumption) X, then X is false.

The proof of Theorem 4.1 immediately follows from the next lemma:

Lemma 4.2. Let ΣG be as in Theorem 4.1, then there exist a family of oracles Forger =
{ForgerG}G∈G and oracle-aided ppt’s F and Emul, such that the following hold:

1. For every G ∈ G, FG,ForgerG breaks the security of ΣG.

2. For any oracle-aided ppt A and polynomial-length distribution ensemble D = {Dk}k∈N:

SD
(
(x,AG,ForgerG(1k, x)), (x,EmulG(1k, x,desc(A)))

)
G←G,x←Dk

= neg(k),

where desc(A) denotes the description of the Turing Machine A.

Before proving Lemma 4.2, let us first use it for proving Theorem 4.1.

Proof of Theorem 4.1. Let ΣG be an RSA-FDH scheme with PrG←G,(n,e,h)←KeyGenG(1k)[e ∈ P] >

neg(k). Assume that ΣG has a weakly black-box proof of security based on (an assumption) X
and let R be the algorithm guaranteed by this proof. Let Emul be the algorithm guaranteed by
Lemma 4.2 with respect to ΣG . Lemma 4.2 yields that

SD
(
(x, R̃G,ForgerG(1k, x)), (x,EmulG(1k, x,desc(R̃))

)
G←G,x←Dk

= neg(k)

for any polynomial-length distribution ensemble D = {Dk}, where R̃G,ForgerG(·) = RG,F ForgerG (·).
Letting F̃G(·) = FG,ForgerG(·) and EmulGR(·) = EmulG(·,desc(R̃)), it follows that

SD
(
(x,RG,F̃G

(1k, x)), (x,EmulGR(1
k, x))

)
G←G,x←Dk

= neg(k)

for any polynomial-length distribution ensemble D, yielding that X is false. �

The rest of this section is devoted for proving Lemma 4.2. We find it more convenient, however,
to prove a variant of Lemma 4.2 in which the emulator should work for any (polynomial-size) family
of circuits. Namely, we prove the following lemma (in the following statement we only focus on the
part that changed comparing to the original statement):

Lemma 4.3 (non uniform variant of Lemma 4.2).

2. The following holds for any (no input) polynomial-size family of oracle-aided circuits {Ck}k∈N:

SD
(
C

G,ForgerG
k ,EmulG(1k,desc(Ck))

)
G←G

= neg(k),

where C
G,ForgerG
k denotes the output of Ck given access to G and ForgerG, and desc(Ck) denotes

the description of Ck.
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It is easy to see that the non-uniform lemma above yields the uniform Lemma 4.2. In Section 4.1
we define the family of oracles Forger and the efficient algorithm F that uses Forger to break any
RSA-FDH scheme, in Section 4.2 we define the emulator Emul, where in Section 4.3 we put things
together to prove Lemma 4.3.

4.1 The Forger

Recall (see Section 1.2) that Forger has to abort on “degenerated queries” — essentially those queries
that are easy to produce over any group in Π(Z∗n). To determine whether a query (n, e, h, {σi}i∈[t]) is
degenerated, we measure the complexity of the values {h(i)}i∈[t],9 as a function of the group queries
done through their evaluations. Since the actual representation of these values is meaningless, we
only focus on their representation as functions of the “hardwired terms” — the values used in the
evaluation of {h(i)} that first appear as an input to a group oracle call. Note that any group
element used in the evaluation of {h(i)}, can be expressed using (only) these hardwired terms. To
formally carry the above discussion, we describe the evaluation of {h(i)} as a computation over the
following group.

Definition 4.4 (The group Symb). The elements of Symb are equivalence classes over the set
of all finite strings “ua11 , · · · , uakk ”, where the ui’s are in N and the ai’s are in Z. The strings

c = “ua11 · ... ·u
ak
k ” and c′ = “u′1

a′1 · ... ·u′k′
a′
k′” are in the same equivalence class, if for every w ∈ N it

holds that
∑

i∈[k] : ui=w ai =
∑

i∈[k′] : u′
i=w a′i. We identify a group element of Symb, with any string

of its equivalence class. The unit element of Symb is the class identified by the empty string ε (or
by “21 · 2−1” etc), where c · c′ is the equivalence class identified by the string “c · c′” and finally c−1

is the class identified by the string “u−a11 · ... · u−akk ”.

We naturally identify an element “ua11 · ... ·u
ak
k ” ∈ Symb with an element of a given group V that

contains {ui}i∈[k], by identifying it with the result of the sequence of operations it induces over V

(i.e., “u1 ·u−12 ” with respect to V = Z∗n, is identified with u1 ·u−12 mod n). To avoid confusion over
which group a sequence of operations is taken, we typically suffix the sequence with the term [V ],
indicating that it is done over the group V . It is clear that for any two strings u and u′ that identify
the same element of Symb (i.e., belong to the same equivalence class), it holds that u ≡ u′ [V ] for
any Abelian group V containing u and u′.

Next we use the above terminology to syntactically describe the computation of an oracle-aided
circuit C, where we start by defining the hardwired terms determined by C’s computation. To
simplify notations, we assume that a circuit evaluates its gates one-by-one, and that its description
determines this evaluation order.

Definition 4.5 (hardwired terms). Let C be an oracle-aided circuit, G ∈ G and n ∈ N. The terms
of C with respect to Gn, denoted TermsC,G,n, are those values that appear either as input or as the
answers to non-bottom queries of C to Gn (i.e., Gn returns a non-bottom value). The hardwired
terms of C with respect to Gn, denoted HardWiredC,G,n are those element inside TermsC,G,n that
first appear as inputs to non-bottom queries to Gn. Finally, the answer terms are those terms that
appear as answers to non-bottom queries (might intersect HardWiredC,G,n). We assume that the
elements of each of the above sets are ordered according to the evaluation order.

9We actually mean {hG(i)}i∈[t], but for notational convenience we will sometimes omit the superscript G from h.
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We next use the syntax of the group Symb, to present any term as an expression of the hardwired
terms.

Definition 4.6 (canonical form). Let C, G and n be as in Definition 4.5. The canonical form of
u ∈ TermsC,G,n with respect to (C,G, n), denoted CanC,G,n(u), is recursively defined as follows:

• if u ∈ HardWiredC,G,n, let CanC,G,n(u) be the element “u1” ∈ Symb.

• If u first appears as an output of a query Gn(u
′, u′′), let CanC,G,n(u) = CanC,G,n(u

′) ·
CanC,G,n(u

′′) [Symb].

• Similarly, if u first appears as an output of Gn(u
′), we let CanC,G,n(u) =

CanC,G,n(u
′)−1 [Symb].

Let {vi}i∈[ℓ] = HardWiredC,G,n. Note that the canonical form of any u ∈ TermsC,G,n with
respect to (C,G, n), can be uniquely written as

∏
i∈[ℓ] v

ai
i [Symb], where ai might be non zero,

only if the hardwired term vi appears before u does (in the evaluation order of CG). Finally, the
canonical forms of a set of terms, with respect to (C,G, n), is compactly represented using the
following matrix.

Definition 4.7 (canonical-form matrix). Let C, G and n be as in Definition 4.5, let {vi}i∈[ℓ] =
HardWiredC,G,n and let W = {ui}i∈[t] ⊆ TermsC,G,n. The matrix MG,n,C(W) ∈ Zt×ℓ is defined as

{aij}i∈[t],j∈[ℓ], assuming that CanC,G,n(ui) =
∏

j∈[ℓ] v
aij
j [Symb] for every i ∈ [t].

We actually care for the rank of the canonical-form matrix of the terms output by a circuit
C, which shows if there exists an output term which can be expressed as a product of powers of
the other output terms. This would imply that if we know the e-th roots of the latter then we
can compute the e-th root of the former. Jumping forward, we will exploit this property of the
canonical-form matrix to see if a query is degenerated.

We are finally ready to define ForgerG.

Algorithm 4.8 (ForgerG).

Input: q = (n, e, h, {σi}i∈[t]), where n, e and {σi}i∈[t] are integers, and h is an oracle-aided circuit.

Operation:

1. If e /∈ P, |h| (= |desc(h)|) > t or for some i ∈ [t] hG(i) /∈ Z∗n or hG(i) ̸≡σe
i [Gn], return ⊥.

2. Let M = MG,n,H({h(i)}i∈[t]) according to Definition 4.7, where H is the oracle-aided circuit

that first evaluates hG(1), . . . , hG(t) and then queries Gn on the answers (say asking for their
inverses).

If rankeM < t, return ⊥.

3. Return (hG(0))d [Gn], where d = e−1 mod ϕ(n).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

That is, ForgerG first checks that {σi}i∈[t] are valid signatures for the messages {1, . . . , t} (with
respect to G and the public key (n, e, h)) and that forging a signature for this public key is not
easy (reflected by rankeM = t). If satisfied, ForgerG forges a signature for 0.

Below we describe the ppt F that uses ForgerG for breaking the security of ΣG.
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4.1.1 The breaker F

The strategy of the algorithm F that uses Forger for breaking the security of ΣG is simple: on input
(n, e, h) it would like to use Forger on (n, e, h, {σi = SignG(n, e, i)}i∈[t]) to forge the signature of 0.
It might be the case, however, that Forger returns bottom on such input. Hence, F first checks by
himself (without using Sign or Forger) whether Forger will return bottom on this input. If positive,
it uses a straightforward approach (see below) for forging a message k ∈ [t], without using Forger
at all.

Algorithm 4.9 (F ).

Input: pk = (n, e, h)

Oracles: G ∈ Gn, SignG(sk, pk, ·) and ForgerG.

Operation:

1. Let t = |h| and let M = MG,n,H({hG(i)}i∈[t]) according to Definition 4.7, where H is as in
Algorithm 4.8 (with respect to this h and t).

