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Abstract. We define a new black-box property for cryptographic hash function families H :
{0, 1}K×{0, 1}∗ → {0, 1}y which guarantees that for a randomly chosen hash function HK from
the family, everything “non-trivial” we are able to compute having access to the key K, we can
compute only with oracle access to HK . If a hash function family is pseudo-random and has the
black-box property then a randomly chosen hash function HK from the family is resistant to all
non-trivial types of attack. We also show that the HMAC domain extension transform is Prf-BB
preserving, i.e. if a compression function f is pseudo-random and has black-box property (Prf-BB
for short) then HMACf is Prf-BB. On the other hand we show that the Merkle-Damg̊ard con-
struction is not Prf-BB preserving. Finally we show that every pseudo-random oracle preserving
domain extension transform is Prf-BB preserving and vice-versa. Hence, Prf-BB seems to be
an all-in-one property for cryptographic hash function families, which guarantees their “total”
security.

1 Introduction

The primary security property for cryptographic hash functions has historically been collision
resistance. For a collision resistant hash function F : {0, 1}∗ → {0, 1}y it is hard to find a pair
of messages (M,M ′) such that F (M) = F (M ′). Currently used hash functions, such as the
SHA family or MD5, are designed using the Merkle-Damg̊ard (MD) construction [7, 10]. The
MD construction is a domain extension transform, i.e. it extends a domain of a fixed-input-
length (FIL) compression function f : {0, 1}(y+d) → {0, 1}y to a variable-input-length (VIL)
hash function F . The key security feature of the MD construction is that it preserves collision
resistance. If the compression function f is collision resistant, then so is the resulting hash
function F .

However, collision resistance is not enough to prove the security of many important appli-
cations which involve hash functions. A cryptographic hash function should have “random”
behavior, which collision resistance alone cannot ensure. Moreover, for several of the applica-
tions (e.g. RSA-FDH) no standard model security property sufficient for proving their security
has been found. On the other hand, no realistic attacks against these applications have been
found. Hence, Bellare and Rogaway [4] introduced a so called random oracle model, which
models a hash function as a publicly available random function (random oracle). Using this
framework, one can prove the security of many important schemes. A proof in the random
oracle model does not guarantee security when we replace the random oracle with a real hash
function [5]. However, such a proof is believed to ensure that there are no structural flaws in
the scheme and thus one can heuristically hope that the scheme remains flawless when the
random oracle is replaced with a “well designed” hash function.
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Real hash functions are often built using some smaller components such as compression
function in the case of the MD construction. On the other hand, in the random oracle model,
hash functions are modeled as a monolithic oracle without any subcomponents. In order to
avoid such a contrast between theory and practice, Maurer, Renner and Holenstein introduced
the indifferentiability framework [9] and consequently Coron et. al defined a property for hash
functions called pseudo-random oracle [6]. If a hash function F is pseudo-random oracle then it
is indifferentiable from the random oracle. Hence, F can be used in any cryptosystem instead of
the random oracle without loosing the security. The pseudo-random oracle property assumes
that a hash function is built from a publicly available FIL random function f (compression
function). Thus, the pseudo-random oracle property still requires the random oracle model.

It is hard to define collision resistance for hash functions in the standard model. Due to
the pigeonhole principle, each hash function with domain greater than its range has a pair
of messages which map to the same image. A potential adversary attacking a hash function
can have such a pair hardwired into its code, so that its description is simple and it runs
very fast. Hence, formal definitions of security properties for cryptographic hash function are
often made in the dedicated-key settings [2, 11]. A hash function with a dedicated-key input is
called a hash function family (i.e. H : {0, 1}k × {0, 1}∗ → {0, 1}y), a particular hash function
from the family is selected by a key K (K ∈ {0, 1}k). In the dedicated-key settings, a potential
adversary has to find a collision for a hash function HK randomly chosen from the family.

Our contributions. In this paper we introduce a black-box (BB) property for hash function
families. If a hash function family H : {0, 1}k × {0, 1}∗ → {0, 1}y has the BB property, then
everything “non-trivial” we are able to compute having access to the randomly chosen key
K, we are able to compute only with oracle access to the hash function HK . A “non-trivial”
thing we define as an information which is hard to compute for a random oracle. Clearly,
the BB property is not sufficient for “good” cryptographic hash functions. Moreover, the
BB property can be easily achieved by a hash function family, which “reveals” its key (e.g.
a family for which HK(0) = K). On the other hand, we show that a pseudo-random hash
function family with the BB property (a Prf-BB hash function family for short) is resistant to
all “non-trivial” attacks. For a Prf-BB hash function family, the pseudo-randomness ensures
that without access to a randomly chosen key K, one cannot distinguish HK from a random
oracle. Additionally, the black-box property ensures that access to the key K does not reveal
any “useful” information about the structure of HK .

We show that the MD construction does not preserve the Prf-BB property. On the other
hand, we show that the HMAC construction [1, 6] is Prf-BB preserving. Moreover we show
that every pseudo-random oracle preserving domain extension transform is Prf-BB preserving
and vice-versa. Hence Prf-BB property can be seen as a replacement of the pseudo-random
oracle property for the standard model and can become a new primary security goal for hash
function families.

Organization. In Section 2 we introduce some useful notations and definitions. In Section
3 we define the black-box property and show that a randomly chosen hash function from a
Prf-BB hash function family is resistant to all “non-trivial” types of attack. Next, in Section
4 we show that the MD construction is not Prf-BB preserving. The proof that the HMAC
construction is Prf-BB preserving is in Section 5. In Section 6 we show the equivalence between
pseudo-random oracle preserving domain extension transforms and Prf-BB preserving domain
extension transforms.
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2 Preliminaries

We write M $←S for the uniform random selection of M from the finite set S. Concatenation
of finite strings M1 and M2 is denoted by M1||M2 or simply M1M2, M denotes bitwise
complement of the string M . The i-th bit of a string M is M [i], thus M = M [1]|| · · · ||M [|M |].
By M1, . . . ,Ml

d←M , where M is a string, is denoted the following semantics:

1. Pad M with the suffix pad := 1||0d−((|M |+1) mod d)

2. Parse the string M ||pad into M1,M2, . . .Ml, where |Mi| = d for 1 ≤ i ≤ l. It must hold
that M1||M2|| . . . ||Ml = M ||pad.

Let Func(D,R) represent the set of all functions ρ : D → R and let RFD,R be a function

chosen randomly from the set Func(D,R) (i.e. RFD,R
$←Func(D,R)). We sometimes write

RFd,r or Func(d, r) when D = {0, 1}d and R = {0, 1}r. Similarly, we write RF∗,r or Func(∗, r)
when D = {0, 1}∗ and R = {0, 1}r. If i is an integer, then 〈i〉r is r-bit string representation of
i. If r is omitted, then 〈i〉 is the shortest string representation of i (e.g. if i = 3, then 〈i〉 = 11).

