
Beyond the Limits of DPA:

Combined Side-Channel Collision Attacks⋆

Andrey Bogdanov1 and Ilya Kizhvatov2

1 Katholieke Universiteit Leuven, ESAT/COSIC and IBBT
Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

andrey.bogdanov@esat.kuleuven.be
2 Université du Luxembourg

6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg
ilya.kizhvatov@uni.lu

Abstract. The fundamental problem of extracting the highest possible amount of key-
related information using the lowest possible number of measurements is central to side-
channel attacks against embedded implementations of cryptographic algorithms. To address
it, this work proposes a novel framework enhancing side-channel collision attacks with divide-
and-conquer attacks such as differential power analysis (DPA). An information-theoretical
metric is introduced for the evaluation of collision detection efficiency. Improved methods
of dimension reduction for side-channel traces are developed based on a statistical model of
Euclidean distance.

The theoretical and experimental results of this work confirm that DPA-combined collision
attacks are superior to both DPA-only and collision-only attacks. The new methods of
dimension reduction lead to further complexity improvements. All attacks are treated for the
case of AES-128 and are practically validated on a wide-spread 8-bit RISC microcontroller
whose architecture is similar to that of many smart cards.

Keywords: side-channel attacks, collision attacks, DPA, AES

1 Introduction

1.1 Motivation

Keyed cryptographic algorithms employ secret information to protect user data and can
provide its confidentiality, integrity, authenticity, non-repudiation — services crucial for
almost any security-related application. Numerous analysis methods have been proposed
for cryptographic algorithms. While the traditional mathematical attacks are solely based
on the inputs and outputs of an algorithm, side-channel attacks rely upon the fact that
any real-world implementation of the algorithm is not ideal and leaks some physically
observable parameters that are dependent on the key processed. Such parameters can
include time [17], power consumption [18], electro-magnetic radiation [25] and algorithm
behaviour under actively induced execution faults [4]. Since the attacker often has im-
mediate physical access to embedded systems, they are most vulnerable to side-channel
attacks. The fundamental problem of side-channel analysis is as follows:

Problem 1 (Fundamental for side-channel analysis). Extract the highest possible amount
of key information given the lowest possible amount of side-channel information for a
fixed implementation of a cryptographic algorithm.

⋆ This work has been submitted to the IEEE for possible publication. Copyright may be transferred
without notice, after which this version may no longer be accessible.

Side-channel collision attacks provide a natural basis for solving this problem, possess-
ing the unique combination of three important properties which are not simultaneously
present in any other side-channel analysis technique known today: First, they are essen-
tially based on the algorithmic properties of the attacked cryptographic algorithm, which
allows the adversary to use more side-channel information from one algorithm execution.
Second, they are not based on any particular leakage model which opens up the possibil-
ity of using all relevant side-channel information, not limited to a specific model. Third,
they do not require any significant apriori knowledge of the implementation (a major
limitation in many side-channel attacks), however, being able to profit from profiling.
Side-channel collision attacks have also further attractive features such as that essential
parts of the cryptographic algorithm can remain unknown to the attacker which makes
many algorithmic masking techniques transparent to collision attacks.

In this work, we come up with two novel techniques significantly enhancing side-
channel collision-based analysis and propose a general framework naturally incorporating
them.

1.2 Collision attacks in the context

In this subsection, we aim to draw attention to some of the beneficial features of collision
attacks mentioned above that they exhibit in the context of other approaches to side-
channel analysis.

Regarding the method of extracting key-related information, there are two large classes
of side-channel attacks: leakage-model oriented and pattern-matching oriented. With re-
spect to the key-recovery procedure, side-channel attacks fall into two categories: divide-
and-conquer attacks (which provide distinguishers for small key chunks) and analytic at-
tacks (which recover the entire key e.g. by solving systems of equations). Correspondingly,
when classifying according to information extraction method and key-recovery procedure,
one can speak about the four types of side-channel attacks represented in Table 1. Note
that, optionally, side-channel attacks can use profiling, which is not considered in this
comparison.

Differential power analysis (DPA) [18] and correlation power analysis (CPA) [10], a
generalization of DPA, are probably the most wide-spread practical attacks on numerous
embedded systems such as smart-card microcontrollers and dedicated ASICs. They are
based on guessing a chunk of the key, classifying traces according to this hypothesis and
performing a statistical test in a leakage model such as Hamming weight or Hamming
distance. Similarly to DPA, mutual information analysis (MIA) [13], [24], [3] is based
on subkey guessing and classifying traces. However, the test performed for each key hy-
pothesis uses an information-theoretic metric which does not necessarily imply a leakage
model.

Template attacks [11], [1] belong to another class of powerful side-channel attacks
and are optimal in an information theoretic sense. They do not rely on any particular
leakage model but require a profiling stage and, as DPA, are mainly limited to key chunks.
Stochastic methods [27], [14] can be seen as a version of template attacks allowing one to
simplify template building, further increase the resolution and, thus, decrease the total
number of measurements needed.

Algebraic side-channel attacks [26] use Hamming weights of intermediate variables
detected by observing side-channel traces to simplify the systems of nonlinear equations
on the full key. Thus, algebraic side-channel attacks imply that the implementation leaks
Hamming-weight related side-channel information.

2

Side-channel collision attacks [7], [8], [9], [29], [28] use pattern-matching techniques
(like template attacks) being however essentially based on the cryptanalytic properties
of attacked cryptographic algorithms (by attacking key as a whole as in algebraic side-
channel attacks) and not relying on any complex profiling stages (similarly to DPA).

Table 1. Side-channel attacks: Methods of extracting key-related information and key-recovery procedure

Leakage model Pattern-matching

Divide-and-conquer
DPA[18]
CPA [10]
MIA [13]

template [11]
stochastic [27]
MIA [13]

Analytic algebraic [26] collision [7], [28]

Side-channel attacks with analytic key-recovery tend to be more efficient in terms of
measurement complexity. Side-channel attacks using pattern-matching information ex-
traction are independent of a concrete leakage model (such as Hamming weight or Ham-
ming distance), thus, being a way more universal. Collision attacks share both these
benefits.

Recently, some side-channel techniques using more than one method of extracting
key-related information have been proposed. For instance, differential cluster analysis [2]
and mutual information analysis [13] are divide-and-conquer attacks that generally use
pattern-matching but can benefit from the knowledge of leakage model. However, these
attacks do not use the advantages of analytic key recovery.

In this work, we show that the analytic key-recovery procedures of collision attacks
allow for extensions and propose a general framework for incorporating key-related infor-
mation resulting from divide-and-conquer attacks such as DPA and template attacks into
collision techniques.

1.3 Our contributions

In this work, we introduce the combined collision attack which is a novel technique for
combining side-channel collision attacks with divide-and-conquer attacks such as DPA
and template attacks, thus, using both divide-and-conquer and analytic key recovery as
well as both leakage models and pattern-matching extraction (Sections 3 and 4). This
combination of very different side-channel techniques allows us to use more key-relevant
information contained in the side-channel traces, omitted by each of these techniques
when applied separately. We theoretically compute the success probability and expected
computational complexity of combined collision attacks.

