
L1 - An Intermediate Language for Mixed-Protocol
Secure Computation

Axel Schröpfer
SAP Research

Karlsruhe, Germany
Email: axel.schroepfer@sap.com

Florian Kerschbaum
SAP Research

Karlsruhe, Germany
Email: florian.kerschbaum@sap.com

Günter Müller
Universität Freiburg, IIG

Freiburg, Germany
Email: guenter.mueller@iig.uni-freiburg.de

Abstract—Secure Computation (SC) enables secure distributed
computation of arbitrary functions of private inputs. It has
many useful applications, e.g. benchmarking or auctions. Several
general protocols for SC have been proposed and recently been
implemented in a number of compilers and frameworks. These
compilers or frameworks implement one general SC protocol
and then require the programmer to implement the function he
wants the protocol to compute.

Performance remains a challenge for this approach and it
has been realized early on that special protocols for important
problems can deliver superior performance.

In this paper we propose a new intermediate language (L1)
for optimizing SC compilers which enables efficient implemen-
tation of special protocols potentially mixing several general SC
protocols.

We show by three case studies – one for computation of the
median, one for weighted average, one for division – that special
protocols and mixed-protocol implementations in our language
L1 can lead to superior performance. Moreover, we show that
only a combined view on algorithm and cryptographic protocol
can discover SCs with best run-time performance.

Index Terms—Multi-party Computation, Compiler

I. INTRODUCTION

Secure Computation (SC) allows a set of n players Pi to
jointly compute an arbitrary function f() of their private inputs
xi (i.e. Pi has xi): f(x1, . . . , xn). The computation is privacy-
preserving, i.e. it reveals nothing to a player except what can
be inferred by his private input and the output of the function.
It has many useful applications, e.g. benchmarking [20], [22]
and auctions [6].

Even if there are adversarial players, the guarantees for
correctness and privacy can be proven to hold in well stated
models. These models consider the type of adversary, ac-
tive (malicious) or passive (semi-honest), and his computing
power, bounded or unbounded. A passive adversary follows the
protocol as prescribed but tries to learn additional information,
while an active adversary may arbitrarily deviate from the
protocol.

We distinguish two-party and multi-party (more than two)
SC. The first general protocol for two-party SC was presented
in [34]. It also defined the approach underlying all general SC
protocols. First, the function to be computed is translated into
a circuit. Second, each gate of the circuit is implemented using
a secure protocol. Two types of gates – multiplication (logical

and) and addition (exclusive-or) – suffice to compute any func-
tion. This approach reduces constructing a general SC protocol
to two protocols implementing these two types of gates. For
multi-party SC in the cryptographic model (computationally
bounded adversary) with binary circuits this has been solved
in [17]. For multi-party SC in the information-theoretic model
(unbounded adversary) with arithmetic circuits this has been
solved in [5]. Both protocols need to be run interactively, i.e.
the number of rounds corresponds to the multiplicative depth
of the circuit. Multi-party SC in the cryptographic model has
been improved to a constant number of rounds in [3].

Another useful tool for SC is homomorphic encryption
(HE), e.g. [12], [15], [28]. In HE one operation on the cipher-
text maps to another operation on the plaintexts. Recently [15]
it was shown that this can be performed for logical not-and
gates which also suffice to compute any function. Threshold
HE (for only addition) can be used to implement multi-party
SC in the cryptographic model [11]. Also two-party SC can
be implemented using HE by adapting the protocol from [16].

In a seminal paper – FairPlay [26] – Malkhi et al. build
on the general approach for SC by building a compiler that
translates the function specified in a programming language
into a circuit. This circuit is then executed using a general SC
protocol. In [26] the general protocol was [34]. Later others
followed: [33] for [10], [31] for [5], and [4] for [3].

A critical aspect of SC remains performance. Even opti-
mized protocols report a slowdown of several tens of thousand
compared to non-privacy-preserving implementation [22]. It
has been realized early on that special protocols for important
problems can provide better performance [18]. Yet these
protocols are not supported in existing SC compilers and
frameworks.

This paper contributes
• an intermediate language (L1) which can implement

special SC protocols. It currently supports general SC
protocols [34], [5], [11] and HE [12], [28], but it is
also easily extensible to other protocols and encryption
schemes.

• a compiler backend that translates L1 into interacting Java
programs.

• a simple compiler frontend for specifying L1 in its own
syntax.

• a benchmarking framework built into the language and

compiler that supports measuring SC protocols.
• three case studies: one for computation of the median

which supports that special SC protocols can be faster
than general SC protocols, one for weighted average
which supports that mixing general SC protocols can be
faster than a single general SC protocol and one dis-
covering the fastest combination of algorithm and cryp-
tographic protocol for secure division cross-combining
two division algorithms and two secure computation
protocols.

The remainder of the paper is structured as follows: Section II
reviews related work, in particular other compilers and frame-
works for SC. Section III describes the L1 language, compiler
and benchmarking framework. We present the case studies in
Section IV and our conclusions in Section V.

II. RELATED WORK

A. FairPlay

FairPlay [26] was the first compiler implementing SC. It
implements Yao’s two-party SC [34]. It provides a simple
programming language for specifying the function to be com-
puted. There are some restrictions on this function, such as
no variable number of iterations in loops and no recursion.
The language provides arrays and variable indexing into arrays
which is reported as one of the most complex functions [34].
The compiler translates this language into a circuit which is
then executed in Yao’s protocol.

The language (SFDL) introduces some of the basic concepts
for languages for SMC, such as input and output definition for
variables.

B. FairPlayMP

FairPlayMP extends FairPlay to the multi-party setting. It
is based on the protocol of [3] which is also an extension
of [34] to the multi-party setting. Some code, e.g. in the
compiler of the language to the circuit can therefore be shared.
The interpretation of the circuit has to completely change, of
course. FairPlayMP includes a novel preprocessing phase in
order to reduce the communication overhead.