Hash function family. Let n ∈ N be a security parameter. A variable input length hash
function family is a function H : {0, 1}k×{0, 1}∗ → {0, 1}y computable in a polynomial time,
where k, y ∈ N. In the rest of this paper we assume that k, y are polynomially related to the
security parameter n (i.e. k = p1(n) and y = p2(n) for some polynomials p1, p2). We will
often write the first argument to H as a subscript, i.e. HK(M) := H(K,M). A fixed input
length hash function family is a function H : {0, 1}k × {0, 1}m → {0, 1}y, where k,m, y ∈ N
are polynomially related to the security parameter n.

Negligible function. A function f is negligible if for every polynomial p(·) there exists N such
that for every n > N it holds that f(n) < 1

p(n) . Negligible functions are denoted as negl(·).

Interactive Turing machines. An interactive Turing machine (ITM) T accepts inputs via input
tape, performs some local computations and outputs via output tape. An ITM T can have
“oracle” access to several other ITMs T1, . . . , Tl. The communication between T and T1, . . . , Tl

is performed via “oracle” input tapes t1, . . . , tl and output tapes t′1, . . . , t
′
l. Whenever T writes

some input on the tape ti, the ITM Ti is invoked on that input and its output is written
on the oracle output tape t′l. We call such operation a query to the oracle Ti. All queries
are performed in unit time (i.e. computation of Ti is not counted into T ’s running time). By
T T1,...,Tl we denote that the ITM T has oracle access to T1, . . . , Tl.

Each ITM can implement various interfaces (f1, f2, . . . ). An interface specifies what needs
to be written on the input type to invoke particular functionality of the ITM. We write
T = (f1, f2, . . . ) meaning that T implements interfaces f1, f2, . . . .

We sometimes distinguish between private and public interfaces of an ITM T . In this case
we write T = ((f1, f2, . . . ), (f ′1, f

′
2, . . . )), where f1, f2, . . . are private interfaces and f ′1, f

′
2, . . .

are public. We write P Tpub to denote that an ITM P has oracle access only to public interfaces
of an ITM T .

Adversary. An adversary is a probabilistic polynomial-time ITM. Running time of an adver-
sary A is the expected running time of A plus the description size of A (hence one cannot
precompute some large amount of information and store it into A’s description). Running time
of an adversary is polynomial in length of its inputs and the security parameter n. Without
loss of generality we assume that an adversary always stop and returns some output.
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Games. A game GO,A is a probabilistic polynomial ITM which output is always a bit b ∈
{0, 1}. If b = 1 we say that the adversary A won the game G for the oracle O. If b = 0 we
say that A lost the game G for O. In this paper we focus on the games with the first oracle
being a hash function or a hash function family.

Example 1. Let H : {0, 1}k×{0, 1}∗ → {0, 1}y be a hash function family, and let GCR be the
following algorithm:

Game GCR

GCR has access to H(·, ·) and adversary A(·)
1. choose K $←{0, 1}k
2. query A(K)→ (M,M ′)
3. if M 6= M ′ and H(K,M) = H(K,M ′) return 1
4. otherwise return 0.

The game GCR represents the well known collision resistance experiment for the hash function
family H. If no polynomial adversary A can win the game GCR for H with non-negligible
probability we say H is collision resistant. Note that we can define games also for all other
standard properties of hash function families like preimage resistance, second-preimage resis-
tance, their everywhere and always versions [11], unforgeability, etc.

Example 2. The following game GCRF for a hash function F : {0, 1}∗ → {0, 1}y is an “un-
keyed” adaptation of the game GCR from the Example 1.

Game GCRF

GCRF has access to F (·) and adversary A
1. query A→ (M,M ′)
2. if M 6= M ′ and F (M) = F (M ′) return 1
3. otherwise return 0.

Note that for all hash functions F there exists an efficient adversary A which returns a collision
for F . Since there exists collisions in F , A just needs to have one of the collisions hardwired
into its description. Hence, we cannot define collision resistance for hash functions.

A hash function F : {0, 1}∗ → {0, 1}y and a hash function family H : {0, 1}k × {0, 1}∗ →
{0, 1}y can represent the same function ρ(K,M) = F (K||M) = H(K,M). Hence, when
considering an arbitrary game G, we cannot tell whether it treats it’s oracle as a hash function
(e.g. GCRF ) or hash function family (e.g. GCR). This is undesirable in some cases, where we
want to utilize advantages of hash function families (e.g. ability to define collision resistance).
Because of this, in the following definitions of a non-trivial game and the black-box property,
we make a random choice of a key before the game starts. Then the game G is given access to
the hash function HK chosen randomly from the family H : {0, 1}k × {0, 1}∗ → {0, 1}y (but
K is not given to G). Thus, we can utilize the advantages of hash function families and we
don’t restrict how games should treat their oracle.

Non-trivial games. There are games, which are easy to win (e.g. a game which always returns
1) and games which cannot be won (a game always returning 0). Informally, a trivial game G
is a game, which utilizes adversary’s knowledge of the key so that it can be won for a keyed
random function. Our formal definition follows.
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Definition 1 (Non-trivial game). Let F : {0, 1}k×{0, 1}∗ → {0, 1}y be a publicly available
random function. Game G is non-trivial if for all adversaries A there exists a simulator S
and a negligible function negl such that

negl(n) ≥
∣∣∣Pr

[
F ← RFk×∗,y;K $←{0, 1}k;GFK ,AK → 1

]
−Pr

[
F ← RFk×∗,y;K $←{0, 1}k;GFK ,SFK → 1

]∣∣∣.
Where the probabilities are taken over random choice of F , random selection of the key K
and random coins of G and A (S in the second experiment). If F is a fixed input length (FIL)
keyed random function (F : {0, 1}k ×{0, 1}m → {0, 1}y) then we say that G is non-trivial for
FIL hash functions.

Note that the game GCRF defined in the Example 2 is non-trivial. The game GCR expects its
oracle H to be a hash function family, i.e. a function with two inputs K and M . If we modify
the game GCR so that it expects H to be a function only with one input K||M then GCR is
also non-trivial.

Example 3. The following game GkeyGuess is an example of a trivial game (i.e. a game which
is not non-trivial). The game is parametrized by a hash function family H : {0, 1}k×{0, 1}∗ →
{0, 1}y, from which a hash function HK is chosen uniformly randomly.

Game GkeyGuess(H)

GkeyGuess has access to HK(·) and adversary AK for randomly chosen key K $←{0, 1}k.
1. query AK → K ′

2. choose M $←{0, 1}m for some integer m.
3. if HK(M) = HK′(M) return 1.
4. otherwise return 0.

There exists an adversary AK which finds the correct key for all functions HK . The adversary
AK asks its oracle for the key K and outputs the same. Hence, AK wins GkeyGuess(F) for
random function F and thus violates the first statement from the Definition 1.

