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Abstract

Garbled circuits play a key role in secure computation. Unlike previous work, which focused mainly on
efficiency and automation aspects of secure computation, in this paper we focus on software modularity
and scalability, considering very large circuits. Our main contribution is a virtual machine that dynami-
cally loads hardware descriptions into memory and destructs them as soon as they are done computing.
Our software also introduces a new technique for parallel evaluation of garbled circuits. The software
is designed in a completely modular fashion, allowing developers to integrate garbled circuits through
an API (Abstract Programming Interface), without having to modify the base code. We measure the
performance of this architecture on several circuits with hundreds of millions of gates. To the best of our
knowledge, these are the largest scalable secure computations done to date.

1 Introduction

Secure computation is a fundamental task in modern systems as it enables parties to collaborate while keeping
their information private. Specifically, a two-party protocol for secure computation allows a server (holding
input x) and a client (holding input y) to compute f(x, y) such that either party learns nothing beyond the
output of f . Secure computation has been studied mainly from a theoretical perspective, but in the last few
years it has been utilized for implementing real world systems. Examples include implementations of systems
for privacy-preserving face recognition [7, 26, 22], fingerprint matching [1, 8], and DNA processing [13].

Yao’s Garbled Circuits Technique [29] plays a key role in the construction of secure protocols. In this
approach, the parties first prepare a representation of f as a boolean circuit Cf . Next, the server chooses
secret keys (called wire labels) for each wire in Cf , encrypts a a lookup table for each gate, and sends all
lookup tables, called the garbled circuit, to the client. This garbling stage is followed by an oblivious transfer
protocol where the client acquires wire labels corresponding to y. The server also sends the client wire labels
corresponding to x. Having obtained the wire labels for x and y, the client decrypts all lookup tables until
the output gates are decrypted and f(x, y) is revealed. This is called the evaluation stage.

The garbled circuit technique has been used widely, most notably in Fairplay [19]. Fairplay introduces
a high level language that allows the user to define the function f to be computed. This program is given
to the Fairplay compiler, which produces a hardware description Cf of the boolean circuit for computing f ,
and writes it into a text file. When the Fairplay client and Fairplay server are run, they read Cf from the
text file and store it in memory as an object Of . This allows them to garble and evaluate the circuit.

The main motivation for Fairplay was to show that Yao’s technique can be implemented in practice. More
recently, the TASTY system [11] was proposed, which combines the benefits of homomorphic encryption
with those of garbled circuits. The main motivation behind TASTY is automation of secure two-party
computation. We give a more detailed discussion of previous work in Section 1.2, but we remark that the
motivation here is different. Specifically, our goal is to develop a software architecture that would support
very large garbled circuits (scalability) and allow developers to integrate these circuits in any application
(modularity). In order to provide some measures of comparison we contrast VMCrypt with Fairplay. We
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made this choice because Fairplay is based purely on garbled circuits whereas TASTY is a combination of
homomorphic encryption and garbled circuits, but as we later show, the comparison applies also to TASTY.

1.1 Our Results

We present a new software architecture for scalable secure computation, called VMCrypt. A software library
is code that provides services to independent programs via an abstract programming interface (API). Since
VMCrypt is a library, developers can use it to integrate garbled circuits into their protocols. This enables
code reusability and reduces development, debugging, and testing costs. Another difference between a library
and an application is flexibility. For example, Fairplay users are restricted to a specific garbling method and
a specific encryption method used in the garbling. In VMCrypt, which was designed to be customized by
the application, these are defined as interfaces and passed as a parameter. Thus, a developer can pass their
own implementation, or use the one provided by VMCrypt. Modularity is also important to cryptographers.
VMCrypt decouples security from implementation, and in doing so it enables cryptographers to implement
any level of security (e.g., semi-honest, covert, fully malicious) without changing the base code. In Fairplay,
on the other hand, security is hard wired into the code. Developing libraries is hard because it requires
abstracting a large system into independent modules, encapsulating these modules, and defining methods
that allow them to work together regardless of underlying implementation.

The architecture of VMCrypt is completely different from that of Fairplay. In VMCrypt, circuits (called
components) are simply java classes. Hence, they receive their parameters at run time, via the constructor.
In Fairplay, on the other hand, circuit parameters are passed at compile time. To see why this has serious
implications in practice, consider a secure database search protocol, where the server has records ⟨xi, pi⟩,
and the client, who holds y, wants to learn all pi for which xi = y. When a VMCrypt component for this
function is instantiated, it takes three parameters: the bit length of y, the bit length of pi, and the size of the
database. Since these parameters are passed at run time, any table can be chosen dynamically. That is, a
server using VMCrypt can run secure database queries with multiple clients on multiple tables with different
sizes, all changing at run time. In contrast, a Fairplay server and client must run the Fairplay compiler every
time any parameter changes. This is unrealistic, especially considering the amount of time and memory the
Fairplay compiler requires. An immediate consequence of this difference is that in VMCrypt there is no
offline computation phase. Protocols using VMCrypt run on the fly. Components written in VMCrypt will
be complied once and for all.

The second difference between Fairplay and VMCrypt is that Fairplay executes Yao’s protocol in sequence,
whereas VMCrypt executes it in parallel. Specifically, in Fairplay the server first garbles the circuit, then
the client receives the garbled circuit as well as wire labels (some of which are transferred using oblivious
transfer), and finally the client evaluates the garbled circuit. In VMCrypt, on the other hand, the circuit
is garbled into the network stream and evaluated from it. That is, immediately after a lookup table is
encrypted, it is sent to the client, who immediately decrypts and discards it. To achieve this we interleave
oblivious transfer (OT) in the garbling. This is not trivial because, unlike Fairplay, where OT is executed
per wire, in VMCrypt OT is done in bulk, which significantly speeds up the computation. We cover this
process in detail in Section 2.