It also implements a popular concept in multi-party SC.
Not all parties need to participate equally in the computation.
Instead one can separate input, computation and output nodes.
As long as there are sufficiently many computation nodes
(usually at least three) the computation remains secure, but
communication cost has been significantly reduced.

Its programming language includes some necessary exten-
sion for multi-party problems and some additional operators.

C. Virtual Ideal Functionality Framework

VIFF [33] is the basis for the first commercial application
of SC [6]. It implements multi-party SC in the information-
theoretic model [10]. It does not yet provide a high-level
programming language for the functionality. Instead it extends
the Python language to use operators on the basic data types.
It implements the basic protocols for [10] as objects.

Fig. 1. Translation process from L1 source to executable program

A high-level language (SMCL) for VIFF has been specified
in [27]. It extends FairPlay’s language by some features such
as loops with public number of iterations and allows security
analysis similar to information flow analysis. For this purpose
it tags all variables in a lattice as either secret, private or public.

D. Sharemind

Sharemind [31] is a framework built for experimenting with
privacy-preserving data mining. It implements the SC protocol
from [5]. It has been optimized for speed of simple operations,
such as vector products. It therefore offers vectorized opera-
tions.

It is currently being extended with a programming language
(SecreC) for specifying the function to be computed.

E. TASTY

Next to these implementations of one SC protocol, imple-
mentations of mixed protocols have emerged. These combine
several protocols, such as garbled circuits and homomorphic
encryption. The authors of [19] present a tool which allows
to express a computation whose segments are translated in
either GC or HE based sub-protocols. The work evaluates an
exemplary SC and shows the performance improvement gained
by mixing techniques.

III. L1 LANGUAGE

The L1 language was designed to represent specialized SC
protocols potentially mixing techniques from multiple general
SC protocols. We expect this mix to enable significantly
more efficient SC protocols as shown in our case studies in
Section IV.

We have built a compiler backend that translates a SC
protocol encoded in L1 into a set of interacting Java programs
– one for each player in the protocol. The players can then
compile and execute the Java program in order to run the
protocol programmed in L1, as depicted in Figure 1.

A. Design Principles

The purpose of the L1 language is twofold. First, it is
supposed to be used as intermediate language by an optimizing
compiler for SC. It therefore has to have the expressive power
for a wide range of SCs. It also must be translatable into
efficient code at each party’s site. We have implemented a
compiler back-end for this purpose and show in a number
of case studies (Section IV) that the performance of our

implementation significantly surpasses that of general SC
compilers.

Second, we have used L1 to implement a variety of –
even large-scale – secure computations. For example, we have
implemented secure linear programming [32] using L1. In
order to make this task acceptable to the programmer a L1
syntax has to be sufficiently easy to use. It has to abstract tasks
not directly relevant to the SC, such as network programming.
We have implemented a simple compiler front-end for this
purpose and describe its syntax next (Section III-B).

An optimizing compiler for SC proceeds in several steps.
As input it receives a specification of the functionality f to be
computed. As output it produces code to be run at a player’s
site. The intermediate language sits in between and must help
bridge the semantic gap between these two approaches.

We made two fundamental design choices. First, we rep-
resent the entire functionality in the intermediate language,
i.e. we do not yet divide it into player-specific, interacting
programs. Yet, we do represent network communication by
primitives. This choice was made to later enable optimizations
and security verifications on the entire program using L1
as an intermediate language. Such analyses are significantly
complicated when considering interacting programs.

Second, we allow modularization of the functionality. Large
SC are often iteratively composed of smaller sub-protocols. We
intend to allow re-use of already programmed sub-protocols,
e.g. in a library.

In the next section we describe the constructs of L1 by
describing the syntax features of L1.

B. Syntax

Since many, if not most, programmers are familiar with Java
or C, we chose our syntax similar to these languages in order
to reduce the initial burden of adoption. We reduced the set of
language constructs to the essential needs for implementing SC
protocols. It is important for us to be able to implement SC
protocols quickly and efficiently by providing the necessary
language constructs, but avoid too much “syntactic sugar” in
order to keep language and compiler maintainable. The L1
language contains the following constructs

• variables of different data types (bool, int32, int, string,
prvk, pubk) in different composites (scalar, 1-dimensional
and 2-dimensional array),

• expressions (assignments and operators),
• control flow (if, while, for, sequential and parallel execu-

tion, player-specific code),
• functions (user-defined and built-in),
• modules (include).

Listing 1 shows a sample of L1 source code demonstrating
all constructs of the language.

C. Variables and Data Types

L1 supports variables of various basic data types. Fur-
thermore L1 supports composites of a basic data type; in
particular are supported: scalar (single value), 1-dimensional
array (vector) and 2-dimensional array (matrix). The following

1 / / m o d u l e s
2 i n c l u d e ” key . l 1 ” ;
3
4 / / s e l f d e f i n e d f u n c t i o n s
5 i n t newHash (i n t v a l u e) {
6 i n t hash ;
7 . . .
8 r e t u r n hash ;
9 }