2. If ranke(M) = t, return ForgerG(n, e, h, {SignG(sk, pk, i)}i∈[t]).
Otherwise,

(a) Using Gaussian Elimination find k ∈ [t] and a set {λi ∈ [e]}i∈[t]\{k}, such that for every
j ∈ [ℓ] it holds that Mkj ≡

∑
i∈[t]\{k} λi ·Mij mod e.

(b) Let γ =
∏

j∈[ℓ] v
(Mkj−

∑
i∈[t]\{k} λi·Mij)/e

j [Gn], where {vi}i∈[ℓ] = HardWiredH,G,n (see Def-
inition 4.5).

(c) For every i ∈ [t] \ {k}, let σi = SignG(sk, pk, i) (≡ hG(i)d [Gn]).

(d) Return σk = γ ·
∏

i∈[t]\{k} σ
λi
i [Gn].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The following claim is immediate.

Claim 4.10. For every G ∈ G, FG,ForgerG breaks the security of ΣG.

Proof. Let (n, e, h) be the public key of ΣG with respect to to some G ∈ G with e ∈ P. Assume
that rank(M) < t in the execution of F (otherwise the proof is immediate). In such a case, Step
3.(a) is guaranteed to succeed (and can be performed in polynomial time). It follows that

σe
k ≡ γe ·

∏
i∈[t]\{k}

h(i)λi [Gn]

≡ γe ·
∏

i∈[t]\{k}

∏
j∈[ℓ]

v
λi·Mij

j [Gn]

≡ γe ·
∏
j∈[ℓ]

v

∑
i∈[t]\{k} λi·Mij

j [Gn]

≡ γe · h(k) ·
∏
j∈[ℓ]

v
−Mkj+

∑
i∈[t]\{k} λi·Mij

j [Gn]

≡ γe · h(k) · γ−e [Gn]

≡ h(k) [Gn].

15



Namely, σe
k is a valid signature of k, and since SignG was not asked on k, F breaks the security of

ΣG whenever e ∈ P. �

4.2 The Emulator

Our task is to emulate a family of circuits {Ck} with oracle access to G ∈ G and ForgerG, using
only oracle access to G. We assume without loss of generality that |Ck| ≥ k (otherwise we emulate
a padded version of this family) and omit k from the input parameter list of the emulator. We also
assume without loss of generality that before calling ForgerG on input (n, e, h, {σi}i∈[t]), Ck first
query G on {σi} (otherwise, we will emulate the circuit C ′k that does so).

Given a circuit C, EmulG(desc(C)) emulates the execution of a circuit CG,ForgerG by for-
warding the G-calls to G, and answering the ForgerG-calls using the following method: let
q = (n, e, h, {σi}i∈[t]) be a query that C makes to ForgerG, Emul first checks whether ForgerG
returns bottom on this call (which it can do efficiently), and if positive returns bottom to C as
well. Otherwise, Emul uses the query q and the description of C to factor n, and then uses this
factorization to answer the query efficiently.

The interesting question is how can Emul use such a pair (C, q) to factor n efficiently? Let H and
MH = MG,n,H({h(i)}i∈[t]) as computed by ForgerG(q), and let M (H;C) = MG,n,(H;C)({σi}i∈[t]) ∈
Zt×ℓ′ , where the circuit (H;C) first evaluates H and then C.10 Namely, MH represents the canon-
ical form of {h(i)}i∈[t] induced by the (stand alone) computation of H, where M (H;C) represents
the canonical form of the “signatures” {σi}i∈[t] induced by the computation of (H;C). Since
(H;C) first starts by computing H, it follows that every hardwired term u ∈ HardWiredH,G,n ∩
HardWired(H;C),G,n has the same index with respect to both ordered sets HardWiredH,G,n and
HardWired(H;C),G,n. Hence, the promise that σe

i ≡ h(i) [Gn] for every i ∈ [t], yields the following
with respect to {vi}i∈[ℓ′] = HardWired(H;C),G,n :

∏
j∈[ℓ]

v
MH

ij

j ≡
∏
j∈[ℓ′]

(v
M

(H;C)
ij

j )e [Gn],

for every i ∈ [t]. Since Gn is selected at random, (at least intuitively) C could have satisfied the
above equations only if they hold regardless of the choice of Gn. Namely, it is the case that∑

j∈[ℓ]

MH
ij ≡ e ·

∑
j∈[ℓ′]

M
(H;C)
ij mod ϕ(n) (2)

for every i ∈ [t]. On the other hand, the assumption that ForgerG(q) ̸=⊥ yields that rankeM
H = t.

Therefore, Equation (2) is “far” from being satisfied modulo e. In our proof we show how to use
this inconsistency to find a multiple of ϕ(n), and thus to factor n.

The following description of Emul realizes the above discussion. We start by recalling the
following known factoring algorithms. The first one is useful for small n’s (for which the above
discussion does not hold), and the second one factors arbitrary larger n, given a multiple of ϕ(n)
as an advice.

Theorem 4.11 (factoring small numbers, [11, 36]). There exists a procedure Sef that on input
n ∈ N, runs in time 2O(

√
logn log log n) and factors n with constant probability.

10Recall that we allow circuits to have a predetermined evaluating order.
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Lemma 4.12 (factoring using multiple of ϕ(n)). We say that z = (z1, z2) ∈ Z × N is a factoring

advice for n ∈ N, if z⌈logn⌉1 ·
∏

p∈P: p<z2
p⌈logn⌉ is a non-zero multiple of ϕ(n).

There exists a procedure Factor that on input (n, z1, z2), runs in time poly(z2) · poly(log |nz1|),
and factors n with constant probability, assuming that z = (z1, z2) is a factoring advice for n.

Proof. We use the following known algorithm due to Miller [25]

Theorem 4.13 (Miller’s algorithm [25, 36]). There exists a procedure that on input n ∈ N and
µ ∈ Z, runs in time poly(log |nµ|), and if µ is a non-zero multiple of ϕ(n), it factors n with constant
probability.

By definition µ = z
⌈logn⌉
1 ·

∏
p∈P: p<z2

p⌈logn⌉ is a non-zero multiple of ϕ(n). Thus, Miller’s
algorithm on input (n, µ), runs in time poly(log |nµ|) = poly(z2 · log |nz1|) and factors n with
constant probability. Finally, note that µ is easily computable in time poly(z2, log n). �

We are now finally ready to define Emul.

Algorithm 4.14 (Emul).

Input: The description of an oracle-aided circuit C.

Oracle: G ∈ G.
Operation:

Emulate CG while on every query q = (n, e, h, {σi}i∈[t]) to ForgerG, return the following value to C:

1. If ForgerG would return ⊥ on q, return ⊥ as well (and continue to the next query). Else,

2. Try to factor n by doing the following for |C| times:

If n ≤ |C|
log |C|

log log |C| , execute Sef(n).

Otherwise, execute Factor(n, det(QC,G,q), |C|4), where QC,G,q is according to Definition 4.15.

3. If factoring of n is successful, return hG(0)d [Gn], where d = e−1 mod ϕ(n).

Otherwise, abort.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The matrix QC,G,q is defined as follows:

Definition 4.15 (query matrix). Let C be an oracle-aided circuit, G ∈ G and let q =
(n, e, h, {σi}i∈[t]) be the query asked by CG,ForgerG to ForgerG. The matrix QC,G,q ∈ Zt×t is de-
fined as follows:

1. If ForgerG(q) =⊥, set QC,G,q = 0t×t.

Otherwise:

2. Let MH = MG,n,H({h(i)}i∈[t]) according to Definition 4.7, where H is as in Algorithm 4.8

with respect to this h and t. (Since ForgerG(q) ̸=⊥, the matrix MH is well defined and of
rank t.)
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3. Let I ⊆ [ℓ] be the first subset of size t (from hereafter we assume some arbitrary order on
such sets) with ranke(M

H
I ) = t.11

4. Let M (H;C) ∈ Zt×ℓ′ be the matrix MG,n,(H;C)({σi}i∈[t]) according to Definition 4.7, where
(H;C) is the circuit that first evaluates H and then evaluates C.

5. Set QC,G,q = MH
I − e ·M (H;C)

I .

Note that in the code of Emul if Sef is called, and thus n is small, then it runs in time poly(|C|).
In addition, the running time of Factor, if called, is also in poly(|C|). Thus, Emul runs in polynomial
time.

Moreover, it is clear that the only case where the output of EmulG(desc(C)) differs from the
output of CG is when the former aborts. This means that for some query of C to Forger, the latter
would not return ⊥, but either (1) Sef failed, or (2) z was a factoring advice but Factor failed, or
(3) z was not a factoring advice for n. As the first two cases happen with negligible probability
(by Theorem 4.11 and Lemma 4.12), we only have to prove that the latter happens with negligible
probability.

This is formally done in the following lemma, whose proof (done via the ”short description
paradigm”) is the topic of Section 5.

Lemma 4.16. A query q = (n, ·) to Forger made by CG∈G,ForgerG is unexpected, if

• ForgerG(q) ̸=⊥,

• n > |C|
log |C|

log log |C| , and

• (det(QC,G,q), |C|4) is not a factoring advice for n, where QC,G,q is according to Definition 4.15.

The following holds for any oracle-aided circuit C:

PrG←G [C
G,ForgerG asks Forger an unexpected query] ≤ δ(|C|),

where δ(|C|) = 2− log2 |C|.

Apart from its role in the proof of Lemma 4.3 (see Section 4.3), Lemma 4.16 immediately
reproves the following fact.

Corollary 4.17. In the generic group model, the RSA assumption is equivalent to (the hardness
of) factoring.

