
ISOGENIES AND CRYPTOGRAPHY

Raza Ali Kazmi

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

September 2008

c© Raza Ali Kazmi, 2008

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Raza Ali Kazmi

Entitled: Isogenies and Cryptography

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

Chair
Joey Paquet

Examiner
Adam Krzyzak

Examiner
Amr M. Youssef

Supervisor
Claude Crépeau

Supervisor
David Ford

Approved
Chair of Department or Graduate Program Director

20

Robin A.L. Drew, Dean

Faculty of Engineering and Computer Science

Abstract

Isogenies and Cryptography

Raza Ali Kazmi

This thesis explores the notion of isogenies and its applications to cryptography. Elliptic curve

cryptography (ECC) is an efficient public cryptosystem with a short key size. For this reason it

is suitable for implementing on memory-constraint devices such as smart cards, mobile devices,

etc. However, these devices leak information about their private key through side channels (power

consumption, electromagnetic radiation, timing etc) during cryptographic processing. In this thesis

we have examined countermeasures against a specific side channel attack (power consumption) using

isogeny, (a rational homomorphism between elliptic curves) and elliptic curve isomorphism. We

found that these methods are an efficient way of securing cryptographic devices using ECC against

power analysis attacks. We have also investigated the security and efficiency of implementation of

a public key cryptosystem based on isogenies. We found that in order to implement the proposed

cryptosystem one has to compute a root of the Hilbert polynomial HD(X) over Fp. Since there is

no known efficient way of achieving this calculation, the proposed cryptosystem cannot be used in

practice.

iii

Acknowledgments

I would like to thanks to Professor Claude Crépeau (McGill University) for introducing me to the

wonderful field of cryptography. I would also like to thank him for all the help he has given me over

the past. Without his help, love and encouragement I would have not finished this thesis.

I would also like to thanks Professor David Ford (Concordia University) for having agreed to take

me on as a M.Sc. student and for providing me financial support.

iv

Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Contribution of the Thesis . 2

1.2 Organization of the Thesis . 2

2 Mathematical Background 3

2.1 Groups . 3

2.1.1 Group Homomorphism and Automorphism 3

2.2 Rings . 4

2.2.1 Fields . 4

2.2.2 Subring . 4

2.2.3 Ideals . 4

2.3 Imaginary Quadratic Field . 4

2.4 Binary Quadratic Integral Forms . 5

2.5 Class Number . 6

2.6 The Relationship Between Forms and Imaginary Quadratic Fields 6

2.7 Class Group . 7

2.8 Algebraic Numbers, Integers and Algebraic Closure 8

2.9 Elliptic Curves over an Arbitrary Field K . 8

2.10 Group Law in Characteristic 6= 2, 3 . 9

2.11 Group Law in Character 2 . 9

2.12 Projective Plane . 10

v

2.13 Group Law in Projective Coordinates for Char(K 6= 2, 3) 11

2.14 Group Law in Projective Coordinates for Char(K=2) 12

2.15 Lattices and Elliptic Curves over C . 13

2.16 Hilbert Polynomials . 14

2.17 Torsion Points . 15

2.18 Endomorphism of an Elliptic Curve . 15

2.19 Frobenius Endomorphism . 16

2.20 Isogeny . 17

2.21 Degree of an Isogeny . 17

2.22 Composition of Isogenies . 19

2.23 Legendre and Kronecker Symbols . 19

2.24 Isogeny Cycle . 20

2.25 Route on Isogeny Cycles . 21

2.26 Direction on Isogeny Cycle . 21

2.27 Composition and Commutativity of Routes . 23

2.28 Computation of Isogeny . 23

3 Side Channel Attacks on Elliptic Curve Cryptosystems 27

3.1 Elliptic Curve Cryptosystems . 27

3.2 Power Analysis Attack . 28

3.3 Simple Power Analysis . 29

3.4 Differential Power Analysis (DPA) . 30

3.5 Countermeasures Against DPA . 31

3.6 Coron’s First Countermeasure:Randomization of the Private Key d 31

3.7 Coron’s Second Countermeasure:Blinding the Base Point 32

3.8 Third countermeasure: Randomization in Projective Coordinates 32

3.9 Algebraic Countermeasures . 33

3.10 Fourth Countermeasure: Randomizing the Base Point Through a Random Isomorphic

Elliptic Curve . 34

3.11 Fifth Countermeasure:Randomizing the Representation of Base Point Through a Ran-

dom Field Isomorphism . 35

3.12 Weakness of First Countermeasure:Randomization of the Private Key d 36

vi

3.13 Weakness of Second Countermeasure:Blinding the Base Point 37

3.14 Special Points and Countermeasure 3, 4 and 5 . 38

3.15 Random Projective Coordinates and Special Points 39

3.16 Random Elliptic Curve Isomorphism and Special Points 39

3.17 Random Field Isomorphism and Special Points . 39

3.18 Refined Power Analysis Attack Using Special Points (Goubin Attack) 40

3.19 Special Points on Curves Over Prime Field . 42

3.20 Special Points on Curves over Binary Field . 42

3.21 Countermeasure Against Goubin’s Attack . 43

3.22 Isogeny Revision . 43

3.23 Isogeny Defense Against Goubin’s Attack . 44

3.24 Computational Cost of Isogeny Defense . 46

3.25 Zero Value Point Attack . 47

3.26 Prime Field . 47

3.27 Zero Value Points from ECDBL over Prime Fields 50

3.27.1 Finding ZVP from ECDBL . 51

3.28 Zero Value Points from ECADD over Prime Fields 52

3.28.1 Finding ZVP in ECADD . 53

3.29 Isogeny Defense Against ZVP Attack Over Fp . 55

3.30 Zero Value Attack Over Binary Fields . 61

3.31 Zero Value Point from ECDBL-F2m . 64

3.31.1 Finding ZVP in ECDBL-F2m . 65

3.32 Zero Value Points from ECADD-F2m . 66

3.32.1 Finding ZVP in ECADD-F2m . 67

3.33 Defense Against ZVP Attack over F2m . 68

3.34 Elliptic Curve Isomorphism over F2m . 69

3.35 Defense Against ZVP Attack Through Isomorphism For Binary Curves with a 6= 1 . 70

3.36 Isogeny Defense Against ZVP Attack for Binary Curves with a = 1 71

4 A Public Key Crytosystem Based on Isogenies 73

4.1 Cryptosystem . 73

4.1.1 Common Parameters (Public Information) 73

vii

4.1.2 Encryption Algorithm . 74

4.1.3 Decryption Algorithm . 74

4.2 Crytosystem Security . 75

4.3 Parameter Selection . 76

4.4 Prime Class Number . 76

4.4.1 Discriminant and Class Number Selection . 78

4.5 Running Time of Crytosystem 4.1 . 79

4.6 DrawBacks of Isogeny-Based Cryptosystems . 80

4.7 Weber Polynomials . 82

4.8 Finding a Root (jinit) of Hilbert Polynomials over Fp 84

5 Conclusion 87

Bibliography 88

viii

List of Figures

1 The isogeny cycle for degree 3 . 21

2 The isogeny cycle for degree 7 . 21

3 Route R = {2, 1} starting from E118 . 21

4 The isogeny cycle for degree 3 . 22

ix

List of Tables

1 . 36

2 SECG Curves over Fp . 45

3 NIST Curves over Fp . 46

4 l
′
is the isogeny degree and l is the size of secret scalar d 47

5 list of all SECG over prime field . 55

6 Isogeny defense for SECG Curves over Fp for point (0, y) and 3x2 + a = 0 56

7 list of all NIST over Fp . 56

8 Isogeny defense against points (0, y), 3x2 + a = 0 and 5x4 + 2Ax2 − 4Bx+A2 = 0 . 58

9 Isogeny defense against points (0, y), 3x2 + a = 0 and 5x4 + 2Ax2 − 4Bx+A2 = 0 . 58

10 Comparison of computational cost for SECG curves 59

11 Comparison of computational cost for NIST curves 59

12 SECG curves over F2m and ZVP points from ECDBL-F2m 69

13 NIST curves over F2m and ZVP points from ECDBL-F2m 70

14 Isomorphism defense for SECG curves over F2m with a 6= 1 71

15 Isogeny Defense against ZVP points . 71

16 Comparison of computational cost of isogeny defense with Coron’s Countermeasure . 72

17 Single Isogeny cycle of size 15 for degree l=5 . 77

18 Three Disjoint isogeny cycles of size 5 for degree l=3 78

19 Computation of a random prime with y is also prime for all D with hD = 1 79

20 Computation of a random prime with y is also prime for all D with hD = 2 79

21 Precision comparison for Weber and Hilbert polynomials 83

x

Chapter 1

Introduction

Prior to 1976, cryptography was a black art, understood and practiced by government and military

personnel. It all changed in 1976, when Whitfield Diffie and Martin Hellman in the paper entitled

”New Directions in Cryptography” proposed a protocol that allowed two parties with no prior knowl-

edge of each other to jointly share a private key over an insecure channel. 1 That was the beginning

of Public Key Cryptography. Since 1976 many public key cryptosystems and signature schemes

have been proposed and are currently in use in the public domain. Some of the most popular ones

are RSA, Elgamal, etc. Today cryptography has become a well established academic discipline

that is taught in many universities. It is widely available for use by companies and individuals. For

example, smart cards such as debit and credit cards use cryptography to prevent the duplication

and fraudulent use of information saved to chips on such cards. While there is no doubt that these

cryptographic devices have become very popular, their security has become a major concern.

The advantage of elliptic curve based cryptosystems over other cryptosystems (RSA, etc.) is

their short key size. For this reason it is suitable for implementing on memory-constrained devices

such as smart cards. Akishita and Takagi [AT05] and their predecessors, Coron [Cor99], Goubin

[Gou03], Okeya and Sakurai [Os00] proposed power analysis attacks on elliptic curve cryptosystems

that would allow an adversary to recover the private key by monitoring the power consumption of

cryptographic devices such as smart cards.

1The Diffie-Hellman protocol was discovered a few years prior at the Government Communications Head-
quarters, British intelligence agency, by Malcolm J. Williamson, but was kept classified [Wil74]

1

In this thesis we assess the application of isogenies (rational homomorphisms between elliptic

curves) and elliptic curve isomorphisms for defense against the various power analysis attacks pro-

posed above. We also study and analyse a new public cryptosystem where the security is based on

the isogeny problem [RS06]. The isogeny problem can be stated as follows: Given two isogenous

elliptic curves Ei and Ej over Fp, compute an isogeny between Ei and Ej .

1.1 Contribution of the Thesis

The contributions of this thesis are the following:

• We show that a certain class of standard curves (SECG [sec00] and NIST [nis]) over F2m can

be defended very efficiently against power analysis attacks proposed in [AT05] using elliptic

curve isomorphisms. We show that the remaining classes of curves over F2m can be defended

efficiently using isogenies. We also show that all standard curves except P-521 (a curve in

NIST standard) over Fp can be defended efficiently through isogenies against all bad points

(ZVP points) suggested in [AT05]:

• We calculate the additional cost of the isogeny and an elliptic curve isomorphism defense for

standard curves.

• We also examine the security and efficiency of a public key cryptosystem based on isogeny. We

found that this cryptosystem has many drawbacks and in practice it can not be used unless

we can efficiently compute a root of Hilbert polynomial over Fp [IBS06].

1.2 Organization of the Thesis

The thesis consists of 5 chapters. Chapter 2 provides the mathematical background required to

understand the remaining chapters. Chapter 3 describes in detail the power analysis attacks as well

as the countermeasures against these attacks. Chapter 4 describes the new public key cryptosystem

based on the isogeny problem and its drawbacks, while chapter 5 is the conclusion.

2

Chapter 2

Mathematical Background

2.1 Groups

A group is a nonempty set G together with a binary operation ∗ on G that satisfies the following

first three axioms.

1. Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

2. Identity: There exists a unique element e ∈ G such that a ∗ e = e ∗ a = a for all a ∈ G.

3. Inversibility : For every a ∈ G there exists an element a−1 ∈ G such that a∗a−1=a−1 ∗a=e.

4. Commutativity: A group is called abelian if a ∗ b = b ∗ a for all a, b ∈ G.

The order of a group is the number of elements in it. A group is called finite if it has a finite

order. One example of a group is SL2(Z) = Set of all 2× 2 matrices over Z with determinant 1.

2.1.1 Group Homomorphism and Automorphism

Let G and H be two groups. A group homomorphism is a function f : G −→ H such that

f(ab) = f(a)f(b) for all a, b ∈ G

An isomorphism f : G −→ G is called an automorphism.

3

2.2 Rings

A ring is a nonempty set R together with two binary operations (usually denoted as addition (+)

and multiplication (×)) such that R satisfies the first three axioms below.

1. (R,+) is an abelian group.

2. Associative multiplication: (a× b)× c = a× (b× c) for all a, b, c ∈ R.

3. Distributive laws: a× (b+ c) = a× b+ a× c and (a+ b)× c = a× c+ b× c.

4. In addition If a× b = b× a for all a, b ∈ R, then R is called a commutative ring.

5. If R contains an element 1R such that 1R × a = a× 1R = a for all a ∈ R, then R is said to be

a ring with identity.

2.2.1 Fields

A field is a commutative ring R with multiplicative identity 1R such that for all a ∈ R and a 6= 0,

the equation ax = 1R has a solution.

2.2.2 Subring

Let R be a ring and S be a nonempty subset of R that is closed under the operations of addition

and multiplication in R. If S is itself a ring under these operations then S is called a subring of R.

2.2.3 Ideals

A subring I of a ring R is an ideal provided whenever r ∈ R and a ∈ I, then ar ∈ I and ra ∈ I.