10
11 / / v a r i a b l e s
12 i n t hash ;
13
14 / / a s s i g n m e n t w i t h e x p r e s s i o n
15 i n t s a l t = r and (1 0 0 0) + 1 ;
16
17 / / p l a y e r d e p e n d e n t s t a t e m e n t
18 1: {
19 / / f u n c t i o n c a l l
20 startBenchmark (” hash ”) ;
21 hash = newHash (s a l t) ;
22 stopBenchmark (” hash ”) ;
23
24 / / m e s s a g e s e n d i n g (n o n − b l o c k i n g)
25 send (2 , hash , ” h a s h v a l u e f r o m ”+ id ()) ;
26 }
27
28 / / m e s s a g e r e c e i v i n g (b l o c k i n g)
29 2 : readInt (” h a s h va lu e f r om 1 ”) ;
30
31 i f (hash%2 == 0)
32 o u t p u t (” odd hash : ”+ hash) ;
33
34 / / f o r − l o o p
35 f o r (i n t 3 2 i =0; i <200; i = i +1) <
36 / / p a r a l l e l e x e c u t i o n
37 . . .
38 >
39
40 / / w h i l e − l o o p
41 w h i l e (c o n d i t i o n) {
42 . . .
43 }

Listing 1. L1 sample

basic data types are supported: bool, int32, string, int, prvk,
pubk. bool and int32 are the 1 and signed 32 bit integers as
known from Java and many other programming languages. We
have implemented the true and false keywords for Boolean
variables. string is a built-in basic data type that behaves like
Java String objects, i.e. a variable length array of characters.

1) int: SC has to uses of integers: within the (securely)
computed function and as building blocks of that computation.
For integers used in the function, such as for array access,
counters or arithmetic computations, 32 bits are usually suffi-
cient. The compiler translates int32 into the Java native data
type int (or its wrapper class if necessary). Operations on
native data types are comparatively fast, since they can be
translated into operations on CPU registers.

For integers used as building blocks in the computation,
such as secret shares or ciphertexts, 32 bits are rarely sufficient.
Using the example for secure linear programming [32], secret
shares [30] can extend to several hundred bits in length. The
bit length of cryptographic keys and ciphertexts is lower bound
by computationally difficult problems [25]. We therefore im-

plement the data type int of variable bit length integers for
multi-precision arithmetic. We use Java’s BigInteger library in
order to implement int. The compiler translates operators on
int into the corresponding method calls.

With the combination of those two basic integer data types,
L1 can address the needs for both: fast operations on small
values and secure operations on large values.

2) prvk: The basic data type prvk is assigned to variables
containing private keys of public key encryption schemes.
Introducing its own basic data type enables the use of operators
on that data type, e.g. for derivation of public keys. Fur-
thermore it enables the built-in functions (see Section III-F1)
for encryption and decryption to determine the corresponding
encryption scheme. The compilers translate variables prvk
into our own class PrivateKey which is accessible to and
extensible by built-in and library functions. It is therefore easy
to extend the compiler with new encryption schemes, not yet
implemented in L1, that inherit from this class. The additional
classes simply need to be integrated into the L1 library and
are then readily accessible from the L1 language.

3) pubk: The basic data type pubk is the public key
companion of prvk. Clearly it contains only the public part of
the cryptographic key necessary for encryption. The compiler
translates it into our class PublicKey which in case of
extensions also needs to be implemented.

D. Expressions

As in almost all other imperative programming languages,
expressions in L1 consist of operands which may be connected
through operators. Operands can be function calls, variables
or constants. In case of a type mismatch between operands
we implicitly upcast int32 to int and any data type to string.
For other cases L1 provides built-in functions for explicit type
conversion. Most operators and their handling correspond to
Java and are directly translated into their Java counterpart by
the compiler.

E. Control Flow

The basic control flow constructs in L1 are quite standard
for an imperative programming language and closely adhere to
Java. L1 provides the basic constructs if -else, for and while in
combination with basic blocks. The compiler translates them
directly into their Java counterpart. One notable difference
occurs in case of the index variables in for loops. In L1 these
variables are pass-by-value (instead of pass-by-reference in
Java). This difference is necessary in case the loop spawns
multiple threads which all access the index variable. We
describe how to spawn multiple threads next.

1) Parallel Execution: Besides the Java semantics of se-
quential statements and basic blocks L1 offers parallel ex-
ecution of basic blocks. As mentioned before SC protocols
can be very computational intensive [22] challenging the
performance of a single CPU. In some cases [6], [14] it
is already known that SC protocols can be quite efficiently
parallelized capitalizing on the trend to multi-core CPUs.
Since most large-scale SC problems have not yet been tackled

1 o u t p u t (” S1 ”) ;
2 f o r (i n t 3 2 i =1 ; i <=2; i = i +1)
3 <
4 o u t p u t (” P”+ i) ;
5 >
6 o u t p u t (” S2 ”) ;

Listing 2. L1 Parallel Execution

due to performance concerns and CPU speed does not seem
to continue to increase exponentially, we expect that future
implementations will need to heavily exploit parallelism.

L1 offers a unique feature for the definition of parallel
code sections. Basic blocks to be execute as a new thread
are specified by angle brackets as delimiters (instead of curly
brackets). The compiler inserts the necessary instructions
into the Java code in order to spawn and execute a new
thread containing this basic block. Afterwards, the execution
continues and any adjacent parallel basic blocks are spawned
and run in parallel threads. L1 will also synchronize those
threads before returning to sequential processing.

All parallel threads register with a barrier before executing
the L1 basic block. A barrier is a synchronization mechanism
that blocks execution until all registered threads have finished.
The compiler uses the Java standard library class for barriers.
After spawning parallel threads the L1 compiler inserts a call
to the barrier to wait until all threads have finished before
executing the next sequential statement.

Listing 2 shows an example for thread synchronization in
L1. Line 1 contains an initial sequential statement that outputs
“S1”. The body of the for loop is a parallel basic block which
will spawn and run two parallel threads. One outputs “P1”
and one “P2”. The last statement is a sequential one again
and outputs “S2”.

The barrier mechanism of L1 synchronizes the threads, such
that the last statement will always be executed last, i.e. the first
and last output of the program will always be “S1” and “S2”,
respectively. The only two possible traces of the program are:
S1, P1, P2, S2 and S1, P2, P1, S2.