Proof. We only sketch the proof. Clearly, if we can factor the integer n output by Gen (see Defini-
tion 3.8) with non-negligible probability, we can break the RSA assumption in the generic group
model (by computing d such that e−1 ≡ d mod ϕ(n)). For the other direction, consider the oracle-
aided algorithm A (with oracle access only to G ∈ G) that on input n, sets C to be the oracle-aided
circuit that makes the single call Forger(n, e, h, {σi = id [Gn]}i∈[|h|]), where e a random prime, h

the function such that hG(i) = i and d = e−1 mod ϕ(n). We assumed that i ∈ [t] is relatively
prime to n, otherwise we can easily factor by computing the greatest common divisor of i and
n. Moreover, we assumed that e does not divide ϕ(n) and thus d exists. However, because e is

11Remember that MH
I ∈ Zt×t is the restriction of MH to the columns in I.
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random the latter happens with high probability. Note that C is efficient under the assumption
that RSA is easy. Finally, A applies the method of Emul to emulate CG. It is easy to see that
ForgerG does not return ⊥ on this call (since rankeM

G,n,H({h(i)}i∈[t]) = t, see Algorithm 4.8).
Hence, Lemma 4.16 yields that Emul aborts with negligible probability, and therefore A factors n
with save but negligible probability. �

4.3 Putting it Together

Proof of Lemma 4.3. Claim 4.10 yields that FG,ForgerG breaks the security of ΣG with respect to
every G ∈ G, so it is left to prove that EmulG(Ck) emulates C

G,ForgerG
k well.

Recall that |Ck| ∈ poly(k), and that we assume without loss of generality that |Ck| ≥ k.
Theorem 4.11 and Lemma 4.12 yield that Emul(Ck) answers all “expected” queries of Ck to Forger
with probability 1− |Ck| · 2−Ω(k) = 1− neg(k), where Lemma 4.16 yields that Ck asks unexpected
queries with only negligible probability over the choice of G ∈ G. Hence, with save but negligible
probability, EmulG(Ck) emulates C

G,ForgerG
k correctly. �

5 Proving Lemma 4.16 via the Short Description Paradigm

To prove Lemma 4.16 we apply the Gennaro and Trevisan [15] “short description” paradigm (in-
troduced in the realm of black-box reduction from one-way functions/permutations) in the Generic
Group Model. Roughly speaking, [15] shows that if there exists a circuit C that inverts a random
permutation π ∈ Πn too well, then the description size of such random permutation is noticeably
below log(n!) bits. This derives a contradiction, since describing a random permutation of Πn

requires log(n!) bits.
Analogously, assume towards contradiction that there exists a circuit C violating Lemma 4.16.

In a nutshell, we prove that if C finds an unexpected query q = (n, ·) for some G ∈ G, then
C’s queries reveal a system of equations that gives a lot of information about the permutation
π ∈ Πϕ(n) that defines Gn. This yields that there exists a large set of permutations inside Πϕ(n),
whose members can be described using a (much) shorter than the information theoretical bound,
deriving a contradiction.

In the following we assume for simplicity that CG,ForgerG makes a single call to ForgerG and then
halts (this simplification is easily justified in Section 5.8), and denote this query by qG. Since C

can only ask a query q = (n, ·), an averaging argument yields that there exists n > |C|
log |C|

log log |C| such
that

PrG←G [Break(G,n)] > δ(|C|)/ |C| , (3)

where predicate Break(G,n) is true iff qG = (n, ·) and (det(QC,G,q), |C|4) is not a factoring advice
for n. To see this average argument let (N1, . . . , N|C|) denote the random variables of all the
distinct integers such that qG = (Ni, ·) is a query of C to G and Ni is the i-th distinct such integer
in order of appearance. A simple argument derives that there exists an index i∗ ∈ [|C|] such that
PrG←G [Break(G,Ni∗)] > δ(|C|)/ |C|, as we can assume without loss of generality that C has always
made a query to G of the form qG = (n, ·) before querying Forger on q = (n, ·). Moreover, notice
that N1 is fixed to some n1, because everything is deterministic until the first query. Therefore, we
can fix Gn1 such that PrG←G [Break(G,Ni∗)|Gn1 ∈ G] > δ(|C|)/ |C|. Having fixed Gn1 , N2 is fixed
to some n2 and we can similarly fix Gn2 and we can continue like that until fixing ni∗ and still
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have PrG←G [Break(G,Ni∗)|Gn1 , . . . , Gni∗−1 ∈ G] > δ(|C|)/ |C|. Finally, we can fix Gn′ for every
n′ ̸= ni∗ .

Given G = {Gi}i∈N ∈ G and π ∈ Πϕ(n), where n = ni∗, let G
π be the family of groups derived

from G by replacing Gn with π(Z∗n). The above yields that there exists G ∈ G such that

Prπ←Πϕ(n)
[Break(Gπ, n)] > δ(|C|)/ |C| (4)

In the following we fix suchG, let Π′ϕ(n) ⊆ Πϕ(n) be the set of permutations for which Break(Gπ, n) =

1 and let qπ := qGπ . Equation (4) yields that

log
∣∣∣Π′ϕ(n)∣∣∣ ≥ log(ϕ(n)!) + log(δ(|C|)/ |C|)− 1 (5)

We conclude the proof of Lemma 4.16 by showing how to use the assumed C for giving a much
shorter description of Π′ϕ(n), deriving a contradiction.

We first describe a rather simple attempt to give a short description of Π′ϕ(n). While this
attempt falls too short, it well illustrates the main ideas and the difficulties such a task involves.
In Section 5.4 we refine this approach to get the actual short description of Π′ϕ(n).

5.1 Short description of Π′ϕ(n) — First attempt

Let us start with few definitions. Let H be as in Algorithm 4.8 (with respect to to q = qπ) and
let (H;C) be as in Definition 4.15, while omitting the (single) call of C to ForgerG (hence, (H;C)
only assumes oracle access to G).

For π ∈ Π′ϕ(n) with qπ = (n, e, h, {σi}i∈[t]), let HardWiredπ := HardWired(H;C),Gπ,n, Termsπ :=

Terms(H;C),Gπ ,n and AnsTermsπ = Termsπ \HardWiredπ . In the following definition we identify a
set of t “independent” terms inside Termsπ.

Definition 5.1 (independent terms). For π ∈ Π′ϕ(n), let {vi}i∈[ℓ] = HardWiredπ, let M =

MGπ ,n,H({hGπ
(i)}i∈[t]) be as in Definition 4.7, and let I ⊆ [ℓ] be the first subset of size t such

that ranke(MI) = t as in Definition 4.15. We let IndepHardWπ and IndepHardW
π
be the ordered

sets {wi}ti=1 = {vi}i∈I and {wi}ℓ−ti=1 = {vi}i/∈I respectively.

Fix π ∈ Π′ϕ(n), and let qπ = (n, e, h, {σi}i∈[t]). Recall that we assume without loss of gen-

erality that before making the call qπ, the circuit C evaluates xei (over Gπ
n) for every i ∈ [t].

Let Canπ(·) := Can(H;C),Gπ,n(·), let {wi}ti=1 = IndepHardWπ, and let {wi}ℓ−ti=1 = IndepHardW
π
.

For i ∈ [t], assume that Canπ(h(i)) =
∏ℓ−t

j=1w
βij

i ·
∏t

j=1w
αij

j [Symb] and that Canπ(σi) =∏ℓ−t
j=1w

β′
ij

j ·
∏t

j=1w
α′
ij

j [Symb]. Since h(i) ≡ σe
i [π(Z∗n)] for every i ∈ [t], it holds that

ℓ−t∏
j=1

w
βij

j ·
t∏

j=1

w
αij

j ≡
ℓ−t∏
j=1

w
e·β′

ij

i ·
t∏

j=1

w
e·α′

ij

j [π(Z∗n)]. (6)

Or put it differently,

t∏
j=1

w
αij−e·α′

ij

j ≡
ℓ−t∏
j=1

w
e·β′

ij−βij

j [π(Z∗n)],
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which yields the following set of equations over Z∗n:
t∏

j=1

π−1(wj)
αij−e·α′

ij ≡
ℓ−t∏
j=1

π−1(wj)
e·β′

ij−βij [Z∗n]


i∈[t]

. (7)

We denote the above set of t equation by Eπ, and define their “solution set” as follows:

Definition 5.2 (solution set). Given a set of equations E over Z∗n, we let S(E) denote the
(solution) set of all t-tuples over Z∗n, for which the equations of E still hold when the value of
(π−1(w1), . . . , π

−1(wt)) in the equations is replaced with any (but same for all equations) element
of S(E).

The following lemma helps us yield that the assumption that (det(QC,Gπ,q), |C|4) is not a fac-
toring advice for n, implies that S(Eπ) is rather small. Namely, Eπ gives a lot of information about
the preimages of IndepHardWπ (i.e., much smaller than the upper bound of ϕ(n)t).

Lemma 5.3. Let A = {aij}i,j∈[t] be an integer matrix, let {bi ∈ Z∗n}i∈[t], and let E be the following
set of equations: ∏

j∈[t]

x
aij
j ≡ bi [Z∗n]


i∈[t]

.

Assuming that detA ̸= 0, then for every c ∈ N such that (detA, c) is not a factoring advice for n

(see Lemma 4.12), there exists a prime r ≥ c such that r|ϕ(n) and |S(E)| ≤ (ϕ(n)r )t.

The proof of Lemma 5.3 is given in Section 5.9. However, the intuition is that an equa-
tion (consider the simple case of one unknown) of the form xa ≡ b [Z∗n] has “few” solutions, iff
gcd(a, ϕ(n)) is small. In our case, remember that matrix QC,Gπ ,qπ corresponds to the coefficients
of the exponents in Eπ and the fact that (det(QC,Gπ ,q), c) is not a factoring advice implies that
gcd(det(QC,Gπ ,q), ϕ(n)) is “small”. For our needs, Lemma 5.3 yields the following upper bound on
|S(Eπ)| (also proven in Section 5.9):

Claim 5.4. It holds that |S(Eπ)| ≤ (ϕ(n)|C|4 )
t.