Parallelizing Yao’s protocol has far reaching implications. The first is that we have eliminated the need
for storage. In real life applications, where there could be easily billions of lookup tables or wire labels, this
also means that time consuming disk reads and writes are eliminated. The other implication is that the
client can compute parts of the output before the server even finished garbling the circuit. For example, in
our database search experiment, the client learns the output in location i (which is pi if xi = y, and null

otherwise) throughout the protocol. In Fairplay, on the other hand, the client is idle while the server garbles
the circuit, and the server is idle while the client evaluates the garbled circuit.

The third difference between Fairplay and VMCrypt is the most profound. It is in how hardware de-
scriptions are managed in memory. To understand where the difficulty lies, recall the circuit for database
search. The size of this circuit is linear in the size of the database. Holding the description of this circuit
in memory is like holding the entire database in memory. This is clearly infeasible. Yet, in Fairplay, both
the compiler, the server, and the client, need the entire circuit stored in memory. Each of these applications
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will crash on real life circuits. In VMCrypt, on the other hand, components require very small amounts of
memory (specifically, a constant amount in the case of database search). Thus, VMCrypt makes secure com-
putation scalable. What allows VMCrypt to be memory efficient is the components themselves. Intuitively,
the components are like a virtual machine that loads hardware descriptions into memory when they receive
input and destructs them when they are done computing. We give a detailed description of this mechanism
in Section 3.

VMCrypt scales much better than Fairplay. In the case of the database function, for example, Fairplay
compilation alone takes 50 seconds and 0.7 GB memory (23% of a 3 GB RAM) when the database size
is 40 records. The compiler crashes after 3 minutes when the number of records is increased to 55. With
VMCrypt, on the other hand, when the database size is 10, 000, the entire protocol terminates after 19
seconds. Moreover, each party (and the Java virtual machine that executes it) uses only 0.15 GB memory
(4.8% of 3 GB). More importantly, even when we increase the database size to 1 million (which increases
the size of the circuit to 100 million gates), the parties still use the same amount of memory. We also
implemented the set intersection and minimum functions. In all cases we evaluated very large circuits. This
is critical because a software cannot claim to be scalable by passing only one benchmark; it needs to scale
on several circuits with different structural properties. We remark that TASTY [11] showed much better
performance than VMCrypt in the case of set-intersection. This is due to the technique of [9, 16], which
does not use garbled circuits at all. We also remark that combining homomorphic encryption with garbled
circuits yields superior performance. Detailed performance analysis is given in Section 5.

1.2 Related Work

Garbled circuits, due to Yao [29], play a key role in the study of secure computation, and as was shown
recently (e.g., [17, 15, 14, 25, 24, 6]), they also have potential in practice. Other popular techniques for
secure computation are based on homomorphic encryption (c.f., [23, 5, 10, 28, 27]).

Fairplay [19] was the first work to demonstrate the feasibility of two-party secure computation based on
garbled circuits. The multi-party version was given in [2]. More recently, a system called TASTY was given
in [11], which combines the benefits of homomorphic encryption and garbled circuits (it also incorporates
many other improvements). Other works focusing on the automation and benchmarking of cryptographic
protocols were given in, e.g., [3, 4, 18, 21].

The comparison provided earlier between VMCrypt and Fairplay applies also to TASTY. Specifically,
since TASTY provides a high level language, it does not have an API (which means that it cannot be inte-
grated in other programs) and it requires compilation (which impacts performance). In terms of scalability,
TASTY does not deal with large circuits, except for one example where memory consumption climbs as
the circuit reaches 4.2 million gates, and crashes thereafter. Due to the way it loads and destructs circuit
descriptions, VMCrypt consistently used about 5% memory, independently of the circuit or the input size.
Each of our circuits has been evaluated up to size 100 million gates, but as our tests show, we could have
chosen any large number (for example, billions of gates).

2 Overview of VMCrypt

This section describes VMCrypt modules, excluding components, which we discuss in the next section. We
describe how the modules work when put together, but we stress that each module stands on its own.

Recall that in Yao’s protocol the server chooses wire labels, garbles the circuit, and sends the garbled
circuit to the client. Wire labels for input wires (some of which require oblivious transfer) are also sent,
which enables the client to evaluate the garbled circuit and compute the output. VMCrypt also executes this
protocol, but in a streamed manner (see Figure 1). The class that orchestrates the streaming is Notifier.
The notifier has a very simple task: it obtains a segment (shown as a bracket in Figure 1) of pairs of wire
labels, and for each pair in the segment it notifies the component with this pair. More precisely, the notifier
notifies the component with an object and a function that gates pass execution to once they have all their
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Figure 1: Overview of main VMCrypt modules.

inputs ready. On the server side the function is Garble and the object is a WireLabelPair. On the client
side the function is Eval and the object is WireLabel. Both functions implement abstract class Function.

Immediately after the notification process begins, gates receive wire label pairs on all their input wires
and pass execution to the garble function. The garble function starts writing lookup tables into the network,
and gates notify their output wires with a wire label pair. A symmetric process executes on the client side.
That is, gates receive wire labels (as opposed to wire label pairs), the evaluation function decrypts lookup
tables it receives, and gates notify their output wires with wire labels. The notifiers repeat this, segment by
segment, until the entire component is notified. Immediately after the server sends the last lookup table,
the client computes the output.