Starting from the basic Euclidean distance, we propose new techniques of efficient
dimension reduction and collision detection. We study some of their statistical properties
in a formal way. We propose the usage of λ-divergence as a metric for the comparison of
different collision detection methods and prove that it is equivalent to mutual information
in this context (Section 5).

We practically demonstrate that DPA-combined collision attacks are more efficient
than both conventional collision attacks and DPA (Section 6). On the theoretical side,
this fact naturally implies that neither the usual pattern-matching methods of collision
detection nor the correlation techniques of DPA use all information available in the traces.
On the practical side, the new findings allow us to further reduce the measurement com-
plexity of side-channel collision attacks. We conclude with a discussion and open problems
in Section 7.

3

2 Basics of Collision Attacks

2.1 Internal collisions

An internal collision in a cryptographic algorithm A occurs with respect to a target
function φ, if φ delivers the same output y given some two inputs x1 and x2: y = φ(x1) =
φ(x2) that are not necessarily equal.

Generally speaking, if A is an iterative cipher and φ is applied in its first iterations,
it can be very difficult for the attacker to say if φ(x1) = φ(x2) using black-box queries
(plaintext-ciphertext pairs) only. However, side-channel leakage can help him to detect
internal collisions.

Assume that some function ψ processes the output of φ. If φ returns an equal value y for
two inputs, A performs two identical calculations ψ(y) in these two cases. If φ returns two
unequal values y1 and y2, the corresponding calculations ψ(y1) and ψ(y2) are distinct. The
attacker can observe this behaviour in the power consumption or electromagnetic radiation
of the device implementing A during the application of ψ — similar side-channel traces
for equal outputs of φ and diverse side-channel traces for unequal outputs of φ. Because
of this, ψ is called a collision detection function.

Once an internal collision is detected, it can be interpreted as a key-dependent equation
φ(x1) = φ(x2) delivering some information about the key, if φ and/or x1 as well as x2 are
key-dependent.

However, if there are several applications of φ within the algorithm A and φ is in-
vertible, one does not need a separate collision detection function ψ and can employ φ as
both a target function and a collision detection function. Moreover, a collision now leads
to a much simpler algebraic equation x1 = x2. The latter observation has yielded the idea
behind generalized collisions proposed in [7] and provides a major advantage over other
collision-based attacks such as [28].

2.2 Previous work

The principle of using internal collisions in cryptanalysis is due to Hans Dobbertin and
was also discussed in the early work [31]. In [29], a collision attack on DES was proposed,
several adjacent DES S-boxes representing the target function φ. This attack was enhanced
in [20] using the notion of almost collisions which are internal states of an algorithm that
are very similar. In [28], the separate bytes of each of the four 4-byte linear MixColumn
mappings in the first AES round are treated as target functions φ, S-boxes of the second
round representing the collision detection function ψ. In [5], it is shown that similar side-
channel collision attacks can be applied to AES-based MACs such as Alpha-MAC to
mount selective forgery attacks that do not require any knowledge of the secret key. The
results in [6] suggest that collision attacks can help overpass the random masking of some
AES implementations. Overpassing random masking with collision attacks for the case of
DES was done in [15] and improved in [16], but these works consider collisions in Hamming
weights and therefore imply the leakage model. In [22] collision attacks were applied
to a masked S-Box implementation, exploiting the remaining minor leakage. Another
work [23] also employed pattern matching in a step of the attack against a masked and
shuffled S-Box implementation to remove masking after recovering the masked subkeys
and overcoming shuffling with DPA.

As mentioned above, side-channel collision attacks on AES were improved in [7] by
introducing the notion of generalized collisions that occur if two S-boxes at some arbitrary
positions of some arbitrary rounds process an equal byte value within several runs. Here

4

both the target and collision detection functions φ and ψ coincide being the 8-bit AES S-
box. The S-box remains the same for all executions, rounds and byte positions within the
round (as opposed to DES). This increases the number of function instances to compare,
i.e. the number of potential collisions to be used afterwards for key recovery.

While [7] treats the linear collisions (resulting in linear equations on the key) of AES
which are generalized collisions that occur in the first AES round only, the work [9] also
considers nonlinear collisions (respectively, resulting in nonlinear equations). A set of
such collisions can be considered as a system of equations over a finite field. Ways to deal
with unreliable collision detection are discussed in [8], including the techniques of binary
and ternary voting.

2.3 Linear collision-based key recovery for AES

To simplify representation, we chose to study collision attacks at the notable example of
the U.S. encryption standard AES [12]. More precisely, we use the key-recovery [7] for
AES-128 based on linear collisions for this purpose. Note that all techniques of this work
can be successfully applied to other ciphers as well as to other collision-based key-recovery
techniques.

We use the following notation to represent the variables of AES.K = {kj}16j=1, kj ∈ F28

is the 16-byte user-supplied key (the initial AES subkey). AES plaintexts are denoted by
P i = {pij}16j=1, p

i
j ∈ F28 , where i = 1, 2, . . . is the number of an AES execution.

AddRoundKey

SubBytes

aa

bb

pi1j1 pi2j2

Fig. 1. A linear collision for a pair of AES executions

Given a collision within the first round of AES (linear collision)

S(pi1j1 ⊕ kj1) = S(pi2j2 ⊕ kj2), (1)

one obtains a linear equation with respect to the key over F28 of the form

kj1 ⊕ kj2 = pi1j1 ⊕ pi2j2 = ∆j1,j2 for j1 6= j2. (2)

If D collisions have been detected, they can be interpreted as a system of linear equations
over F28 :

kj1 ⊕ kj2 = ∆j1,j2

. . .
kj2D−1

⊕ kj2D = ∆j2D−1,j2D

(3)

This system cannot have the full rank due to the binomial form of its equations.
Moreover, for small numbers of inputs to AES the system is not connected and it can be
divided into a set of h0 smaller independent (with disjunct variables) connected subsys-
tems with respect to the parts of the key. Each subsystem has one free variable. Let h1 be

5

the number of all missing variables, and h = h0 + h1. We call each of these h subsystems
or missing variables a chain.

Without loss of generality, a chain ζ of length n can be represented as the following
subsystem of the equation system (3):

kj1 ⊕ kj2 = ∆j1,j2

kj2 ⊕ kj3 = ∆j2,j3

. . .
kjn−2

⊕ kjn−1
= ∆jn−2,jn−1

kjn−1
⊕ kjn = ∆jn−1,jn ,

(4)

or alternatively as an n-tuple of byte indices ζ = (j1, . . . , jn) in a short form. Each
chain (4) has 28 possible solutions, since it is sufficient to guess one key byte in the chain
to unambiguously determine all other n − 1 bytes of the chain. If the system (3) has h
chains, then it has 28h solutions.

That is, 28h guesses have to be performed, which is the offline computational complex-
ity of this basic key-recovery method. Each key hypothesis is then tested using a known
plaintext-ciphertext pair with the full AES to rule out wrong candidates. Note that 28h

quickly becomes feasible as the number of distinct inputs P i grows. The work [7] demon-
strates the probability that 28h ≤ 240 (h ≤ 5) to be about 0.85 for just 6 inputs, if all
collisions can be detected.