2) Player-Specific Code: In many SC protocols, particu-
larly in almost all general multi-party SC protocols, all players
execute the same code (just on different data). The L1 compiler
therefore produces several instances of the Java code – one for
each player.

Some SC protocols, e.g. Yao’s two-party SC [34], deviate
from this pattern and execute different code for different
players. Since the player identifier is accessible within L1,
the differentiation could be performed at run-time using an
if statement. Instead we chose for performance reasons to
differentiate at compile time and potentially produce different
Java code for each player. A programmer can specify player-
specific code sections in the L1 source. A player-specific code
section is a statement or basic block prepended by the identifier
of the player to execute this code followed by colon. Line 18 of
Listing 1 shows an example of a player-specific code section.

The interpretation at compile time ensures leaner code at
each player that only needs to execute the statements for this

1 p u b l i c s t a t i c B i g I n t e g e r i n v (
2 B i g I n t e g e r va lue , B i g I n t e g e r modulus)
3 {
4 re turn v a l u e . modInverse (modulus) ;
5 }

Listing 3. L1 built-in function

player. Furthermore we feel that it makes the L1 code easier
to read and maintain.

F. Functions

Like procedural languages L1 structures its code into func-
tions, but L1 offers two types of functions: user-defined and
built-in functions.

User-defined functions are specified and compiled as ex-
pected from the similarity to the C language. As a constraint
we currently require the definition of a user-defined function
before its first invocation. Line 5 of Listing 1 shows an
example of a function definition.

1) Built-In Functions: Built-in functions are programmed
in Java and not L1, but can be called from L1 just like any
other function. Built-in functions are defined in a Java class
BuiltInFunctions of the compiler. The compiler uses
reflection in order to import the built-in functions. Using built-
in functions the compiler can be extended with new features.
Listing 3 shows a built-in function for computing the inverse
in a field.

Built-in functions can be polymorphic with respect to the
parameter type. If the parameter type is Object, the compiler
creates a function instance for each L1 data type including
composites for arrays and matrices.

Many features of the L1 language have been implemented
as built-in functions. Two which are particularly worth men-
tioning are

• messaging
• benchmarking

a) Messaging: Messaging allows the transmission of
messages between players enabling the distributed (secure)
computation. L1 provides two sub-systems both based on
TCP/IP: synchronous and asynchronous.

The built-in functions send and sendSync send messages to
other players (line 25). Their parameters are the identifier of
the receiving player, a name for the message and its value. If
the identifier of the player is 0, the player will broadcast to all
other players. The name of the message is a replacement of
its address and used by the recipient to retrieve the message
in case of asynchronous communication.

The asynchronous send function implements non-blocking
behavior (i.e., the next statement in line will be executed
immediately). The synchronous sendSync will block the execu-
tion until the message has been acknowledged by all recipients.
Synchronous send also supports an optional timeout parameter.
Furthermore L1 also supports buffered sends which bundle
several send invocations.

The recipient has a built-in receive (read) function for every
data type. These functions require the message name as a

parameter (line 29). Message receiving is always blocking, i.e.,
the read function will block and wait until the message with
the specified name has been received. An optional timeout can
be specified as a second parameter or else a default timeout
is used.

b) Benchmarking: The design goal of L1 is program-
ming faster SC protocols. Measuring the performance im-
provement therefore enables verifying whether this goal has
been reached.

L1 provides a benchmarking sub-system using built-in func-
tions. Several benchmarks can be measured in parallel. Each
benchmark is started by calling the built-in function start-
Benchmark (line 20) and stopped by calling stopBenchmark
(line 22). Its parameter is the name for this benchmark called
a benchmarking section. L1 implicitly takes care of multiple
threads by internally appending the thread identifier to the
name.

In a benchmarking section the following quantities are
captured

• run time (wall clock time)
• number of messages sent or received
• number of bytes sent or received
These correspond to computation and communication com-

plexity in theoretic papers on SC.

G. Modules

A programmer can structure larger L1 programs into mod-
ules. Each module is stored as a separate file and can be loaded
using the include statement (line 2).

We successfully used modules to analyze complex SC
protocols which are composed of several sub-protocols (e.g.
see [32]). Modules allow easily swapping sub-protocols for
different implementations and then benchmarking the com-
posed functionality may reveal novel dependencies and side-
effects.

H. Discussion on Security

The foremost requirement for a SC is to be secure. It is
common practice to prove protocols secure in a well stated
security model (most often semi-honest or malicious). The L1
language encompasses no functionality that ensures security.
This is in opposition to SC compilers using one general SC
protocol, such as FairPlay [26].

Nevertheless, this option was chosen by design. For efficient
SC, such as our first case study (Section IV-A), there are
simply no automated verification techniques. Our choice is
therefore to either not represent these protocols in our language
or remove the constraint for automated verification.

Without security enforcement on the intermediate language
layer, immediately the question of correctness for the compiler
is raised. Clearly, one can verify the correctness – security
preservation – of each optimization on the L1 language.
Instead, we anticipate to retrofit L1 with automated verification
techniques as soon as they become available. In our view, L1
offers an ideal language for automated verification and can
serve as the basis for many verifications of SCs.

Furthermore, a verified intermediate language, such as L1
offers significant advantages in tackling side channel attacks.
SC protocols secure in the semi-honest model are side-channel
free by design. If then all primitives of the language libraries
are implemented side-channel free, the composed SMC pro-
tocol will be side-channel free.

IV. CASE STUDIES

Using three case studies we exemplify the performance
benefit of using L1. In the first case study we compare two SC
protocols for median computation, one entirely implemented
using Yao’s protocol [34] in FairPlay [26] and one imple-
mented in L1. Although both implement the same function,
the performance results are quite different.