2.3 Imaginary Quadratic Field

Definition: An integer D < 0 is called a fundamental discriminant If either D ≡ 1 (mod 4)

and D is square free, or D ≡ 0 (mod 4) and D/4 is square free and D/4 ≡ 2, 3 (mod 4).

Let D be a fundamental discriminant and let

K = Q(
√
D) = {α+ β

√
D|α, β ∈ Q}

Then K is called an imaginary quadratic field. Let

4

OD = Z[δ]={a + bδ|a, b ∈ Z}

where δ = 1+
√

D
2 if D ≡ 1 (mod 4) or δ =

√
D/4 if D ≡ 0 (mod 4). It is easy to see that OD is

a subring of K. An order in K is any ring R such that Z ⊂ R ⊆ OD and Z 6= R. Any order has

the form

R = {a+ bfδ|a, b ∈ Z}

where f is a positive integer called conductor of R. The discriminant of R is f2D. Every order

R of K has discriminant of form f2D and if A is any non-square integer such that A ≡ 0, 1 (mod 4)

then A is uniquely of the form A = f2D, where D is a fundamental discriminant and there exists a

unique order R of the discriminant A [Coh93].

Any ideal of a quadratic imaginary order R has the form aZ + (b + fδ)Z, where a, b, c are any

integers such that b2 − 4ac = f2D and gcd(a, b, c) = 1 [Bucon]. If I and J be two ideals of R, then

we say that I and J are equivalent if there exist a nonzero element α ∈ K such that I = αJ .

2.4 Binary Quadratic Integral Forms

A binary quadratic integral form is f(X,Y) = aX2 + bXY + cY 2 with a, b, c ∈ Z and a = b = c 6= 0.

We will write binary quadratic integrals form as f = (a, b, c) and call f a form. The discriminant

of f is 4(f) = b2 − 4ac. A integral form f = (a, b, c) is called primitive if gcd(a, b, c) = 1 and called

positive definite if a > 0 and 4(f) < 0. We say that the two forms f and g are equivalent if there

exist U ∈ SL(2,Z) such that g = f(U(X,Y)), where we define:

U(X,Y) = (uX + vY,wX + zY) =

u v

w z

X
Y

Note that two equivalent forms have the same discriminant but the converse is not true. For

example f = (2,−1, 3) and g = (2, 1, 3) have discriminant −23 but they are not equivalent.

Let 4 < 0 be a fixed integer and 4 ≡ 0 (mod 4) or 4 ≡ 1 (mod 4). We define an equivalence

class of an integral form a set [f] given by

[f] = {g|g = f(U(X,Y)) and U ∈ SL2(Z)}

5

2.5 Class Number

The Class Number h4 is the number of equivalence classes of integral forms of discriminant 4.

It is shown in [EKZ03] that every proper equivalence class has a unique representation (a, b, c) ∈ Z

which satisfies the following conditions:

1. b2 − 4ac = 4 and gcd(a, b, c) = 1

2. |b| ≤ a ≤
√
| 4 /3|, a ≤ c and if |b| = a or a = c then b ≥ 0.

We call these triplets reduced and write these as [a, b, c] in order to emphasize the fact that each

triplet represents a class. From above it follows that the number of proper equivalence classes of a

fixed discriminant is finite, since b2−4
4a = c and b, a are bounded, therefore c is bounded. The fastest

algorithm known, for computing class numbers and reduced forms is by Shanks whose running time

is O(|D| 15+ε). See [Coh93] for more details.

2.6 The Relationship Between Forms and Imaginary Quadratic

Fields

The imaginary quadratic fields and binary quadratic integral forms are closely related. Let D < 0

be a fundamental discriminant and K = Q(
√
D) and Of2D be an order in K. Let I and J be two

ideals of Of2D, we say that I and J are equivalent if there exists a non-zero element α ∈ K such that

I = αJ . Let Clf2D be the set of proper equivalence classes of integral forms of discriminant f2D.

Let [a, b, c] be a representative of a class in Clf2D. If [a, b, c] represent a class in Clf2D, then the set

aZ + (b+ fδ)Z is an ideal of Of2D (where δ is the same as defined in section 2.3). If [a1, b1, c1] and

[a2, b2, c2] are two representations of a same class, then the corresponding ideals are also in the same

class and are properly equivalent. Similarly, if aZ+(b+ fδ)Z is an ideal of Of2D, then [a, b, b2−f2D
4a]

represents a class in Clf2D and if I and J are two properly equivalent ideals, then the corresponding

forms are also in the same class. [Bucon]

Example 1.

K = Q(
√
−3), g = [1, 1, 1] and f = [195751, 37615, 1807] = 195751X2 + 37615XY + 1807Y 2 are

6

two proper equivalent forms with matrix U ∈ SL2(Z) define below:

U =

−22 −49

229 510

f(U(X,Y)) = f(uX + vY,wX + zY) = f(−22X − 49Y, 229X + 510Y) = X2 +XY + Y 2 = g(X,Y)

Hence the two forms are properly equal. The corresponding ideals Ig = Z + (1+
√
−3)

2 Z, If =

195751Z + 37615 (1+
√
−3)

2 are also properly equivalent for α = −22 + 229 1−
√
−3

2

Z +
(1 +

√
−3)

2
Z = (−22 + 229

(1−
√
−3)

2
)(195751Z +

37615(1 +
√
−3)

2
Z)

In general, if f = [a, b, c], g = [a
′
, b

′
, c′] are two equivalent forms with matrix U ∈ SL2(Z) and If

and Ig are corresponding ideals then α = u + w b−
√

δ
2a such that Ig = αIf . Note u,w are the (1, 1)

and (2, 1) entries of matrix U .

2.7 Class Group

From the above discussion it follows that ClD can also be viewed as the set of equivalence classes

of ideals of OD. In fact ClD is an abelian group of finite order with respect to the group operation

defined below [Coh93, Bucon]. We assume that each class ClD is represented by its unique reduced

form (see section 2.5):

1. Inverse: If [a, b, c] ∈ ClD then [a, b, c]−1 = [a,−b, c]

2. Identity: If D ≡ 0 (mod 4) then e = [1, 1, |D|4] and if D ≡ 1 (mod 4) then e = [1, 1, |D|+1
4]

3. Binary Operation: Let [a1, b1, c1] and [a2, b2, c2] be two unique representations in ClD, then

their product is given by

[a1, b1, c1] ∗ [a2, b2, c2] = [a3, b3, c3] =
[
d0
a1a2

d2
, b2 +

2a2

d
(v(s− b2)− wc2),

b23 −D
4a3

]

where s = (b1 + b2)/2, n = (b1 − b2)/2, d = gcd(a1, a2, s), d0 = gcd(d, c1, c2, n) and u, v, w, d are

integers such that ua1 + va2 + ws = d

7

2.8 Algebraic Numbers, Integers and Algebraic Closure

Let α be a complex number. If there exist a non constant polynomial g(x) ∈ Q[x] with a property

that g(α) = 0, then we say α is an algebraic number, similarly if there exist a non constant

polynomial g(x) ∈ Z[x] with property that g(α) = 0 then we say α is an algebraic integer. In

general let F1 and F2 be two fields with F1 ⊆ F2 and s ∈ F2. We say s is algebraic over F1 if

there exist a non constant polynomial g(x) ∈ F1[x] with the property that g(s) = 0. If every element

of F2 is algebraic over F1, then we say that F2 is an algebraic extension of F1. An algebraic

Closure of a field K is a field K such that:

1. K is an algebraic extension of K.

2. Every non-constant polynomial g(x) ∈ K has a root in K.

If we let F1 = Q and F2 = Q(
√
D), then set of algebraic integers in Q(

√
D) is precisely the ring

OD.

2.9 Elliptic Curves over an Arbitrary Field K

An elliptic curve E over K is the set of solutions of an equation of the form

E(K) : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, where a1, a2, a3, a4, a5 ∈ K

and let

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6, b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a3

2 − a4
2,

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6 and ∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

∆ is the discriminant of E(K). We assume ∆ 6= 0 and a1 6= 0. The j-invariant of E(K) is

j(E) = c34/∆

For char(K) 6= 2, 3 the elliptic curve equation is reduced to

E := y2
1 = x3

1 +Ax1 +B for some A,B ∈ K

where A = −c4/12, B = −c6/216

8

and the j-invariant of E is 1

j(E) = 1728
4A3

4A3 + 27B2
.

For a field of characteristic 2 the elliptic curve equation is reduced to

E : y2 + xy = x3 +A
′
x2 +B

′
for A

′
, B

′
∈ K

and the j-invariant is given by

j(E) =
a12
1

∆
=

1
B′ .

2.10 Group Law in Characteristic 6= 2, 3

The set of points on E(K) form an additive abelian group with P∞ (point at infinity) as the identity

element. In section 2.12 we will explain P∞ in more detail. Let K be a field such that char(K) 6= 2, 3

and E(K) : y2 = 4x3 − Ax − B be an elliptic curve. Let P1 = (x1, y1) and P2 = (x2, y2) be two

points on E. We add two points P3 = P1 + P2 by the following rules:

1. If x1 6= x2, then P3 = P1 + P2 is computed by the following rule:

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, where m =
y2 − y1
x2 − x1

.

2. If x1 = x2 but y1 6= y2, then P1 + P2 = P∞ .

3. If P1 = P2 and y1 = 0, then P1 + P2 = P∞ .

4. If P1 = P2 and y1 6= 0, then P3 = P1 + P2 is computed by the following rule

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1, where m =
3x2

1 +A

2y1
.

2.11 Group Law in Character 2

Let K be a field such that char(K) = 2 and let E(K) : y2 + xy = x3 + Ax2 + B be an elliptic

curve. Let P1 = (x1, y1) and P2 = (x2, y2) be points on E. We add two points P3 = P1 + P2 by the
1we always assume that x3

1 + Ax1 + B has no multiple roots

9

following rule:

1. If P1 = (x1, y1), then −P1 = (x1, x1 + y1) .

2. If P1 6= P∞, P2 6= P∞ and P1 6= −P2 then P3 = P1 + P2 .

x3 = m2 +m+ x1 + x2 +A, y3 = m(x1 + x3) + x3 + y1, where m =
y2 + y1
x2 + x1

.

3. If P1 = P2 and P1 6= P∞, then P3 = P1 + P2 is computed by the following rule:

x3 = m2 +m+A, y3 = x2
1 + (m+ 1)x3, where m = x1 +

y1
x1

.

2.12 Projective Plane

Let K be a field. A two dimensional projective plane P2
K over K is a set of equivalence classes

of triples [(X,Y, Z)] with X,Y, Z ∈ K and not all X,Y, Z are zero. Two triples (X1, Y1, Z1) and

(X2, Y2, Z2) are said to be equivalent if there exist a nonzero α ∈ K such that

(X1, Y1, Z1) = (α2X2, α
3Y2, αZ2)

If [(X,Y, Z)] be any equivalence class (point) in P2
K with Z 6= 0, then this class can uniquely be

represented by the class [(x, y, 1)], by setting x = X/Z2 and y = Y/Z3. The points for which Z = 0

are called points at infinity. A two dimensional affine plane over K is define to be

A2
K = {(x, y) ∈ K×K}

There is a map from affine to projective plane

A2
K −→ P2

K

(x, y) 7−→ (x, y, 1)

The point P∞ on an elliptic curve is identified with an equivalence class [(α2, α3, 0)] in P2
K. To

see this note that any curve f(x, y) = 0 in A2
K corresponds to F (X,Y, Z) in P2

K by simply setting

10

x by X/Z2 and y by Y/Z3. If char(K) > 3, then the equation of an elliptic curve in A2
K is given by

E : y2 = x3 +Ax+B

By setting x = X/Z2 and y = Y/Z3 we obtain the equation of an elliptic curve in P2
K

E : Y 2 = X3 +AXZ4 +BZ6

Now to see what points of form [(X,Y, 0)] lie on Y 2 = X3 + AXZ4 +BZ6, we set Z = 0 which

implies X = 0. Hence the point at infinity P∞ is represented by any triples of form (0, Y, 0) in P2
K.

This triplet can be uniquely represented by (0,1,0).

Similarly, if char(K=2), then equation of an elliptic curve in A2
K is

E : y2 + xy = x3 +Ax2 +B

By setting x = X/Z and y = Y/Z2 we obtain the equation of elliptic curve in P2
K

E : Y 2 +XY Z = X3Z +AX2Z2 +BZ4

We set Z = 0 and obtain Y 2 = 0. Hence, the point at infinity P∞ is represented by any triplet

of form (0, X, 0) = (0, 1, 0) in P2
K.

2.13 Group Law in Projective Coordinates for Char(K 6= 2, 3)

Let K be a field such that char(K) 6= 2, 3 and E : Y 2 = X3 +AXZ4 +BZ6 be an elliptic curve over

projective plane P2
K. Let P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) be two points on E. We add two

points P3 = P1 + P2 by the following rule.