2.4 Collision detection with Euclidean distance

For a collision attack to be successful, one has to decide if two S-boxes accept equal inputs
using side-channel information obtained from the side-channel leakage (of the implemen-

a1

a2

1
/
E

1500

1000

500

250

250

200

200

150

150

100

100

50

50

0

0
0

Fig. 2. Inverse Euclidean distance 1/E between power consumption traces for all input pairs of the AES
S-box as implemented on 8-bit RISC µC ATMega16

6

tation) of the attacked cryptographic algorithm. Given two side-channel traces

τ1 = (τ1,1, . . . , τ1,l) ∈ R
l and τ2 = (τ2,1, . . . , τ2,l) ∈ R

l,

respectively corresponding to a pair of S-box executions with some unknown inputs a1
and a2, it has to be decided whether a1 = a2 for collision detection.

The two traces can be considered as two vectors in the Euclidean space of dimension
l. The Euclidean distance E between them is defined as

E(τ1, τ2) =
l

∑

r=1

(τ1,r − τ2,r)
2.

One expects that E will be higher for non-collisions and lower for collisions. Our exper-
iments with a popular microcontroller (µC) (see Figure 2) show that this intuition is
indeed justified, at least when noise is somewhat reduced by averaging traces.

Most papers on collision attacks [28], [7], [8], [9] use the Euclidean distance between
two noisy traces as the basic metric for collision detection. In [22] and [23], Pearson’s
correlation was employed. We have found that collision detection can be significantly
improved by dimension reduction for side-channel traces based on the properties of the
Euclidean distance, which is, therefore, the metric of our choice. We detail this in Section 5.

3 Framework for Collision Attacks

In this section, we propose a general framework for the side-channel analysis of crypto-
graphic algorithms based upon internal collisions. This framework allows the adversary
to amplify collision attacks by

– Any collision detection technique and
– Any divide-and-conquer side-channel attack.

Later, we will study the core test of the framework presented in this section (Section 4)
and evaluate it, combined with our novel collision detection techniques (Section 5), also
in a practical setting (Section 6).

3.1 Attack flow

All collision techniques of this work are studied at the example of the U.S. encryption stan-
dard AES, which is a highly relevant target, and experimentally verified on a wide-spread
8-bit platform similar to many smart-card microcontrollers. Note that most techniques
of collision attacks are also successfully applicable to other ciphers and implementations.
For block ciphers with smaller S-boxes such as serpent or present collision attacks
become even more efficient than in the case of AES as there are more collisions occurring.
Moreover, collision attacks can be almost directly applied to stream ciphers using S-boxes
in the output function. Thus, for the sake of simplicity, we will deal with AES-128 in
this paper, though having in mind that the collision techniques are actually much more
generally applicable.

Let the AES-128 implementation have a 16-byte key fixed for the entire attack and
leak a key-dependent side-channel parameter (e.g. power consumption or electromagnetic
radiation).

A collision attack consists of an online stage, signal processing stage, and key-recovery
stage. Its procedure is outlined in Algorithm 1 and is explained here:

7

Algorithm 1 Collision attack based on linear collisions combined with a divide-and-
conquer test for AES-128

1: P = (P 1, . . . , PN)← ChooseInputs()
2: T = (T 1, . . . , TN)← AcquireTraces(P)
3: [each trace T i contains 16 subtraces, one for each S-box]
4: C ← DetectCollisions(P, T)
5: [each collision in C is a four-tuple (pi1j1 , p

i2
j2
, j1, j2), see (1)]

6: for each kj of 16 key bytes do
7: Kj = (κ1

j , . . . , κ
256
j)← SortKeyByte(j,P, T)

8: end for
9: [now K = (K1, . . . ,K16) contains 16 sorted lists of key byte candidates of length 256 each]
10: K′ ← RecoverKey(C, K)
11: return K′ as a key candidate

– In the online stage (steps 1-3 of Algorithm 1), N chosen 16-byte plaintexts P i are sent
to the attacked device implementing AES (ChooseInputs). The side-channel traces
T i (e.g. power consumption or electromagnetic radiation) are acquired by the mea-
surement equipment (AcquireTraces) for these plaintexts. Each trace T i contains
16 subtraces, one for each S-box:

T i = {τ ij}16j=1.

That is, Ti is a set of 16 individual traces τ ij for each of the 16 S-box instances in

the first AES round. The trace τ ij is a real-valued vector of length l, τ ij ∈ R
l, thus,

containing l measurement points.
In our attacks, we will send γ randomly drawn 16-byte plaintexts to the AES encryp-
tion, each repeated t times, which yields N = γ · t.

– In the signal processing stage (steps 4-9 of Algorithm 1), collisions are detected in the
target traces T i (DetectCollisions) and the divide-and-conquer attack is applied to
sort the key-byte candidates in each of the 16 byte positions (SortKeyByte). Before
applying the signal processing, the traces corresponding to each of γ unique plaintexts
are averaged t times to decrease noise. The output of the signal processing stage is
the set of detected collisions C containing 4-tuples (pi1j1 , p

i2
j2
, j1, j2) and 16 sorted lists

K of 256 key byte candidates for each of the 16 byte positions. Depending on the
measurement setup and implementation, one might choose to perform decimation and
denoising in this stage.

– In the key-recovery stage (step 10 of Algorithm 1), an AES key candidate K ′ is com-
puted using the list of detected collisions C and sorted candidates K (RecoverKey

detailed in Algorithm 2). Note that RecoverKey can return either the right 16-byte
key, a wrong 16-byte key or an empty set of keys ∅, if no key candidate has passed
the final key testing. By π we denote the success probability of Algorithm 1 which is
the probability that RecoverKey returns the right key.

3.2 Combined key recovery

This subsection outlines the new technique of combining the analytic key recovery of
linear collision attacks with the divide-and-conquer key-recovery of such attacks as DPA.

The procedure of the combined key recovery is provided in Algorithm 2 and mainly
relies on the test of each chain TestChain introduced and analyzed in Section 4. This
is the major advantage of our approach compared to the conventional collision attacks

8

Algorithm 2 Key-recovery RecoverKey based on linear collisions and sorted key-byte
candidates from a divide-and-conquer test for AES-128
Require: Collisions C and sorted key-byte candidates K
1: build h chains ζ1, . . . , ζh from collisions C
2: [a chain ζi of length ni is an n-tuple (j1, . . . , jni

), see (4)]
3: for each ζi of h chains do
4: Gi ← {0, . . . , 2

8 − 1}, i.e. all 28 chain guesses
5: for each chain guess g ∈ {0, . . . , 28 − 1} do
6: if not TestChain(ζi, g,K, C) then
7: remove chain guess g, Gi ← Gi\{g}
8: end if
9: end for
10: [now Gi only contains survived guesses for chain ζi]
11: end for
12: unite chain guesses to full key guesses, G ← ∪h

i=1Gi
13: [G contains full key guesses survived chain filtration]
14: K′ ← TestKeysWithAES(G)
15: return K′ as a key candidate

where it is not possible to test the correctness of each chain separately and steps 5-10
of Algorithm 2 are missing. As opposed to that, the availability of divide-and-conquer
information in the combined key recovery allows to test for each chain separately which
can provide a significant efficiency gain. This can be reflected in the increased success
probability π of the attack given some measurement complexity or in the reduced mea-
surement complexity given some success probability π, thus, delivering a better solution
to Problem 1.