The following description tries to exploit the above fact to give a too short description for
Π′ϕ(n). It contains the information needed to emulate (H;C)G

π

, the preimages (with respect to π)

of all terms in IndepHardW
π
, and the information needed to describe π outside of Termsπ. Since

given the emulation and π−1(IndepHardW
π
), it is possible to reconstruct Eπ, Claim 5.4 yields

that relatively little information is needed to compute the preimages of all terms in IndepHardWπ.
Using the above, the preimages of all terms in Termsπ can be computed, and thus (using the final
part of the description) all of π can be reconstructed.

Description 5.5 (description of π ∈ Π′ϕ(n)).

Let qπ = (n, e, h, {σi}i∈[t]). The description consists of the following parts defined with respect to

the execution of (H;C)G
π

as follows.

1. Description of h.

2. Ordered set π−1(IndepHardW
π
), given in appearance order.

21



3. Ordered set AnswFull of all the answer terms, given in appearance order.

4. An index SolutionInd to the solution of S(Eπ) induced by π.

5. A description Rest of the values of π over Z∗n \ π−1(Termsπ).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We first show how to use the above description to reconstruct the value of π (yielding that this
is indeed a good description), and then try to upper bound its length.

5.2 Reconstructing π

Lemma 5.6. For any π ∈ Π′ϕ(n), the description of π given in Description 5.5 (together with the

fixed values of G ∈ G and the assumed circuit C) determines the value of π.

Proof. Recall that saved but the description of π, we are given the value of the assumed circuit C
and the value of the fixed set G = (G1, . . . , Gn′) ∈ G, where n′ is the maximal value accessed by
(H;C) (here we abuse notation because actually G should be an infinite set). We use the following
reconstructing algorithm:

Description 5.7 (reconstruction).

1. Emulate the execution of (H;C)G
π

as follows:

(a) Gπ
n′-queries with n′ ̸= n are answered using G.

(b) Gπ
n-queries are answered using AnswFull.

2. Use the above emulation to compute π as follows:

(a) Identify (using the emulation) the canonical forms of the terms of (H;C) with respect
to Gπ and n, and use it to identify of the ordered sets IndepHardWπ and IndepHardW

π

and the equations set Eπ.

(b) Identify the solution set S(Eπ) and use SolutionInd to determine π−1(w) for every w ∈
IndepHardWπ).

(c) Use the canonical form of Termsπ, and the values of π−1(HardWiredπ) (determined by
π−1(IndepHardW

π
) and π−1(IndepHardWπ)) to compute π−1(Termsπ \HardWired).

(d) Use Rest to fully reconstruct π.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The only non-trivial step is Step 2(c). Recall that the canonical form c of a term u ∈ Termsπ,
with respect to Gπ and n, represents u as a multiplication of hardwired terms. Namely

c ≡
∏
i∈[ℓ]

vaii [Symb],

where {vi}i∈[ℓ] = HardWiredπ. It follows that u ≡
∏

i∈[ℓ] v
ai
i [π(Z∗n)], and therefore

π−1(u) ≡
∏
i∈[ℓ]

π−1(vi)
ai [Z∗n].

Hence, π−1(u) is determined by π−1(HardWiredπ). �
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5.3 Description length

The value of π−1(IndepHardW
π
) can be described using about (ℓ − t) log ϕ(n) bits (actually

log ϕ(n)!
(ϕ(n)−ℓ+t)! + 1 bits suffice). AnswFull can be described using about |AnswFull| log ϕ(n) bits. In

addition, given Termsπ and π−1(Termsπ), Rest can be described using about log(ϕ(n)−|Termsπ|)! ≈
(ϕ(n)− |Termsπ|) log ϕ(n) bits. It follows that

DescSize(π) ≈ |h|+ (|AnswFull|+ ℓ− t) · log ϕ(n) + |SolutionInd|+ (ϕ(n)− |Termsπ|) log ϕ(n)
≈ (ϕ(n)− |Termsπ|+ |AnswFull|+ ℓ− t) · log ϕ(n)
+ t · (log ϕ(n)− 4 log |C|),

where the second inequality follows since |h| ≤ t and Claim 5.4.
Assuming that AnswFull does not contain hardwired terms or reoccurrences of the same value,

it follows that |AnswFull| = |Termsπ| − ℓ. Therefore,

DescSize(π) ≈ (ϕ(n)− t) · log ϕ(n) + t · log ϕ(n)− 4t · log |C|
≈ ϕ(n) · log ϕ(n)− 4t · log |C|

≤ ϕ(n) · log ϕ(n)−Θ(
log3 |C|

log log |C|
).

Where to derive the inequality we observed that t ≥ |h| ≥ log n otherwise hash function h could

not have as input elements of Z∗n and by assumption logn ≥ log2|C|
log log |C| . Comparing the above to

Equation (5), it follows that we the description of Π′ϕ(n) is Ω(log |C|) bits too short.
Unfortunately, the assumption about AnswFull we made above is not necessarily true. Firstly,

AnswFull might contain values in HardWiredπ, and secondly, there might be two (or more) queries
in the execution of (H;C)G

π

that yield the same output. Such “collisions” might inflate the size
of AnswFull by at least |C| bits, causing the above description to be too long.12

Let us elaborate on the above issue. Simple collisions that inflates the size of AnswFull are
identical queries. This case, however, is easy to handle, since the identical queries are easily
tractable and we only keep their answer in their first appearance in AnswFull. More generally,
whenever the response of Gπ

n is information theoretically implied by the description of π and the
emulation till this point, we can omit it from the set AnswFull. Some collisions, however, are not
information theoretically determined. For instance, the execution of (H;C)G

π

might start with the
following two queries:

Gπ
n(w1, w2) (8)

Gπ
n(w3, w4) (9)

where w1, w2, w3, w4 are different terms inside IndepHardWπ. Generally, for some permutations in
Π′ϕ(n) these queries collide (have the same answer), where this is not the case for other permutations.
The point is that the output of the second query is not information theoretically determined by
the output of the first query and the above description of π.

12Note that such penalty in the description length is payed, even if we only describe the second query in the collision
via an index for the first query.
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Remark 5.8 (collisions). Somewhat ironically, collisions in the execution of (H;C)G
π

(in partic-
ular those reflected in Equation (6)) are exactly what gave the hope that we can use C to compress
Π′ϕ(n). In the following section, we refine the above approach (and in particular the way collisions

are treated) to get a description that is guaranteed to be short enough.

5.4 Short description of Π′ϕ(n) — The actual approach

The approach we used above for describing the execution of (H;C)G
π

was too wasteful to be
compensable by what we save on describing the preimages of IndepHardWπ. In the following we
refine the way this information is described, yielding an overall shorter description size.

Collision queries, informally defined in the previous section, play an important role in the
following discussion.

Definition 5.9 (collisions). A Gπ
n-query made through the execution of (H;C)G

π

is a collision,
if its answer term has already appeared in the evaluation order in another Gπ

n-query either as a
hardwired term or as the answer term to a previous query.

We start by considering the equations induced by a prefix of the queries made by (H;C)G
π

.
Generalizing Equation (7), the j’th Gπ

n-query made by (H;C)G
π

yields either some equalities or j−1
inequalities over Zn. That is, let uj be the j’th answer term in Termsπ, and let

∏ℓ−t
j=1w

βij

i ·
∏t

j=1w
αij

j

be its canonical form, where {wi}ti=1 = IndepHardWπ, and let {wi}ℓ−ti=1 = IndepHardW
π
. If the

answer term uj induces a collision with some term uk, then this equality yields the equation

t∏
i=1

π−1(wi)
αij−αik ≡

ℓ−t∏
i=1

π−1(wi)
βik−βij [Z∗n]. (10)

Otherwise (no collision), it yields the following inequality for any k < j

t∏
i=1

π−1(wi)
αij−αik ̸≡

ℓ−t∏
i=1

π−1(wi)
βik−βij [Z∗n]. (11)

We denote by Eπ
j the set of equations/inequalities induced by the first j queries of (H;C)G

π

. To
avoid notational clattering, we assume that the j’th answer term is also the j’th term in Termsπ. It
is also not hard to see that the value of S(Eπ

j ), and the execution of the first j−1 steps, determines
the value of k < j such that uj = uk, if such exists.

In the following description of π does not automatically add the answer term uj to AnswFull
(as done in the first attempt), but rather adds to the description the value γj that describes the
solution set S(Eπ

j ) using S(Eπ
j−1). Only if j’th query is non colliding (as reflected in the description

of S(Eπ
j )), the value of uj is added to the set AnswFull.

Observe that the above description together with the value of h, π−1(IndepHardW
π
) and Rest

(see Description 5.5), fully determines the value of π — In the emulation of (H;C)G
π

one can use
the above information to decide whether the j’th query induces a collision or not (and with whom).
If positive, it answers the query using the value of its colliding term. Otherwise, it answers the
query using the next value in AnswFull.

The above description is also not wasteful; any information given in the description, gives
(essentially) the same amount of info about π. To shorten the above description further (so that
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it is shorter than it should be), we use the following claim (proof given in Section 5.9.4), that is
in the spirit (and indeed, implied by the same lemma) of the main observation made in our first
attempt (Claim 5.4).

Claim 5.10 (informative indices). There exists a set of indices InformativeIndxπ = {i1, . . . , it} ⊆
[|(H;C)|] of collision queries inside the execution of (H;C), such that the following holds:

t∏
j=1

|S(Eπ
ij−1)|

|S(Eπ
ij
)|
≥ (

1

2
· |C|4)t.