Oblivious transfer is not executed before or after the garbling; it is interleaved in the garbling. What
makes this possible is abstract class WireLabelTransport. VMCrypt provides a server side implementation
for this class called WLTPServer (wire label transport protocol, server side) and a client side called WLTPClient.
The role of the wire label transport protocol is to guarantee that when the notifier on the server side receives
a segment of wire labels, the notifier on the client side already has them. This enables the server to stream
lookup tables, knowing that the client will be able to decrypt them on the fly and discard them immediately.
The obvious implication of this streaming is that no storage is necessary for either wire labels or lookup
tables. This is a significant advantage because the garbled circuit can be very large. Moreover, time
consuming read/write operations are eliminated, thus reducing running time.

We describe the wire label transport protocol parameters, starting with the OT sub protocol. VMCrypt
provides two OT implementations [20, 12], but of course any OT protocol can be passed as an argument.
The second parameter is an implementation of interface WireLabelGenerator. The role of this interface is
to provide wire label pairs for the wire label transport protocol. A standard implementation of this interface
would simply return two random strings as a WireLabelPair, but VMCrypt implements the ”free XOR”
idea [15] and therefore our implementation of this interface produces a pair ⟨r, r ⊕ R⟩, where r is a freshly
chosen random string, and R is a fixed random string. To use standard garbling, all that one needs to do is
provide the standard implementation for WireLabelGenerator, with the corresponding implementations of
Function for garbling and evaluation, and pass them as arguments to the respective classes.

The third parameter to the wire label transport protocol is a class that implements interface CircuitInput.
For any i, this interface provides a method that answers whether wire i corresponds to a server input or not,
and another method that returns the value on this wire (0 or 1). The wire label transport protocol uses
the CircuitInput interface to find which input wire belongs to which party, and what is the value of this
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Figure 2: Components of the MIN circuit due to [14, 26]

input. Implementations of CircuitInput play another important role: if the input of the party is too large
(e.g., a database) to hold in memory, then CircuitInput can read it from its origin segment by segment, as
opposed to loading it all at once in the beginning.

The wire label transport protocol implements an OT bucket. This bucket enables executing OT in bulk,
which is several orders of magnitude faster than individual OT operations. On the server side the OT bucket
contains pairs of random strings ⟨rj,0, rj,1⟩. On the client side it contains one string rj,b per pair, where
b ∈ {0, 1} is the client input at wire index j. Wire labels are transferred as follows. If ⟨W i,0,W i,1⟩ is a wire
label pair corresponding to a server input b, then W i,b is sent to the client. Otherwise, ⟨W i,0⊕ r0,W

i,1⊕ r1⟩
is sent, where ⟨r0, r1⟩ is the pair of masks at the top of the OT bucket. This works because the wire label
transport protocol examines current and future segments to find what the client will need when future wires
are reached. When the bucket is empty, the OT protocol is invoked to refill it.

3 The Component Module

The component module is the heart of VMCrypt. It has gone through four development cycles. In each
cycle we evaluated performance, usability, and utility. We start with the original design and explain how it
evolved to the current version.

First version. The first version of the component module was inspired by the minimum function,
which plays a central role in privacy-preserving systems [7, 26, 22, 1]. We defined two types of components:
Gate and Circuit. We also provided wires to connect them. Our idea was that developers would be able
to construct small circuits, and then use them as building blocks for larger circuits. For example, a bit
multiplexer (Figure 2 a) would be built in a low-level manner, from gates and wires. A string multiplexer,
on the other hand, would be built from the bit multiplexer. Next, a multiplexer and a comparator can be
used to build a circuit for finding the minimum of two numbers (Figure 2 b), which is then used to build
a circuit for finding the minimum of N numbers (Figure 2 c). This approach is similar to programming in
C ++ in the sense that developers have both the low-level power of C and the modularity provided by an
object-oriented language. Another advantage of this approach is that developers can share components or
replace them with better implementations.

To instantiate a circuit for finding the minimum of N numbers whose bit length is arity, VMCrypt
developers use the following standard Java syntax: Component c = new MIN(N, arity). The problem is
that, even for modest values N = 1, 000, 000 and arity = 64, the number of wires needed to connect the
BinaryMIN circuits is 3∗arity∗(N−1) = 194 million wires (excluding wires and gates inside the BinaryMIN).
Moreover, wires are implemented as lists (class Vector in Java) to allow fan out degree higher than 1. Thus,
the memory needed to instantiate the MIN circuit is prohibitive. The code of this version was used in [8].

Second version. The objective of the second version was to provide components for wireless circuit
design. We added a new component, called a Switch, that can route signals to its sub components without
wires. The idea is simple: when the switch receives a signal and a wire index (called a port), it compares the
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Figure 3: The MIN component.

in-degree of the first sub component with the port. If the port is smaller, then the sub component receives
the signal. Otherwise, the in-degree is subtracted from the port, and the switch iterates on the next sub
component (of course, like all other mechanisms, this is automatically taken care of by the component and
is transparent to the developer).

The switch brings up a difficult dilemma that is general to all the components. That is, should we equip a
switch with output wires or not? Without output wires components will not be able to connect to each other.
With them we create the same amount of wires that we wanted to eliminate in the first place. Our solution
was to replace output wires of components other than gates with one pointer, and allow input wires only
in circuits. Thus, gates will still be able to send signals to multiple components, but non-gate components
will only be able to send signals to one component. In the rare case where this would be too restrictive,
we provide a Splitter, which enables routing to multiple components. This dilemma represents a conflict
between utility, usability, and efficiency, that predominated throughout the entire development process.