1. If P1 = (X1, Y1, Z1), then −P1 = (X1,−Y1, Z1) and P1 + (−P1) = P∞ .

2. P1 + P∞ = P1 .

3. If P1 6= ±P2 and P1 6= P∞, then P3 = P1 + P2 is computed by the following rule

X3 = −H3 − 2U1H
2 +R2, Y3 = −S1H

3 +R(U1H
2 −X3), Z3 = Z1Z2H

11

where,

U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2 − U1, R = S2 − S1

4. If P1 = P2 and P1 6= P∞, then P3 = P1 + P2 is computed by the following rule

X3 = T, Y3 = −8Y 4
1 +M(S − T), Z3 = 2Y1Z1

where,

S = 4X1Y
2
1 , M = 3X2

1 +AZ1, T = −2S +M2

2.14 Group Law in Projective Coordinates for Char(K=2)

Let K be a field such that char(K) = 2 and E : Y 2 +XY Z = X3 + AX2Z2 + BZ6 be an elliptic

curve over projective plane P2
K. Let P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) be points on E. We

add two points in P2
K by the following rules:

1. If P1 = (X1, Y1, Z1), then −P1 = (X1, X1 + Y1, Z1) and P1 + (−P1) = P∞

2. P1 + P∞ = P1 .

3. If P1 6= ±P2 and P1 6= P∞, then P3 = P1 + P2 is computed by the following rule

X3 = C2 +H +G, Y3 = HI + Z3J, Z3 = F 2

where,

A1 = Y1Z
2
2 , A2 = Y2Z

2
1 , B1 = X1Z2, B2 = X2Z1, C = A1 +A2, D = B1 +B2,

E = Z1Z2, F = DE, G = D2(F +AE2), H = CF, I = D2B1E +X3,

J = D2A1 +X3

4. If P1 = P2 and P1 6= P∞, then P3 = 2P1 is computed by the following rule

X3 = X4
1 +BZ4

1 , Y3 = BZ4
1 +X3(AZ3 + Y 2

1 +BZ4), Z3 = X2
1Z

2
1

12

2.15 Lattices and Elliptic Curves over C

Let ω1, ω2 be complex numbers that are linearly independent over R. Then

L = Zω1 + Zω2 = {nω1 +mω2|n,m ∈ Z}

is called a lattice in C. Let τ = w1
w2

. Since ω1, ω2 are linearly independent, τ cannot be real. By

switching ω1, ω2 if necessary we may assume that

=(τ) > 0

which means τ ∈ H, where

H = {x+ iy ∈ C|y > 0}

Two lattices L1, L2 are equivalent if there exist a nonzero complex number α such that L1 = αL2.

The lattice

Lτ = Zτ + Z , where τ = w1
w2

is equivalent to L, since Lτ = αL for α = w2. Let L be a lattice. Define the Eisentein series

for any fixed k ≥ 2

Gk(L) =
∑

i∈L,i 6=0

i−k

A j-function for a lattice L is

j(L) = 1728
60G4(L)3

60G3
4 − 3780G6(L)2

and j(L) = j(Lτ) = j(τ) where

j(τ) = 1728
(1 + 240

∑∞
j=1

j3qj

1−qj)3

(1 + 240
∑∞

j=1
j3qj

1−qj)3 − (1− 504
∑∞

j=1
j5qj

1−qj)2

and q = e2πiτ . Note that C is an additive group and any lattice L in C is its subgroup. For any

a ∈ C define the set

L+ a = {b ∈ C|b− a ∈ L}

13

This is called a right coset of L in C. Any two right cosets of L are either disjoint or identical.

The set

C/L denotes the set of all right cosets of L in C

C/L is isomorphic to an elliptic curve E := y2 = 4x3 −Ax−B over C, where

A = 60G4(L) and B = 140G6(L)

Similarly, an elliptic curve E
′
: y2 = 4x3 −A′

x−B′
over C is isomorphic to C/Lτ , where

j(E
′
) = 1728

4A′3

4A′3 + 27B′2
= j(τ) = 1728

(1 + 240
∑∞

j=1
j3qj

1−qj)3

(1 + 240
∑∞

j=1
j3qj

1−qj)3 − (1− 504
∑∞

j=1
j5qj

1−qj)2

The set of lattices over C bijectively corresponds to the set of elliptic curves over C.

2.16 Hilbert Polynomials

Let D < 0 and D ≡ 0, 1 (mod 4). Let ClD = {[ai, bi, ci] |1 ≤ i ≤ hD} be the corresponding class

group of order hD. We assume that each element in ClD is represented by a unique reduced triplet

(see section 2.5). Define

τi =
bi +
√
D

2ai
, 1 ≤ i ≤ hD

We can assume that τi ∈ H. To see this, note that aici = bi
2−D
4 and D < 0 which implies ai > 0

and ci > 0 or ai < 0 and ci < 0, but aici = (−ai)(−ci). Hence we can assume ai > 0 and bi > 0

which means =(τi) > 0⇔ τi ∈ H

The Hilbert polynomial is

HD(X) =
hD∏
i=1

(X − j(τi)) ∈ Z[X]

Let p be a prime for which the diophantine equation 4p = x2 + |D|y2 can be solved. It is easy to

see that solving 4p = x2 + |D|y2 is equivalent to solving diophantine equation p = a2 + |d|b2, where

d = D if D ≡ 1 (mod 4) or d = D/4 if D ≡ 0 (mod 4). The roots of the Hilbert polynomial HD(X)

14

over Fp will give j-invariants of elliptic curves with an equal number of points. We will denote UD

as the set of all roots of HD(X) over Fp.

2.17 Torsion Points

Let E be an elliptic curve over a field K. Let l be a positive integer. We define

E[l] = {(x, y) ∈ E(K)|[l](x, y) = P∞}

It is easy to verify that E[l] is a subgroup of E(K).

Theorem 1. Let E be an elliptic curve over a field K and let l be a positive integer. If the charac-

teristic of K does not divide l or characteristic of K is 0, then

E[l] ' Zl ⊕ Zl

If characteristic of K is some prime p and p|l, write l = prl
′
then

E[l] ' Zl′ ⊕ Zl′ or Zl ⊕ Zl′

Proof. see [Was03]

2.18 Endomorphism of an Elliptic Curve

Let E : y2 = x3 + Ax + B be an elliptic curve over some field K. An endomorphism of E is a

homomorphism that is given by rational functions:

α : E(K) −→ E(K)

α(x, y) = (R1(x, y), R2(x, y))

where, R1(x, y), R2(x, y) ∈ K(x, y). Any endomorphism α of E can be written as

α(x, y) = (r1(x), y r2(x))

where, ri(x) = pi(x)/qi(x) ∈ K(x) for i = 1, 2.

15

An endomorphism α 6= 0 is defined to be separable if the derivative r
′

1(x) is not identically zero.

Note that an endomorphism of an elliptic curve E is nothing but an isogeny from E to itself. The

set of all isogenies from an elliptic curve E to itself, together with a zero map forms a ring called

ring of endomorphisms E and denoted by End(E). If E is not super singular 2, then End(E) is

either equal to Z or an order in an imaginary quadratic field. If End(E) is equal to an order R in

an imaginary quadratic field, then the curve E is said to have Complex Multiplication.

2.19 Frobenius Endomorphism

Let D be a fundamental discriminant and p is a prime such 4p = x2 + |D|y2 for some x, y ∈ Z and

E(Fp) be an elliptic curve with #E(Fp) = p + 1 − a for some integer |a| ≤ 2
√
p. The frobenius

endomorphism:

φp : E(Fp) −→ E(Fp)

(x, y) 7−→ (xp, yp)

satisfy its characteristic equation

φp(x, y)2 − aφp(x, y) + p = P∞ for all (x, y) ∈ E(Fp)

The discriminant Dφ of the characteristic equation is related to the discriminant of Q(
√
D) in

the following way:

Dφ = a2 − 4p = 4Dy2 =⇒ a = ±2x

It is a very important relationship. It shows that the possible orders of any elliptic curve with

complex multiplication by the ring of integers of Q(
√
D) in Fp are (p+ 1± a) and each j-invariant

will give rise to two elliptic curves with one having the order p+1−a and the other p+1+a [IBS06].

Let Q(
√
D) be a quadratic imaginary field and p be a prime that splits in Q(

√
D). Then the roots

(j-invariant) of HD(X) (Hilbert polynomial) over FP will correspond to two elliptic curves E and

E
′
, one having the order p+ 1− a and the other p+ 1 + a and the equations of E and E

′
can easily

2An elliptic curve over Fp is called supersingular if torsion group E[p] = {P∞}

16

be obtained from the j-invariant. Let j be any root of HD(X), then

E : y2 = x3 + 3kx+ 2k and E
′
: y2 = x3 + 3kcx+ 2kc

where k = j/(1728−j) and c is any non-quadratic residue in FP . The curves E and E
′
are called

a quadratic twist of each other. Suppose we are given E and E
′
and we want to know which curve

is of order p+ 1− a. We can choose a random point P on (say) E and check if [p+ 1− a]P = P∞.

If [p + 1 − a]P 6= P∞, then E
′

has the order p + 1 − a. This is a probabilistic algorithm, which is

very efficient and works well in practice.

2.20 Isogeny

The field of rational functions in two variables over Fp is

Fp(x, y) =
{
f(x, y)
g(x, y)

∣∣∣f(x, y), g(x, y) ∈ Fp[x, y] and g(x, y) 6= 0
}
.

Let E1(Fp) and E2(Fp) be two elliptic curves. An isogeny I is a homomorphism that is given

by rational functions

I(x, y) : E1(Fp) −→ E2(Fp)

where I(x, y) = (R1(x, y), R2(x, y)) and Ri(x, y) ∈ Fp(x, y) for i= 1, 2. Two elliptic curves are

called isogenious if there exists an isogeny between them.

2.21 Degree of an Isogeny

Let

I(x, y) : E1(Fp) −→ E2(Fp)

be an isogeny, then kernel of I is a set

ker(I) = {(x, y) ∈ E1(Fp)|I(x, y) = P∞}

17

The degree of I(x, y) denoted deg(I) is the number of elements in ker(I). An isogeny is fully

determined by its kernel. Suppose we are given

E1(K) := y1 = x3
1 +A1x+B1 and ker(I) with #ker(I) = l

If (x, y) ∈ ker(I) then so (x,−y) because ker(I) is a cyclic subgroup of E[l] [ABaS96]. Let

d = l−1
2 and F = {xi|(xi, yj) ∈ E[l] and xi 6= P∞}. Note each pair (x, y) and (x,−y) in E[l]

will contribute one element (x coordinate) to F . So there are d elements in F. Define the kernel

polynomial:

K(x) =
∏

xi∈F

(x− xi) = xd − p1x
d−1 + p2x

d−2 − ...+ (−1)dp0

Our task is to compute Il(x, y) and a curve E2(K) from K(x) such that

Il(x, y) : E1(K) −→ E2(K)

Define recursively for 1 ≤ i ≤ d− 1

hi = (4i+ 2)p
′

i+1 + (4i− 2)Ap
′

i−1 + (4i− 4)Bp
′

i−2 (1)

where p
′

0 = d and p
′

1 = p1. Then the equation of E2(K) is

E2(K) := y2
2 = x3 +A2x+B2

where A2 = A− 5h1 and B2 = B − 7h2 and the isogeny Il is given by

Il(x, y) =

(
G(x)
K(x)2

, y

(
G(x)
K(x)2

)′)

where,

G(x)
K(x)2

= lx− 2p1 − 2(3x2 +A)

(
K(x)

′

K(x)

)
− 4(x3 +Ax+B)

(
K(x)

′

K(x)

)′

In section 2.28 we will show how to compute kernel polynomial K(x) in polynomial time.

18

2.22 Composition of Isogenies

Let I1(x, y) : E1(Fp) −→ E2(Fp) and I2(x, y) : E2(Fp) −→ E3(Fp) be two isogenies. Then their

composition is an isogeny

I2(I1(x, y)) : E1(Fp) −→ E3(Fp)

The degree of I2(I1(x, y)) = deg(I1)deg(I2).

Theorem 2. Elliptic curves are isogenous over Fp if and only if they have an equal number of

points.

Proof. See [Tat66]

Theorem 2 shows that given two elliptic curves it is very easy to decide if there exists an isogeny

between them. However, it is believed to be difficult to determine the isogeny degree. In fact, the

security of the cryptosystem proposed in [RS06] is based on this assumption.

2.23 Legendre and Kronecker Symbols

Suppose p is an odd prime. For any integer a ≥ 0, we define the Legendre symbol
(

a
p

)
as follows:

(
a

p

)
=

0 if a ≡ 0 (mod p)

1 if a is a quadratic residue modulo p

-1 if a is a non-quadratic residue modulo p.

Let p be an odd prime. Then the congruence

x2 ≡ a (mod p)

can have one solution if a ≡ 0 (mod p), two solutions (we then say that a is a quadratic residue

(mod p)) or no solutions (we then say that a is a non-quadratic residue (mod p))

We define Kronecker symbol
(

a
b

)
for any a, b ∈ Z in the following way.

1. If b = 0, then
(

a
0

)
= 1 if a = ±1, and is equal to 0 otherwise.

19

2. For b 6= 0, write b =
∏
p, where the p are not necessarily distinct primes (including p = 2) or

p = −1 to take care of the sign

(a
b

)
=
∏(

a

p

)

where
(

a
p

)
is the Legendre symbol defined above for p > 2 and we define

(a
2

)
=

 0 if a is even

(−1)
a2−1

8 if a is odd

and also (
a

−1

)
=

 1 if a ≥ 0

−1 if a < 0

Theorem 3. Let E be an elliptic curve over Fp such that char(Fp) > 3 and Dφ is the discriminant

defined in section 2.19. Let l be a positive integer and (Dφ

l) be a Kronecker symbol. If (Dφ

l) = −1,

then there is no elliptic curve that is l-degree isogenious to E; if (Dφ

l) = 1, then there are exactly

two elliptic curves over Fp that are l-degree isogenious to E; and if (Dφ

l) = 0, then there is either 1

or l + 1 elliptic curves over Fp that are isogenious to E.