We modify the above description as follows: we add the description of InformativeIndxπ, and for
each j ∈ InformativeIndxπ remove the value γj (describing the solution set S(Eπ

j ) using S(Eπ
j−1)),

and add the index of the colliding term uk. All in all, we roughly add additional 2t · log |(H;C)|)
bits, and remove 4t log |C|. Since |(H;C)| ≤ 2 |C|, we save Ω(t log |C|) from the description size,
making the overall description too short.

The actual description of π is somewhat more complicated. In particular, this happens since
the amount of information each γj contains might be fractional, and we cannot allow ourselves the
price of rounding each γj . The solution we take is to bundle together the γj whose indices fall
between two informative indices (O(t) such bundles) and thus waste only t bits for rounding.

Description 5.11 (short description of π ∈ Π′ϕ(n)).

Let qπ = (n, e, h, {σi}i∈[t]). The description consists of the following parts defined with respect to

the execution of (H;C)G
π

as follows.

1. Description of h.

2. Ordered set AnswFull of all non-colliding answer terms, in appearance order.

3. Ordered set π−1(IndepHardW
π
), in appearance order.

4. Ordered index set IndepHardWIndx, describes where the terms in IndepHardWπ appear for
the first time.

5. Description of the set InformativeIndxπ = {j1, . . . , jt}, defined in Claim 5.10.

6. Order index set CollisionIndx, contains the terms that collide with the answer items of
InformativeIndxπ.

7. Ordered set {γ1, . . . , γt}, where γi describes for ji ∈ InformativeIndxπ, the set S(Eji−1) using
S(Eji−1) (taking S(Ej0) = Z∗nt).

8. An index SolutionInd to the solution of S(Ejt) induced by π.

9. A description Rest of the values of π over Z∗n \ π−1(Termsπ).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The above description does not specify the way the set S(Eji−1) is described using S(Eji−1), and
it is still unclear why the above description determines the value of π. We prove that in Sections 5.6
and 5.7, but first let us compute the length of the above description, under the assumption (also

proven in Section 5.7) that it takes

⌈
log
|S(Eji−1

)|
|S(Eji−1)|

⌉
+ 1 bits to describe γi.
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5.5 Description length

Let us see how many bits are required at most to describe each part of the above description (the
i-th item upper bounds the length of the i-th item above):

1. t

2. ⌈log ϕ(n)|AnswFull|⌉+ 1

3. (ℓ− t) · log ϕ(n) + 1

4. t · ⌈log 2|C|⌉ (since |(H;C)| ≤ 2 |C|)

5. t · ⌈log 2|C|⌉

6. t · ⌈log 2|C|⌉

7.
∑t

j=1(log
|S(Eji−1

)|
|S(Eji−1)| + 1)

8. log |S(Eit)|+ 1

9. log (ϕ(n)− |AnswFull| − ℓ)! + 1

Notice that

(7) + (8) =
t∑

j=1

(log
|S(Eji−1)|
|S(Eji−1)|

+ 1) + log |S(Eit)|+ 1

=

t∑
j=1

(log
|S(Eji−1)|
|S(Eji−1)|

+ log
|S(Eji−1)|
|S(Eji)|

) + log |S(Eit)|

−
t∑

j=1

log
|S(Eji−1)|
|S(Eji)|

+ t+ 1.

Since S(Eij0) = Z∗nt, by Claim 5.10 we have

(7) + (8) =t · log ϕ(n)− 4t · log |C|+O(t).

It follows that

(2) + (3) + (7) + (8) =(|AnswFull|+ ℓ) · log ϕ(n)− 4t · log |C|+O(t)

= log ϕ(n)|AnswFull|+ℓ − 4t · log |C|+O(t)

Since

(1) + (4) + (5) + (6) =3t · log |C|+O(t),

we conclude that

DescSize(π) = log (ϕ(n)− |AnswFull| − ℓ)! + log ϕ(n)|AnswFull|+ℓ − t · log |C|+O(t) (12)

26



By Equation (5) log
∣∣∣Π′ϕ(n)∣∣∣ ≥ log(ϕ(n)!) + log(δ(|C|)/ |C|)− 1. Hence, for every π ∈ Π′ϕ(n) it holds

that

log
∣∣∣Π′ϕ(n)∣∣∣−DescSize(π)

≥ log(ϕ(n)!) + log(δ(|C|)/ |C|)− 1− log (ϕ(n)− |AnswFull| − ℓ)!− log ϕ(n)(|AnswFull|+ℓ)

+ t · log |C| −O(t)

≥ log (ϕ(n)− |AnswFull| − ℓ)|AnswFull|+ℓ − log ϕ(n)(|AnswFull|+ℓ) + log(δ(|C|)/ |C|)
+ t · log |C| −O(t).

Noticing that

log (ϕ(n)− |AnswFull| − ℓ)|AnswFull|+ℓ − log ϕ(n)|AnswFull|+ℓ = log (1− |AnswFull|+ ℓ

ϕ(n)
)|AnswFull|+ℓ

≥ log (1− (|AnswFull|+ ℓ)2

ϕ(n)
)

=−O(1),

and that t ≥ log n ≥ log2|C|
log log |C| (as we argued in the previous section), we have that

log
∣∣∣Π′ϕ(n)∣∣∣−DescSize(π) ≥ −log2 |C| − log |C|+Θ(

log3 |C|
log log |C|

)

= Ω(log |C|),

Namely, our description of π is Ω(log |C|) bits too short. In the next section prove that the de-
scription given in Description 5.11 uniquely determines π. Thus would yield a too short description
of a permutation in Π′ϕ(n), and thus would prove Lemma 4.16.

5.6 Reconstructing π

In this section we show how to use the description of π given in Description 5.11 to fully reconstruct
π. Namely, we prove the following lemma:

Lemma 5.12. For any π ∈ Π′ϕ(n), the description of π given in Description 5.11 (together with

the fixed values of G ∈ G and the assumed circuit C) determines the value of π.

Proof. We use the following claim:

Claim 5.13. For π ∈ Π′ϕ(n), assume that the description of h, AnswFull, π−1(IndepHardW
π
) and

IndepHardWIndx, as described in Description 5.11 are known. Then for any j ∈ [|(H;C)|], the
description of the set S(Ej) determines the first j steps of the execution of (H;C)G

π

, and vice
versa.

Proof. Assume that the claim holds for j−1, we use description of the first j−1 steps of (H;C)G
π

,
to emulate its j’th step as follows: using the description of circuit (H;C) and the description of
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the first j − 1 steps, we determine the j’th query qj . If qj is a Gπ
n′-query with n′ ̸= n, we answer it

using the (fixed) description of G, otherwise we do the following:
Let ai be the answer of the i-query of (H;C)G

π

, and let ci the value of the first k < i such that
ai = ak (set it to ⊥ if no such k exists). The main observation (that we prove below) is that given
the execution of the first j − 1 steps, the value of S(Ej) determines the value of cj and vice versa.
It follows that the first j steps determine S(Ej), where for the other direction of the lemma, we
answer the j’th query as follows: we first compute cj , and then answer with acj if cj ̸=⊥, and with
the next value of IndepHardWIndx otherwise.

For proving the above observation, we first notice that the value of Ej−1 is determined by
π−1(IndepHardW

π
) and IndepHardWIndx, and the execution of the first j−1 steps. Similarly, the

value Ej is determined by the value cj (and the above values). By the definition of Ej , different
values for cj would imply different value for Ej . Moreover, such two different values for Ej cannot
hold simultaneously — By definition, cj = k ∈ [j − 1] yields

t∏
i=1

π−1(wi)
αij−αik ≡

ℓ−t∏
i=1

π−1(wi)
βik−βij [Z∗n],

but since ak is the first collision, cj = k also yields that

t∏
i=1

π−1(wi)
αij−αik′ ̸≡

ℓ−t∏
i=1

π−1(wi)
βik′−βij [Z∗n],

for any k′ < k (where for cj =⊥, the latter holds for k = j). Hence, the equations induced by
different values of cj conflict each other. It follows that the value of cj induces a separation on the
solution set S(Ej−1), and thus the value of S(Ej) and cj determine each other. �

The above claim yields the following reconstruction algorithm for π:

Description 5.14 (reconstruction).
Emulate the execution of (H;C)G

π

through the following t steps, where the i step emulates the
execution of (H;C)G

π

between the ji−1 + 1 and the ji queries as follows:

1. Compute S(Eji−1) (using the emulation so far) and use it together with the value of γi, to
compute S(Eji−1).

2. Answer Gπ
n′-queries with n′ ̸= n using the (fixed) description of G, where Gπ

n-queries are
answered (according to their order) as follows:

j < jm: Use S(Eji−1) to determine whether this is a collision query or not. If positive, return
the colliding term value. Otherwise, return the next value in AnswFull.

j = jm: Use CollisionIndx to find the colliding term, and return its value.

The reconstruction continues as follows:

1. Use SolutionInd and the value of S(Ejt) to compute π−1(IndepHardWπ).

2. Use the emulation and π−1(HardWired) (determined by π−1(IndepHardW
π
) and

π−1(IndepHardWπ)) to compute π−1(Termsπ \HardWired).
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3. Use Rest to fully reconstruct π.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim 5.13 yields that the emulation step is guaranteed to succeed, and the rest of the correctness
of the rest of the reconstruction easily follows as in the case of our first attempt (see Section 5.2).

�

5.7 Describing the solution sets

Lemma 5.15. For any π ∈ Π′ϕ(n) and j ∈ |(H;C)|, the execution of (H;C)G
π

until step ji−1, and

the values of AnswFull, π−1(IndepHardW
π
), IndepHardWIndx and InformativeIndxπ, determine

a prefix free binary code C = {cwk}mk=1, such that the value of S(Eji−1) is determined by cwk for

some k ∈ [m] (and the above values), and |cwk| ≤
⌈
log
|S(Eji−1

)|
|S(Eji−1)|

⌉
+ 1.