3.3 Attack complexity and efficiency metric

According to the three stages of a collision attack outlined above, its complexity is defined
by three parameters (see Algorithm 1):

– Conline is the number of inputs to AES for which measurements have to be performed
in the online phase (AcquireTraces).

– Cprocessing is the computational complexity of signal processing on side-channel traces
needed to detect collisions (DetectCollisions) and sort key-byte candidates within
the divide-and-conquer attack (SortKeyByte).

– Crecovery is the computational complexity of RecoverKey (Algorithm 2), that is,
the number of operations needed to solve the resulting systems of linear or nonlinear
equations and to identify the most probable solution.

For collision attacks in this work, we bound Crecovery by 240 computations of AES which
can be performed within several hours on a PC. Given this restriction on Crecovery, the
online complexity Conline = N = t·γ becomes the major limiting factor of collision attacks,
since Cprocessing, mainly determined by γ, will be negligible for our choices of γ.

The success of an attack is often of probabilistic nature and the success probability π of
the attack has to be considered along with Conline to derive the average-case measurement
complexity:

C = Conline/π. (5)

This metric characterizes the expected number of measurements needed to recover the
full 16-byte key of AES. In this work, our main goal is to improve C by lowering Conline

and increasing π, given the above admissible upper bound on Crecovery.

9

We note that metric C is also applicable to pure divide-and-conquer-style attacks. In
this case, it can be rewritten as C = Conline/α

16, where α is the probability to determine a
single AES key byte with Conline traces. Also, in a DPA-style attack, t = 1 is often the case,
so the metric boils down to just γ/α16. Again, this is the average measurement complexity
which does not consider the complexity of the recovery. The latter may be non-negligible
in a divide-and-conquer attack if m candidates, m > 1, are chosen from the sorted divide-
and-conquer lists for individual key bytes (one would do this to increase α which will
normally be a nondecreasing function of m). A way to capture this is suggested in work
[30], which proposes a unified framework for the analysis of divide-and-conquer side-
channel attacks. It presents a much more generic ways of comparing different side-channel
attacks. In the following section we argue that they are only of a limited application to
the attacks of the analytic class and to collision attacks in particular.

3.4 Collision attacks and the unified framework

In [30], three metrics were introduced for the comparison of side-channel attacks, namely,
two actual security metrics (o-th order success rate and guessing entropy) and an information-
theoretic metric based on conditional entropy. Our initial idea was to apply the metrics of
the unified framework to perform a fair comparison between collision attacks on the one
hand and DPA as well as template attacks on the other hand. However, while we were
able to adapt the notion of the o-th order success rate and guessing entropy to collision
attacks, we feel that those neither reflect our algorithmic intuition behind key recovery in
this case nor practically capture the nature of the attack procedure.

This is mainly due to the fact that the unified framework is aimed at divide-and-
conquer attacks such as DPA or template attacks. Collision attacks, together with alge-
braic side-channel attacks [26] belonging to the class of analytic attacks recover the entire
key at once by solving a system of equations on the key rather than operating on small
key chunks independently. This requires to define the target key class as the full key space
(S = K in terms of the unified framework), so computing the information theoretic metric
e.g. for the 128-bit AES key becomes infeasible.

We consider this to be a limitation of the unified framework and argue that it is still
an open research problem to come up with a (development of the unified) framework
practically applicable also to analytic attacks.

However, as regards local side-channel leakage, we would like to stress that the unified
framework is perfectly applicable. As applied to collision attacks, the quality of collision
detection for a pair of traces is the most crucial local side-channel property. So we use an
information-theoretic metric similar to that of the unified framework to compare methods
of collision detection given two local side-channel traces.

4 Test of Chain

The test of chain TestChain used to filter out key candidates on chains in Algorithm 2
is the stage that determines the values of the crucial metrics C and Crecovery. Therefore,
in this section we describe and analyze TestChain in detail.

4.1 Procedure

TestChain has as input:

– Chain ζi of length ni consisting of key byte indices j1, . . . , jni
.

10

– Guess g of the chain. Without loss of generality, we assume that it is the first byte j1
of the chain and kj1 = g.

– The list of (linear) collisions C to be able to compute all the other ni − 1 key bytes in
the chain from kj1 .

– The lists of sorted key-byte candidates K coming from a divide-and-conquer test (e.g.
DPA). Only list Kj with j ∈ {j1, . . . , jni

} are needed for the chain to be tested. Each
Kj is a sorted list of 256 candidates for the key byte kj .

The output of TestChain is true, if the chain ζi has passed the test, or false otherwise.

256256

mm

accepted chain guess rejected chain guess

.

ni ni

Fig. 3. Test for chain ζi: the guess of chain is rejected if at least one key byte falls outside the most
probable m byte values as suggested by the divide-and-conquer test

The idea of the test of chain is to filter out those guesses of chains that are less probable
to be compatible with the key information obtained from a divide-and-conquer test.

In each list Kj , we will consider values among the top m positions. These are the most
probable candidates for the key byte kj as suggested by the divide-and-conquer test. We
superpose the guess of the chain, computed from the byte guess g for kj1 , and the ni
corresponding sorted lists Kj of length 256 bytes each, see Figure 3.

Now the test of chain can be described as follows:

– The guess of chain is accepted if all key bytes of the chain are among the top m
candidates, each in the corresponding list Kj .

– The guess of chain is rejected if at least one key byte of the chain falls outside the m
top candidates in its corresponding list Kj .

4.2 Success probability of combined attack

The threshold m has to be chosen in a way that the probability to filter out the correct
key is small. This probability depends on the distribution of the position for the correct
key byte of the divide-and-conquer test used.

Let α be the probability that the correct key byte is among the top m candidates in
the sorted divide-and-conquer list. (In terms of the unified framework, α is exactly the
m-order success rate for a single key byte recovery.) Under the assumption that all chain
tests are independent, the probability for the full correct key to survive after passing the
tests with all h chains can be computed as

Pr{correct key survives after h chains} =
h
∏

i=1

αni = α
∑h

i=1 ni = α16,

11

since the sum of all chain lengths is
∑h

i=1 ni = 16. Moreover, if all collisions have been
detected correctly (i.e. collision detection yielded no false positives), this determines the
success probability of the full combined collision attack

π = α16, (6)

which is in fact equivalent to the success probability of the divide-and-conquer attack.

m

N = 2
N = 3
N = 4
N = 8

0
0 50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

(a)

m

N = 2
N = 3
N = 4
N = 8

0
0 50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

π

(b)

Fig. 4. Empirical dependency of α and π upon m for different numbers of traces N

As a practical example, our experiments with DPA attacks against an AES imple-
mentation on the 8-bit ATmega16 µC show that the chances for the correct key byte
guess to be among the top m candidates in the sorted DPA list are quite good already for
small values of m (which are preferred to have low Crecovery, as we will detail in the next
subsection) and small values of N (which are obviously preferred to have low Conline).
Figure 4(a) depicts the dependency of α upon m for different numbers of inputs N . The
corresponding success probability for the full attack is depicted in Figure 4(b).

4.3 Complexity of key recovery for combined attack

Without the test of chain, the complexity of the collision attack is 28h AES computations,
since each chain suggests 28 candidates for the respective subset of key bytes and there
are h disjunct chains. In the combined approach, we effectively test m candidates for each
chain. Moreover, we filter our improbable chain candidates separately for each chain.
This results in a lower number of full 16-byte key candidates to be tested with AES at
the end which determines Crecovery. Since the chain evaluation is much less complex than
the testing of a full 16-byte candidate with the full AES, we can win in the total attack
complexity significantly. Here we estimate Crecovery given m and α.