In the second case study we compare two SC protocols
for weighted average computation, again one entirely imple-
mented using Yao’s protocol and one implemented in L1 also
using an adaptation of Goethals et al.’s protocol [16].

The reported runtime measurements is the average of 20
samples. Tests were performed on two 2GHz Intel CoreDuo
T7200 dual CPU machines with 2GB RAM each.

The third case study investigates combinations of algorithm
and cryptographic protocols for the problem of secure division.
We show how fast algorithms can be implemented in L1 using
different underlying protocol: either garbled circuit or homo-
morphic encryption. The gained insights on performances of
algorithm/protocol combinations are remarkable.

A. Median

Imagine two players, Alice and Bob, each with n elements
drawn from a finite domain. They want to compute the median
of their joint set of elements, i.e. the n-th ranked element in
their combined, (ascendingly) sorted set, but do not want to
disclose any of their other elements to the other party.

Aggarwal et al. proposed the following protocol for this
problem [1]. Alice and Bob compare the median of their
individual sets using a SC protocol for comparison, i.e. they
only learn the result of the comparison, but not each other’s
input values. The party with the lower value selects the upper
half of its elements and the party with the higher value selects
the lower half of its elements. They then repeat the comparison
with set half the initial size and continue doing so until the
sets are of size 1.

We implement this algorithm in L1 (see Listing 5). We also
perform comparisons in L1 using Yao’s protocol, but do not
show the code in the paper, since it is quite standard and import
the function via a module. Note that using Yao’s protocol
one could implement the same algorithm, but unfortunately
FairPlay does not support the necessary operations, such as
division (or shift). We therefore use FairPlay’s example for
median from its distribution (see Listing 4).

The key insight of [1] is that the result of the comparison
and subsequent selection of elements can be public (known to
both parties), since it can be inferred from the (public) result
of the computation. FairPlay’s problem is that this insight
cannot be implemented in its code while L1 can implement it.

1 i n c l u d e ” compareYao . l 1 ” ;
2 i n c l u d e ”minimumYao . l 1 ” ;
3 i n t 3 2 a g g a r w a l () {
4 i n t 3 2 b i t s =32;
5 i n t 3 2 j =4 ;
6 i n t 3 2 k=pow (2 , j) ;
7 i n t 3 2 s [] = l o a d I n t 3 2 M a t r i x (” med . t x t ”) ;
8 i n t 3 2 o f f s e t = 0 ;
9 f o r (i n t 3 2 i =0 ; i<j ; i = i +1) {

10 k = k / 2 ;
11 i n t 3 2 m=s [o f f s e t + k] ;
12 i n t 3 2 r =comp (m, b i t s) ;
13 1 : i f (r ==1)
14 o f f s e t =k ;
15 2 : i f (r ==0)
16 o f f s e t =k ;
17 }
18 re turn min (s [o f f s e t] , b i t s) ;
19 }
20 1 : o u t p u t (a g g a r w a l ()) ;
21 2 : o u t p u t (a g g a r w a l ()) ;

Listing 5. Median by Aggarwal et al. in L1

Fig. 2. Secure Median with 16 bit

The variable indexing into the array of elements is an O(n)
operation in FairPlay while it is almost free in L1, since it
does not require any communication.

We ran the protocols for varying numbers of elements (4,
8, 16, 32 and 64) and also for varying input bit lengths (16
and 32).

Table I shows the runtime. Figures 2 and 3 depict the
results as graphs. L1 always outperforms FairPlay and L1’s
advantage is increasing with an increasing number of elements.
Unfortunately the results are distorted by FairPlay’s lack of
operations, but we believe that even if the more efficient
algorithm would have been implemented in Yao’s protocol
L1’s advantage of public selection of the remaining elements
would have prevailed.

B. Weighted Average

Suppose Alice has n elements and Bob has m elements
drawn from a finite domain. Let c be the sum of Alice’s
elements and d be the sum of Bob’s. Furthermore, Alice and
Bob share a weight w, such that Alice has wA, Bob has wB

and w = wA + wB . This also covers less general problems

1 program Median {
2 c o n s t i n p s i z e = 6 4 ;
3 t y p e Elem = I n t <32>;
4 t y p e A l i c e I n p u t = Elem [i n p s i z e] ;
5 t y p e A l i c e O u t p u t = I n t <32>;
6 t y p e BobInput = Elem [i n p s i z e] ;
7 t y p e BobOutput = I n t <32>;
8 t y p e I n p u t = s t r u c t { A l i c e I n p u t a l i c e , BobInput bob } ;
9 t y p e Outpu t = s t r u c t {A l i c e O u t p u t a l i c e , BobOutput bob } ;

10
11 f u n c t i o n Outpu t o u t p u t (I n p u t i n p u t) {
12 v a r I n t <8> i ;
13 v a r I n t <8> a i ;
14 v a r I n t <8> b i ;
15 a i =0 ;
16 b i =0;
17 f o r (i = 1 t o i n p s i z e −1) {
18 i f (i n p u t . a l i c e [a i] >= i n p u t . bob [b i])
19 b i = b i + 1 ;
20 e l s e
21 a i = a i + 1 ;
22 }
23 i f (i n p u t . a l i c e [a i] < i n p u t . bob [b i]) {
24 o u t p u t . a l i c e = i n p u t . a l i c e [a i] ;
25 o u t p u t . bob = i n p u t . a l i c e [a i] ;
26 } e l s e {
27 o u t p u t . a l i c e = i n p u t . bob [b i] ;
28 o u t p u t . bob = i n p u t . bob [b i] ;
29 }
30 }
31 }