Proof. We use the following lemma uses an encoding called Shannon-Fano (Shannon [34]) and its
proof is in Section 5.9.

Lemma 5.16. Let Y be a finite set and let {Yk}mk=1 be disjoint subsets of Y. Then there exists
a prefix free binary code C = {cwk}mk=1, such that cwk determines Yk for every k ∈ [m], and

|cwk| ≤
⌈
log |Y||Yk|

⌉
+ 1.

For some i ∈ [t], let Y = S(Eji−1). We will show that AnswFull, π−1(IndepHardW
π
),

IndepHardWIndx and InformativeIndxπ define a set {Yk}mk=1 of disjoint subsets of Y such that
for some k ∈ [m], Yk = S(Eij−1). Then using Lemma 5.16 we prove the claim.

For each s = (s1, . . . , st) ∈ S(Eji−1), we can do the following simulation of (H;C) from query
ji−1 until ji − 1: for query M ∈ {ji−1, . . . , ji − 1} of the form (u, u′)

• If term u is indexed in IndepHardWIndx as the aM -th independent hardwired term of
(H;C)G

π

and this is the first time this term appears in this emulation and the canonical

form with respect to this emulation of term u′ is
∏aM−1

i=1 w′αi
i ·

∏ℓ′

i=1w
′βi
i [Symb], where w′i

is the hardwired term of this emulation indexed by the i-th index of IndepHardWIndx and
{w′i}i∈[ℓ′] are all the other hardwired terms of this emulation, then we compute the ’pseudo-
preimage’ of the output of this query as

saM ·
aM−1∏
i=1

sαi
i ·

ℓ′∏
i=1

θ
′βi

i mod n,

where θ
′
i is the i-th element of π−1(IndepHardW

π
). If this value collides with the ’pseudo-

preimage’ of some other term u′′ of this emulation (which is computed analogously), then
we take u′′ as the response of this query, otherwise we take as response the corresponding
element of AnswFull.

• If term u is indexed in IndepHardWIndx as the aM -th independent hardwired term of
(H;C)G

π

and this is not the first time this term appears in this emulation, then we stop
the emulation.

• The other cases are handled similarly to the first case.
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Now for every s ∈ S(Eji−1), whose simulation was not stopped, let Es
ji−1 be the set of all equalities

and inequalities of the emulation given by s with unknowns the preimages of the hardwired terms
of this simulation indexed by IndepHardWIndx.

It is clear that for each s′ ∈ S(Es
ji−1), it holds that E

s
ji−1 = Es′

ji−1, because in the emulations with
respect to s and s′ we will have the same collisions among the ’pseudo-preimages’ and therefore these
emulations are identical. Let {Yk}mk=1 = {S(Es

ji−1) : s ∈ S(Eji−1)}. Notice that the sets Y1, . . . ,Ym
are disjoint. If s ∈ Yk1 ∩ Yk2 for distinct k1, k2 ∈ [m], then we should have Yk1 = S(Es

ji−1) = Yk2 ,
which implies k1 = k2. Moreover, it is clear that there exists a k ∈ [m] such that Yk = S(Eji−1). �

5.8 Removing the simplifying assumption about C

In this section we need to justify the simplifying assumption that CG,Forger makes only a single call
to Forger and then halts. Let C be a circuit such that

PrG←G [Break(G,n)] > δ(|C|),

and consider the circuit C ′ that before calling to Forger on q = (n, ·), it first tries the approach that
Emul(C) uses to emulate this call (i.e., using algorithms Sef and Factor as done in Algorithm 4.14).
Specifically, since Sef and Factor are randomized algorithms, C ′ has hardwired the best possible
random coins for these algorithms. If the factoring succeeds, C ′ uses it to answer the query by
itself (as Emul does) and continue the execution, where otherwise it queries Forger and halts.

It is clear that C ′ success probability in making Break(G,n) true is exactly that of C. Moreover,
even though C ′ is much larger than C, the number of calls it makes to the oracle G is at most |C|
more than the number of calls done by C; emulating a query to Forger, involves at most one call to G
(again see Algorithm 4.14). It follows that to index a query of C ′ to G, we need log |(H;C)|+O(1)
bits (exactly as we assumed in the simplified case!). Thus, the proof above we gave under the
simplifying assumption, also holds for the general case.

5.9 Missing Proofs

5.9.1 Proof of Lemma 5.3

Let

E =


t∏

j=1

x
aij
j ≡ di mod n


i∈[t]

be a system of equations, where xj ’s are the unknowns and let us see how we can bound |S(E)|.
By the Fundamental Theorem of Finite Abelian Groups, we know that if ϕ(n) =

∏s
k=1 p

αk
i is the

factorization of ϕ(n) then Z∗n ∼=
∏s

k=1(
∏sk

l=1 Zp
βkl
k

), where
∑sk

l=1 βkl = αk and Z
p
βkl
k

is the additive

group of integers modpβkl
k .

The equivalence of the groups implies a bijection between their group elements, such that each
unknown xj over Z∗n can be translated to an unknown {xklj}k∈[s],l∈[sk] over

∏s
k=1(

∏sk
l=1 Zp

βkl
k

), where

each xklj is an unknown over Z
p
βkl
k

and analogously for the di’s. Now each equation
∏t

j=1 x
aij
j ≡

di mod n can be translated to the a set of independent equations, namely {
∑t

j=1 aijxklj ≡ dkli

mod pβl
k }k∈[s],l∈[sk]
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Let Ekl = {
∑t

j=1 aijxklj ≡ dkli mod pβl
k }i∈[t]. The bijection of the groups and the independence

of each Ekl implies that

|S(E)| =
∏

k∈[s],l∈[sk]

|S(Ekl)|. (13)

Therefore, let us see how to bound the Solution Set of each Ekl.
The key observation is that Cramer’s Rule still holds over linear equations modulo some integer.

Namely, in our case, if A = {aij}i,j∈[t] and Aj = {ajfg}f,g∈[t], where ajfg =

{
afg if g ̸= j
dj if g = j

and

(x̄kl1, . . . , x̄klt) ∈ S(Ekl), then

x̄j · detA ≡ detAj mod pβkl
k

Therefore |S(Ekl)| ⊆ |S({x̄j ·detA ≡ detAj mod pβkl
k }j∈[t])|. Since each equation x̄j ·detA ≡ detAj

mod pβkl
k has at most gcd(detA, pβkl

k ) solutions, it holds that |S(Ekl)| ≤ (gcd(detA, pβkl
k ))t. Hence,

Equation (13) yields

|S(E)| ≤

 ∏
k∈[s],l∈[sk]

gcd(detA, pβkl
k )

t

(14)

Now, if there exists a k∗ ∈ [s] such that gcd(detA, pk∗) = 1, then

|S(E)| ≤

 ∏
k∈[s]\{k∗},l∈[sk]

gcd(detA, pβkl
k )

t

≤

(
ϕ(n)

p
βk∗l
k∗

)t

≤
(
ϕ(n)

pk∗

)t

(15)

Furthermore, if (detA, c) is not a factoring advice for n and detA ̸= 0, then there exists a prime
r > c such that r is a factor of ϕ(n) but not a factor of detA. Therefore, we can view r as pk∗ and

Equation (15) implies that indeed |S(E)| ≤ (ϕ(n)r )t.

5.9.2 Proof of Claim 5.4

In the case of system Eπ, we observe that QC,Gπ ,q is the corresponding matrix A from Lemma 5.3.

Moreover, it holds det(QC,Gπ ,q) ̸= 0. This holds since QC,Gπ ,q ≡ M
(H;C)G

π
,H

I mod e (see Defini-

tion 4.15) and by assumption det(M
(H;C)G

π
,H

I ) mod e ̸= 0 (otherwise Forger would return ⊥), we
also have that det(QC,Gπ ,q) mod e ̸= 0, yielding that det(QC,Gπ,q) ̸= 0.

Furthermore, since (det(QC,Gπ ,q), |C|
4) is not a factoring advice for n, we conclude that

|S(Eπ)| ≤ (ϕ(n)|C|4 )
t.

5.9.3 Proof of Lemma 5.16

By Shannon-Fano encoding we have that if X is a random variable taking values in a finite set U ,
then there exists a prefix-free code which describes each u ∈ U spending at most logPr[X = u] + 1

bits. Now if we let U = {Yk}mk=1, since these are disjoint subsets of Y, we can set Pr[X = Yk] = |Yk|
|Y|

and the lemma follows.
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5.9.4 Proving Claim 5.10

Before proving this claim let us see some useful definitions and facts.

Definition 5.17. Let E = {e1, . . . , eℓ} be a set where ej is an equation over Z∗n of the form

t∏
i=1

x
aij
i ≡ cj mod n,

with x1, . . . , xt the unknowns. We denote by Hom(E) the corresponding homogeneous set of equa-
tions, i.e.

t∏
i=1

x
aij
i ≡ 1 mod n

The following lemma shows the connection between a set of equations E and its homogeneous
set Hom(E):

Lemma 5.18. Let E, be a set of equations as in Definition 5.17, then |S(E)| = |S(Hom(E))|

Proof. We will prove the following: Let ȳ = (ȳ1, . . . , ȳt) ∈ S(E), then S(E) = {ȳ ◦ x0 : x0 ∈
S(Hom(E))}, where ’◦’ denotes the group operation of Z∗n(t). Let z̄ = (z̄1, . . . , z̄t) ∈ S(E), then by
assumption we know that for every equation

∏t
i=1 x

aij
i ≡ cj mod n of E we have that

∏t
i=1 ȳ

aij
i ≡ cj

mod n and
∏t

i=1 z̄
aij
i ≡ cj mod n. Consequently, we have that

∏t
i=1(ȳ

−1
i · z̄i)aij ≡ 1 mod n, which

implies that ȳ−1 ◦ z̄ ∈ S(Hom(E)) (where ȳ−1 is the group inverse of ȳ in Z∗n(t)). If we set
x0 = ȳ−1 ◦ z̄ we have that z̄ = ȳ ◦ sH . Moreover, if x0, x

′
0 are two distinct elements of S(Hom(E)),

then ȳ ◦ x0 ̸= ȳ ◦ x′0, otherwise x0 = x′0. We conclude that |S(E)| = |S(Hom(E))|. �

The next lemma shows an interesting property of Hom(E), that we will use to measure
S(Hom(E)) and thus S(E) as well.