The expected number of wrong chain guesses to be tested in the test of chain can be
computed as

(1− α)m+ α(m− 1) = m− α .

The probability for a wrong chain guess to survive one element of chain can be derived as

α

(

m− 1

255

)

+ (1− α)
(m

255

)

=
m− α

255
,

12

since a wrong chain guess results in wrong key byte candidates suggested along the entire
chain.

The expected number of correct chain guesses to be tested in the test of chain is α.
The probability for a correct chain guess to survive one element of chain is α.

Then the expected number of chain candidates to survive the test of chain ζi can be
estimated as

ηi = (m− α)

(

m− α

255

)ni−1

+ α · αni−1 .

Assuming the independency of all chain tests, we obtain an estimation of the key-recovery
complexity for the combined attack:

Crecovery ≈
h
∏

i=1

max (1, ηi) , (7)

where the maximum is taken since one has to test at least one candidate for each chain
in practice.

m

lo
g
2
C

r
e
c
o
v
e
r
y
/
π

combined
collisions only

0 50 100 150 200 250
10

15

20

25

30

35

40

Fig. 5. Advantage of the DPA-combined key recovery over the linear collision-only key recovery with the
respect to the expected complexity: Example for h = 4 with n1 = 7, n2 = 6, n3 = 2, and n4 = 1 (a typical
case for γ = 7)

Figure 5 presents a comparison between key recovery complexities for the DPA-
combined attack and the linear key recovery with respect to Crecovery/π at the example
with h = 4 chains of lengths n1 = 7, n2 = 6, n3 = 2, and n4 = 1 bytes, respectively,
which is the expected distribution of chain lengths for γ = 7 [7]. As for the linear key
recovery no DPA information is used, the complexity is 232 with the success probability
being exactly 1. At the same time, for the DPA-combined collision-based key recovery,
the complexity Crecovery of (7) normalized by the success probability π of (6) will be
much lower in most cases, attaining its minimum at m = 78 with just about 214 AES
computations.

Note that Figure 5 illustrates the very advantage of our combined attacks that we use
to extract more information out of the side-channel traces in the key-recovery stage and,
thus, to reduce the online measurement complexity Conline, addressing Problem 1.

13

5 Collision Detection

In this section, we propose improved techniques of collision detection by dimension re-
duction specially tailored for the Euclidean metric. First, we recall the general problem
of dimension reduction in side-channel attacks. Then we develop a statistical model for
the Euclidean distance, which will enable us to introduce our techniques and explain
the intuition behind them. To perform the information-theoretically sound comparison of
different dimension reduction techniques, we use the λ-divergence. We show that in our
setting it is equivalent to mutual information. Experimental results for collision detection
are provided. The practical evaluation of the dimension reduction techniques in a full
(combined) collision attack will be given in Section 6.

5.1 Dimension reduction in side-channel attacks

Dimension reduction is the selection of samples from side-channel traces, usually with the
purpose of improving the efficiency of an attack. In a typical setting, the clock frequencies
of electronic devices are in the range of at least several MHz. Therefore, the side-channel
trace acquired by the digital oscilloscope at an appropriate sampling rate of at least
ten million samples per second will contain thousands, if not millions, of samples. In
the presence of noise, when many traces are required, this makes the trace processing
a determining part of the attack complexity and may sometimes even render the attack
infeasible. On the other hand, it has long been known that only few samples in a trace
would exhibit the leakage, the others being redundant. An example is the dimension
reduction for a DPA attack (trace compression) [21], where we can limit ourselves to
points at clock cycle maxima or to points exhibiting the highest variation across the
traces corresponding to different input values. Note that while DPA is still feasible without
dimension reduction, attacks employing multivariate methods (e.g. template-like and MIA
attacks) are infeasible without an appropriate point selection.

Besides the reduced signal processing complexity, another effect of dimension reduction
is the potential increase in the attack success rate. The points being removed from the
side-channel traces would normally carry more noise than the informative signal, while
the opposite applies to the selected points. Therefore, dimension reduction would lead to
the overall increase in the signal-to-noise ratio (SNR). In most cases, this will lower the
number of measurements required to reach a given success rate. Again, DPA attacks are
a good example: in our experiments, selection of cycle maxima or points with the largest
variation across the power traces reduces the trace count for the key-byte recovery.

We would like to stress that dimension reduction is not a full-scale profiling; it indeed
requires some additional knowledge about the implementation, but this knowledge is much
less than one would normally impose in traditional profiled attacks to build templates.
As opposed to that, in its essence, dimension reduction can be seen as knowledge about
time, not values being processed.

Collision attacks can benefit a lot from the dimension reduction. First, in the following,
we show how to select the points from the traces to improve collision detection. We
utilize Euclidean distance for trace comparison to distinguish between collisions and non-
collisions. We also deal with this in the information-theoretic sense by introducing a metric
for comparing our dimension reduction techniques. Second, collision detection demands
for higher sampling rates (as compared to DPA or other attacks working in the Hamming
weight/distance leakage model) [9] to capture subtle differences between the traces, so
reduction in the number of samples in a trace is desirable to decrease Cprocessing, which is
quadratic in the number of samples and traces.

14

We start with a statistical model of Euclidean distance that we first introduced in [9]
and provide here for completeness to support our intuition behind the choice of dimension
reduction techniques in the sequel.

5.2 A statistical model for Euclidean distance

Given two traces τ1 = (τ1,1, . . . , τ1,l) ∈ R
l and τ2 = (τ2,1, . . . , τ2,l) ∈ R

l, we assume that
each point τi,j can be statistically described as τi,j = si,j+ri,j , where si,j is signal constant
(without noise) for the given time point i as well as some fixed input to the S-box, and ri,j
is Gaussian noise due to univariate normal distribution3 with mean 0 and some variance
σ2 remaining the same for all time instances in our rather rough model. Let τ1 and τ2
correspond to some S-box inputs a1 and a2.

If a1 = a2, the corresponding deterministic signals are equal (that is, s1,j = s2,j for
all j’s) and one has:

E(τ1, τ2)a1=a2 =
l

∑

j=1

(τ1,j − τ2,j)
2 =

l
∑

j=1

ξ2j = 2σ2
l

∑

j=1

η2j ,

where ξj = r1,j − r2,j , ξj ∼ N
(

0, 2σ2
)

and ηj ∼ N (0, 1). That is, statistic E(τ1, τ2)a1=a2

follows the chi-square distribution with l degrees of freedom up to the coefficient 2σ2.
As the chi-square distribution is approximated by normal distribution for high degrees of
freedom, one has the following

Proposition 1. Statistic

E(τ1, τ2)a1=a2 =
l

∑

j=1

(τ1,j − τ2,j)
2

for τi = (τi,1, . . . , τi,l) ∈ R
l with τi,j ∼ N

(

si,j , σ
2
)

can be approximated by normal distri-
bution N (2σ2l, 8σ4l) for sufficiently large l’s.