Proof. See [Koh96]

2.24 Isogeny Cycle

If (Dφ

l) = 1, then l is called an Elkies isogeny degree. Suppose D and Dφ are as above and let l

be an elkies isogeny degree, let hD be the corresponding class number and UD denote the set of all

roots of HD(X) over Fp. The elements of UD are connected to each other through isogeny Il. If

hD is a prime, then the elements of UD form a single isogeny cycle [aa06]. We will explain

this by an example.

Example 2.

D = −47, hD = 5, p = 197 = 32 + (47)22, Dφ = −752 and Elkies isogeny degrees are 3, 7. The

roots (j-invariants) of Hilbert polynomial over Fp are U−47 = {17, 137, 105, 31, 118}

The x l←→ y means that there exist isogenies of degree l from x to y and y to x, and Ej means

an elliptic curve with invariant j.

20

E17
3←→ E105

3←→ E118
3←→ E31

3←→ E137
3←→ E17

Figure 1: The isogeny cycle for degree 3

E17
7←→ E118

7←→ E137
7←→ E105

7←→ E31
7←→ E17

Figure 2: The isogeny cycle for degree 7

2.25 Route on Isogeny Cycles

Let L = {li|1 ≤ i ≤ d and li, d ∈ Z+} be a set of Elkies isogeny degrees. A route is a set

R = {ri|1 ≤ i ≤ d, ri ∈ Z}, where each ri is the number of steps by the isogeny of degree li in

the direction specified by the set F = {φi}. We will explain how to specify the direction later, but

before consider the example above. Let R = {2, 1} and the direction we take is left starting from

E118. Then R(118, left) = 105.

E118
3−→ E31

3−→ E137
7−→ E105

Figure 3: Route R = {2, 1} starting from E118

Note that R(118) = 105 imply there exists an isogeny of degree 32 × 7 between elliptic curves

E118 and E105

2.26 Direction on Isogeny Cycle

In the example above we specify direction left on route R = {2, 1} which is ambiguous because we

could have written the same isogeny cycle in a different way. Consider the isogeny cycle above for

degree 3.

It is exactly the same cycle, but R(118, left) = 31 6= 105. To remedy this, we will explain how

to specify direction, which is well defined, but before we need few definitions.

Let s, v be positive integers such that

s =
12

gcd(l − 1, 12)
(2)

21

E17
3←→ E137

3←→ E31
3←→ E118

3←→ E105
3←→ E17

Figure 4: The isogeny cycle for degree 3

v =
s(l − 1)

12

For isogeny degree l, define the Müller′s modular polynomials

Gl(x, y) =
∑l+1

r=0

∑v
k=0 ar,kx

ryk ∈ Z [x, y]

Consider the characteristic equation φp(x, y)2− aφp(x, y) + p = P∞ over Zl. If (Dφ

l) = 1, then it

has two roots π1, π2 ∈ Zl and π1 gives one direction (say clockwise) and π2 gives the other direction

(say counterclockwise) on the isogeny cycle [CJM]. Suppose E(Fp) : y2 = x3 + Ax + B, (Dφ

l) = 1

and p > 3. Let π1, π2 be two roots of Frobenious characteristic equation. The direction is given by

the following algorithm

E2
π2←− E π1−→ E1

Algorithm 1.

• Input (j(E), l, πi, p).

1. Compute polynomial Gl(x, y).

2. Factor polynomial Gl(x, j(E)) over Fp. It will have two roots F1, F2 over Fp. One

corresponds to π1 and the other to π2.

3. Choose Fi that corresponds to πi (for details see [CJM]).

4. Compute j-invariant of isogenious curve j(Ei) using algorithm 2

5. Output j(Ei) .

Consider the example above. We are given the directions F = {π3 = 1, π7 = 2} and route

R = {2, 1} starting from E17. The M̈uller′s modular polynomials for degree 3 and 7 are

G3(x, y) = x4 + 36x3 + 270x2 − xy + 756x+ 729

G7(x, y) = x8 + 28x7 + 322x6 + 1904x5 + 5915x4 + 8624x3 + 4018x2 − xy + 748x+ 49

22

The roots of G3(x, 17) are F1 = 9 and F2 = 40. We choose F1 because it corresponds to

direction π3 and computes j-invariant= G3(36/9, y) = 105. In a similar way we compute (F11 = 81

and F22 = 112) the roots of G3(x, 105). Note that one root will take us back to E17 and the

other to E118. We note that 36

81 = 9 = F1, therefore, we must disregard this one since we would

go back to E118; so we chose F22 = 112 and computed G3(36/112, y) = 118. In a similar way we

computed (F33 = 101 and F44 = 132) the roots of G7(x, 118) and choose F33 = 101 and found

G7(72/101, y) = 137. Hence, R(E17, F)=E137

2.27 Composition and Commutativity of Routes

Let R1 = {ri|1 ≤ i ≤ d, ri ∈ Z} and S1 = {si|1 ≤ i ≤ d, si ∈ Z} be two routes. The composition of

two routes is defined as

R1S1 = {ri + si|1 ≤ i ≤ d}

The routes are commutative

R1S1 = S1R1

Since,

R1S1 = {ri + si|1 ≤ i ≤ d} = {si + ri|1 ≤ i ≤ d} = S1R1

2.28 Computation of Isogeny

In this section we will give an algorithm which will take an Elliptic curve E=(A, B), Elkies isogeny

degree l and Gl(x, y) as an input and output E2 = (A2, B2) (an isogenious elliptic curve) and p1

(the coefficient of the second highest power of kernel polynomial defined in section 2.21). Recall

that in section 2.21 we defined h’s recursively using the coefficient of K(x) (see equation 1). These

h’s can also satisfy the recurrence relation below:

hk =
3

(k − 2)(2k + 3)

k−2∑
i=1

hihk−1−i −
2k − 3
2k + 3

Ahk−2 −
2(k − 3)
(2k + 3)

Bhk−3, 3 ≤ k ≤ d− 1 (3)

With initial conditions:

23

h1 =
A−A2

5
and h2 =

B −B2

7

If we assume that p1 is known and l < 4p (p is the field characteristic), then we can compute

h3, ..., hd and p2, ..., pd in O(l log l) operations in Fp using algorithm fastElkies from [ABaS96]. Please

note that the p′is are the coefficient of kernel polynomial K(x) defined in section 2.21.

Algorithm 2. Isogeny Computation

• Input ((A,B), l, p,Gl(x, y)).

1. Factor polynomial Gl(x, j(E)) over Fp. It will have two roots g, g
′
over Fp.

2. Let g be the root according to the direction (see section 2.26).

3. Set E4, E6 and ∆

E4 =
−A
3
, E6 =

−B
2

and ∆ =
E

3

4 − E
2

6

1728

4. Set j = j(E) and compute Dg and Dj as follows. Please note that notation indicates that the

derivatives are to be evaluated at (g, j)

Dg = g

(
∂

∂x
Gl(x, y)

)
(g, j)

Dj = j

(
∂

∂y
Gl(x, y)

)
(g, j)

5. Set ∆(l) = l−12∆g12/s, where s = 12/gcd(l − 1, 12).

6. If Dj 6= 0, then set

E
∗
2 =
−12E6Dj

sE4

Dg, g
′
= −(s/12)E

∗
2g, j

′
= −E2

4E6∆−1, E0 = E6(E4E
∗
2)
−1

7. Compute the quantities

D
′

g = g
′
(
∂

∂x
Gl(x, y)

)
(g, j) + g

[
g
′
(
∂2

∂x2
Gl(x, y)

)
(g, j) + j

′
(

∂2

∂x∂y
Gl(x, y)

)
(g, j)

]

24

D
′

j = j
′
(
∂

∂y
Gl(x, y)

)
(g, j) + j

[
j
′
(
∂2

∂y2
Gl(x, y)

)
(g, j) + g

′
(

∂2

∂y∂x
Gl(x, y)

)
(g, j)

]

8. Set

E
′

0 =
1
Dj

(
−s
12
D

′

g − E0D
′

g

)

9. Set E
(l)

4 = 1
l2

(
E4 − E

∗
2

[
12E

′
0

E0
+ 6E4

2

E6
− 4E6

E4

]
+ E

∗
2

2
)

10. Set j(E
′
) = E

(l)

4

3

/∆(l) (j-invariant of isogenious curve).

11. Set f = lsg−1 and f
′
= E

∗
2sf/12

12. Compute

D∗
g =

(
∂

∂x
Gl(x, y)

)
(f, j(E

′
)), D∗

j =
(
∂

∂y
Gl(x, y)

)
(f, j(E

′
)) and jl = −f

′ D∗
g

lD∗
j

13. Set

E
l

6 =
E

(l)

4 jl

j(E′)

14. Compute A2, B2 and p1 as follows.

A2 = −3l4E
(l)

4 , B2 = −2l6E
(l)

6 , and p1 = − lE
∗
2

2

15. Output (p1, A2, B2).

The computational complexity of Algorithm 2 is O(l2) operations in Fp [IBS06]. Now once we

have computed (A2, B2, p1), we can compute h1, h2, ..., hd using recurrence 3 in O(l2) operation

in Fp or in O(l log l) using the method described in [ABaS96]. Once the hi’s are computed, we

can compute p
′

0, p
′

1, ..., p
′

d using the recurrence 1 in O(l) operations in Fp. Then we compute the

polynomial

K
′
(x) = (−1)× p

′

1

1
x+

p
′

2

2
x2 + ...+

p
′

d

d
xd mod p

25

We have

xdK(1/x) = expd+1(K
′
(x))

but expd+1(K
′
(x)) itself is a polynomial of degree d. Let expn+1(K

′
(x)) = a0 +a1x+a2x

2...+adx
d.

Therefore we can write

xdK(1/x) = a0 + a1x
1 + a2x

2 + ...+ adx
d

⇒ K(1/x) = a0x
−d + a1x

1−d + a1x
2−d + ...+ ad

⇒ K(x) = a0x
d + a1x

d−1 + a1x
d−2 + ...+ ad

The expn+1(K
′
(x)) can be computed in O(l log l) operations using the method described in

[ABaS96].

26

Chapter 3

Side Channel Attacks on Elliptic

Curve Cryptosystems

The advantage of elliptic curve based cryptosystems over other cryptosystems (RSA, etc.) is their

short key size. For this purpose it is suitable for implementing on memory-constrained devices such

as smart cards, mobile devices, etc. A cryptographic device such as a smart card uses a private key

to process input information. The designer of the cryptosystem assumes that the attacker has pairs

of plaintext/ciphertext, key sizes, but other secrets will be manipulated in closed and safe computing

environments. However these devices leak information about the private key through side channels

(power consumption, electromagnetic radiation, timing, etc.) during cryptographic processing. The

term “side channel” is used to describe the leakage of unintended information during cryptographic

processing from a supposedly tamper-resistant device, such as smart cards. Hence, the side channel

attacks are practical attacks as opposed to theoretical attacks (e.g. differential cryptanalysis attack

on DES, etc). There are many kinds of side channel attacks such as timing attacks, power analysis

attacks, electromagnetic attacks, etc. The side channel attack we are interested in is power analysis.

Note that we will assume throughout this chapter that we are working on elliptic curves defined over

prime fields Fp, with p > 3 or binary fields F2m , m ≥ 1.

3.1 Elliptic Curve Cryptosystems

Common Parameters

27

• An elliptic curve E over Fp or F2m .

• The order of #E must be divisible by a large prime q.

• P ∈ E.

Private Key

• d ∈ [1, q − 1] chosen randomly.

Public Key

• Q = [d]P .

Encryption Of message m

• Pick a random n ∈ [1, q − 1].

• Compute the points (x1, y1) = [n]P and (x2, y2) = [n]Q.

• Compute c = x2 +m.

• Output ciphertext (x1, y1, c).

Decryption

• Receive ciphertext (x1, y1, c).

• Compute (x, y) = [d](x1, y1) and m = c− x.

3.2 Power Analysis Attack

In a power analysis attack the side channel is the device’s power consumption. A power analysis

attack works by exploiting the fact that a tamper-resistant device such as a smart card consumes

different amount of power if it is processing 0 or 1. The reason for this power variation is that

integrated circuits are built out of individual transistors, which act as voltage-controlled switches.

The current flows across the transistor substrate when a charge is applied to (or removed from) the

gate. This current then delivers a charge to the gates of other transistors, interconnect wires and

other circuit loads. The motion of the electric charge consumes power and produces electromagnetic

radiation, both of which are externally detectable. Therefore, individual transistors produce exter-

nally observable electrical behavior. Because microprocessor logic units exhibit regular transistor

28

switching patterns, it is possible to easily identify microprocessor activity by simply monitoring the

power consumption [PKJ98].

There are two types of power analysis attacks: one is called Simple Power Analysis (SPA)

and the other is Differential Power Attack (DPA). We will first describe the SPA attack on

implementation of elliptic curve cryptosystem and then the DPA attack.

3.3 Simple Power Analysis

A simple power analysis attack consists of observing the power consumption of one single execution

of a cryptographic algorithm. Let E be an elliptic curve and P be a point on it. The operation

of adding a point P to itself d times is called scalar multiplication by d and denoted by [d]P . The

simplest and oldest efficient method for scalar multiplication is called binary method.

Algorithm 3. (Binary Method)

• Input P , d =
∑l−1

j=0 dj2j , where dj ∈ {0, 1}.

• Q← P .

1. for i from l − 2 to 0 do

2. Q← [2]Q.

3. if di = 1 then Q← Q+ P .

4. Output Q.

Let A and D denote the cost of elliptic point addition and doubling in finite fields. The algo-

rithm 3 requires in total [(l − 1)]A + [(W − 1)]D field operations, where W is the weight (number

of 1s) in the binary representation of d.