Lemma 5.19. If E is a set of equations over Z∗n as in Definition 5.17, then S(Hom(E)) is a

subgroup of Z∗(t)n .

Proof. The unit vector of Z∗(t)n trivially belongs to S(Hom(E)). Let ȳ = (ȳ1, . . . , ȳt), z̄ =
(z̄1, . . . , z̄t) ∈ S(Hom(E)). By definition of S(Hom(E)) we have that for every equation

∏t
i=1 x

aij
i ≡

1 mod n of S(Hom(E)),
∏t

i=1 ȳi
aij ≡ 1 mod n and

∏t
i=1 z̄i

aij ≡ 1 mod n. If we multiply these
equations we have that

∏t
i=1(ȳi · z̄i)aij ≡ 1 mod n, which shows that ȳ · z̄ ∈ S(Hom(E)). Moreover,∏t

i=1(ȳi
−1)aij ≡ 1−1 ≡ 1 mod n, which shows that ȳ−1 also belongs to S(Hom(E)). The claim

follows. �

Therefore Lagrange Theorem yields the following:

Corollary 5.20. Let E be a set of equations as in Definition 5.17 and E′ ⊆ E, then

|S(Hom(E \ E′))|
|S(Hom(E))|

∈ N.

Proof. It follows from the fact that S(Hom(E)) is a subgroup of S(Hom(E \ E′)). �
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The next lemma shows that if E has few equations which reduce |S(E)| by a large factor, then
most of these reduction is done by ”few” equations.

Lemma 5.21. Let E be a set of equations as in Definition 5.17, E0 a subset of E such that
|S(E0)| = (ϕ(n)α·r )

t for some prime r|ϕ(n) and some integer α and let E|i = {e1, . . . , ei}, then there
exist t indices i1, . . . , it such that

t∏
j=1

|S(E|ij−1)|
|S(E|ij )|

≥ rt

Proof. Let αi = |S(E|i−1)|
|S(E|i)| for i ∈ [ℓ] and α0 = ϕ(n)t. By Lemma 5.18 we have that αi =

|S(Hom(E|i−1))|
|S(Hom(E|i))| and by Corollary 5.20 it has to be an integer. As E0 ⊆ E we know that |S(E)| = ϕ(n)t

α′·rt

for some α′ ≥ α, which has to be an integer because |S(E)| = |S(Hom(E))| and S(Hom(E)) is a

subgroup of Z∗(t)n . In other words
∏ℓ

i=1 αi = α′ · rt. The primarily of r yields the existence of a set
J ⊆ {1, . . . , ℓ} of size t such that

∏
j∈J αj = βrt, for some integer β. The indices we are looking

for are these in J . �

Now we want to see what happens to the solution set if E not only has equations, but inequalities
as well. We split the inequalities into two categories.

Definition 5.22. Let E be a set of equations as in Definition 5.17, sc be an equation of the form∏t
i=1 x

a′i
i ≡ c mod n and s̃c the corresponding inequality, namely

∏t
i=1 x

a′i
i ̸≡c mod n. Then s̃c is

for E of

• r-Type I: if |S(E)|
|S(E∪{sc})| < r

• r-Type II: otherwise

Remark 5.23. Notice that given E the Type of an inequality s̃c of the form
∏t

i=1 x
a′i
i ̸≡c mod n,

only depends on the exponents a′i’s and not on the right hand side c. This holds because for every
c, c′ ∈ Z∗n |S(E ∪ {sc})| = |S(Hom(E ∪ {sc}))| = |S(Hom(E ∪ {sc′}))| = |S(E ∪ {sc′})|.

The following lemma is useful.

Lemma 5.24. Let E be a set of equations in Definition 5.17, s1, s2 two equations over Z∗n over
the same unknowns, r a prime and a, b, c the largest integers such that ra| |S(E)|, rb| |S(E ∪ {s1}|
and rc| |S(E ∪ {s2}|. If a = b, then rc| |S(E ∪ {s1} ∪ {s2})|, with c being the largest such integer.

Proof. Again we are going to use that |S(E)| = |S(Hom(E))|. As S(Hom(E)) a group of size say
m, by the Fundamental Theorem of Abelian Groups we know (as in the proof of Lemma 5.3) that
if m = ra

∏s
i=1 p

αi
i is the factorization of m, then S(Hom(E)) ∼= V ×W , where V ∼=

∏v
j=1 Zraj ,

with
∑v

j=1 aj = a and W ∼=
∏s

i=1(
∏si

k=1 Zp
αik
i

), with
∑si

k=1 αik = αi. Thus, we have that |V | = ra

and |W | =
∏s

i=1 p
αi
i . Analogously, we have

• S(Hom(E ∪ {s1})) ∼= V ′ ×W ′

• S(Hom(E ∪ {s2})) ∼= V ′′ ×W ′′

• S(Hom(E ∪ {s1, s2})) ∼= V ′′′ ×W ′′′
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with |V ′| = rb and |V ′′| = rc and gcd(r, |W ′| · |W ′′| · |W ′′′|) = 1.
Since S(Hom(E ∪ {s1, s2})) = S(Hom(E ∪ {s1})) ∩ S(Hom(E ∪ {s2})), it follows that V ′′′ ≡

V ′∩V ′′ andW ′′′ ≡W ′∩W ′′. However, if a = b, then V ≡ V ′, which implies that V ′′′ = V ∩V ′′. Since
S(Hom(E ∪ {s2})) ⊆ S(Hom(E)), we have that V ′′ ⊆ V and therefore V ′′′ ≡ V ′′. Thus, |V ′′′| = rc

and we conclude that rc| |S(Hom(E ∪ {s1, s2}))|. To prove that c is the largest such integer, we
have to show that |W ′ ∩W ′′| is not a multiple of r. But r is not a multiple of |W ′| (nor of |W ′′|)
and W ′ ∩W ′′ is a subgroup of W ′ (and of W ′′), thus by Lagrange’s Theorem r is not a multiple of
|W ′∩W ′′| either. The lemma follows from the fact that |S(E∪{s1, s2})| = |S(Hom(E∪{s1, s2}))|.

�

The next lemma shows that inequalities do not decrease the solution set by more than a factor
of 2.

Lemma 5.25. Let E be as in Definition 5.17, Ẽ a set of inequalities and e an equation over the
same unknowns with E, r a prime factor of |S(E)|, such that rτ | |S(E)|

|S(E∪{e})| , where τ the largest

such integer and r ≥ 2 · |Ẽ|. Then

1. If Ẽ only contains inequalities of r-Type I, then rτ | |S(E∪Ẽ)|
|S(E∪Ẽ∪{e})| and

2. If Ẽ also contains inequalities of r-Type II, then rτ

2 ≤
|S(E∪Ẽ)|

|S(E∪Ẽ∪{e})| .

Proof.

1. Let us prove it for the case |Ẽ| = 1. For every tuple s = (b1, . . . , bt) ∈ Z∗n(t) let sc denote
an equality of the form

∏t
i=1 x

bi
i ≡ c mod n and let s̃c be the corresponding inequality, (i.e.∏t

i=1 x
bi
i ̸≡c mod n). Let Cs

E be the set with all elements c ∈ Z∗n such that sc is consistent

with E, namely there exists a tuple (x̄1, . . . , x̄t) ∈ S(E) such that
∏t

i=1 x̄
bi
i ≡ c mod n. By

the definition of Cs
E we have:

(a) S(E) =
∪

c∈Cs
E
S(E ∪ {sc})

(b) For every distinct c, c′ ∈ Cs
E , S(E ∪ {sc}) ∩ S(E ∪ {sc′}) = ∅ and

(c) |S(E ∪ {sc})| = |S(E ∪ {sc′})| = |S(Hom(E ∪ {s1}))|.

From property (a) we can see that for every c ∈ Cs
E we have that S(E ∪ {s̃c}) =∪

c′∈Cs
E\{c}

S(E ∪ {sc′}). Therefore, by Lemma 5.18 and properties (b),(c) it holds that

if Ẽ = {s̃c} all we have to show is that rτ | |S(E∪{sc})|
|S(E∪{sc}∪{e})| , because |S(E∪{sc})|

|S(E∪{sc}∪{e})| =∑
c′∈Cs

E
\{c} |S(E∪{sc′})|∑

c′∈Cs
E

\{c} |S(E∪{sc′}∪{e})|
=

|
∪

c′∈Cs
E

\{c} S(E∪{sc′})|
|
∪

c′∈Cs
E

\{c} S(E∪{sc′}∪{e})|
= |S(E∪{s̃c})|
|S(E∪{s̃c}∪{e})| . As s̃c is of r-Type

I and r prime, if rτ divides |S(E)| then rτ also divides |S(E ∪{sc})| and τ is the largest such
integer. By Lemma 5.24, if τ ′ is the largest integer such that rτ

′ | |S(E ∪{e})|, then τ ′ is also
the largest integer such that rτ

′ | |S(E ∪ {sc} ∪ {e})|. The claim follows.