Alternatively, if a1 6= a2, one has

E(τ1, τ2)a1 6=a2 =
l

∑

j=1

(τ1,j − τ2,j)
2 =

l
∑

j=1

(

δ
(1,2)
j + ξj

)2
= = 2σ2

l
∑

j=1

ν2j ,

where

δ
(1,2)
j = s1,j − s2,j , ξj = r1,j − r2,j , ξj ∼ N

(

0, 2σ2
)

and νj ∼ N
(

δ
(1,2)
j /

√
2σ, 1

)

.

That is, statistic E(τ1, τ2)a1 6=a2 follows the noncentral chi-square distribution with l de-

grees of freedom and λ =
∑l

j=1

(

δ
(1,2)
j /

√
2σ

)2
up to the coefficient 2σ2. Again, we have

an approximation using

Proposition 2. Statistic

E(τ1, τ2)a1 6=a2 =
l

∑

j=1

(τ1,j − τ2,j)
2

3 The real measured power consumption is often due to the generic multivariate normal distribution.
However, almost all entries of the corresponding covariance matrix are close to zero. Thus, the model
with independent multivariate normal distribution seems to be quite realistic.

15

for τi = (τi,1, . . . , τi,l) ∈ R
l with τi,j ∼ N

(

si,j , σ
2
)

can be approximated by normal dis-

tribution N
(

2σ2(l + λ), 8σ4(l + 2λ)
)

with λ =
∑l

j=1

(

δ
(1,2)
j /

√
2σ

)2
for sufficiently large

l’s.

0
0 50 100 150 200 250 300 350 400 450 500

0.01

0.02

0.03

0.04

0.005

0.015

0.025

0.035 clock cycle 1 clock cycle 2

var

min

j

N
o
rm

a
li
ze
d
w
ei
g
h
t

(a)

0
0 50 100 150 200 250 300 350 400 450 500

0.01

0.02

0.03

0.04

0.05

0.06

0.07

clock cycle 1 clock cycle 2

min

minvar

j

N
o
rm

a
li
ze
d
w
ei
g
h
t

(b)

Fig. 6. Informative points for DPA vs. signal difference (a), and the effect of weighting signal difference
with noise variance (b)

5.3 Dimension reduction with signal difference

In the comparison of the two traces with the Euclidean distance, we try to distinguish
between the collisions and non-collisions, i.e. between the distributions E(τ1, τ2)a1 6=a2

and E(τ1, τ2)a1=a2 . As described above these statistics approximately follow normal dis-
tribution for large numbers of trace points. To efficiently distinguish between these two
statistics it is crucial to decrease their variances while keeping the difference of their means
high. For this purpose, to better distinguish between the collisions and non-collisions, we
proposed to discard [9] points of traces with small minimal contribution to the difference
of means4.

To illustrate this method of dimension reduction, we assume for the moment that

δ
(1,2)
j = 0 for j > l/2 and δ

(1,2)
j 6= 0 for j ≤ l/2 with l even, that is, the second half of the

trace does not contain any data dependent information. Then we can discard the second

4 A more general way is weighting the points by their contribution to the difference of means and using
weighted Euclidean distance as a metric, however our experiments have shown that point selection,
being an extreme case of point weighting, is much more efficient.

16

halves of the both traces τ1 and τ2 in the comparison with the Euclidean distance and
compute two related statistics on the rest of the points:

E′(τ1, τ2)a1=a2 =

l/2
∑

j=1

(τ1,j − τ2,j)
2,

E′(τ1, τ2)a1 6=a2 =

l/2
∑

j=1

(τ1,j − τ2,j)
2.

This will adjust the means and variances of the approximating normal distributions:
N

(

σ2l, 4σ4l
)

and N
(

2σ2(l/2 + λ), 8σ4(l/2 + 2λ)
)

, respectively. Note that the difference
of means remains unaffected and equal to 2σ2λ. At the same time both variances are
reduced, one of them by factor 2, which allows one to distinguish between these two
distributions more efficiently and, thus, to detect collisions more reliably.

More generally speaking, for AES we have to reliably distinguish between inputs in
each (ai1 , ai2) of the

(

256
2

)

pairs of byte values, ai1 , ai2 ∈ F28 . Thus, the most informative

points j of the traces are those with maximal minimums of δ
(i1,i2)
j over all pairs of different

inputs, that is, points j with maximal values of

min
ai1 6=ai2

δ
(i1,i2)
j . (8)

We will denote this point selection criterion as min for brevity.

We estimated the values of min for all time instances j of the two (most leaky) cycles
of the S-box look-up in our reference AES implementation and compared this to the signal
variance in the same time points, var(si,j), ai ∈ F28 , which is known to be an adequate
indicator of the points leaking information in DPA and to which we will refer to as var,
see Figure 6(a).

5.4 Dimension reduction with weighted signal difference

Figure 6(a) reveals that the point selection based on min is more fine-grain than that
based on var.

To further amplify the selection of points for collision detection, when calculating the
contribution of the point j to the Euclidean distance one can consider not only (8) but
also noise variances in this point. Thus, a more efficient criterion, that we call minvar, can
be defined choosing points that maximize

min
ai1 6=ai2

δ
(i1,i2)
j /(var(ri1,j) + var(ri2,j)).

The intuition behind this additional weighting of points by the inverse of the noise variance
value is to exclude points that contribute most noise to the difference of means.

In Figure 6(b), we compare minvar to just min for the same two clock cycles of our
reference implementation. One can see the differences: weighting by the noise variance
increases the contribution of some points while decreasing the contribution of the others
(minvar) compared to the pure signal difference (min). This difference will be well captured
by the information-theoretic metric that we will define below and use to compare the
techniques in a sound way.

17

5.5 λ-divergence as information-theoretic metric

As mentioned above, the goal of collision detection is to efficiently distinguish between
collisions and non-collisions, that is, between the distribution of the Euclidean distance for
a pair of equal and non-equal inputs. Here we propose an information-theoretic measure
of difference between these distributions.

Let P (X) be the probability distribution over all possible secret values to be recovered
using side-channel information. In the case of collision attacks, X is a set of two elements:
X = {collision, non-collision}. Further let P (L) be the probability distribution of side-
channel leakage as measured by a collision detection method. For instance, L can be
the set of all possible values of the Euclidean distance between side-channel traces for
pairs of inputs to the S-box. Correspondingly, let P (L|x) be the probability distribution
of leakage, taken separately for collisions and non-collisions, depending on x ∈ X. We
will denote P (Lc) = P (L|x = collision) and P (Ln) = P (L|x = non-collision). (Note
that in Section 5.2 we have described these distributions in the independent multivariate
Gaussian model.)

Our metric uses the notion of Kullback-Leibler divergence between two distributions
A and B, DKL(A||B) [19]. For discrete distributions, it is defined as

DKL(A||B) =
∑

i

A(i) log2
A(i)

B(i)
.

Note that DKL is not commutative and DKL(A||B) 6= DKL(B||A).
To compare collision detection methods, we use the λ-divergence between leakage

distributions for collisions and non-collisions:

Dλ(Lc||Ln) = λDKL(Lc||Ln) + (1− λ)DKL(Ln||Lc), (9)

where λ is the a priori probability of a collision, in other words, λ = P (x = collision).
λ = 1/256 for the 8-bit S-box of AES.