3 The Black-box Property

Let H : {0, 1}k × {0, 1}∗ → {0, 1}y be a hash function family, G be a game, A an adversary
and S a simulator. We define the following experiment:

Experiment HashBB(H,G,A, S)
1. choose K $←{0, 1}k
2. run GHK ,AK → b
3. run GHK ,SHK → b′

4. if b 6= b′ return 1
5. otherwise return 0

Definition 2 (Black-box property). We say that the hash function family H : {0, 1}k ×
{0, 1}∗ → {0, 1}y has the black-box property if for all non-trivial games G, all adversaries A
there exist a polynomial simulator S and a negligible function negl, such that

Pr
[
HashBB(H,G,A, S) = 1

]
≤ negl(n).
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Remark 1. Informally, if a hash function family H has the black-box property, everything
“non-trivial” we are able to compute having access to the randomly chosen key K, we are
able to compute only with oracle access to the hash function HK .

There exist hash function families, which have the black-box property “trivially”. Let H :
{0, 1}k × {0, 1}∗ → {0, 1}y be a hash function family and let H ′ be defined as:

H ′K(M) =
{
K if M = 0
HK(M) otherwise

Hence, a simulator SHK can query HK(0) and it receives the key K. If S knows the key K,
it can simulate an adversary A and thus it can compute the same as AK can. Therefore the
black-box property alone is not enough for “strong” cryptographic hash function family.

Pseudo-randomness. A hash function family is pseudo-random, if a randomly chosen hash
function from the family is indistinguishable from the random function. More formally, let
H : {0, 1}k × {0, 1}∗ → {0, 1}y be a hash function family and let

AdvPrf
H (A) :=

∣∣∣Pr
[
K

$←{0, 1}k;AHK → 1
]
− Pr

[
F $←RF∗,y;AF → 1

]∣∣∣
We say that the hash function familyH is a pseudo-random function (Prf), if for all adversaries
A there exists a negligible function negl, such that

AdvPrf
H (A) ≤ negl(n).

Definition 3. We say that a hash function family H is Prf-BB if it is a pseudo-random
function and has the black-box property.

Remark 2. It remains an open problem, whether Prf-BB hash function family exists. However,
for the existence of a Prf-BB hash function family it is crucial that games like the key guessing
game GkeyGuess defined in the Example 3 are not non-trivial. If games, which can be won only
by “simple utilization” of knowledge of the key K (e.g. GkeyGuess), would be non-trivial, then
no hash function family with black-box property could be pseudo-random. Let H be hash
function family with the black-box property and assume that GkeyGuess is non-trivial. Since
H has the black-box property for all adversaries A there exists a simulator S such that for a
randomly chosen key K with a non-negligible probability holds

GHK ,AK

keyGuess = GHK ,SHK

keyGuess.

However, there exists an adversary AK which wins the game GHK ,AK

keyGuess for all keys K (it
just outputs the key it has as an oracle). Hence there exists a simulator SHK which wins the
game GHK ,SHK

keyGuess with non-negligible probability. But then, the algorithm D := GHK ,SHK

keyGuess can
distinguish HK from a random function. What means that H cannot be pseudo-random.

In the following theorem we show, that a randomly chosen hash function HK from the
Prf-BB hash function family is as resistant as the random oracle to all types of attacks which
can be represented by a non-trivial game GHK .
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Theorem 1. Let H : {0, 1}k × {0, 1}∗ → {0, 1}y be a Prf-BB hash function family and G
be a non-trivial game. Then for all adversaries A there exists a polynomial simulator S a
negligible function negl such that∣∣∣Pr

[
K

$←{0, 1}k;GHK ,AK → 1
]
− Pr

[
F $←RF∗,y;GF ,SF → 1

]∣∣∣ ≤ negl(n).

Proof. Fix some adversary A and let

ε(n) := Pr[K $←{0, 1}k;GHK ,AK → 1].

Let S be some polynomial simulator.

ε(n) = Pr[K $←{0, 1}k;GHK ,AK → 1 ∧GHK ,SHK → 0]

+ Pr[K $←{0, 1}k;GHK ,AK → 1 ∧GHK ,SHK → 1]

≤ Pr[K $←{0, 1}k;GHK ,AK → 1 ∧GHK ,SHK → 0]

+ Pr[K $←{0, 1}k;GHK ,SHK → 1]

≤ Pr[K $←{0, 1}k;GHK ,AK → b ∧GHK ,SHK → b′ ∧ b 6= b′]

+ Pr[K $←{0, 1}k;GHK ,SHK → 1].

Since H has the black-box property, there exists a simulator S and a negligible function negl0
such that

ε(n) ≤ negl0(n) + Pr[K $←{0, 1}k;GHK ,SHK → 1]. (1)

The hash function family H is pseudo-random, hence for all adversaries D there exists a
negligible function negl1, such that∣∣∣Pr[K $←{0, 1}k;DHK → 1]− Pr

[
F $←RF∗,y;DF → 1

]∣∣∣ ≤ negl1(n).

The statement above holds also for the adversary DX , which simulates GX ,SX , where X is an
arbitrary ITM. Thus∣∣∣Pr[K $←{0, 1}k;GHK ,SHK → 1]− Pr

[
F $←RF∗,y;GF ,SF → 1

]∣∣∣ ≤ negl1(n).

Hence,∣∣∣Pr
[
K

$←{0, 1}k;GHK ,AK → 1]− Pr
[
F $←RF∗,y;GF ,SF → 1

]∣∣∣ ≤ negl0(n) + negl1(n).

4 Merkle-Damg̊ard and the Black-box Property

In this section we show that the well known Merkle-Damg̊ard domain extension transform
does not preserve the black-box property.
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Merkle-Damg̊ard construction. The strengthened Merkle-Damg̊ard (SMD) domain extension
transform operates in the following way (see fig. 1).

Algorithm SMDf (K,M)
the algorithm has oracle access to f : {0, 1}k × {0, 1}y × {0, 1}d → {0, 1}y.

1. (M1, . . . ,Ml)
d←M

2. Ml+1 ← 〈|M |〉d
3. Y0 ← IV
4. for i = 1 to l + 1 do
5. Yi ← fK(Yi−1,mi)
6. return Yl′

By SMDf we denote the hash function family created by the SMD domain extension transform
from the compression function f : {0, 1}k×{0, 1}d×{0, 1}y → {0, 1}y. We often write SMDf

K(·)
instead of SMDf (K, ·). If g : {0, 1}d × {0, 1}y → {0, 1}y is an unkeyed compression function,
then SMDg denotes a hash function created by the unkeyed SMD construction.