For the case of |Ẽ| = 2 with Ẽ = {s̃c, s̃′c′}, we just observe that by Lemma 5.24,

s̃′c′ is also an r-Type I inequality for E ∪ {sc}. Therefore, rt| |S(E∪{sc}∪{s̃′c′})|
|S(E∪{sc}∪{s̃′c′}∪{e})|

=

|
∑

c′′∈Cs
E

\{c} S(E∪{sc′′}∪{s̃′c′})|
|
∑

c′′∈Cs
E

\{c} S(E∪{sc′′}∪{s̃′c′}∪{e})|
=

|
∪

c′′∈Cs
E

\{c} S(E∪{sc′′}∪{s̃′c′})|
|
∪

c′′∈Cs
E

\{c} S(E∪{sc′′}∪{s̃′c′}∪{e})|
=

|S(E∪{s̃c,s̃′c′})|
|S(E∪{s̃c,s̃′c′}∪{e})|

=

|S(E∪Ẽ)|
|S(E∪Ẽ∪{e})| . For the general case we continue arguing in the same way.
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2. Let Ẽ only contain r-Type II inequalities. it follows that |S(E ∪ Ẽ))| ≥ (1 − |Ẽ|r ) · |S(E)| ≥
1
2 |S(E)|. By the assumption of Ẽ we have that |S(E)| ≥ rτ ·|S(E∪{e})| ≥ rτ ·|S(E∪Ẽ∪{e})|.
Combining them we get rτ

2 ≤
|S(E∪Ẽ)|

|S(E∪Ẽ∪{e})| .

For the general case, we see that S(E ∪ Ẽ) can be written as S(E ∪ ẼI ∪ ẼII), where ẼI only
contains inequalities of r-Type I and ẼII only inequalities of r-Type II. The above yields that
for each inequality s̃c, S(E ∪{s̃c}) can be written as a union of equally sized disjoint sets, i.e.∪

c′∈Cs
E\{c}

S(E ∪ {sc′}). Therefore S(E ∪ Ẽ) can be written as
∪

i∈I S(E ∪Ei), for some sets

{Ei}i∈I that contain only equations and the sets S(E ∪ Ei) are equally sized and disjoint.
Now we have

rt

2 ≤ |S(E∪Ei∪ẼII)|
|S(E∪Ei∪ẼII∪{e})|

, but |S(E∪Ei∪ẼII)|
|S(E∪Ei∪ẼII∪{e})|

=
∑

i∈I |S(E∪Ei∪ẼII)|∑
i∈I |S(E∪Ei∪ẼII∪{e})|

=

|
∪

i∈I S(E∪Ei∪ẼII)|
|
∪

i∈I S(E∪Ei∪ẼII∪{e})|
= |S(E∪ẼI∪ẼII)|
|S(E∪ẼI∪ẼII∪{e})|

= |S(E∪Ẽ)|
|S(E∪Ẽ∪{e})| .

�

Now we are ready to prove Claim 5.10.

Proof of Claim 5.10. Let Q be number of queries of (H;C). Since Eπ is a subset of Eπ
Q and since

by Claim 5.4 |S(Eπ)| ≤ (ϕ(n)r )t for some prime r|ϕ(n) and r ≥ |C|4, by Lemma 5.21 we have that

there exist t colliding queries such that
∏t

j=1

|S(Eπ
ij−1\Ẽπ

ij−1)|

|S(Eπ
ij
\Ẽπ

ij
)| ≥ (|C|4)t, where Ẽπ

j is the set of all

inequalities derived in the first j queries. As for each Ẽπ
j , we have that |Ẽπ

j | ≤ 4|C|2 (an upper

bound on |Ẽπ
j |) we have that |C|4 ≥ 2 · |Ẽπ

j | and we can use Lemma 5.25 . The claim follows. �

6 A t-EU-CMA-secure RSA-FDH Signature Scheme

In this section we show the following under the RSA assumption (see below): for every
polynomially-bounded integer function t there exists an efficient procedure KeyGent for which RSA-
FDH scheme Σt = (KeyGent,Sign,Verify) is t-EU-CMA-secure. Furthermore, the reduction treats
Z∗n and the potential adversary in a black-box way.

Definition 6.1 (RSA Assumption (in the Standard Model)). There exist polynomial time proce-
dures RSAKey and RSAChallenge such that

1. RSAKey on input 1k outputs an integer (n, p1, p2, e, d), such that n = p1p2, with p1, p2 ∈ P,
gcd(e, ϕ(n)) = 1 and ed ≡ 1 mod ϕ(n),

2. RSAChallenge on input (n, e) outputs y ∈ Zn, and

3. for any ppt A it holds that

Pr(n,p1,p2,e,d)←RSAKey(1k),y←RSAChallenge(n,e)[x
e ≡ y mod n : x← A(n, e, y)] = neg(k)

To construct the hash function of our RSA-FDH scheme, we use families of cover free subsets.

Definition 6.2 (cover-free subsets). Let S1, . . . ,Sn be subsets of a universe U . These subsets are
called t-cover free if for any set of indices {i1, . . . , it} and for any index i0 such that i0 /∈ {i1, . . . , it},
it holds that Si0 *

∪
i∈{i1,...,it} Si.
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The existence of such cover free subsets was proven by D’yachkov et al. [14], where the fact that
we can construct them in polynomial time was proven by Kumar et al. [23].

Theorem 6.3 ([14, 23]). There exist a polynomial-time algorithm CFGen and a constant c > 0
such that the following holds: for any integers n and t and a set U of size ⌈c · t2 logn⌉, the family
of subsets S1, . . . ,Sn ⊂ U , where Si = CFGen(n, t,U , i), is t-cover free.

Given a polynomial bounded integer function t, we assume without loss of generality that
t(k) = poly(k), and define the t-secure RSA-FDH signature scheme Σt = (KeyGent,Sign,Verify) as
follows (we only define the key generator KeyGent, since the signer and verifier Sign and Verify are
generic):

Algorithm 6.4 (KeyGent).

Input: 1k.

Operation:

1. Let (n, p1, p2, e, d)← RSAKey(1k).

2. Let u =
⌈
ct(k)2 log n

⌉
, where c is the constant from Theorem 6.3, and for i ∈ [u] let ai ←

RSAChallenge(n, e) and set U = {ai}i∈[u].

3. Construct the function hU : Zn 7→ Zn, defined as hU (m) =
∏

i∈Sm ai mod n, where Sm : =
CFGen(n, t,U ,m).

4. Return pk = (n, e, hU ) and sk = d.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Theorem 6.5 (Theorem 1.1, restated). Under the RSA assumption Σt is t-EU-CMA-secure.

Proof. Suppose that there exists an adversary F , that breaks t(k)-times security of Σt with some
non negligible probability δ(k). We show that there exists an ppt A which given black-box access
to F breaks the RSA assumption. More specifically, A will be such that

Pr(n,p1,p2,e,d)←RSAKey(1k),y←RSAChallenge(n,e)[x
e ≡ y mod n|x← AF (n, e, y)] ≥ Θ

(
δ(k)

t(k)2 log n

)
A is described as follows:

Algorithm 6.6. A

Input: (1k, n, e, y)

Operation:

1. Let u =
⌈
ct(k)2 log n

⌉
, where c is the constant from Theorem 6.3, and for i ∈ [u] let bi ←

RSAChallenge(n, e).

2. For i = 1, . . . , u set ai = bei mod n.

3. If ai ≡ y mod n for some i ∈ [u], then return bi.
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4. Choose ℓ← [u] uniformly at random.

5. Set aℓ : = y and U = {ai}i∈[u]

6. Query F on (n, e, hU ), where hU is as defined in Algorithm 6.4.

7. For each signing query of F on message mi, where i ∈ [t(k)] do

(a) If ℓ /∈ Smi respond to F with σi =
∏

i∈Smi
bi mod n (where Smi is as defined in Algo-

rithm 6.4).

(b) Else abort.

8. If F returns a valid forgery σ on message m and ℓ ∈ Sm
return σ ·

∏
i∈Sm\{ℓ} b

−1
i mod n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If A stops at step 3 then it clearly succeeds. Below we assume that this is not the case.
To show that AF succeeds with probability Θ(1/t(k)2 log n), consider the following experiment.

Choose u random elements a1, . . . , au of Zn and a random index ℓ ∈ [u]. Query F on a random input
(n, e, hU ) chosen according to KeyGent(1

k) and answer all signing requests. The success condition of
this experiment is that F (1) succeeds in its forgery, (2) it requests the signatures of m1, . . . ,mt(k)

such that d /∈
∪

j∈{m1,...,mt(k)} Sj and (3) outputs the signature of some m with d ∈ Sm. If F

succeeds we know that m /∈ {m1, . . . ,mt(k)} and by the definition of subsets there exists one ℓ′ such
that ℓ′ /∈

∪
j∈{m1,...,mt(k)} Sj but d′ ∈ Sm. By assumption F succeeds in its forgery with probability

δ(k) and with probability 1/u = Θ(1/t(k)2 log n) we have that ℓ = ℓ′. Since these conditions are
independent, the probability of success in the above experiment is Θ(δ(k)/t(k)2 log n). If δ(k) is
non-negligible then the latter probability is also non-negligible.

We argue that the probability of success of A is at least the probability of success of the above
experiment. The input to F follows the same distribution as the output of KeyGent(1

k). Whenever,
F requests a signature σmi of a message mi such that ℓ /∈ Smi , A returns a valid signature of mi

(since (
∏

i∈Smi
bi)

e ≡
∏

i∈Smi
bei ≡

∏
i∈Smi

ai mod n). If F forges m with a valid signature σ and

ℓ ∈ Sm, then we have that (σ·
∏

i∈Sm\{ℓ} b
−1
i )e ≡ hU (m)·

∏
i∈Sm\{ℓ} a

−1
i ≡

∏
i∈Sm ai ·

∏
i∈Sm\{ℓ} a

−1
i ≡

aℓ ≡ y mod n. �
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