Now we show that the λ-divergence metric as introduced above and the mutual in-
formation metric [30] when applied to collision detection instead of template attacks are
equivalent.

Proposition 3. I(X,L) = Dλ(Lc||Ln).

Proof. The left-hand side of the above equality is I(X,L) = H(L) − H(L|X) by defini-
tion. One can transform the right-hand side using the definitions of the Kullback-Leibler
divergence and λ-divergence and obtain the left-hand side:

Dλ(Lc||Ln) = λDKL(Lc||Ln) + (1− λ)DKL(Ln||Lc) =

λ
∑

i P (lc = i) log2
P (lc=i)
P (ln=i) + (1− λ)

∑

i P (ln = i) log2
P (ln=i)
P (lc=i) =

[−λ∑i P (Lc) log2 P (L)− (1− λ)
∑

i P (Ln) log2 P (L)]−

[−λ∑i P (Lc) log2 P (Lc)− (1− λ)
∑

i P (Ln) log2 P (Ln)] =

= H(L)−H(L|X).

So the information-theoretic metric of the unified framework [30] applies well to the
collision detection procedure.

18

The metric is interpreted in the sense that its lower values (i.e. lower mutual informa-
tion) mean better distinguishing between the distributions and therefore better collision
detection. In the following, we use the λ-divergence to compare our collision detection
techniques to each other and to the existing techniques.

5.6 Comparison of collision detection techniques with λ-divergence

For the comparison of collision detection techniques using the λ-divergence, one has to
know the distributions P (Lc) and P (Ln). The only way to obtain these distributions is
to estimate them empirically. The same problem of estimating the leakage distribution
arises in MIA attacks and several distribution estimation methods have been reported to
be used [24]. We have opted for the histogram method, that is, we obtain the histograms
for P (Lc) and P (Ln) from the samplings of Euclidean distance using the side-channel
traces from our reference implementation for equal and non-equal inputs, respectively.
Figure 7 shows an example of these distributions from our experiments.

P (Ln)

P (Lc)

R
el
a
ti
v
e
fr
eq
u
en

cy

E

0
10

20
30

40
50

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 7. Empirical distributions for P (Lc) and P (Ln)

Then we compute Dλ(Lc||Ln) following (9) in a straightforward way, setting λ =
1/256. Finally, for the convenience of representation, we compute H(L)−Dλ(Lc||Ln) to
have 0 for identical distributions and larger values for more distinct distributions (note
that for computing H(L) we need P (L), which we recover from P (Lc) and P (Ln) knowing
P (X) = {1/256, 255/256}).

We have evaluated our two new dimension reduction techniques min and minvar, the
technique var commonly used in DPA, and detection without dimension reduction as a
reference point. Finally, we tried averaging t traces to capture the effect of trace averaging.
Figure 8 presents the experimental results for the considered techniques.

The figure shows information Dλ, measured in bits, brought by a single comparison,
against the number t of trace averagings. Dimension reduction by variance, var, which
works well in DPA attacks, only moderately improves collision detection. Whereas both
new methods, min and minvar, lead to clearly more efficient collision detection, minvar

19

var

no point selection

minvar

min

D
λ
,
b
it
s

t
2 4 6 8 10 12 14 16 18 20

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Fig. 8. Collision detection: effect of dimension reduction

being best. As expected, the information gain grows with the averaging, since the latter
increases the SNR.

6 Practical Evaluation

Here we show that the techniques we have introduced in this work perform well in practice.
We implement (linear) collision attacks (Section 2) following our combination framework
(Section 3) with the DPA-driven test of chain (Section 4) and employing the new colli-
sion detection methods (Section 5) against the target implementation. We experimentally
estimate the efficiency of these DPA-combined collision attacks.

Our target implementation is AES-128 on ATmega16, a popular 8-bit µC. We mea-
sured the power consumption of the µC while it was encrypting the given plaintexts. The
power consumption trace for an S-Box lookup execution comprised 4600 samples. From
these, we reduced the dimension to 900 samples using our techniques min or minvar. This
number was chosen empirically by observing when the attack efficiency reached saturation.
The component of DPA was implementing CPA in the Hamming weight model [10].

Launching a series of 500 attacks for a given number of inputs γ and averagings t, we
experimentally estimated the efficiency parameters defined in Section 3.3 of all attacks in
question. Namely, besides the online complexity Conline = t · γ, we obtained the success
probability π by counting the number of successful attacks: we considered an attack
successful if it was possible to recover the correct full AES key with Crecovery ≤ 240.
Having Conline and π, we computed our efficiency metric C = Conline/π that reflects the
expected number of measurements to mount a successful attack.

Instead of using a fixed or adaptive (like in [9]) threshold for the value of Euclidean
distance E in collision detection, we follow another approach that allows to improve the
attack efficiency. We consider a list of collision candidates consisting of all (16 ·γ)2/2−8 ·γ
S-Box instance pairs sorted by E ascending. Taking c top candidates out of this list,
starting from c = 1, we determine the number of chains h and their lengths ni, i = 1, . . . , h.
In case of the collision-only attack, Crecovery = 28h and we can have h at most 5 to stay
within the admissible bound of 240. If h is higher, we take one more collision (increment

20

c). Once we have enough collisions to attain h = 5, we perform the key recovery and check
if the correct full key is among the recovered candidates. A similar approach can be used
in case of the DPA-combined collision attack.

We experimentally characterized 4 specific attacks employing our techniques: collisions
using min, collisions using minvar, collisions using min combined with DPA, and collisions
using minvar combined with DPA. Comparison of these 4 attacks in terms of the metric
C for varying averaging t and different numbers γ of inputs is presented in Figure 9. As
a reference, we also plot the best achieved case for the DPA-only attack (with Crecovery

also bounded by 240, i.e. when the 240 most probable AES key candidates as suggested
by DPA are tested).

DPA (best)
minvar+DPA
min+DPA
minvar

min

C

t
1 2 3 4 5 6

20

40

60

80

100

120

140

(a) γ = 5

C

t
1 2 3 4 5 6

20

30

40

50

60

70

(b) γ = 6

C

t
1 2 3 4

20

25

30

35

40

(c) γ = 7

C

t
1 2 3 4

20

25

30

35

40

(d) γ = 8

Fig. 9. Attack efficiency C = Conline/π in practice, against averaging t, for different numbers γ of inputs

One can see that the combination of collision attacks with DPA clearly outperforms
both collision-only and DPA-only attacks. The dimension reduction technique minvar

outperforms min, thus, conforming to the information-theoretic comparison in Section 5.6.

7 Conclusions and Open Problems

In this article, we presented combined divide-and-conquer and collision attacks using
side-channel leakage against implementations of cryptographic algorithms. We developed
a framework for the combination of these attacks and theoretically analyzed its properties.

21

We have also proposed dimension reduction techniques to improve side-channel collision
detection using Euclidean distance, and an information-theoretic metric for comparison
of collision detection techniques. We have carried out full combined DPA and collision
attacks with dimension reduction techniques in practice against a real AES-128 imple-
mentation, showing that our combination is more efficient than both stand-alone DPA
and collision attacks. Our experimental results also suggest that combined attacks exploit
more information in the side-channel scenario than their stand-alone components. Below
we present a relation of our attacks to the existing ones and outline some open problems.