Note that SMDf as defined above can process messages only of length up to 2d bits. We
can modify the algorithm SMDf so that it can process messages of arbitrary length (we just
need to parse |M | into several blocks, if needed). In the rest of this section we will assume that
SMDf can process messages of arbitrary length, but to simplify the presentation we consider
that processed messages are of length at most 2d bits.

ff f f
IV

. . . Y
Y1 Y2

Yl-1

M0 M1
Ml

K K K

|M|

K

Fig. 1. Merkle-Damg̊ard domain extension transform

Theorem 2. Let f : {0, 1}k × {0, 1}(y+d) → {0, 1}y be a compression function, which is Prf-
BB. Then the hash function family SMDf : {0, 1}k × {0, 1}∗ → {0, 1}y does not have the
black-box property.

Proof. We utilize the idea of the extension attack [6, 8]. Let G be the following game:

Game G
G has access to HK(·) and adversary B(·)
1. choose M $←{0, 1}m
2. query HK(M)→ Y
3. query B(Y )→ (X,Y ′)
4. if HK(M ||X) = Y ′ return 1
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5. otherwise return 0.

Clearly such a game G is non-trivial. We show that there exists an adversary AK that wins
the game G for SMDf

K(·). Moreover we show that no polynomial simulator SSMDf
K(·) can win

the game G with non-negligible probability. Consider the following A

Adversary AK(Y )
A has access to the key K
1. Choose X $←{0, 1}d
2. Compute SMDf

[IV :=Y ](K, 〈|M |〉d)||X)→ Y ′

3. Output Y ′

Clearly, A runs in a polynomial time and always wins the game G for SMDf . Let S be a
simulator and let

ε(n) := Pr
[
GSMDf

K ,S
SMD

f
K → 1

]
.

Consider the following adversary D attacking pseudo-randomness of SMDf :

Adversary D
D has access to oracle O, which is either SMDf

K(·) or a random function F .

1. choose M $←{0, 1}m
2. query O(M)→ Y
3. simulate SO(Y )→ (X,Y ′)
4. if O(M ||X) = Y ′ return 1
5. otherwise return 0.

Consider that D’s oracle is SMDf
K(·). In this case S’s view is the same as in the game G,

hence
Pr
[
K

$←{0, 1}K ;DSMDf
K(·) → 1

]
= ε(n).

On the other hand, ifD’s oracle is the random function F , then it returns 1 only with negligible
probability. The simulator SF does not know the message M , hence the only chance SF (Y )
returns (X,Y ′) for which F(M ||X) = Y ′ is that it guesses M or Y ′. The probability that S
correctly guesses M is O( 1

2m ) and the probability that S correctly guesses Y ′ is O( 1
2y ). Thus,

Advprf

SMDf (D) = ε(n)−O
( 1

min{2m, 2y}

)
.

Since SMDf is pseudo-random, it must hold that ε(n) is negligible.

5 HMAC is Prf-BB Preserving Domain Extension Transform

In this section we show that the HMAC domain extension transform (fig. 2) is Prf-BB pre-
serving.

Algorithm HMACf (K,M)
the algorithm has oracle access to f : {0, 1}k × {0, 1}y × {0, 1}d → {0, 1}y.
1. (M1, . . . ,Ml)

d←M
2. Y0 ← IV0

3. for i = 1 to l do
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4. Yi ← fK(Yi−1,mi)
5. if y < d then Y ′ := Yl||0d−y

6. else Y ′ := Yl[0]|| . . . ||Yl[d]
7. Y → fK(IV1, Y

′)
8. return Y

By HMACf we denote the hash function family created by the HMAC domain extension
transform from the compression function f : {0, 1}k × {0, 1}d × {0, 1}y → {0, 1}y. We often
write HMACf

K(·) instead of HMACf (K, ·). If g : {0, 1}d × {0, 1}y → {0, 1}y is an unkeyed
compression function, then HMACg denotes a hash function created by the unkeyed HMAC
construction.

f f f
IV0 . . .

Y1 Y2 Yl-1

M0 M1 Ml

K K K

f
IV1

K

Y

Fig. 2. HMAC domain extension transform

In the Lemma 1 we show that for a Prf compression function f , all games G and all
simulators S there exists a simulator S′ such thatG cannot distinguish whether it is interacting
with HMACf

K and SfK or HMACf
K and S′HMACf

K . In other words, if f is pseudo-random then
S′ is able to simulate fK using HMACf

K for randomly chosen key K ∈ {0, 1}k.

Lemma 1. Let f : {0, 1}k × {0, 1}(y+d) → {0, 1}y be a compression function which is Prf.
Then for all games G and all simulators S there exists a simulator S′ and a negligible function
negl(n) such that

∣∣∣Pr[K $←{0, 1}k;GHMACf
K ,SfK → 1]− Pr[K $←{0, 1}k;GHMACf

K ,S
′HMAC

f
K → 1]

∣∣∣ ≤ negl(n)

Proof. Fix some simulator S and let

ε(n) :=
∣∣∣Pr[K $←{0, 1}k;GHMACf

K ,SfK → 1]− Pr[K $←{0, 1}k;GHMACf
K ,S

′HMAC
f
K → 1]

∣∣∣
10



Hence,

ε(n) ≤
∣∣∣Pr[K $←{0, 1}k;GHMACf

K ,SfK → 1]− Pr[g ← RFy+d,y;GHMACg ,Sg → 1]
∣∣∣

+
∣∣∣Pr[g ← RFy+d,y;GHMACg ,Sg → 1]− Pr[g ← RFy+d,y;GHMACg ,S′HMACg

→ 1]
∣∣∣

+
∣∣∣Pr[g ← RFy+d,y;GHMACg ,S′HMACg

→ 1]− Pr[K $←{0, 1}k;GHMACf
K ,S

′HMAC
f
K → 1]

∣∣∣
We show that all three terms on the right-hand side of the equation above are negligible.
Thus, we want to prove the following three statements.

(1) For all simulators S there exists a negligible function negl1 such that∣∣∣Pr[K $←{0, 1}k;GHMACf
K ,SfK → 1]− Pr[g ← RFy+d,y;GHMACg ,Sg → 1]

∣∣∣ ≤ negl1(n)

(2) For all simulators S there exists a simulator S′ and a negligible function negl2 such that∣∣∣Pr[g ← RFy+d,y;GHMACg ,Sg → 1]− Pr[g ← RFy+d,y;GHMACg ,S′HMACg

→ 1]
∣∣∣ ≤ negl2(n)

(3) For all simulators S′ there exists a negligible function negl3 such that∣∣∣Pr[g ← RFy+d,y;GHMACg ,S′HMACg

→ 1]−

−Pr[K $←{0, 1}k;GHMACf
K ,S

′HMAC
f
K → 1]

∣∣∣ ≤ negl3(n)

Statements (1) and (3) are given by the fact that f is pseudo-random. For the case (1) we
create a distinguisher DX , which simulates GHMACX ,SX

. Since f is pseudo-random, there
exists a negligible function negl1 such that∣∣Pr[K $←{0, 1}k;DfK → 1]− Pr[g ← RFy+d,y;Dg → 1]

∣∣ ≤ negl1(n).