Listing 4. Median in Fairplay

Fig. 3. Secure Median with 32 bit

TABLE I
RUNTIME IN [MS] FOR SECURE MEDIAN WITH 16 AND 32 BIT

Elements Aggarwal Fairplay Aggarwal Fairplay
per Player 16 bit 16 bit 32 bit 32 bit
4 730,5 1525,9 1439,9 2838,4
8 931,3 3308,9 1885,3 6001,1
16 1164,9 7043,3 2353,2 13543
32 1395,4 18473,4 2793,9 33950,8
64 1620,4 51760,8 3250,2 96166,9

where either only Alice or only Bob has the weight w. They
want to jointly (and securely) compute the weighted average
f :

f =
(c+ d)(wA + wB)

n+m
(1)

We implement this formula in Yao’s protocol [34]. Due to
a minor implementation error in FairPlay we had to resort to
our own implementation of [34].

We then replaced the multiplication in the divisor in Yao’s
protocol by a variant of the protocol from [16]. We briefly
review this variant.

Let Alice have a and Bob b they can compute x + y =
ab using HE. Alice sends EA(a) to Bob who computes
EA(a)

bEA(R) = EA(ab + R) and returns it to Alice. Alice
decrypts and stores the result as x while Bob sets y = −R.
When combining Yao’s protocol with HE care must be taken
when choosing the length of the secret number R. Secret
shares, such as in wA+wB have significantly less bits than the
key length of most HE schemes. Therefore R should be chosen
longer according to the technique from [13] and later reduces
using a modulo operation on the plaintexts. See Listing 7 for
details. Listing 6 contains the remaining code of the mixed SC
protocol in L1 except an imported module for division using
Yao’s protocol.

We expect a significant performance improvement by the
mixed SC protocol, simply because using HE one multipli-
cation can be implemented using one operation (albeit an
expensive one) as in an arithmetic circuit while Yao’s protocol
works on binary circuits where integer multiplication must
be (cumbersomely) emulated using O(n2) operations (gates).
This insight of cleverly combining arithmetic and binary
circuits has also been noted in [24].

Table II shows the runtimes of both protocols for 16 and 32
bits of input length. Figure 4 shows the same results as a graph.

1 i n c l u d e ” u t i l S p l i t M u l . l 1 ” ;
2 i n c l u d e ” u t i lAddDivYao . l 1 ” ;
3
4 i n t 3 2 weightedAverageHEGCPlayer1 () {
5 i n t 3 2 c = i n p u t (” c : ”) ;
6 i n t 3 2 wA = i n p u t (”wA: ”) ;
7 i n t 3 2 n = i n p u t (” n : ”) ;
8
9 prvk p a i l l i e r P r i v a t e K e y = c r e a t e P a i l l i e r P r i v a t e K e y (1 0 2 4) ;

10
11 i n t modulus = getModulus (p a i l l i e r P r i v a t e K e y) ;
12
13 pubk p a i l l i e r P u b l i c K e y = g e t P u b l i c K e y (p a i l l i e r P r i v a t e K e y) ;
14
15 send (2 , ” pubKey ” , p a i l l i e r P u b l i c K e y) ;
16
17 i n t 3 2 p1 = s p l i t M u l P l a y e r 1 (c , wA, p a i l l i e r P r i v a t e K e y) ;
18
19 re turn a d d D i v C i r c u i t P l a y e r 1 (b i t s , p1 , n) ;
20 }
21
22 i n t 3 2 weightedAverageHEGCPlayer2 () {
23 i n t 3 2 d = i n p u t (” d : ”) ;
24 i n t 3 2 wB = i n p u t (”wB: ”) ; ;
25 i n t 3 2 m = i n p u t (”m: ”) ;
26
27 pubk p a i l l i e r P u b l i c K e y = readPubk (” pubKey ”) ;
28 i n t modulus = getModulus (p a i l l i e r P u b l i c K e y) ;
29
30 i n t 3 2 p2 = s p l i t M u l P l a y e r 2 (d , wB, p a i l l i e r P u b l i c K e y) ;
31
32 re turn a d d D i v C i r c u i t P l a y e r 1 (b i t s , p2 , m) ;
33 }
34
35 1 : o u t p u t (weightedAverageHEGCPlayer1 ()) ;
36 2 : o u t p u t (weightedAverageHEGCPlayer2 ()) ;

Listing 6. Weighted average using Yao’s protocol and HE in L1

Fig. 4. Secure Weighted Average with 16 and 32 bit

TABLE II
RUNTIME IN [MS] FOR SECURE WEIGHTED AVERAGE WITH 16 AND 32

BIT

Input Size GC+HE GC
16 2446,2 12034,1
32 11009,8 69149,6

As anticipated the mixed SC protocol clearly outperforms
Yao’s protocol.

C. Secure Division

Secure division is relevant for many real world secure
computations, e.g., k-means clustering or supply chain opti-
mization [29]. Various cryptographic protocols for secure two-
party and multi-party division protocols have been proposed
(e.g., [2], [23], [7], [9]). They use different approaches in
terms of algorithm and cryptographic protocol. However, it
is difficult to determine which one performs best.

In this case study we compare the run-times of protocols
cross-combining two different algorithms for division and
two different secure two-party computation protocols. The
choices are long division (aka school method) (LD) and New
Raphson approximation (NR) for the algorithms and garbled
circuits (GC) and homomorphic encryption (HE) for the secure
computation protocol. We describe how fast we can implement
the programs LDGC, LDHE, NRGC and NRHE. We then
perform run-time benchmarks of all four programs.

Our results show that this formerly exhausting approach of
comparing secure computations now becomes tractable using
L1. It also shows that this approach allows a more accurate
assessment of the performance than using standard metrics
like computational complexity, communication complexity and
round complexity.