Suppose an attacker knows P , then by monitoring the power consumption during the computation

of Q = [d]P , he/she can recover the private key d, since we perform step 3 only if di = 1, the power

consumption will be more when di = 1 thus revealing the bits of the private key d. Algorithm 3 can

easily be modified so that step 3 is performed no matter what the secret bit is.

Algorithm 4. (Always-add-double)

• Input P, d =
∑l−1

j=0 dj2j , where di ∈ {0, 1}.

29

• Q[0]← P .

1. for i from l − 2 to 0 do

2. Q[0]← [2]Q[0].

3. Q[1]← Q[0] + P .

4. Q[0]← Q[dj].

5. Output Q[0].

The computational cost of this countermeasure is (l− 1)A+ (l− 1)D. The algorithm 4 is secure

against the SPA attack defined above. We assume that algorithm 3 is performed in constant time

(i.e. The time for each i-th loop is the same). Otherwise the implementation can be subject to timing

attacks [Koc96]. We further assume that the power consumption cost of the assignment (step 4) is

constant.

3.4 Differential Power Analysis (DPA)

A DPA is a more powerful attack. It consists of performing statistical analysis of several execution

of the same algorithm with many different inputs. We will show in this section that algorithm 4 is

insecure against DPA attack [Cor99]. Let the binary expansion of the private key be d = dl−1, ..., d0

where dl−1 is the most significant bit of d. Suppose algorithm 4 is used in computing Q = [d]P . We

notice that if dl−2 = 0 then in the next loop (i = l−3) algorithm 4 will compute the values [4]P and

[5]P and if dl−2 = 1 algorithm 4 will compute the values [6]P and [7]P . In general we notice that at

step j of algorithm 4 the value of point Q depends only on the most significant bits dl−1, ..., dj+1 of

d. Suppose the attacker knows the bits (dl−1 , ... dj+1) of d. He/She will guess dj = 1 (or dj = 0).

Then the attacker will pick random points P1, ... , Pn and compute

Qr =

 l−1∑
j=i

dj2j

Pr, 1 ≤ r ≤ n

Let s any fixed bit of points Qr, 1 ≤ r ≤ n. The attacker divides points Qr in two sets: one set

contains points for which s = 1 and the other set contains points for which s = 0. Let C(r) be the

power consumption function associated with r-th execution of algorithm 4. If the guess bit dl−1 is

incorrect, then

30

G(r) = 〈C(r)〉r=1,2...,n|s=1 − 〈C(r)〉r=1,2...,n|s=0

G(r) ≈ 0 as the two sets appear uncorrelated, otherwise the guess key is correct. Once dj is

known, the remaining bits can be found recursively using the same method.

3.5 Countermeasures Against DPA

In [Cor99] Coron proposed three countermeasures against the above DPA attack. They are

1. Randomization of the private key d.

2. Adding a random point R to the base point P .

3. Using randomized projective coordinates.

3.6 Coron’s First Countermeasure:Randomization of the Pri-

vate Key d

Let #E be the number of points on the elliptic curve. The computation of Q = [d]P is done as

follows

1. Choose a random number n of size k bits . In practice, one can take k = 20 bits.

2. Compute d
′
= d+ n#E.

3. Compute the point Q = [d
′
]P (using algorithm 4).

4. Output Q (Note that [d
′
]P = [d]P , since [n#E]P = P∞).

This countermeasure makes the previous attack infeasible since exponent d
′
changes at each new

execution. Let R denote the cost of random number generation in finite fields. The computational

cost of this countermeasure is

[(l − 1) + (k − 1)]A + [(l − 1) + (k − 1)]D + R

If we take k = 20, then the cost is

31

[(l − 1) + 19]A + [(l − 1) + 19]D + R

3.7 Coron’s Second Countermeasure:Blinding the Base Point

Let R and S be two points such that S = [d]R. The points R and S are stored initially inside the

device and refreshed after each new execution. The computation of Q = [d]P is done as follows.

1. Compute Q
′
= [d](R+ P) (using algorithm 4).

2. Compute the point Q = Q
′
+ (−S) using algorithm 4.

3. Set R←− (−1)r2R and S ←− (−1)r2S, where r is a random bit.

4. Output Q.

This countermeasure makes the previous attack infeasible since the point P +R used to compute

the scalar product remain unknown to the attacker. The computational cost of this countermeasure

is [(l − 1)]A + [(l − 1)]D plus 2 addition, 2 point doubling and 1 random number generation R.

Hence, the total cost is

[(l − 1)]A + [(l − 1)]D + 2A + 2D + R = [(l + 1)]A + [(l + 1)]D + R

3.8 Third countermeasure: Randomization in Projective Co-

ordinates

Recall that in section 2.12 we defined a two dimensional projective plane P2
K over K as a set of

equivalence classes of triples [(X,Y, Z)] with X,Y, Z ∈ K and not all X,Y, Z are zero. Two triples

(X1, Y1, Z1) and (X2, Y2, Z2) are said to be equivalent if there exists a nonzero α ∈ K such that

(X1, Y1, Z1) = (α2X2, α
3Y2, αZ2) (4)

Let P = (x, y), be the base point. The computation of Q = [d]P is done as follows.

• Map affine coordinates (x, y) to projective coordinates.

32

X ← x, Y ← y, Z ← 1

• Choose a random α ∈ K∗ and using relation 4 we randomize the point P as

P = (α2x, α3y, α)

• Compute Q = [d]P = (X,Y, Z) using algorithm 4.

• Compute Q in affine coordinates by setting

x←− X/Z2 , y ←− X/Z3

• Output Q = (x, y).

This countermeasure makes the DPA attack infeasible since the representation of point P in

projective coordinates remains unknown to the attacker. Let M and R denote the computational

cost of multiplication and random number generation in finite fields. This countermeasure is the

most efficient among Coron’s countermeasures as it requires 3 additional multiplications (3 M) and

one random number generation (R) in K. The computational cost of this countermeasure is

[(l − 1)]A + [(l − 1)]D + 3M + R

Therefore, the cost of this measure is almost the same as for algorithm 4. The projective coor-

dinates are also more efficient than affine coordinates, since we can avoid computing field inversions

during the computation of Q = [d]P .

3.9 Algebraic Countermeasures

Joye and Tymen [JT01] also proposed two countermeasures against Coron’s DPA. In the first coun-

termeasure, they chose a random isomorphic elliptic curve and computed the scalar multiplication

over that curve. In the second countermeasure they computed the scalar multiplication in an iso-

morphic field which is also chosen randomly.

33

3.10 Fourth Countermeasure: Randomizing the Base Point

Through a Random Isomorphic Elliptic Curve

Let K be any field whose characteristic is neither 2 nor 3, then any two elliptic curves E1(K) =

x3 + a1x+ b1 and E2(K) = x3 + a2x+ b2 are isomorphic over K; if and only if there exists u ∈ K∗

such that a1 = u4a2 and b1 = u6b2. Moreover, if E1
∼= E2 over K, then the isomorphism is given by

Ψ : E1(K) −→ E2(K), Ψ : (x, y) 7−→ (u−2x, u−3y)

or equivalently

Ψ−1 : E2(K) −→ E1(K), Ψ−1 : (x, y) 7−→ (u2x, u3y)

Let E(K) = x3 + a1x+ b1 be an elliptic curve such that the characteristic of field K 6= 2, 3. The

computation of Q = [d]P is done as follows:

• Input (P = (x, y), d, E1(K) = (a, b)).

1. Randomly choose an element u ∈ K∗.

2. Set a2 ←− u−4a1 (note we do have to compute b2 = u−6b1).

3. Set P2 ←− Ψ(P1) = (u−2x, u−3y).

4. Compute Q2 = [d]P2 in E2(K) = x3 + a2x+ b2 using algorithm 4.

5. If (Q2 = P∞), then set Q1 ←− P∞

Else set Q1 ←− Ψ−1(Q2) = (u2x, u3y).

6. Output Q1.

Let M and R denote the cost of multiplication and random number generation in finite fields.

The computational cost of this countermeasure is

[(l − 1)]A + [(l − 1)]D + 11M + R

It has been suggested that in step 3 of the above countermeasure, one can map P2 to projective

point P
′

2 = [(u−2x, u−3y, 1)] [Cor99]. This will make this method more efficient since computation

of [d]P in projective coordinates is faster than in affine coordinates.

34

3.11 Fifth Countermeasure:Randomizing the Representation

of Base Point Through a Random Field Isomorphism

Let K be a finite field of characteristic p, and f(x) ∈ K[x] be a polynomial of degree greater than

zero. We say that f(x) is irreducible over K[x] if it cannot be written as product of two polynomials

in K[x] both of degree greater than zero. Let f(x) ∈ K[x] be an irreducible polynomial. Let

h(x) ∈ K[x]. The congruence class of h(x) modulo f(x) is denoted [h(x)] and consists of all

polynomials in K[x] that are congruent to h(x) modulo f(x).

[h(x)] = {g(x)|g(x) ∈ K[x] and f(x)|(g(x)− h(x))}

We denote a set of all equivalence classes modulo f(x) is denoted

K[x]/f(x)

where K[x]/f(x) is a finite field of order pn for some n ≥ 1 [Hun96]. Every finite field K has

characteristic p and order pn for some prime p and integer n ≥ 1 [Hun96]. If K has order p, then

K ∼= Fp, and if order of K is (pn) n ≥ 1 then K ∼= Fp[x]/(f(x)) [Hun96]. It follows that if g(x) 6= f(x)

and g(x) ∈ Fp[x] is any irreducible monic polynomial of degree n, then Fp[x]/(f(x)) ∼= Fp[x]/(g(x)).

Furthermore Fp[x]/(f(x)) contains a root α of g(x) and Fp[x]/(g(x)) contains a root β of f(x). The

φ isomorphism between two fields is given by [JT01].

φ : Fp[x]/(f(x) −→ Fp[x]/(g(x), φ : h(x) 7−→ h(α)

and

φ−1 : Fp[x]/(g(x)) −→ Fp[x]/(f(x)), φ−1 : q(x) 7−→ q(α)

Let K = Fp[x]/(f(x)) and K
′
= Fp[x]/(g(x)). The isomorphism φ extends to K×K as

φ
′
: K×K −→ K

′
×K

′
, φ

′
(x, y) 7−→ (φ(x), φ(y))

If E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 is an elliptic curve over K, then the equation of

elliptic curve E
′
over K

′
is given by E

′
: y2 + φ(a1)xy + φ(a3)y = x3 + φ(a2)x2 + φ(a4)x+ φ(a6)

35

The computation Q = [d]P using this countermeasure is done as follows.

• Input (K = F2m , d, P, E).

1. Choose a field K
′
isomorphic to K through φ.

2. Set P
′ ← φ(P).

3. Compute Q
′
= [d]P

′
in E

′
, using algorithm 4 .

4. Set Q← φ−1(Q
′
).

5. Output Q.

3.12 Weakness of First Countermeasure:Randomization of

the Private Key d

The drawback of this countermeasure is that it does not properly randomize the secret key d. Hence

the bits of d are correlated to d
′
. We will explain this by an example. For simplicity, we assume

that n is a two bit number and the least significant bits of #E are 001. Since d
′
= d+ n#E, the

d2d1d0 000 001 010 011 100 101 110 111
d
′

2d
′

1d
′

0, (n = 00) 000 001 010 011 100 101 110 111
d
′

2d
′

1d
′

0, (n = 01) 001 010 011 100 101 110 111 000
d
′

2d
′

1d
′

0, (n = 10) 010 011 100 101 110 111 000 001
d
′

2d
′

1d
′

0, (n = 11) 011 100 101 110 111 000 001 010
probability d

′

2 = 1 0% 25% 50% 75% 100% 75% 50% 25%

Table 1:

possible values of d
′

2d
′

1d
′

0 are given in table 1. An attacker can find d
′
by applying DPA attack

described in section 3.4. Since d
′
is different for every input, the attacker can compute several d

′

using DPA and find the frequency of d
′

2, from which they will be able to estimate d. For example,

if the attacker finds that the probability d
′

2 = 1 in d
′
is 100%, then by using the statistical table

above he/she is able to estimate that d2d1d0 = 100. In general, least significant bits of #E may

not be 001, however an attacker knows the value of #E since it is public. If we take n to be a

20-bit number (which is about 1 million) as recommended in [Cor99], then one can easily write a

statistical table as above and deduce some information about the private key. We recall from

section 3.6 that the computational cost of this countermeasure is

36

[(l − 1) + 19]A + [(l − 1) + 19]D + R

In order to thwart this attack, d should be randomized properly, in other words log2 n = log2 d.

The computational cost of which comes to

[2(l − 1)]A + [2(l − 1)]D

3.13 Weakness of Second Countermeasure:Blinding the Base

Point

Okeya and Sakurai present an attack on this method [Os00]. We recall from section 3.7 that in this

countermeasure we initially stored two points R and S in the cryptographic device and after each

new execution we refreshed R and S. Let Rj and Sj denote the values at the j-th execution, then

Rj = (−1)rR and Sj = (−1)rS

The attack is as follows. Let P , 2P ,..., 2kP be points on an elliptic curve and d be the secret

scalar. Let t0 be the time required for each round. We assume t0 is constant. Let Cj(t) be the power

consumption function associated with each execution of [d](2jP). We define a correlation function

g(t).

g(t) =
1
k

k−1∑
j=0

min

{
1

(Cj(t+ t0 − Cj+1(t)))2
,MAXV AL

}

where MAXV AL is some big number in case g(t) vanishes. Let t1 be a time where g(t) does not

vanish and n1 be an integer satisfying

(n1 − 1)t0 < t1 < n1t0

Then we find dl−1−n1 = 0. Similarly, if the function vanishes for t
′
then we find n

′
as above and

conclude dl−1−n′ = 1.