However DX simulates GHMACX ,SX
, hence∣∣∣Pr[K $←{0, 1}k;GHMACf

K ,SfK → 1]− Pr[g ← RFy+d,y;GHMACg ,Sg → 1]
∣∣∣ ≤ negl1(n)

Similarly we can prove the statement (3).
For the statement (2) fix some simulator S and consider the following simulator S′.

Simulator S′HMACg
(w)

S′ has oracle access to HMACg and takes on input some string w (w represents a
query asked by G to S′). Let q be the maximum number of queries S asks to g.
S′ maintains a table T of triples (X,Y, Y ′)q

0. An entry (X,Y, Y ′)i means that S’s
i-th query was (X,Y ) and S′ responded Y ′. S′ also maintains a “chain” list L of

chains (IV0
X0→Y0

X1→Y1
X2→· · ·

Xli→Yli)
r
i=0. An entry (chain) in the list means, that S during

its execution asked queries {(X0, IV0) → Y0, (X1, Y0) → Y1, . . . , (Xli , Yli−1) → Yli}
(queries need not to be asked in the same order).
1. Simulate Sg(w)→ o. When S asks a query (X,Y ), search T for entry (X,Y, Y ′).

11



(a) If such an entry exists, answer Y ′.
(b) Otherwise:

i. If Y 6= IV0 and Y 6= IV1, chose Y ′ $←{0, 1}y and add (X,Y, Y ′) to T . Check
if (X,Y ) can be added to the end of some chain. If so, add (X,Y ) to the
end of that chain. Answer Y ′.

ii. If Y = IV0, choose Y ′ $←{0, 1}y and add (X,Y, Y ′) to T , create a new chain
IV0

X→Y ′) and add it to L. Answer Y ′.
iii. If Y = IV1 search for a chain with the last entry ?→X. If no such chain

exists, choose Y ′ $←{0, 1}y and add (X,Y, Y ′) to T .

Otherwise let IV0
X0→Y0

X1→· · ·
Xli−1→ Yli−1

Xli→X be the found chain. Query Y ′ :=
HMACg(X0|| . . . ||Xli), store (X,Y, Y ′) into the table T and answer Y ′.

2. Return o

It is clear that S′ runs in a polynomial time. The view of S in the simulation during execution
of S′HMACg

(g ← RFy+d,y) is the same as in the case when Sg is executed alone. Hence, the
game G can distinguish HMACg, S′HMACg

from HMACg, Sg only if output of S′HMACg
is

“inconsistent” with G’s first oracle HMACg. Such inconsistency can occur only if S′ is unable
to maintain all chains created by S during its simulation. The simulator S can create a chain
which S′ cannot notice only if S asks a query (X,Y ), gets respond Z and it previously asked
a query (X ′, Y ′) with respond Z ′ such that (X ′, Y ′) 6= (X,Y ) and either Z = X ′ or Z = Z ′.
However the probability that such event occurs is negl3(n) := O( q2

2y ), where q is the maximum
number of queries S asks its oracle.
By combining statements (1), (2) and (3) we conclude that

ε(n) ≤ negl1(n) + negl2(n) + negl3(n).

Theorem 3. Let f : {0, 1}k × {0, 1}(y+d) → {0, 1}y be a compression function, which is
Prf-BB. Then HMACf : {0, 1}k × {0, 1}∗ → {0, 1}y is Prf-BB.

Proof. Let f : {0, 1}k×{0, 1}d×{0, 1}y → {0, 1}y be a compression function which is Prf-BB
and HMACf : {0, 1}k × {0, 1}∗ → {0, 1}y be a hash function family created by the HMAC
construction from f . We want to show that HMACf is Prf-BB too. Since f has black-box
property there exists a negligible function negl0(n), such that

(∀non-trivial G)(∀A)(∃S) Pr
[
K

$←{0, 1}K ;GfK ,AK → b ∧GfK ,SfK → b′ ∧ b 6= b′
]
≤ negl0(n).

(2)
Let G be some non-trivial game and A some adversary. We want to show that there exists a
simulator S and a negligible function negl1 such that

Pr
[
K

$←{0, 1}K ;GHMACf
K ,AK → b ∧GHMACf

K ,S
HMAC

f
K → b′ ∧ b 6= b′

]
≤ negl1(n). (3)

Consider the game G′fK ,X , which simulates GHMACf
K ,X . When G asks its first oracle HMACf

K

a query M , then G′ computes Y = HMACf
K(M) and answers Y . Since G′ is able to simulate

HMACf
K using its oracle fK , it is clear that for all ITMs X and all keys K ∈ {0, 1}k is

Pr[GHMACf
K ,X → 1] = Pr[G′fK ,X → 1].

12



It is also clear that G′ is non-trivial too. Using the equation (2) we have that there exists a
simulator S such that

Pr
[
K

$←{0, 1}K ;G′fK ,AK → b ∧G′fK ,SfK → b′ ∧ b 6= b′
]
≤ negl0(n).

However GHMACf
K ,X and G′fK ,X do the same. Thus

Pr
[
K

$←{0, 1}K ;GHMACf
K ,AK → b ∧GHMACf

K ,SfK → b′ ∧ b 6= b′
]
≤ negl0(n). (4)

By the Lemma 1 for the simulator S there exists a simulator S′ and a negligible function
negl2 such that

negl2(n) ≥
∣∣∣Pr[K $←{0, 1}k;GHMACf

K ,SfK → 1]

−Pr[K $←{0, 1}k;GHMACf
K ,S

′HMAC
f
K → 1]

∣∣∣
=
∣∣∣ 1
2k

∑
K∈{0,1}k

Pr[GHMACf
K ,SfK → 1]

− 1
2k

∑
K∈{0,1}k

Pr[GHMACf
K ,S

′HMAC
f
K → 1]

∣∣∣

negl2(n) ≥
∣∣∣ 1
2k

∑
K∈{0,1}k

Pr[GHMACf
K ,AK → 0] · Pr[GHMACf

K ,SfK → 1]

− 1
2k

∑
K∈{0,1}k

Pr[GHMACf
K ,AK → 0] · Pr[GHMACf

K ,S
′HMAC

f
K → 1]

∣∣∣ (5)

=
∣∣∣Pr[K $←{0, 1}k;GHMACf

K ,AK → 0 ∧GHMACf
K ,SfK → 1]

−Pr[K $←{0, 1}k;GHMACf
K ,AK → 0 ∧GHMACf

K ,S
′HMAC

f
K → 1]

∣∣∣, (6)

where the inequality (5) is given by the fact that 0 ≤ Pr[GHMACf
K ,AK → 0] ≤ 1 (for all games

G and all adversaries A). The equation (6) holds, because the events GHMACf
K ,AK → 0 and

GHMACf
K ,SfK → 1 or GHMACf

K ,AK → 0 and GHMACf
K ,SfK → 1 are independent for some fixed

key K (since in both simulations G, A and S use fresh new random coins). Similarly we can
prove the following inequality

negl2(n) ≥
∣∣∣Pr[K $←{0, 1}k;GHMACf

K ,AK → 1 ∧GHMACf
K ,S

′HMAC
f
K → 0]

−Pr[K $←{0, 1}k;GHMACf
K ,AK → 1 ∧GHMACf

K ,SfK → 0]
∣∣∣.