Unlike collision attacks, template attacks require, in addition to a proper dimension
reduction, detailed knowledge of the implementation for profiling. This appears to be
a much weaker attack model than the one we use. However, the evaluation of template-
combined collision attacks using our framework is still an open problem. This combination
can possibly reduce the cost of the profiling stage and demonstrate that the template-only
attacks, though being optimal in an information-theoretic sense [11], do not use all key-
related information available to the attacker. This is due to the fact that their optimality
is considered with respect to small key chunks only, not the entire key, as it is the case
in collision and other analytic attacks that are algorithm-aware. Another line of future
research—initiated in [8]—is using profiling to improve collision detection.

As collision and template attacks, MIA [13] does not necessarily require a leakage
model. However, as demonstrated in [24], MIA tends to be significantly less efficient than
DPA in terms of the required number of traces for unmasked implementations, even
in the presence of strong noise. It is another open problem to evaluate MIA-combined
collision attacks using our framework. As in the case of template attacks, we expect this
combination to result in a reduced complexity.

While DPA, MIA and template techniques have been naturally incorporated by the
unified framework [30] for comparing side-channel attacks, such analytical techniques
as collision attacks, considered here, and algebraic attacks [26], cannot be reasonably
captured by the unified framework directly. We consider it an important open problem
to come up with a development of the unified framework both practically and generically
applicable to analytic attacks. However, in this article, we successfully applied metrics
similar to those of [30] to study some local properties of collision attacks.

From an information-theoretic perspective, each comparison of two traces with the
purpose of collision detection, should yield in our attacks up to 0.03 bit key-related infor-
mation (see Figure 8). However, not all of it is used for key recovery afterwards, where
only collisions result in equations. At the same time, detected non-collisions also carry
useful information ignored by the current techniques. Their usage seems to be technically
problematic, since each non-collision would add an equation of a high degree to the system
of equations to be solved. We leave this as another open problem.

References

1. Archambeau, C., Peeters, E., Standaert, F.X., Quisquater, J.J.: Template Attacks in Principal Sub-
spaces. In: CHES’06. LNCS, vol. 4249, pp. 1–14. Springer-Verlag (2006)

2. Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential cluster analysis. In: CHES’09. LNCS, vol. 5747,
pp. 112–127. Springer-Verlag (2009)

3. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon, N.: Mutual infor-
mation analysis: a comprehensive study. To appear in JoC, available at http://www.matthieurivain.
com/wp-content/uploads/2010/06/joc10.pdf (2010)

4. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems. In: CRYPTO’97.
LNCS, vol. 1294, pp. 513–525. Springer-Verlag (1997)

5. Biryukov, A., Bogdanov, A., Khovratovich, D., Kasper, T.: Collision Attacks on Alpha-MAC and
Other AES-based MACs. In: CHES’07. LNCS, vol. 4727, pp. 166–180. Springer-Verlag (2007)

22

6. Biryukov, A., Khovratovich, D.: Two new techniques of side-channel cryptanalysis. In: CHES’07.
LNCS, vol. 4727, pp. 195–208. Springer (2007)

7. Bogdanov, A.: Improved side-channel collision attacks on AES. In: SAC’07. LNCS, vol. 4876, pp.
84–95. Springer-Verlag (2007)

8. Bogdanov, A.: Multiple-differential side-channel collision attacks on AES. In: CHES’08. LNCS, vol.
5154, pp. 30–44. Springer-Verlag (2008)

9. Bogdanov, A., Kizhvatov, I., Pyshkin, A.: Algebraic methods in side-channel collision attacks and
practical collision detection. In: INDOCRYPT’08. LNCS, vol. 5365, pp. 251–265. Springer-Verlag
(2008)

10. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: CHES’04.
LNCS, vol. 3156, pp. 16–29. Springer-Verlag (2004)

11. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: CHES’02. LNCS, vol. 2523, pp. 51–62.
Springer-Verlag (2003)

12. FIPS: Advanced Encryption Standard. Publication 197. National Bureau of Standards, U.S. Depart-
ment of Commerce (2001)

13. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In: CHES’08. LNCS,
vol. 5154, pp. 426–442. Springer-Verlag (2008)

14. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic Methods. In: CHES’06. LNCS, vol.
4249, pp. 15–29. Springer-Verlag (2006)

15. Handschuh, H., Preneel, B.: Blind differential cryptanalysis for enhanced power attacks. In: SAC’06.
LNCS, vol. 4356, pp. 163–173. Springer-Verlag (2006)

16. Kim, J., Lee, Y., Lee, S.: DES with any reduced masked rounds is not secure against side-
channel attacks. Computers & Mathematics with Applications 60(2), 347–354 (2010), http://www.
sciencedirect.com/science/article/B6TYJ-4Y8G1NV-3/2/ab0200615db0fd6c3a26e527602ad5d5

17. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems.
In: CRYPTO’96. LNCS, vol. 1109, pp. 104–113. Springer-Verlag (1996)

18. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: CRYPTO’99. LNCS, vol. 1666, pp.
388–397. Springer-Verlag (1999)

19. Kullback-Leibler divergence. http://en.wikipedia.org/wiki/Kullback_Leibler_divergence
20. Ledig, H., Muller, F., Valette, F.: Enhancing Collision Attacks. In: CHES’04. LNCS, vol. 3156, pp.

176–190. Springer-Verlag (2004)
21. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards.

Springer-Verlag (2007)
22. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis collision attack. In:

CHES’10. LNCS, vol. 6225, pp. 125–139. Springer-Verlag (2010)
23. Pan, J., den Hartog, J.I., Lu, J.: You cannot hide behind the mask: Power analysis on a provably

secure S-Box implementation. In: Information Security Applications. LNCS, vol. 5932, pp. 178–192.
Springer-Verlag (2009)

24. Prouff, E., Rivain, M.: Theoretical and practical aspects of mutual information based side channel
analysis. To appear in IJACT, available at http://www.matthieurivain.com/wp-content/uploads/
2010/06/ijact10.pdf (2010)

25. Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Counter-Measures for
Smart Cards. In: E-smart. LNCS, vol. 2140, pp. 200–210. Springer-Verlag (2001)

26. Renauld, M., Standaert, F.X., Veyrat-Charvillon, N.: Algebraic Side-Channel Attacks on the AES:
Why Time also Matters in DPA. In: CHES’09. LNCS, vol. 5747, pp. 97–111. Springer-Verlag (2009)

27. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Channel Cryptanalysis.
In: CHES’05. pp. 30–46. LNCS, Springer-Verlag (2005)

28. Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES: Combining side channel-
and differential-attack. In: CHES’04. LNCS, vol. 3156, pp. 163–175. Springer-Verlag (2004)

29. Schramm, K., Wollinger, T.J., Paar, C.: A New Class of Collision Attacks and Its Application to DES.
In: FSE’03. LNCS, vol. 2887, pp. 206–222. Springer-Verlag (2003)

30. Standaert, F.X., Malkin, T., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key
Recovery Attacks. In: EUROCRYPT’09. LNCS, vol. 5479, pp. 443–461. Springer-Verlag (2009)

31. Wiemers, A.: Collision Attacks for Comp128 on Smartcards (December 2001), eCC-Brainpool Work-
shop on Side-Channel Attacks on Cryptographic Algorithms, Bonn, Germany

23