The drawback of this countermeasure is that the number of possibilities of R after many execu-

tions are few and the number of possible values for the next R is only two. It has been suggested

that in order to thwart the above attack, the refreshing method of R and S described in section 3.7

37

should be modified to the following:

1. Compute Q
′
= [d](R+ P) (using algorithm 4).

2. Compute the point Q = Q
′
+ (−S) using algorithm 4.

3. Pick a random n bit integer k, (for example n = 20).

4. Set R ←− [k]R and S ←− [k]S. Note that computations of [k]R and [k]S is done using

algorithm 41

5. Output Q.

The computational cost of this countermeasure is

[(l + 1)]A + [(l + 1)]D + 2× [(n− 1)]A + [(n− 1)]D] + R

= [(l + 2n− 1)]A + [(l + 2n− 1)]D + R

If we take n = 20, then the computational cost will be

[(l − 39)]A + [(l + 39)]D + R

Which is computationally less costly then the modified countermeasure 1.

3.14 Special Points and Countermeasure 3, 4 and 5

We saw that the problem with Coron’s first two countermeasures is that they do not properly

randomize the secret scalar d or base point P which allows the attacker to retrieve information about

the scalar using DPA attack. The last three countermeasures (randomized projective coordinates,

random elliptic curve isomorphism and random field isomorphism) seem to randomize base point

P . However Goubin [Gou03] observed that points (0, y) and (x, 0)(called special points) cannot be

properly randomized by any of these anti-DPA methods. Hence if these special points lie on the

elliptic curve then they can be used to launch aDPA attack on the elliptic curve scalar multiplication.
1Note in this step this measure differs from countermeasure 3.7

38

3.15 Random Projective Coordinates and Special Points

Consider the points (x, 0) and (0, y) in affine coordinates over a finite field K. The corresponding

points in projective coordinates are (x, 0, 1) and (0, y, 1). We randomized these points by multiplying

each coordinate with some random r ∈ K∗

(r2x, 0, r) and (0, r3y, r)

These points still remain of form (X, 0, Z), (0, Y, Z) and are not properly randomized.

3.16 Random Elliptic Curve Isomorphism and Special Points

Let K be a field with char(K) 6= 2,3. Recall from section 3.10 that, if E1(K) and E2(K) are two

isomorphism elliptic curves, then their isomorphism is given by

Ψ : E1(K) −→ E2(K), Ψ : (x, y) 7→ (u−2x, u−3y), u ∈ K∗

if (x, 0) ∈ E1(K) or (0, y) ∈ E1(K), then clearly Ψ(x, 0) = (u−2x, 0) ∈ E2(K) or Ψ(0, y) =

(0, u−3y) ∈ E2(K). Hence, special points remain of form (x, 0) or (0, y). It is easy to see that even

if we use projective coordinates in this method the special points will remain of form (X, 0, Z) or

(0, Y, Z)

3.17 Random Field Isomorphism and Special Points

Recall that (section 3.11) if φ is an isomorphism between finite fields, then φ is given by

φ : Fp[x]/f(x) −→ Fp[x]/g(x), φ : h(x) 7−→ h(α)

where α is a root of f(x) in Fp[x]/g(x). The isomorphism φ extends to Fp[x]/g(x)× Fp[x]/g(x) as

φ
′
: Fp[x]/(f(x))× Fp[x]/(f(x)) −→ K

′
×K

′
, φ

′
(x, y) 7−→ (φ(h1(x)), φ(h2(y))

If E is an elliptic curve over the field Fp[x]/f(x) and if (h1(x), 0) or (0, h2(x)) lies on the elliptic

curve and E
′
is the corresponding curve over Fp[x]/g(x), then the map φ

′
will take

39

φ
′
: E −→ E

′

φ
′
(h1(x), 0) 7−→ (φ(h1(x), 0)) and φ

′
(0, h2(x)) 7−→ (0, φ(h2(x)))

hence special point remains of form (x, 0) and (0, y).

3.18 Refined Power Analysis Attack Using Special Points

(Goubin Attack)

Let E be an elliptic curve over a finite field K and suppose we use algorithm 4 for scalar multiplication

Q = [d]P together with any one of the three anti-DPA methods (randomized projective coordinates,

random elliptic curve isomorphism and random field isomorphism). Let d be a l bit private key and

suppose P0 ∈ E(K) be a point such that P0 6= P∞ and P0 = (x, 0) or P0 = (0, y). The attack is

recursive therefore we assume that the attacker knows the most significant i− 1 bits (dl−1, ..., di+1)

of d . First we note that the value Qi we obtain at the end of the i-th loop is

Qi =

 l−1∑
j=i+1

dj2j−i + di

P

If the bit di = 0, then during the (i+ 1)− th loop of the algorithm the values appear in variable

Q[0] and Q[1] are

Q[0]←

 l−1∑
j=i+1

dj2j−i+1

P and Q[1]←

 l−1∑
j=i+1

dj2j−i+1 + 1

P

If the bit di = 1, then during the (i+ 1)− th loop of the algorithm the values appear in variable

Q[0] and Q[1] are

Q[0]←

 l−1∑
j=i+1

dj2j−i+1 + 2

P and Q[1]←

 l−1∑
j=i+1

dj2j−i+1 + 3

P

Now the attacker will guess the secret bit di as follows. He chooses a base point P1

• if gcd
((∑l−1

j=i+1 dj2j−i+1 + 1
)
,#E

)
= 1, then set

40

P1 ←−

 l−1∑
j=i+1

dj2j−i+1 + 1

−1

P0

OR

• if gcd
((∑l−1

j=i+1 dj2j−i+1 + 3
)
,#E

)
= 1, then set

P1 ←−

 l−1∑
j=i+1

dj2j−i+1 + 3

−1

P0

An attacker will feed the same point P1 to the cryptographic device R times. Let Cr, 1 ≤

r ≤ R be the power consumption curve associated with each distinct scalar computation of [d]P1,

because of the randomization performed before each computation, the power consumption can be

different between any two computation of [d]P1. Therefore we will consider the mean curve MP1 for

computation of [d]P1

MP1 =
1
R

R∑
r=1

CR

If we guess the secret bit di incorrectly, then MP1 ≈ 0, since the values appear in the (i + 1)st

loop of algorithm 4 are correctly randomized. However, if we guess the secret bit di correctly,

then the curve MP1 will show considerable consumption (as opposed to the mean function of ran-

dom points). Once di is known we can find the remaining secret bits di−1, ..., d0 using the above

method. One condition for this attack to work is that at least one of the
(∑l−1

j=i+1 dj2j−i+1 + 3
)

or(∑l−1
j=i+1 dj2j−i+1 + 1

)
is co-prime to #E. In cryptography, elliptic curves are chosen to have order

#E = h× q

where q is a large prime and h is a small positive integer called the cofactor. For example in both

standards: The Standards for Efficient Cryptography Group (SECG) [sec00] and National

Institute of Standards and Technology NIST [nis] h is chosen from the set {1, 2, 4}. Hence the

conditions for above attack are easily met.

41

3.19 Special Points on Curves Over Prime Field

E : y2 = x3 + ax + b be an elliptic curve over a prime field Fp. A point (0, y) lies on the E if and

only if b is a quadratic residue modulo p.

y2 ≡ b (mod p)

The point (x, 0) lies on the curve if and only if

x3 + ax+ b ≡ 0 (mod p), for some x ∈ Fp

the Standards for Efficient Cryptography Group SECG [sec00] have curves of order

#E = h× q

Over Fp all NIST curves and most SECG curves (except sec112r2 and sec128) have prime

orders. It is easy to see that point (x, 0) has order 2 therefore it cannot lie on any curve except

sec112r2 and sec128. The point (0, y) lies on most standard curves, for example 8 out of 15 SECG

curves and 4 out of 5 NIST curves contain point (0, y).

3.20 Special Points on Curves over Binary Field

Let E : y2 + xy = x3 + ax2 + b be a non-singular elliptic curve over the binary field F2m . A special

point of form (0, b2
m−1

) always lies on E

(b2
m−1

)2 = b2
m

= b

The (x, 0) lies on the curve if and only if F2m

x3 + ax+ b = 0 for some x ∈ F2m

It is easy to see that over binary field point (0, y) has order 2.

42

3.21 Countermeasure Against Goubin’s Attack

N. Smart proposed a countermeasure against Goubin’s power analysis attack [Sma03]. He pointed

out that special points that have small orders can be dealt with by careful implementation of the

scalar multiplication algorithm. The countermeasure works as follows. We recall that in standard

elliptic curve cryptography

#E(K) = h× q

where q is a large prime and h is a small integer called cofactor. Let d be the private key and h be

a cofactor. Note that we will use algorithm 4 together with any one of the three anti-DPA methods

(randomized projective coordinates, random elliptic curve isomorphism and random field

isomorphism) for scalar multiplication Q = [d]P .

1. Compute Q← [h]P .

2. If Q 6= P∞, then compute [d]P .

This method will thwart Goubin’s attack if the special point has a small order because no point

of small order will ever enter the scalar multiplication algorithm with scalar d. As mentioned in the

previous section, over prime fields (x, 0) has order 2 and over binary fields (0, y) also has order 2. We

are left with points (x, 0) on curves over F2m and (0, y) on curves over Fp. These points can have

large orders. Smart observed that in F2m the point (x, 0) of a large order can easily be defended

against Goubin’s attack if we use the Montgomery method for scalar multiplication [LD99]. For

prime fields Fp Smart proposed a defense against the Goubin’s attack using isogeny.

3.22 Isogeny Revision

We will quickly review some basic facts about isogeny (for details see chapter 2). Let E1 and E2 be

two elliptic curves over the finite field Fp of characteristic p > 3. An isogeny I is a homomorphism

that is given by rational functions. Two elliptic curves are called isogenious if there exists an isogeny

between them. E1 and E2 are isogenious if and only if #E1 = #E2. The degree of I(x, y) denoted

as deg(I) is the number of elements in ker(I).

I(x, y) : E1 −→ E2, (x, y) 7−→
(
G(x)
K(x)2

, y

(
f(x)
K(x)3

))

43

where K(x), G(x), f(x) ∈ Fp[x] are polynomials of degrees 2d + 1, d, 3d + 1 and d = deg(I)−1
2 .

Moreover, if Il : I(x, y) : E1 −→ E2 is an isogeny of degree l
′
, then there exists a unique isogeny

I−1 : E2 −→ E1 of degree l
′
such that for all points P1 ∈ E1 and P2 ∈ E2 [IBS06].

I−1(I(P1)) = P1 and I(I−1(P2) = P2)

3.23 Isogeny Defense Against Goubin’s Attack

Let E : y2 = x3 + ax+ b be an elliptic curve over Fp such that point (0, y) ∈ E. Let E
′
be a curve

isogenious to E. If E
′

has no point of form (0, y), then we can map a base point P ∈ E to point

P
′ ∈ E′

by computing isogeny

Il′ : E −→ E
′
, P 7−→ P

′

Instead of computing Q = [d]P on E, we will compute scalar multiplication Q
′

= [d]P
′

on E
′

and then we will map Q
′
back to Q using

I−1
l′

: E
′
−→ E, Q

′
7−→ Q

Recall from section 3.19 that out of 15 curves recommended by SECG over Fp, 8 of them have

the special point (0, y). Smart applied the isogeny defense to these curves and found that all 8

curves can be mapped efficiently to isogenious curves that have no special points (see table 2). In

particular he shows SECG curves of form

E : y2 = x3 − 3x+ b

can be mapped to isogenious curves of form

E
′
: y2 = x3 − 3x+ b

′

Curves of this form (a = −3) are efficient for computational purposes [AT05].

We have found that 3 out of 5 NIST [nis] curves over Fp have the special point (0, y). We have

applied the isogeny defense to these curves and found that all 3 curves can efficiently be mapped to

44

curves which have no special points (see table 3). Please note that all NIST curves over Fp have

prime orders and are of form

E : y2 = x3 − 3x+ b

For each curve from the standards we list the Minimal Isogeny Degree (the minimum isogeny

degree required to map E to E
′

such that E
′

does not have a special point) and the Preferred

Minimal Isogeny Degree (the minimum isogeny degree required to map E to E
′

such that E
′

does

not have a special point and E
′
is of above special form). If the original curve does not have a special

point, then we specify the isogeny degrees as 1. If the original curve is not of form y2 = x3 − 3x+ b

then we do not compute Preferred Minimal Isogeny Degree for it. Note that in some cases the

Preferred Minimal Isogeny Degree is higher than the Minimal Isogeny Degree (secp160r2, secp192r1,

secp256r1).

Name of Curve Minimal Isogeny Degree Preferred Minimal Isogeny Degree
secp112r1 1 1
secp112r2 11 11
secp128r1 7 7
secp128r2 1 -
secp160k1 1 -
secp160r1 13 13
secp160r2 19 41
secp192k1 1 -
secp192r1 23 73
secp224k1 1 1
secp224r1 1 -
secp256k1 1 -
secp256r1 3 11
secp384r1 19 19
secp521r1 5 5

Table 2: SECG Curves over Fp

Hence, all that the smart card needs to do to protect against special points of large order is to

store along with the original curve from the standard curves, the isogenious curve and the equations

of isogenies I and I−1.