We first generalize the set of required operations in both
algorithms to be

1 i n t 3 2 s p l i t M u l P l a y e r 1 (i n t 3 2 x1 , i n t 3 2 y1 , prvk prvKey) {
2 i n t N = getModulus (prvKey) ;
3 i n t N2 = N∗N;
4 pubk pubKey = g e t P u b l i c K e y (prvKey) ;
5 i n t x1enc = e n c r y p t (pubKey , x1) ;
6 i n t y1enc = e n c r y p t (pubKey , y1) ;
7 send (2 , ” x1Enc ” , x1enc) ;
8 send (2 , ” y1Enc ” , y1enc) ;
9 i n t v = r e a d I n t (” v ”) ;

10 i n t vdec = d e c r y p t (prvKey , v) ;
11 i n t 3 2 v d e c I n t 3 2 = i n t T o I n t 3 2 (zToI (vdec ,N))%pow (2 , 3 2) ;
12
13 re turn (v d e c I n t 3 2 +(x1∗y1))%pow (2 , 3 2) ;
14 }
15
16 i n t 3 2 s p l i t M u l P l a y e r 2 (i n t 3 2 x2 , i n t 3 2 y2 , pubk pubKey) {
17 i n t x1enc = r e a d I n t (” x1Enc ”) ;
18 i n t y1enc = r e a d I n t (” y1Enc ”) ;
19 i n t N = getModulus (pubKey) ;
20 i n t N2 = N∗N;
21 i n t 3 2 r = r an d (pow (2 , 3 2)) ;
22 i n t v = (modPow (x1enc , y2 , N2) ∗modPow (y1enc , x2 , N2) ∗ e n c r y p t (pubKey , r))%N2 ;
23 send (1 , ” v ” v) ;
24
25 re turn (− r +x 2∗y 2)%pow (2 , 3 2) ;
26 }
27
28 1 : o u t p u t (weightedAverageHEGCPlayer1 ()) ;
29 2 : o u t p u t (weightedAverageHEGCPlayer2 ()) ;

Listing 7. Split Multiplication Protocol

• addition ⊕
• subtraction ⊖
• scalar multiplication ⊙ϵ with operands being vectors of

ϵ elements
• multiplication by a constant ⊙c

• division by a constant ⊘c

• left shift ≪
• right shift ≫
• less-or-equal ≤
We generate for the GC variant the binary circuits matching

LD and NR using the construction in [29]. The circuits are
imported by the corresponding L1 built-in functions.

For the HE variant we implement a user-defined function for
each operator. While some operators like ⊕ are local operators
(i.e., addition of field values), others have to be implemented
as sub-protocols. We use ⊙ϵ by [16], ⊘ by [2] and ≤ by [21].

The compiler generates for each combination of algorithm
and two-party protocol the corresponding pair of Java pro-
grams. We then benchmark the secure division implementa-
tions for an exemplary environmental settings. For the bench-
mark we use the following setup. We deploy the programs on
two servers each hosting four AMD Opteron 885 dual-core
64-bit CPUs and 16 GB RAM. We connect the servers via a
PC in the middle which is running dummynet [8]. Dummynet
is a tool for emulating network conditions.

We perform the benchmark using the following parameters.
Let l denote the bit-length of input and output values. Let
kHE denote the key-length of the used HE scheme and kGC

the key-length for the one-way hash function used in GC. Let
b denote the bandwidth of the network connection and tLAT

denote the latency of network packets.

We perform a benchmark to get an overview on the four
programs. We set l = 8 bit, kHE = 1024 bit, kGC = 128
bit, b = 5 Mbit/s and tLAT = 50 ms. The network settings
exemplary represent WAN connections in small and medium
enterprises.

The results are depicted in Figure 5. NRGC yields the
slowest variant. The circuit we generated for NRGC is an order
of magnitude larger than that of LDGC. Since the run-time for
the GC protocol is linear in the size of circuits, run-time of
NRGC is an order of magnitudes slower than LDGC. Also
for LDHE we measure noticeably slower run-times than for
LDGC and NRHE. Hence, neither NRGC nor LDHE are a
candidate for the best performing variant. The best performing
variant must be either LDGC or NRHE.

We conclude from the diagram that it is neither the algo-
rithm itself nor the cryptographic protocol itself determining
the best performing protocol. The modularity and ease of use
of the L1 syntax enabled our rapid experiments underpinning
this conclusion.

V. CONCLUSION

We have presented the L1 intermediate language intended to
implement mixed-protocol SC. It supports different general SC
protocols, such as using secret shares [5], [10], homomorphic
encryption [11], [16] and garbled circuits [34]. It also supports
special SC protocols designed for important problems.

The intention of mixed SC protocols is to improve perfor-
mance and we tested this hypothesis using three case studies.
In one case study a special SC protocol was compared to a
general SC protocol. In the second case study a single SC
protocol was compared to a mixed SC protocol. In both cases

Fig. 5. Run-time of secure division with l = 8 bit, kHE = 1024 bit,
kGC = 128 bit, b = 5 Mbit/s and tLAT = 50 ms.

L1 provides superior performance. A third case study showed
how L1 fosters optimal decisions in practice on selecting the
fastest combination of algorithm and cryptographic protocol.

We used L1 internally for a number of experiments and
implementations of SC. Future work is to continually en-
hance it to cover different techniques, encryption schemes
and protocols. Its built-in benchmarking sub-system allows to
perform experiments efficiently leading to novel insights on
the practical performance of SC protocols.

A. Future Work

We intend to develop on top of L1 another, more high level
programming language for cryptographic protocols, called L2.
L2 will support more abstract primitives like secure data types,
with their operations compiled into a mixed protocol in L1
optimized for performance. We also aim to introduce in L1
support for automatic security verification of the cryptographic
protocol programs.