The other problem with the switch was that routing a signal requires linear time (as opposed to constant
when using wires). This becomes quadratic per component, and increases the running time considerably. To
solve this problem we introduced the UniSwitch. This component contains multiple copies of the same sub
component. Thus, it can route a signal in constant time by dividing the value of the port by the in-degree
of this sub component. The UniSwitch turned out to be very useful as it enables constructing components
that mimic a for loop.

Let us use these components to build the MIN component without wires. As shown in Figure 3, this
component has a BinaryMIN circuit at the root, and a UniSwitch containing BinaryMIN at each layer,
except the base, which is a Switch containing two sub components: a UniSwitch and a component called
a Map. The map requires almost no memory as it contains nothing inside. When it receives input on port
i, it simply outputs it on port m(j), where m is the function implemented by the map (the identity in this
case). The map is used here to pass the signal one level up in case that the tree is not perfect. Notice that
all the components reside inside a Switch whose input layer is the base layer.

Having built MIN, let us revisit the java statement Component c = new MIN(N, arity), which motivated
all the new components in the second version. This statement no longer creates millions of wires. However,
since all the BinaryMIN circuits are made of wires and gates, the MIN circuit still requires an unacceptable
amount of memory.

Third version. The third version of the component module introduced the Bus. If VMCrypt has one
most important module, the bus would be it. The bus has a very simple task: it counts the number of
signals leaving the component. When this number reaches zero, the bus invokes the destruct method of
the component. This removes the component from memory. All VMCrypt components have a bus, except
for gates, which self destruct.

Clearly, there is no point in having a bus if the entire component resides in memory; the bus has a value
only if components are built after their instantiation. Thus, all VMCrypt components (except gates) build
when they receive their first signal, and destruct immediately when they output their last signal. We call
this the notification principle. To see the power of this principle, notice that even when a component is
built, its sub components will not be built until they receive input, and this of course applies recursively.
Consequently, VMCrpyt components have a very lean memory footprint.
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Let us see how much memory the MIN component from Figure 3 requires now. The first signal will build
the base layer, which contains two components, but only the UniSwitch will build because the Map received
no signal yet (assuming the signal is from the leftmost position). Inside the UniSwitch, only the leftmost
BinaryMIN circuit is built because the other ones received no inputs yet. Because the BinaryMIN is also built
from sub components, only those that receive this signal will be built, and so on. Eventually, the signal will
hit a gate, who will store it and wait for the other signal (assuming a binary gate). When this signal arrives,
the gate computes, destructs, notifies its output wire, and the process continues. When the BinaryMIN fires
its last output, it is destructed by its bus. In the case of a UniSwitch, even the reference to this object is
removed from memory. Hence, the UniSwitch from the base layer becomes empty. Since each layer notifies
the one above it, the Switch, which contains all these layers, requires log(N) references to components of
type UniSwitch that are either empty or contain one BinaryMIN. This is not a flaw in VMCrypt, but rather a
consequence of the underlying recursive algorithm we are using. To further improve the notification process
we added a Buffer to components of type Circuit. The buffer will build the circuit and flush only after
all signals have arrived. Overall, this reduces the amount of time components (both inside and outside the
circuit) reside in memory as well as the number of these components.

The notification principle confronted us with the following problem. Consider the MIN circuit from
Figure 2 c. The BinaryMin circuits (Figure 2 b) that make up this circuit take a carry bit (either 0 or 1)
as input. Thus, the moment this value becomes available, all of them will be notified and hence built. The
amount of memory required for this build is like having the entire MIN circuit in memory, which is clearly
unacceptable. In our component for set intersection we faced the same problem. There, we have multiple
copies of a sub component for set membership, and all of them are notified with the same set. The core of
this problem is that ports cannot decide when to receive their notification.

Fourth version. The fourth version introduces pulling and pushing ports. A component with a pulling
port does not need to be connected to another component in order to receive its signals. Instead, it pulls
them from a global pulling-pushing table, called PTable.

The most important aspect of pulling ports is that they can control when they want to be notified. For
example, in the scenario mentioned above with the MIN circuit (Figure 2 c), the BinaryMin circuits will not
build when the carry bit becomes available. Instead, they decide when to pull this value from the table. Of
course, pulling is useless without pushing and therefore any output port can push a value into the table. In
the MIN circuit scenario, for example, the carry bit will be initially pushed into the table, and components
will pull it from the table.

The table presents several design challenges. Consider, for example, a component that has only pulling
ports (we call it a pulling component). According to the notification principle, this component will never
get notified and hence never built. The question is therefore who will notify this component and when. We
decided that this will be specified by the enclosing component. That is, a component will specify its pulling
ports, pulling sub components, and a counter. The component will increase its counter on each notification.
When the counter reaches the in-degree of the component, all pulling ports and pulling sub-components will
be notified. Thus, pulling can occur before, after, or while the component is receiving notifications. There
is another issue. Recall that the role of the bus is to destruct a component once the component fired its last
output. If some signals go to the PTable instead, the bus would not know about them and therefore never
destruct the component. This problem has a recursive nature because components are nested. To overcome
this issue we decided that such pushing signals will continue to notify buses, but components will ignore
them.

We did not conceive situations where a port pulls a value that has not been pushed yet, but to allow
this flexibility the table stores references to components making such requests and notifies them as soon
as the value becomes available. We decided that only components (but no other object) will push values
into the table. This allows developers to exchange components with the guarantee that pulling and pushing
information is built into the component.

To see how a PTable works in practice, consider the VMCrypt component for set intersection from
Figure 4. Intuitively, this component pushes the set X = {x1, . . . , xm−1} of the server into the table, and
then each yi from the client set Y = {y1, . . . , yn} is tested for membership in X by pulling X from the table.
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Figure 4: The set intersection component implemented in VMCrypt.