Hence,

2 · negl2(n) ≥
∣∣∣Pr[K $←{0, 1}k;GHMACf

K ,AK → b ∧GHMACf
K ,S

′HMAC
f
K → b′ ∧ b 6= b′]

−Pr[K $←{0, 1}k;GHMACf
K ,AK → b ∧GHMACf

K ,SfK → b′ ∧ b 6= b′]
∣∣∣. (7)
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By the equation (4) the second term of the equation (7) is negligible:

2 · negl2(n) ≥
∣∣∣Pr[K $←{0, 1}k;GHMACf

K ,AK → b ∧GHMACf
K ,S

′HMAC
f
K → b′ ∧ b 6= b′]

−negl0(n)
∣∣∣.

Thus,

2 · negl2(n) + negl0(n) ≥ Pr[K $←{0, 1}k;GHMACf
K ,AK → b ∧GHMACf

K ,S
′HMAC

f
K → b′ ∧ b 6= b′].

For the proof that HMACf is pseudo-random if f is pseudo-random see [2].

6 Prf-BB and Pseudo-random Oracle

Pseudo-random oracle. Pseudo-random oracle [2, 3, 6] is a property of cryptographic hash
functions based on the indifferentiability framework introduced by Maurer, Renner and Holen-
stein [9]. A hash function F g : {0, 1}∗ → {0, 1}y based on an ideal compression function g is
pseudo-random oracle if it is indifferentiable from a random oracle. More formally, let

AdvPro
F,S(A) :=

∣∣∣Pr
[
g ← RFy+d,y;AF g ,g → 1

]
− Pr

[
F ← RF∗,y;AF ,SF → 1

]∣∣∣
We say that a hash function F g : {0, 1}∗ → {0, 1}y based on an ideal compression function
g is pseudo-random oracle if for all adversaries there exists a polynomial simulator S and a
negligible function negl such that

AdvPro
F,S(A) ≤ negl(n).

The pseudo-random oracle property (Pro) is meaningful only in the random-oracle model.
Since F is based on an “uncertain” random compression function g, the Pro is rather a
property of domain extension transforms. We say that F is Pro preserving domain extension
transform if F g is Pro. Thus F securely extends the domain of the fixed-input length random
oracle g to the variable-input length pseudo-random oracle. This is also the reason why we
do not define the pseudo-random oracle property for hash function families. Given a domain
extension transform F g : {0, 1}∗ → {0, 1}y we can construct a hash function family H :
{0, 1}k × {0, 1}∗ → {0, 1}y by replacing g with a keyed compression function fK . However,
if fK is not random, the security of the resulting hash function family is uncertain [3]. In
this section we show that every Pro preserving domain extension transform is also Prf-BB
preserving and vice-versa. Hence Prf-BB can be seen as an equivalent to the Pro property in
the standard model. We prove this equivalence in the following two theorems.

Theorem 4. Let F be a domain extension transform, which is Prf-BB preserving. Then F
is Pro preserving.

Proof. Let f : {0, 1}k × {0, 1}(y+d) → {0, 1}y be a compression function which is Prf-BB, H :
{0, 1}k × {0, 1}∗ → {0, 1}y be a hash function family such that HK(M) := F fK (M). Clearly,
we just need to consider non-trivial games G (there are no keys in the Pro experiments). Let
G be a non-trivial game.

We prove the following three statements:
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(1) There exists a negligible function negl0 such that∣∣∣Pr
[
g ← RFy+d,y;GF g ,g → 1

]
− Pr

[
K

$←{0, 1}k;GHK ,fK → 1
]∣∣∣ ≤ negl0(n).

Since f is Prf, for all adversaries A there exists a negligible function negl0 such that∣∣∣Pr[K $←{0, 1}k;AfK → 1]− Pr[g ← RFy+d,y;Ag → 1]
∣∣∣ ≤ negl0(n) (8)

If we substitute AX := GF X ,X in the equation 8 we get the statement (1).
(2) There exists a negligible function negl1 and a simulator S such that∣∣∣Pr

[
K

$←{0, 1}k;GHK ,fK → 1
]
− Pr

[
K

$←{0, 1}k;GHK ,SHK → 1
]∣∣∣ ≤ negl1(n).

Since the hash function family HK(M) has the black-box property, for all non-trivial
games G and all adversaries A there exists a simulator S and a negligible function negl1
such that

negl1(n) ≥ Pr
[
K

$←{0, 1}k;GHK ,AK → b ∧GHK ,SHK → b′ ∧ b 6= b′
]

= Pr
[
K

$←{0, 1}k;GHK ,AK → 1 ∧GHK ,SHK → 0
]

+ Pr
[
K

$←{0, 1}k;GHK ,AK → 0 ∧GHK ,SHK → 1
]

An adversary AK can simulate fK , since it knows the key. Thus for all games G there
exists a simulator S such that

negl1(n) ≥ Pr
[
K

$←{0, 1}k;GHK ,fK → 1 ∧GHK ,SHK → 0
]

+ Pr
[
K

$←{0, 1}k;GHK ,fK → 0 ∧GHK ,SHK → 1
]

≥ Pr
[
K

$←{0, 1}k;GHK ,fK → 1 ∧GHK ,SHK → 0
]

negl1(n) ≥ 1
2k

∑
K∈{0,1}k

Pr
[
GHK ,fK → 1

](
1− Pr

[
GHK ,SHK → 1

])
=

1
2k

∑
K∈{0,1}k

(
Pr
[
GHK ,fK → 1

]
− Pr

[
GHK ,fK → 1

]
Pr
[
GHK ,SHK → 1

])
≥ 1

2k

∑
K∈{0,1}k

(
Pr
[
GHK ,fK → 1

]
− Pr

[
GHK ,SHK → 1

])
= Pr

[
K

$←{0, 1}k;GHK ,fK → 1
]
− Pr

[
K

$←{0, 1}k;GHK ,SHK → 1
]

(3) There exists a negligible function negl2 such that∣∣∣Pr
[
K

$←{0, 1}k;GHK ,SHK → 1
]
− Pr

[
F ← RF∗,y;GF ,SF → 1

]
≤ negl2(n).
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From the assumption that F is Prf-BB preserving we know that the hash function family
HK(M) := F fK (M) is Prf. Hence, for all adversaries A there exists a negligible function
negl2 such that∣∣∣Pr[K $←{0, 1}k;AHK → 1]− Pr[F ← RF∗,y;AF → 1]

∣∣∣ ≤ negl2(n) (9)

If we substitute AX := GF X ,X in the equation (9) we get the statement (3).