REFERENCES

[1] G. Aggarwal, N. Mishra, and B. Pinkas. Secure computation of the k
th-ranked element. In EUROCRYPT, pages 40–55, 2004.

[2] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara. Private
collaborative forecasting and benchmarking. In Proceedings of the ACM
Workshop on Privacy in an Electronic Society, pages 103–114, 2004.

[3] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure
protocols. In STOC ’90: Proceedings of the twenty-second annual ACM
symposium on Theory of computing, pages 503–513, 1990.

[4] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a system for secure
multi-party computation. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and communications security, pages 257–266,
2008.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault tolerant distributed computation. In Proc.
of 20th ACM Symposium on Theory of Computing (STOC), pages 1–10,
1988.

[6] P. Bogetoft, D. L. Christensen, I. Damgard, M. Geisler, T. Jakobsen,
M. Kroigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter,
M. Schwartzbach, and T. Toft. Secure multiparty computation goes
live. In 13th International Conference on Financial Cryptography and
Data Security, 2009.

[7] P. Bunn and R. Ostrovsky. Secure two-party k-means clustering. In
Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security, pages 486–497, 2007.

[8] M. Carbone and L. Rizzo. Dummynet revisited. SIGCOMM Comput.
Commun. Rev., 40:12–20, 2010.

[9] O. Catrina and A. Saxena. Secure computation with fixed-point numbers.
In Financial Cryptography and Data Security, volume 6052 of Lecture
Notes in Computer Science, pages 35–50. Springer Berlin / Heidelberg,
2010.

[10] R. Cramer, I. Damgard, and U. Maurer. General secure multi-party
computation from any linear secret sharing scheme. In Eurocrypt, 2000.

[11] R. Cramer, I. Damgard, and J. Nielsen. Multiparty computation from
threshold homomorphic encryption. In Proceedings of EUROCRYPT,
Lecture Notes in Computer Science 2045, pages 280–299, 2001.

[12] I. Damgard and M. Jurik. A generalisation, a simplification and some
applications of pailliers probabilistic public-key system. In Proceedings
of International Conference on Theory and Practice of Public-Key
Cryptography, Lecture Notes in Computer Science 1992, pages 119–
136, 2001.

[13] I. Damgard and R. Thorbek. Efficient conversion of secret-shared values
between different fields, 2008.

[14] R. Deitos and F. Kerschbaum. Improving practical performance on se-
cure and private collaborative linear programming. In DEXA Workshops,
pages 122–126, 2009.

[15] C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st
Annual ACM Symposium on Theory of Computing, 2009.

[16] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen. On private
scalar product computation for privacy-preserving data mining. In 7th
International Conference on Information Security and Cryptology, 2004.

[17] O. Goldreich, S. Micali, , and A. Wigderson. How to play any
mental game. In Proceedings of the 19th Symposium on the Theory
of Computing, pages 218–229, 1987.

[18] S. Goldwasser. Multi-party computations: Past and present. In 16th
ACM Symposium on Principles of Distributed Computing, 1997.

[19] W. Henecka, S. K ögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg.
Tasty: tool for automating secure two-party computations. In Proceed-
ings of the 17th ACM conference on Computer and communications
security, CCS ’10, pages 451–462. ACM, 2010.

[20] F. Kerschbaum. Practical privacy-preserving benchmarking. In 23rd
IFIP International Information Security Conference, 2008.

[21] F. Kerschbaum, D. Biswas, and S. de Hoogh. Performance comparison
of secure comparison protocols. In Database and Expert Systems
Application, 2009. DEXA ’09. 20th International Workshop on Business
Processes Security, pages 133 –136, 2009.

[22] F. Kerschbaum, D. Dahlmeier, A. Schröpfer, and D. Biswas. On the
practical importance of communication complexity for secure multi-
party computation protocols. In 24th ACM Symposium on Applied
Computing, 2009.

[23] E. Kiltz, G. Leander, and J. Malone-Lee. Secure computation of the
mean and related statistics. In Proceedings of Theory of Cryptography
Conference, Lecture Notes in Computer Science 3378, pages 283–302,
2005.

[24] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Modular design
of efficient secure function evaluation protocols. Cryptology ePrint
Archive, Report 2010/079, 2010.

[25] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. J.
Cryptology, 14(4):255–293, 2001.

[26] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - a secure
two-party computation system. In Proceedings of the USENIX security
symposium, pages 287–302, 2004.

[27] J. D. Nielsen and M. I. Schwartzbach. A domain-specific programming
language for secure multiparty computation. In PLAS ’07: Proceedings
of the 2007 workshop on Programming languages and analysis for
security, pages 21–30, New York, NY, USA, 2007. ACM.

[28] P. Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Proceedings of EUROCRYPT, Lecture Notes in
Computer Science 1592, pages 223–238, 1999.

[29] R. Pibernik, Y. Zhang, F. Kerschbaum, and A. Schröpfer. Secure
collaborative supply chain planning and inverse optimization - the jels
model. European Journal of Operational Research, 208(1):75–85, 2011.

[30] A. Shamir. How to share a secret. In Communications of the ACM,
22(11), pages 612–613, 1979.

[31] Sharemind. http://sharemind.cs.ut.ee/wiki/, 2010.
[32] T. Toft. Primitives and Applications for Multi-party Computation. PhD

thesis, Department of Computer Science, University of Aarhus, 2007.
[33] Virtual Ideal Functionality Framework. http://www.viff.sk, 2010.
[34] A. Yao. How to generate and exchange secrets. In In Proceedings of

the 27th IEEE Symposium on Foundations of Computer Science, pages
162–167, 1986.