In detail, the component contains two sub components of type UniSwitch. The first UniSwitch pushes X
into the table using m copies of the identity map (recall that only components can push, and in this case
the map is the most efficient way to do it). The second UniSwitch contains n copies of a Switch for set
membership. This Switch contains three sub components. The first is a map that pushes yi into row m
of the table. The second is a UniSwitch that contains m copies of the equality component EQ (of type
Circuit). The j-th EQ circuit pulls to its leftmost ports the value stored in the table at row m (initially y0)
and to its rightmost ports the value stored in the table at row j (which is xj). That is, it checks whether yi
and xj are equal. Thus, the UniSwitch containing the EQ circuits outputs a sequence of m bits that are all
0 if and only if yi /∈ X. Because this output is fed into an OR component (of type Circuit), the i-th Switch

for set membership will output 1 if and only if yi ∈ X.
How much memory did the PTable save? Suppose that we compute set intersection on databases of size

N = 1, 000, 000 and that for efficiency we hash set elements into 20 byte strings (that is, arity = 160 bits).
This requires N(N ∗arity)+N ∗arity wires. The minimum memory cost for a wire is 8 bytes (a reference to
the wire plus a reference in the wire itself). Thus, we would need a fantastic amount of 320 terabytes RAM.

Let us examine what happens in memory when the set intersection component computes. The component
is first notified with the bits of x0 and therefore only the Map exists fully in memory. There is nothing inside
the map, but notice that now we also need to store information about which ports are pushing. Since all
ports are pushing, this requires an array of size arity, which is the bit length of set elements. Once the map
fires its last signal it is destructed by its bus and the UniSwitch in which this map resided becomes empty
again. This repeats until x0, . . . , xm−1 are pushed. Now the table contains the entire set X. This is not a
flaw in VMCrypt; it is a consequence of the underlying algorithm we are using for set intersection. Next,
we notify the component with the bits of y0. As before, this causes the map to build and push y0 into the
table. After the map destructs, the UniSwitch containing the EQ circuit is built. Next, the first equality
circuit builds, computes, destructs, and the UniSwitch containing it becomes empty again. The output of
the EQ notifies the OR component. Since the OR was implemented as a circuit and circuits have a buffer, the
output of EQ is stored in this buffer and the OR is not built yet. After the last EQ circuit produces its output,
the UniSwitch containing the EQ destructs and the buffer of the OR is full. This causes the buffer to build
the OR and flush all the signals into it. The OR computes, destructs, and sends its output to its enclosing
component, the Switch. Since the out-degree of the Switch is also 1, it also destructs. Now we are at the
same state as in the beginning because all the components inside the set intersection component are empty.
This entire process repeats with y1, . . . , yn−1, and finally the set intersection component destructs.

4 How to Build a Component

In this section we show how to build and test components in VMCrypt. Readers without previous experience
in software libraries may find this section technical, even if they are familiar with Java and object oriented
programming.

We start with an overview of the component hierarchy (Figure 5). The root of this hierarchy is
BaseComponent. Objects of this class have an ID, which is a pair of integers (depth,index). The only
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Figure 5: Class hierarchy of components.

role of the ID is in testing (to be described later). Class Gate is extended by two classes: BinaryGate

for binary gates and UniGate for unary gates. All gates receive their type (e.g., XOR, OR, NOT) during
instantiation, and their output wire (initially empty) is also created during instantiation. The classes Map,
UniSwitch, Switch and Circuit are derived from Component. The main difference between a Component

and Gate is that the former has a Bus, which also implies that it is built only when notified, whereas the
later has an output wire and is built when instantiated.

Components are created in VMCrypt by writing a new Java class. Thus, to create a new component we
need to consider what sub class of Component we will extend, and what sub components our new component
will contain. Notice that we can also add new building blocks to VMCrypt by deriving directly from
Component, whereas in Fairplay the language is final and cannot be extended.

4.1 Class Map

The easiest components to create are from class Map. Such components only need to implement abstract
method map, which maps one port to another. As an example, the code for the identity map is as follows:

class IDMap extends Map {
IDMap(Bus bus, int inDegree) {
super(bus, inDegree);

}
int map(int port) {
return port;

}
public String name() {
return "IDMap";

}
}

The name method returns the name of the component and is used only for testing purposes. We must
implement this method in any component we create because, in VMCrypt, any class that can be notified
(such as BaseComponent) implements interface Notifiable, and this interface requires that two methods be
implemented: notify (which handles notifications and is already implemented in Component) and name.

Our IDMap is very simple. It implements an identity map and does not add new data members to Map. We
could, for example, implement a map from inputs of the form x1, y1, . . . , xn, yn to x1, x2, . . . , xn, y1, y2, . . . , yn,
in which case we would add n as a data member of IDMap and pass it during construction.