Hence, for all games G there exists a simulator S and a negligible functions negl0, negl1, negl2,
such that∣∣∣Pr

[
g ← RFy+d,y;GF g ,g → 1

]
− Pr

[
F ← RF∗,y;GF ,SF → 1

]∣∣∣ ≤
≤
∣∣∣Pr

[
g ← RFy+d,y;GF g ,g → 1

]
− Pr

[
K

$←{0, 1}k;GHK ,fK → 1
]∣∣∣

+
∣∣∣Pr

[
K

$←{0, 1}k;GHK ,fK → 1
]
− Pr

[
K

$←{0, 1}k;GHK ,SHK → 1
]∣∣∣

+
∣∣∣Pr

[
K

$←{0, 1}k;GHK ,SHK → 1
]
− Pr

[
F ← RF∗,y;GF ,SF → 1

]∣∣∣
≤ negl0(n) + negl1(n) + negl2(n).

Thus, F is Pro preserving.

Theorem 5. Let F be a domain extension transform, which is Pro preserving. Then F is
Prf-BB preserving.

The proof of this theorem is similar to the proof of the Theorem 3. In the Lemma 2 we
prove that a hash function family H(K,M) := F fK (M) is pseudo-random if the compression
function f is pseudo-random. In the Lemma 3 (generalization of the Lemma 1) we show that
for a Prf compression function f , all games G and all simulators S there exists a simulator
S′ such that S′ is able to simulate SfK using F f

K for randomly chosen key K ∈ {0, 1}k. We
utilize the Lemma 3 to prove that the hash function family H has black-box property if f is
Prf-BB.

Lemma 2. Let f : {0, 1}k × {0, 1}(y+d) → {0, 1}y be a compression function which is Prf
and let F be a Pro preserving domain extension transform. Then a hash function family
H(K,M) := F fK (M) is Prf, i.e. for all adversaries A there exists a negligible function negl
such that ∣∣∣Pr

[
K

$←{0, 1}k;AHK → 1
]
− Pr

[
F $←RF∗,y;AF → 1

]∣∣∣ ≤ negl(n).

Proof. The domain extension transform F is Pro preserving, hence for all adversaries A there
exists a simulator S and negligible function negl0 such that∣∣∣Pr

[
g ← RFy+d,y;AF g ,g → 1

]
− Pr

[
F ← RF∗,y;AF ,SF → 1

]∣∣∣ ≤ negl0(n).

The statement above holds also for adversaries A′ which “ignore” their second oracle. Hence,
for all adversaries A′ there exists a negligible function negl0 such that∣∣∣Pr

[
g ← RFy+d,y;A′F

g → 1
]
− Pr

[
F ← RF∗,y;A′F → 1

]∣∣∣ ≤ negl0(n). (10)
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The compression function f is Prf, hence for all adversaries D there exists a negligible function
negl1 such that∣∣∣Pr

[
K

$←{0, 1}k;DfK → 1
]
− Pr

[
g

$←RFy+d,y;Dg → 1
]∣∣∣ ≤ negl1(n).

The statement above holds also for adversaries of the form D := A′F , where A′ is an arbitrary
adversary. Therefore for all adversaries A′ there exists a negligible function negl1 such that∣∣∣Pr

[
K

$←{0, 1}k;A′F
fK → 1

]
− Pr

[
g

$←RFy+d,y;A′F
g → 1

]∣∣∣ ≤ negl1(n). (11)

Finally, from the equations (10) and (11) we conclude that for all adversaries A′ there exists
a negligible functions negl0 and negl1 such that∣∣∣Pr

[
K

$←{0, 1}k;A′F
fK → 1

]
− Pr

[
F ← RF∗,y;A′F → 1

]∣∣∣ ≤ negl0(n) + negl1(n).

Lemma 3. Let f : {0, 1}k×{0, 1}(y+d) → {0, 1}y be a compression function which is Prf-BB
and let F be a Pro preserving domain extension transform. Then for all games G and all
simulators S there exists a simulator S′ and a negligible function negl(n) such that∣∣∣Pr[K $←{0, 1}k;GF fK ,SfK → 1]− Pr[K $←{0, 1}k;GF fK ,S′F

fK

→ 1]
∣∣∣ ≤ negl(n)

Proof. Fix some game G and let

ε(n) :=
∣∣∣Pr[K $←{0, 1}k;GF fK ,SfK → 1]− Pr[K $←{0, 1}k;GF fK ,S′F

fK

→ 1]
∣∣∣

≤
∣∣∣Pr[K $←{0, 1}k;GF fK ,SfK → 1]− Pr[g ← RFy+d,y;GF g ,Sg → 1]

∣∣∣
+
∣∣∣Pr[g ← RFy+d,y;GF g ,Sg → 1]− Pr[F ← RF∗,y;GF ,S′F → 1]

∣∣∣
+
∣∣∣Pr[F ← RF∗,y;GF ,S′F → 1]− Pr[K $←{0, 1}k;GF fK ,S′F

fK

→ 1]
∣∣∣.

We prove the lemma in three steps.

(1) For all simulators S there exists a negligible function negl1 such that∣∣∣Pr[K $←{0, 1}k;GF fK ,SfK → 1]− Pr[g ← RFy+d,y;GF g ,Sg → 1]
∣∣∣ ≤ negl1(n).

(2) For all simulators S there exists a simulator S′ and a negligible function negl2 such that∣∣∣Pr[g ← RFy+d,y;GF g ,Sg → 1]− Pr[F ← RF∗,y;GF ,S′F → 1]
∣∣∣ ≤ negl2(n).

(3) For all simulators S′ there exists a negligible function negl3 such that∣∣∣Pr[F ← RF∗,y;GF ,S′F → 1]− Pr[K $←{0, 1}k;GF fK ,S′F
fK

→ 1]
∣∣∣ ≤ negl3(n).
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The statement (1) is given by the fact that f is pseudo-random. We create a distinguisher
DX , which simulates GF X ,SX

. Since f is pseudo-random, there exists a negligible function
negl1 such that∣∣Pr[K $←{0, 1}k;DfK → 1]− Pr[g ← RFy+d,y;Dg → 1]

∣∣ ≤ negl1(n).