45

Name of Curve Minimal Isogeny Degree Preferred Minimal Isogeny Degree
P-192 23 73
P-224 1 1
P-256 3 11
P-384 19 19
P-521 1 1

Table 3: NIST Curves over Fp

3.24 Computational Cost of Isogeny Defense

Let l
′

be the isogeny degree. Then we need to evaluate polynomials K(x), G(x), f(x) of degrees

2d + 1, d, 3d + 1, where d = (l
′ − 1)/2. If we use Horner’s rule, then the total number of field

multiplications required for evaluating these polynomials are

(2d+ 1) + (3d+ 1) + d = 6d+ 2 ≈ 3l
′

Looking at the values of l
′
for standard curves in the tables above we see that in the worst case

(l
′
= 73) one need to perform 219 field multiplications. Let’s compare this countermeasure against

Coron’s countermeasures (randomization of the secret exponent, blinding the base point).

Randomization of the private key. In this method we set d
′
= d + n#E for some random

integer n and in order to thwart the attack presented in [Os00] require log2 n = log2 d. The additional

computational cost of which comes to

[(l − 1)]A + [(l − 1)]D + R

where l is the number of bits of d, and A, D, R denote the cost of the elliptic curve point addition

and doubling and random number generation in finite fields. Over Fp point addition required 16

field multiplications and point doubling required 11 field multiplications (8 if a = 3) (section 3.25).

All NIST curves and most SECG curves (except secp 112r2 and secp 128r2) satisfy a = −3.

Hence one requires an additional 24× (l − 1) field multiplications for curves satisfying a = −3 and

26× (l − 1) field multiplications otherwise. Let l
′
denote the isogeny degree, then for

l
′
< 8× (l − 1), the isogeny method is faster than randomization method.

Blinding the Base Point. The additional computational cost of this countermeasure comes to

39×A + 39×D (section 3.13). If we are working over Fp, then this method requires an additional

46

936 field multiplications if a = −3 and 1014 additional field multiplications otherwise. Let l
′
denote

the isogeny degree. The isogeny method is more efficient than this method for l
′
< 312.

Finite Field Isogeny Defense Randomization of Secret Exponent Blinding the Base Point
of multiplication in Fp 3l

′
24(l − 1) 936

Table 4: l
′
is the isogeny degree and l is the size of secret scalar d

However, one difficulty with Smart’s countermeasure is that memory-constraint devices need to

store the coefficients of polynomials K(x), G(x), f(x) as well as the isogenious elliptic curve. Hence

the best solution will be to completely replace SECG Curves and NIST Curves with the isogenious

that are given by degrees in tables 2 and 3.

3.25 Zero Value Point Attack

For computational reasons, scalar multiplication is done using projective coordinates in standard

cryptography (see section 2.12). Before we explain Zero Value Point Attack over prime fields, we

will describe an implementation of elliptic curve point doubling and point addition in projective

coordinates over prime fields [AT03]. Let K be a prime field and E : ZY 2 = X3 +AXZ2 +BZ3 be

an elliptic curve over projective plane P2
K and P1 = (X1, Y1, Z1) ∈ E, P2 = (X2, Y2, Z2) ∈ E.

3.26 Prime Field

• Implementation Of Elliptic Curve Point Double (ECDBL) Over P2
K

• Input (P1 6= P∞, A).

• Output (2P1).

1. T4 ←− X1 , T5 ←− Y1 , T6 ←− Z1

2. T1 ←− T4 × T4 : (= X2
1)

3. T2 ←− T5 × T5 : (= Y 2
1)

4. T2 ←− T2 + T2 : (= 2Y 2
1)

5. T4 ←− T4 × T2 : (= 2X1Y
2
1)

6. T4 ←− T4 + T4 : (= 4X1Y
2
1 = S)

47

7. T2 ←− T2 × T2 : (= 4Y 4
1)

8. T2 ←− T2 + T2 : (= 8Y 4
1)

9. T3 ←− T6 × T6 : (= Z2
1)

10. T3 ←− T3 × T3 : (= Z4
1)

11. T6 ←− T5 × T6 : (= Y1Z1)

12. T6 ←− T6 + T6 : (= 2Y1Z1)

13. T5 ←− T1 + T1 : (= 2X2
1)

14. T1 ←− T1 + T5 : (= 3X2
1)

15. T3 ←− A× T3 : (= AZ4
1)

16. T1 ←− T1 + T3 : (= 3X2
1 +AZ4

1 = M)

17. T3 ←− T1 × T1 : (= M2)

18. T3 ←− T3 − T4 : (= M2 − S)

19. T3 ←− T3 − T4 : (X3 = M2 − 2S = T)

20. T4 ←− T4 − T3 : (= S − T)

21. T1 ←− T1 × T4 : (= M(S − T))

22. T4 ←− T1 − T2 : (= 8Y 4
1 −M(S − T))

23. X3 ←− T3 , Y3 ←− T4 , Z3 ←− T6

• Implementation Of Elliptic Curve Point Addition ECADD Over P2
K

• Input (P1 6= P∞, P2 6= P∞).

• Output (P3).

1. T2 ←− X1 , T3 ←− Y1 , T4 ←− Z1

2. T5 ←− X2 , T6 ←− Y2 , T7 ←− Z2

3. T1 ←− T7 × T7 : (= Z2
2)

4. T2 ←− T2 × T1 : (= X1Z
2
2 = U1)

5. T3 ←− T3 × T7 : (= Y1Z2)

6. T3 ←− T3 × T1 : (= Y1Z
3
2 = S1)

48

7. T1 ←− T4 × T4 : (= Z2
1)

8. T5 ←− T5 × T1 : (= X2Z
2
1 = U2)

9. T6 ←− T6 × T4 : (= Y2Z1)

10. T6 ←− T6 × T1 : (= Y2Z
3
1 = S2)

11. T5 ←− T5 − T2 : (= U2 − U1 = H)

12. T7 ←− T4 × T7 : (= Z1Z2)

13. T7 ←− T5 × T7 : (= Z1Z2H = Z3)

14. T6 ←− T6 − T3 : (= S2 − S1 = R)

15. T1 ←− T5 × T5 : (= H2)

16. T4 ←− T6 × T6 : (= R2)

17. T2 ←− T2 × T1 : (= U1H
2)

18. T5 ←− T5 × T1 : (= H3)

19. T4 ←− T4 − T5 : (= R2 −H3)

20. T1 ←− T2 + T2 : (= 2U1H
2)

21. T4 ←− T4 − T1 : (= −H3 − 2U1H
2 +R2 = X3)

22. T2 ←− T2 − T4 : (= U1H
2 −X3)

23. T6 ←− T6 × T2 : (= R(U1H
2 −X3))

24. T1 ←− T3 × T5 : (= S1H
3)

25. T1 ←− T6 − T1 : (= S1H
3 +R(U1H

2 −X3))

26. X3 ←− T4, Y3 ←− T1, Z3 ←− T7

In [AT03] Toru Akishita and Tsuyoshi Takagi proposed an attack called Zero Value Point

Attack, which is a generalization of Goubin’s attack [Gou03]. They show that even if elliptic

curves have no special points (x, 0) and (0, y), they can still have points called zero value points

(ZVP), for which auxiliary register 2 takes zero value and these points cannot be randomized by the

countermeasures (randomized projective coordinates, random elliptic curve isomorphism and random

field isomorphism). If the ZVP points lie on the elliptic curves, then they can be used to launch

2In the above implementation of elliptic curve point doubling and point addition in projective coordinates Ti,
1 ≤ i ≤ 7, denote auxiliary registers

49

a DPA attack on elliptic curve scalar multiplication. They showed that standard curves (SECG

curves) have these ZVP points. However, unlike Goubin’s attack, the ZVP attack depends strongly

on the implementation of a scalar multiplication algorithm. For example if E : y2 = x3 + Ax + B

is an elliptic curve over a prime field K and (x, y) is a point such that 5x4 + 2Ax2 − 4Bx+A2 = 0

in K, then (x, y) is a ZVP point (equivalently the corresponding point (r2x, r3y, r) ∈ P2
K is the

ZVP point in ECDBL. We note that in step 19 of ECDBL we computed (X3 by first computing

(M2 − S) (see step 18) and then T = (M2 − S). However if we compute 2S in step 18 and then

compute (M2 − 2S) in step 19, then no auxiliary register in ECDBL will take a zero value for this

point. In this thesis the ZVP attack is launched on implementations described in the section 3.26.

3.27 Zero Value Points from ECDBL over Prime Fields

Please note that x(P) denotes the x-coordinate and y(P) denote the y-coordinate of point P = (x, y).

Theorem 4. Let E : y2 = x3 +Ax+B be an elliptic curve over prime field Fp. The elliptic curve

E has a zero value point P = (x, y) of ECDBL if and only if the following conditions are satisfied:

1. 3x2 +A = 0.

2. 5x4 + 2Ax2 − 4Bx+A2 = 0.

3. [3]P = P∞.

4. x(P) = 0 or x([2]P) = 0.

5. y(P) = 0 or y([2]P) = 0.

Moreover, the zero-value points are not randomized by these two countermeasures (randomized

projective coordinates, random elliptic curve isomorphism).

Proof. Let P1 = (X1, Y1, Z1) 6= P∞ be the corresponding point in the projective coordinates.

Let P3 = ECDBL(P1). ECDBL has a zero value register if and only if one of the following values

are zero:

X1, Y1, Z1, X3, Y3, M, − S +M2, S − T

Note that in projective coordinate Z1 = 0 =⇒ P = P∞ will never be an input to ECDBL.

50

• M = 0 = 3X2
1 +AZ4

1 = 0 =⇒ 3x2Z4
1 +AZ4

1 = 0 =⇒ 3x2 +A = 0 which is condition (1).

This point cannot be randomized by the above randomization methods. Let p = (x, y) be

a point such that x2 + A = 0 then the corresponding randomized point in the projective

coordinates is P = (X,Y, Z) = (α2x, α3y, α), we have M = 3X2 + AZ4 = 0 = α4(3x2 + A) =

0. Similarly Joye-Tymen second counter (section 3.10) will map point P = (x, y) to point

(u−2x, u−3y, 1) on some isomorphic curve, we have M = 3u−4(x2 +A) = 0.

• M2−S = 0 = 3X2
1 +AZ4

1
2− 4X1Y2 = 0⇐⇒ (3x2 +A)2− 4xy = 0 in affine coordinates , but

(3x2 + A)2 − 4xy = 5x4 + 2Ax2 − 4Bx + A2 = 0, which is condition (2). This point cannot

be randomized by the anti-DPA methods of Coron and Joye-Tymen. Let p = (x, y) be a point

such that 5x4 + 2Ax2 − 4Bx+A2 = 0 then the corresponding randomized point in projective

coordinates is P = (X,Y, Z) = (α2x, α3y, α), we have

M2 − S = 3X2 +AZ42 − 4XY 2 = α8(5x4 + 2Ax2 − 4Bx+A2 = 0)

a similar argument show that Joye-Tymen second counter cannot randomize this point.

• We have X3 = T = M2 − 2S , Y3 = −8Y 4
1 −M(S − T) and Z3 = 2Y1Z1. If S − T = 0 then

X3 = 4X1Y
2
1 , Y3 = −8Y 4

1 and Z3 = 2Y1. Hence P3 = ((2Y1)2X1, (2Y1)3Y1, 2Y1Z1). Using

relation 4 we note that P3 = (X1,−Y1, Z1) for α = 2Y1. But P3 = [2]P1 = P−1
1 which means

[3]P1 = P∞. Which is condition (3).

• X1 = 0 or X3 = 0 clearly implies condition (5). Similarly if Y1 = 0 or Y3 = 0 implies condition

(4). We have seen in section 3.14 (Goubin’s attack) these point cannot be randomized by

Coron’s or Joye-Tymen countermeasures.

3.27.1 Finding ZVP from ECDBL

In this section we will discuss how to find ZVP points from ECDBL. Let E : y2 = x3 + ax+ b be

an elliptic curve over Fp. We recall from see section 3.21 that points of small order can be dealt

with by careful implementation of scalar multiplication algorithm. Hence, we don’t have to worry

about condition (3), and condition (4) 3. To find ZVP point from the remaining conditions we have

to solve the following polynomials over Fp.
3In char> 3 (x, 0) has order 2 and (x, y), such that x([2](x, y) = 0 has order 4

51

For condition (1) we have to solve the polynomial 3x2 +A = 0 and for condition (2) we have to

solve the polynomial 5x4 + 2Ax2 − 4Bx+A2 = 0.

For condition (4) we have to solve the polynomial y2 −B = 0.

The solutions for these polynomials over finite fields can be easily computed in polynomial time,

for details see [Coh93].

3.28 Zero Value Points from ECADD over Prime Fields

Theorem 5. Let E : y2 = x3 + Ax + B be an elliptic curve over prime field Fp. The elliptic

curve E has a zero value point P = (x, y) in ECADD(cP, P) if and only if one of the following six

conditions are satisfied:

1. P = (x, y) is a y-coordinate self collision point i.e. ∃n ∈ Z+ such that y([c]P) = y(P)

2. x(P) + x([c]P) = 0

3. x([c]P)− x(P) = m2, where

m =

y(P)−y([c]P)
x(P)−x([c]P) if P 6= [c]P

3x2+A
2y if P = [c]P

4. 2x(P) + x[c]P = m2

5. x(P) = 0, x([c]P) = 0 or x([c+ 1]P) = 0

6. y(P) = 0, y([c]P) = 0 or y([c+ 1]P) = 0

Moreover, the zero-value points are not randomized by the following anti-DPA methods (random-

ized projective coordinates, random elliptic curve isomorphism).