The constructor of IDMap takes two arguments which are passed to its super class (class Map). Like all
sub classes of Component, the constructor of Map will pass three arguments to the constructor of Component:
inDegree, outDegree and a bus. Those are data members of Component. In the case of Map, the value of
inDegree is passed both as inDegree and outDegree, which is why our constructor for IDMap only takes
inDegree as an argument. This completes the description of IDMap and we now describe class Component
in more detail.
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4.2 Class Component

The most important data member of Component is the bus. We illustrate the role of the bus using the
minimum component (Figure 3). The base layer of this component is a Switch with two sub components:
a UniSwitch and an IDMap. Figure 6 shows this Switch with its two subcomponents (the BinaryMIN inside
the UniSwitch are not shown). Each component has a Bus shown as a grey rectangle. As we mentioned
above, all sub classes of Component must pass to the constructor of Component an instance of class Bus. This
instance stores a reference (called out) to a notifiable object that will receive the output of the component.
In the case of the minimum circuit, for example, we first instantiate the layer above the base layer (call it
L), then we create a new bus that will point at it by writing Bus bus = new Bus(L), and finally we invoke
the constructor of the Switch with bus as argument. This bus is shown in Figure 6 at the top left corner
of the Switch. In addition to directing the output, the bus is responsible for destructing a component once
it has fired its last signal. For this, the bus maintains a counter. The only role of the outDegree variable
is to set this counter. Consider now the sub components of the Switch. Their output is intended to L, yet
their busses point at the bus of the Switch. Why? because the bus of the Switch must be able to count all
the signals leaving the component. If some signals are missing, then it will never destruct the Switch. The
conclusion is that no sub component should have its bus pointing outside its enclosing component. Needless
to say, each component we instantiate should have its own new bus.

Let us see how the bus works in practice. Suppose that the first signal the Switch from Figure 6 receives
is on port 0. It will pass it to the UniSwitch, who will process it and fire a new signal on, say, port 0. If
the outDegree of the UniSwitch is, say, 8, then the counter in the bus of the UniSwitch is now 8− 1 = 7.
Similarly, if the outDegree of the Switch is, say, 16, then the bus of the Switch updates its counter to
16− 1 = 15. Of course, it also passes the signal from the UniSwitch out (to the layer above), on the same
port it was received, which is 0. The type of bus that we use in the UniSwitch would not work in the IDMap.
To see why, consider what happens when the Switch routes signals to the IDMap. Suppose that the inDegree
of the UniSwitch is 16 and that the Switch receives a signal on port 16. Since 16 does not fall in the range
0 − 15, the Switch will pass it to the IDMap on port 16 − 16 = 0. Since the map is the identity function,
the bus of the IDMap will pass this signal to the bus of the Switch on port 0, which will override outputs of
the UniSwitch. Thus, when we instantiate the IDMap, we pass to it an OffsetBus, which offsets the port.
In this scenario we want the output of the IDMap appearing immediately to the right of the output of the
UniSwitch, and since the outDegree of the UniSwitch is 8, we instantiate this bus by writing OffsetBus

offsetBus = new OffsetBus(bus, 8), where bus is the bus of the Switch. Any output of the IDMap on port
i will now be given to the bus of the Switch on port 8 + i.

In the preceding discussion we covered the role of outDegree and the Bus. The variable inDegree is
different in that its role depends on the component and the sub component. We examine this role for each
sub class of Component. In a Map, the inDegree and outDegree are always the same, but inDegree is
never used. Similarly, Switch and UniSwitch never use their own inDegree. However, the Switch uses
the inDegree of its sub components for routing. This is why all classes derived from BaseComponent have
an inDegree() method. For modularity, we do not force the UniSwitch to use the inDegree of its sub
components for routing. Instead, it takes two parameters: inputTab and outputTab. When a signal is
received on port i, it is given to the sub component at index index = ⌊i/inputTab⌋. If this sub component
outputs a signal on port j, then the bus of the UniSwitch will output it on port index∗outputTab+j. Class
Circuit is the only component that uses its inDegree: when a circuit is built, it instantiates inDegree

objects of class Wire and stores them in an array of size inDegree.

4.3 Class Circuit

Class Circuit is the only component with input wires. Like in a Switch, the sub components of Circuit
can be of any type derived from BaseComponent. To create a circuit in VMCrypt, we need to implement
two methods: one that instantiates sub components and another that connects them. As an example, we
implement the bit multiplexer from Figure 2 a. The skeleton of our class is:

class BitMUX extends Circuit<BinaryGate> {
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Figure 6: The role of the Bus.

BitMUX(Bus bus) {
super(bus, 3,1);

}
public String name() {
return "BitMUX";

}
}

The numbers 3 and 1 are the inDegree and outDegree of the component, respectively, and as mentioned
before the name method is mandatory. Class Circuit has an array called components. The elements of this
array can have different types, but in this case they are all binary gates, hence the generic BinaryGate in
the definition of the class. Instead of referring to the i-th sub component as component[i], we name the
gates of the BitMUX from bottom to top as XOR1,AND and XOR2 and define them as data members. That is,
we add to BitMUX the line

public static final int XOR1 = 0;

This allows us to refer to the first component as components[XOR1] instead of components[0]. Using
the same principle we define AND as 1 and XOR2 as 2. Now we are ready to write the BitMUX method that
defines sub components:

void define sub components(){
components = new BinaryGate[3];

components[XOR1]= new BinaryGate(

BinaryGate.Type.XOR);

components[XOR2]= new BinaryGate(

BinaryGate.Type.XOR);

components[AND]= new BinaryGate(

BinaryGate.Type.AND);

}

This method will be called when the circuit receives its first input. After this method completes, class
Circuit will initialize its inputWires array to size inDegree (which is 3 in our case), create empty wires,
and invoke the method that connects them. Before implementing this method, we name the input and
output wires of the BitMUX, just like we did with gates. That is, we define X,Y,C and OUTPUT as constants
0, 1, 2 and 0, respectively. Now we connect the wires:

void connect wires() {
inputWires[X].connectTo(components[XOR1],

BinaryGate.LEFT);

inputWires[X].connectTo(components[XOR2],
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BinaryGate.LEFT);

inputWires[Y].connectTo(components[XOR1],
BinaryGate.RIGHT);

inputWires[C].connectTo(components[AND],
BinaryGate.RIGHT);

components[XOR1].connectTo(components[AND],
BinaryGate.LEFT);

components[AND].connectTo(components[XOR2],
BinaryGate.RIGHT);

components[XOR2].connectTo(bus,OUTPUT)
}

The connectTo method takes a reference to a Notifiable object, such as a component or a bus, and
an integer port (the variables LEFT and RIGHT represent ports 0 and 1, respectively). This pair, called a
socket, is stored in class Socket. Class Wire is simply a Java Vector of sockets. Applying connectTo to a
wire adds a socket to the vector, and applying connectTo to a gate invokes connectTo on its output wire.