However DX simulates GF X ,SX
, hence the statement (1) holds. Similarly we can prove the

statement (3), where we utilize the Lemma 2 which states that F fK is pseudo-random.
The statement (2) is given by the fact, that F is Pro preserving. Hence, for all adversaries

A there exists a simulator S′′ and a negligible function negl2 such that∣∣∣Pr
[
g ← RFy+d,y;AF g ,g → 1

]
− Pr

[
F ← RF∗,y;AF ,S′′F → 1

]∣∣∣ ≤ negl2(n)

Now fix some simulator S, the statement above must hold also for all adversaries of the form
AO1,O2 := GO1,SO2 , where G is an arbitrary game. Hence,∣∣∣Pr

[
g ← RFy+d,y;GF g ,Sg → 1

]
− Pr

[
F ← RF∗,y;GF ,SS

′′F
→ 1

]∣∣∣ ≤ negl2(n).

By a simple substitution S′F := SS′′F we get the statement (2)∣∣∣Pr[g ← RFy+d,y;GF g ,S′F
g

→ 1]− Pr[F ← RF∗,y;GF ,SF → 1]
∣∣∣ ≤ negl2(n).

By combining statements (1), (2) and (3) we have

ε(n) ≤ negl1(n) + negl2(n) + negl3(n).

Proof of the Theorem 5. Let f : {0, 1}k×{0, 1}d×{0, 1}y → {0, 1}y be a compression function
which is Prf-BB. We show that F fK is Prf-BB. Since f has black-box property there exists a
negligible function negl(n) such that

(∀non-trivial G)(∀A)(∃S) Pr
[
K

$←{0, 1}K ;GfK ,AK → b ∧GfK ,SfK → b′ ∧ b 6= b′
]
≤ negl(n).

(12)
Let G be some non-trivial game and A some adversary. We want to show that there exists a
simulator S such that

Pr
[
K

$←{0, 1}K ;GF f
K ,AK → b ∧GF f

K ,S
F

f
K → b′ ∧ b 6= b′

]
≤ negl(n). (13)

Consider the game G′fK ,X , which simulates GHK ,X . When G asks its first oracle HK a query
M , then G′ computes Y = F f

K(M) and answers Y . Since G′ is able to simulate F f
K using its

oracle fK , it is clear that for all ITMs X and all keys K ∈ {0, 1}k is

Pr[GF f
K ,X → 1] = Pr[G′fK ,X → 1].

It is also clear that G′ is non-trivial too. Using the equation (12) we have that there exists a
simulator S such that

Pr
[
K

$←{0, 1}K ;G′fK ,AK → b ∧G′fK ,SfK → b′ ∧ b 6= b′
]
≤ negl(n).
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However GF f
K ,X and G′fK ,X do the same. Thus

Pr
[
K

$←{0, 1}K ;GF f
K ,AK → b ∧GF f

K ,SfK → b′ ∧ b 6= b′
]
≤ negl(n). (14)

Now by the Lemma 3 for all simulators S there exists a simulator S′ and a negligible function
negl0 such that

negl0(n) ≥
∣∣∣Pr[K $←{0, 1}k;GF fK ,SfK → 1]− Pr[K $←{0, 1}k;GF fK ,S′F

fK

→ 1]
∣∣∣

=
∣∣∣ 1
2k

∑
K∈{0,1}k

Pr[GF fK ,SfK → 1]− 1
2k

∑
K∈{0,1}k

Pr[GF fK ,S′F
fK

→ 1]
∣∣∣

≥
∣∣∣ 1
2k

∑
K∈{0,1}k

Pr[GF fK ,AK → 0] · Pr[GF fK ,SfK → 1]

− 1
2k

∑
K∈{0,1}k

Pr[GF fK ,AK → 0] · Pr[GF
fK ,S′F

fK

→ 1]
∣∣∣ (15)

=
∣∣∣Pr[K $←{0, 1}k;GF fK ,AK → 0 ∧GF fK ,SfK → 1]

−Pr[K $←{0, 1}k;GF fK ,AK → 0 ∧GF fK ,S′F
fK

→ 1]
∣∣∣, (16)

where the inequality (15) is given by the fact that 0 ≤ Pr[GF fK ,AK → 0] ≤ 1 (for all games
G and all adversaries A). The equation (16) holds, because the events GF fK ,AK → 0 and
GF fK ,SfK → 1 or GF fK ,AK → 0 and GF fK ,SfK → 1 are independent for some fixed key K.
Similarly we can prove the following inequality

negl0(n) ≥
∣∣∣Pr[K $←{0, 1}k;GF fK ,AK → 1 ∧GF fK ,S′F

fK

→ 0]

−Pr[K $←{0, 1}k;GF fK ,AK → 1 ∧GF fK ,SfK → 0]
∣∣∣. (17)

Hence,

2 · negl0(n) ≥
∣∣∣Pr[K $←{0, 1}k;GF fK ,AK → b ∧GF fK ,S′F

fK

→ b′ ∧ b 6= b′]

−Pr[K $←{0, 1}k;GF fK ,AK → b ∧GF fK ,SfK → b′ ∧ b 6= b′]
∣∣∣. (18)

By the inequality (12) we know that the second term of the inequality (18) is negligible, hence

2 · negl0(n) ≥
∣∣∣Pr[K $←{0, 1}k;GF fK ,AK → b ∧GF fK ,S′F

fK

→ b′ ∧ b 6= b′]

−negl(n)
∣∣∣. (19)

Thus,

Pr[K $←{0, 1}k;GF fK ,AK → b ∧GF fK ,S′F
fK

→ b′ ∧ b 6= b′] ≤ 2 · negl0(n) + negl(n),

The fact that F fK is Prf is proved in the Lemma 2.

19



7 Conclusion

In this paper we introduced the black-box property for hash function families, which guaran-
tees that for a hash function family H : {0, 1}k × {0, 1}∗ → {0, 1}y everything “non-trivial”
we are able to compute with access to a randomly chosen key K is possible to compute only
with oracle access to the hash function HK . We showed that a pseudo-random hash function
family with black-box property (Prf-BB) is resistant to all “non-trivial” types of attack. We
proved that the Merkle-Damg̊ard construction is not Prf-BB preserving and conversely that
the HMAC construction is Prf-BB preserving. Moreover we proved that every pseudo-random
oracle preserving domain extension transform is Prf-BB preserving and vice-versa.

We believe that a Prf-BB property is all-in-one property – it guarantees “total” security of
a hash function family and should be a primary security goal for designers of hash functions.

A natural and interesting question is whether a Prf-BB hash function family exists. A
combination of two hash function families H(K1,K2,M) := H1(K1, H2(K2,M)), where H1

is pseudo-random and H2 is collision resistant seems to be a good candidate. The collision
resistant hash function family H2 ensures that a potential adversary A is unable to arbitrarily
select inputs to the pseudo-random hash function family H1. Hence H2 minimizes adversary’s
ability to utilize the key K1. The pseudo-randomness of H1 guarantees that the output of H1

has random behavior and hides possible “non-random” behavior of H2.
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