Once building blocks like BitMUX are built, higher level circuits can be built more easily. For example,
our MUX on strings of length arity instantiates arity elements of BitMUX in define sub components(), and
connects their input and output wires in connect wires().

4.4 Classes Switch and UniSwitch

Now we show how to create a Switch. As an example, we will implement an equality multiplexer (Figure 7).
This component, used in our database search component, is called an EQMUX. It takes two pairs: the first
pair ⟨x, x′⟩ is fed into a component for equality testing and the second pair ⟨y, y′⟩ is fed into a multiplexer.
If x = x′, then the EQMUX outputs y, and otherwise it outputs y′. Just like class Circuit, class Switch

has an array components that holds its components. It also has an array inputComponents for specifying
the input receiving components. In this case the two arrays are equal, but there are examples like the
minimum component (Figure 3) where this is not the case. Because we have already seen how to implement
a constructor and a name method, we only specify sub components:

void define sub components() {
Bus b1 = new Bus(bus);

MUX mux = new MUX(b1, MUXarity);
OffsetBus b0 = new OffsetBus(mux,

mux.CHOICE);

EQ eq = new EQ(b0, EQarity);
components = new Component[] {EQ, MUX};
inputComponents = components;

}

The variables EQarity and MUXarity are data members of EQMUX. They denote the bit length of inputs
to the EQ and the MUX, respectively. The output of EQ is one bit fired on port 0. Since this output needs to
be given to the MUX on the port that defines the choice bit, we use an offset bus. Having defined the location
of this port in MUX as CHOICE, the offset bus can refer to it in a modular fashion, without knowing that the
port is at the rightmost position.

Now we create the UniSwitch that contains the EQ circuits in the set intersection component (Figure 4).
Recall that, unlike a Switch, a UniSwitch can contain sub components of only one type and there is no
array to hold them. Instead, a balanced binary tree (Java TreeMap) holds sub components sorted by their
index. This allows routing in O(log(n)) time, where n is the number of sub components currently residing
in the UniSwitch. Sub components of a UniSwitch are unique in that they have a DynamicBus that not
only destructs them when they are done computing, but also removes them from the TreeMap. In all of our
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Figure 7: An equality multiplexer.

experiments we never had inside the UniSwitch more than one sub component at a time. This reduces the
UniSwitch cost of routing and memory to O(1). Consequently, our database component uses a constant
amount of memory, regardless of the database size. The code below implements the method that builds the
sub component. As before, we skip the constructor or the name method of the UniSwitch. The method
setInfo prepares the information for pulling wires, and will be described shortly.

EQ construct sub component(

DynamicBus dynamicBus, int index) {
EQ eq = new EQ(dynamicBus, arity);

eq.info = setInfo(index);

return eq;

}

The variable arity denotes the bit length of strings compared by EQ. Since the UniSwitch already
prepared a DynamicBus for us, all that is left is to instantiate the EQ with this bus, set information about
pulling wires, and return the EQ object back to the UniSwitch, who will add it to its TreeMap.

The function setInfo takes the index of the sub component from the UniSwitch. It creates information
about pulling wires based on this index and stores it in info, which is a data member of Component.
Notice that setInfo is not a member of UniSwitch, but rather it belongs to the class that we are creating
by extending UniSwitch. The variable info is of type ExtraInfo. The reason for this name was to
accommodate future information that developers may want to add to components. The method setInfo

therefore instantiates a new instance of ExtraInfo and sets its data member pullingPorts to an array of
pulling ports. Elements of this array are of type PTableSocket and contain three integers: port number, table
row, and table column. Initiating, for example, pullingPorts as an array {new PTableSocket(p,i,j)}
will make the component pull into port p the value stored in the table at row i and column j. Recall that
components control when their ports pull. In this case, all ports of EQ are pulling (it is a pulling component).
Since it will not be notified with a value, it receives only one pulling notification from its enclosing component.
Method setInfo must set upCounter (which is another data member of ExtraInfo) to the inDegree of
EQ minus 1. This is because pulling occurs if and only if upCounter equals inDegree. Thus, once the EQ

receives its pulling notification, it will increment upCounter and immediately pull all of its ports.

4.5 Classes TestModule and Monitor

Once a component has been written, it can be tested for correctness with class TestModule. This class
creates an instance of StandardInput. It notifies the component with bits from this input and the function
Calculate. This causes the component to calculate and the output to be directed to an object of class
StandardOutput. The test module enumerates over all possible inputs. If the component implements
interface Testable, then it can be automatically tested for correctness. Notice that, unlike Fairplay, there
is no need to run the full secure protocol to test the function for correctness.

VMCrypt goes beyond testing. It provides class Monitor as a tool for visualizing the execution of
VMCrypt modules. This allows developers to see what is happening inside components and protocols in
real time. Modules report events by calling monitor method report. They pass the event itself and a string
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Figure 8: Running time of secure database search.

that includes values of relevant variables. Events are implemented in two Java enum classes. Component
events, defined in class ComponentEvent, describe 18 events that occur inside components. These include
construction, destruction, reception and sending of signals, pulling and pushing, component output, and so
on. Protocol events, defined in class ProtocolEvent, describe 13 protocol related events, such as protocol
start and finish, lookup tables sent and received, etc.

As mentioned, components have an ID, which is a pair of integers (depth,index). When sub components
are built, they are assigned depth that is one higher than their enclosing component, and a unique index

within this component. The monitor displays this ID alongside reports it receives from components.
Developers can add events or create new classes of events. Also, they can configure the monitor, e.g., to

display only certain events, or only show events below or above a certain depth. Setting MONITOR=false in
class Monitor disables monitoring.

5 Performance

In this section we analyze the performance of VMCrypt. All tests were executed on a Thinkpad X301
laptop with 3 GB RAM and a 1.6 GHz Intel Core2 Duo processor running Ubuntu Linux. The Java Virtual
Machine (JVM) was run as is, without special arguments. Parties communicated through the loopback
network interface. Encryption was implemented with SHA-1 modeled as a random oracle, and wire label
length was 120 bits. Our conclusions are given in Section 6.

We start with the database search function. The input to this function is an array of records ⟨xi, pi⟩ and
a string y, where xi and pi are viewed as columns in a database table. The output is all pi for which xi = y.
The component for this function is implemented in VMCrypt as class DBSearch. In the original Fairplay
paper [19] it was implemented under the name Keyed Database Search (KDS).

Since Fairplay circuit parameters are passed at compile time, the compiler must be run in each execution.
Thus, we compared the performance of our full protocol with that of the Fairplay compiler [19] alone (ignoring
the time and memory it takes to actually execute the Fairplay protocol). Since the time and memory
complexity of the Fairplay compiler are not reported in the literature, we carried our own test on a table
where the length of each of xi, pi and y is 20 bits. When the table size is N = 20 records, the compiler runs
for 10 seconds. When N = 40 the running time is 50 seconds. Obviously, this is not linear. When N = 55
the compiler runs for 3 minutes and then crashes with a Java Out Of Memory Error. In the case of N = 40,
memory consumption climbs gradually to 23% of the RAM. When N = 55, it reaches 26%.

In VMCrypt, when N = 10, 000 the running time of the secure database search protocol is 19 seconds.
Figure 8 describes the running time (in minutes) and communication complexity for values of N up to 1
million. The component with 1 million records has 100 million gates and 60 million lookup tables (the
number of non-XOR gates).

We discuss Figure 8 and other statistics. First and foremost, although the full hardware description
of the circuit for database search is linear in N , the client and the server each used the same amount of
memory, namely, 4.8% RAM. Secondly, the running time is linear in the database size. This was not the
case with earlier versions of VMCrypt, and therefore should not be taken for granted (see discussion in
Section 3). Thirdly, the very large amounts of data sent confirm that parallelizing Yao’s protocol yields
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significant savings on disk read and writes. Finally, 84% of the running time was consumed by cryptographic
operations and communication. This means that VMCrypt overhead was only 16% (this was measured by
calculating the component). Unfortunately, we could not compare this overhead to that of existing garbling
algorithms as such statistics are not provided in the literature.

Our next test was the minimum component, implemented in VMCrypt as class MIN (Figure 3). This
component takes N integers (of length 20 bits each) and outputs their minimum. In our experiment, half
of the integers belong to the client and half belong to the server. We remark that, in practice, parties will
have shares of the integers, and the function would first add the shares and then find the minimum.

The running time (in minutes) and communication complexity of the protocol for secure minimum are
given in Figure 9. These are linear in N because, as with the DBSearch component, the underlying (non-
secure) algorithm runs in linear time. On average, parties used 5% of the memory (independently of N),
and VMCrypt overhead was 10%. Notice that the running time is almost double that of the DBSearch

component. This is because half of the inputs required oblivious transfer, and the number of lookup tables
was almost double (the MIN component with 1 million inputs had 110 million gates and 90 million lookup
tables).

Our last test was the set intersection component, implemented as class SetIntersection (Figure 4).
This component takes two sets of size N and M , and outputs their intersection. We fixed the bit length of
set elements to 20 bits. To simplify the presentation we chose N = M . The running time (in minutes) and
communication complexity of the protocol for secure set intersection are given in Figure 10.

Notice that, unlike previous tests, the size of the set intersection component is quadratic in N due to the
underlying (non-secure) algorithm it implements. For comparability with previous tests, we chose values of
N ranging from 158 to 1581. Thus, when N = 158 we have N2 ∼= 104 and the component has 1 million
gates and 0.5 million lookup tables. Similarly, when N = 1581 we have N2 ∼= 106 and the component has
100 million gates and 50 million lookup tables. On average, parties used 5% of the memory (independently
of N), and VMCrypt overhead was 15%.

6 Conclusion

The original objective behind VMCrypt was to provide a software library for secure computation. Such
library would enable developers to integrate garbled circuits in any application with minimal effort. This
project has gone far beyond this point. We have executed secure computation protocols on circuits with
hundreds of millions of gates. We carried our tests on different circuits with different characteristics. These
tests consistently showed that VMCrypt components use very little memory while at the same time retaining
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a running time that is linear in the number of gates.
VMCrypt provides a rich toolkit for creating, debugging, and tracking components. These components

are Java class files that are compiled once and for all. They can be instantiated and parameterized at run
time. This allows secure computation protocols to be run on the fly, without an expensive pre computation
phase. Streaming the garbled circuit eliminated storage and disk access costs. As our tests show, these
improvements lead to scalability and outstanding performance.
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