Proof. Let P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) be two points such that P1 = [c]P2 for

some c ∈ Z and P3 = ECADD(P1, P2). ECADD has a zero value register if and only if one of the

following values are zero

X1, Y1, Z1 , X2, Y2, Z2, X3, Y3, H, R, R2 −H3, U1H
2 −X3

52

• Condition (1). R = 0 = Y2Z
3
1 − Y1Z

3
2 = 0 =⇒ y2 = y1 in affine coordinates.

• Condition (2). H = X2Z
2
1 −X1Z

2
2 = 0 =⇒ x1 = x2 in affine coordinates.

• R2 −H3 = (Y2Z
3
1 − Y1Z

3
2)2 − (X2Z

2
1 −X1Z

2
2)3 = 0 which in affine coordinate is (y2 − y1)2 −

(x2 − x1)3 = 0.

(y2 − y1)2 − (x2 − x1)2 = 0⇐⇒
(
y2 − y1
x2 − x1

)2

= x2 − x1 = m2 = x2 − x1

which is condition (3).

• U1H
2 −X3 = U1H

2 − (−H3 − 2U1H
2 + R2) = 0⇐⇒ 3U1H

2 +H3 + R2 = 0 =⇒ 3(x1)(x2 −

x1)2 + (x2 − x1)3 − (y2 − y1)2 = 0 in affine coordinates which implies 2x1 + x2 = m2. Which

is condition (4)

• Condition (5). X1 = 0 =⇒ x(P1) = 0, X2 = 0 =⇒ x(cP2) = 0 and X3 = 0 =⇒ x([c+1]P) = 0.

• Condition (6). Y1 = 0 =⇒ y(P1) = 0, Y2 = 0 =⇒ y(cP1) = 0 and Y3 = 0 =⇒ x([c+ 1]P1) = 0.

3.28.1 Finding ZVP in ECADD

Let E : y2 = x3 + ax + b be an elliptic curve over Fp and P = (x, y) be a point on E. Let c be a

positive integer. Then point [c]P can be given as follows [Was03]:

[c]P =
(
φc(P)
ψ2

c (P)
,
ωc(P)
ψ3

c (P)

)
where polynomials

φc = xψ2
c − ψc+1ψc−1

ωc = (4y)−1(ψc+2ψ
2
c−1 − ψc−2ψ

2
c+1)

and ψc, called division polynomial is defined recursively as follows

ψ0 = 0

ψ1 = 1

ψ2 = 2y

53

ψ3 = 3x4 + 6ax2 + 12bx− 12bx− a

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5ax2 − 4abx− 8b2 − a3)

ψ2k+1 = ψk+2ψ
3
k − ψk−1ψ

3
k+1 , for k ≥ 2

ψ2k = (2y)−1(ψk)(ψk+2ψ
2
k−1 − ψk−2ψ

3
k+1) , for k > 2

• Condition (1). Let P = (x, y) ∈ E be a point such that

y([c]P) = y ⇐⇒ ωc(P) = yψ3
c (P)⇐⇒ ωc(P) + yψ3

c (P) = 0

• Condition (2). Let P = (x, y) ∈ E be a point such that

x(P) + x([c]P) = 0⇐⇒ φc(P) + x(p)ψ2
c (P) = 0

• Condition (3). Let P = (x, y) ∈ E be a point such that

x(P) + x([c]P) = m2 ⇐⇒ (x(P)ψ2
c (P)− φP (P))3 = (x(P)ψ3

c (P)− ωc(P))2

• Condition (4). Let P = (x, y) ∈ E be a point such that

2x(P)+x[c]P = m2 ⇐⇒
[
2x(P)ψ2

c (P) + φc(P)
] [
φc(P)− x(p)ψ2

c (P)
]2

=
[
y(P)ψ3

c (P) + ωc(P)
]2

• Condition (5). Let P = (x, y) ∈ E be a point such that

x([c]P) = 0⇐⇒ φc(P) = 0

• Condition (6). Let P = (x, y) ∈ E be a point such that

y([c]P) = 0⇐⇒ ωc(P) = 0

The polynomials ψc, φc and ωc have degrees of order O(c2) which increase exponentially in size

of c [Was03]. Therefore, it is a hard problem to find a solution for these polynomials for a large c.

[There is no other efficient way known for computing ZVP points from ECADD which makes the

54

ZVP attack from ECADD infeasible.]

3.29 Isogeny Defense Against ZVP Attack Over Fp

In [Sma03], Smart proposes a defense against Goubin’s attack for curves over Fp using isogeny.

Akishita and Takagi in [AT05] examined the isogeny defense against ZVP attack over Fp. They

pointed out that most SECG curves have ZVP points from ECDBL (see table 5). We have found

that all NIST curves have ZVP from ECDBL (see table 7).

Name of Curve (0, y) 3x2 + a = 0 5x4 + 2Ax2 − 4Bx+A2 = 0 Order
secp112r1 no yes yes prime
secp112r2 yes no no 4× prime
secp128r1 yes no no prime
secp128r2 yes no no 4× prime
secp160k1 no no no prime
secp160r1 yes no no prime
secp160r2 yes no yes prime
secp192k1 no no no prime
secp192r1 yes yes yes prime
secp224k1 no no no prime
secp224r1 no no yes prime
secp256k1 no no no prime
secp256r1 yes no yes prime
secp384r1 yes yes no prime
secp521r1 yes yes no prime

Table 5: list of all SECG over prime field

They showed that some standard curves require a higher isogeny degree than shown in table 2

(Smart’s defense). Moreover, they proved that the class of curves that satisfy
(
−3
p

)
= −1 and whose

order is odd cannot be mapped by isogeny to curves with a = −3 and are secure against the ZVP

attack (these curves will always have point (x, y) such that 3x2 + a = 0 if a = −3). They further

point out that three SECG curves are in this class (secp112r1, secp192r1, secp384r1). As described

in section 3.28.1, to find ZVP from ECADD is a hard problem, so we will only examine the isogeny

defense against ZVP from (ECDBL). We recall that in ECDBL the only ZVP points we have to

worry about are P = (x, y) ∈ E such that 5x4 + 2Ax2 − 4Bx+ A2 = 0 or 3x2 + a = 0 or x(P) = 0

(section 3.27.1). In [AT05], they examine Isogeny Defense Against ZVP attack. However, they did

not discuss any defense against the ZVP attack for curves over F2m . They only examined ZVP

points 3x2 + a = 0 and (0, y) and did not consider the point 5x4 + 2Ax2− 4Bx+A2 = 0. They also

55

did not discuss isogeny defense against all standard curves over prime fields (compare table 5 with

table 6). We found that 5 SECG curves and 2 NIST curves contain ZVP points P = (x, y) for

which 5x4 +2Ax2− 4Bx+A2 = 0. We also found that if we use an isogeny defense against all three

ZVP points, then in some curves the isogeny degree increases dramatically. For example, for curve

secp224r1, if we apply the isogeny defense against ZVP points for which x(P) = 0 or 3x2 + a = 0

then lm (minimal isogeny degree to a curve which has neither (0, y) nor 3x2 + a = 0) is 1 and lp

(minimal isogeny degree to a curve which has neither (0, y) nor 3x2 + a = 0 and a = −3) is also 1.

But if we apply the isogeny defense against all three ZVP points then we find lm = 3 and lp = 163.

In this thesis we will examine the isogeny defense against all possible ZVP points over Fp and F2m .

Please note for curves which have odd order, a = −3 and
(

a
p

)
= −1 we list lp 6 ∃(does not exist).

Name of Curve lm lp
secp112r1 7 6 ∃
secp128r1 7 7
secp160r1 13 13
secp160r2 19 41
secp192r1 23 6 ∃
secp224r1 1 1
secp256r1 3 23
secp384r1 31 6 ∃
secp521r1 5 5

Table 6: Isogeny defense for SECG Curves over Fp for point (0, y) and 3x2 + a = 0

Name of Curve (0, y) 3x2 + a = 0 5x4 + 2Ax2 − 4Bx+A2 = 0 Order
P-192 yes yes yes prime
P-224 no no yes prime
P-256 yes no yes prime
P-384 yes yes no prime
P-521 no yes yes prime

Table 7: list of all NIST over Fp

We essentially use the same algorithm as in [AT05] with slight modifications. For each curve from

the standards, we search the minimal isogeny degree lm to a curve which has no point P = (x, y)

such that x = 0 or 3x2 +a = 0 or 5x4 +2ax2− 4bx+a2 = 0. If the original curve has no such point,

we specify its degree 1. We also search the preferred minimal isogeny degree lp to a curve E
′

for

which a = −3. As mentioned before, these curves are computationally more efficient. In section 3.24

we saw that the isogeny method is more efficient than Coron’s modified countermeasure provided

56

that the isogeny degree < 312. Therefore, in algorithm 5 we search for suitable curves for isogeny

degrees less than 312.

Algorithm 5.

• Input (E = (a, b), jE , #E, p)

1. Set lm ←− 0 and lp ←− 0

2. Set flag ←− CheckZvp(E, a, p).

3. If flag = 1 then

lm ←− 1.

flag ←− PreferredCurve(a′ , p)

4. If flag = 1 then

lp ←− 1.

Output (lm, lp).

5. Set l←− 3.

6. Find the roots of polynomial Gl(x, jE) and store in list L

If L = Null then go to step 7

For each root r ∈ L do

Set E
′
=(a

′
, b

′
)←− ConstructCurve(r, P , #E)

L←− L− {r}

Set flag ←− CheckZvp(E′
, a

′
, p)

If flag = 1, then

If lm = 0, then

lm = l

Set flag ←− PreferredCurve(a′ , p)

If flag = 1 then

lp ←− l

Output (lm, lp).

7. If l > 312 then stop.

8. l←− NextPrime(l) and go to step 6.

• The function CheckZvp(E, P) will return 1 if E has no zero value point over Fp and return 0

otherwise.

57

• The function ConstructCurve(r, p, #E) constructs an isogenious curve from the root r.

• The function PreferredCurve(a
′
, p) return 1 if a

′
= −3 (mod p) or if there exists a curve E

′′

isomorphic to E
′
such that a

′′
= −3 (mod p) and returns 0 otherwise.

• The polynomial Gl(x, y) are called Müller′s modular polynomials which were defined in sec-

tion 2.26.

Tables 8 and 9 show isogeny degrees lm and lp for SECG curves and NIST curves. If the original

curve is not of form y2 = x3 − 3x+ b, then we list lp = −. The number in the parenthesis () is the

isogeny degree listed in tables 6 and 7, which considers only ZVP points (0, y) and 3x2 + a = 0.

Looking at the entries in tables 6 and 7, we see that out of 15 SECG curves 5 require a higher

isogeny degree if we consider all three ZVP points (0, y), 3x2+a = 0 and 5x4+2Ax2−4Bx+A2 = 0.

Further, we can see that for some curves the lp is considerably high, e.g. secp160r2.

Name of SECG Curve over Fp lm lp
secp112r1 7(7) 6 ∃
secp112r2 13(11) 23(11)
secp128r1 7(7) 181(7)
secp128r2 37(37) −
secp160k1 1(1) −
secp160r1 13(13) 13(13)
secp160r2 19(19) 227(41)
secp192k1 1(1) −
secp192r1 23(23) 6 ∃
secp224k1 1(1) −
secp224r1 3(1) 163(1)
secp256k1 1(1) −
secp256r1 3(3) 23(23)
secp384r1 31(31) 6 ∃
secp521r1 5(5) 5(5)

Table 8: Isogeny defense against points (0, y), 3x2 + a = 0 and 5x4 + 2Ax2 − 4Bx+A2 = 0

Name of NIST Curve over Fp lm lp
P-192 23(23) 6 ∃
P-224 3(3) 163(107)
P-256 3(3) 23(23)
P-384 31(31) 6 ∃
P-521 29(29) 6 ∃

Table 9: Isogeny defense against points (0, y), 3x2 + a = 0 and 5x4 + 2Ax2 − 4Bx+A2 = 0

58

Let E be an elliptic curve over Fp and d be an l-bit private key. Let l
′

denote the isogeny

degree. In section 3.24 we saw that the total number of field multiplications required for an isogeny

defense is 3× l′ . Furthermore the scalar multiplication [d]P required 24× (l−1) field multiplications

if a = −3 and 26 × (l − 1) field multiplications if a 6= −3. We further recall that the modified

Coron’s first countermeasure (randomization of the secret exponent and blinding the base point)

requires 24× (l − 1) additional field multiplications if a = −3 and 26× (l − 1) field multiplications

if a 6= −3. Coron’s second countermeasure (blinding the base point) requires an additional 936

field multiplications if a = −3 and 1014 field multiplications if a 6= −3. Hence if we obtained the

curve through isogeny degree lm and lm 6= lp, then one requires additional 3× lm + 2× (l − 1) field

multiplication, since elliptic curves obtained through lm do not satisfy a = −3 except when lm = lp.

Curve #multi for lm #multi for lp #multi randomization #multi blinding
secp112r1 243 N/A 2664 936
secp112r2 261 39 2886 1014
secp128r1 275 543 3048 936
secp128r2 367 N/A 3302 1014
secp160r1 39 39 3816 936
secp160r2 375 681 3816 936
secp192r1 451 N/A 4584 936
secp224r1 455 489 5352 936
secp256r1 519 69 6120 936
secp384r1 857 N/A 9192 936
secp521r1 15 15 12480 936

Table 10: Comparison of computational cost for SECG curves

Curve #multi for lm #multi for lp #multi randomization #multi blinding
P-192 451 N/A 4584 936
P-224 455 489 5352 936
P-256 519 69 6120 936
P-384 775 N/A 9192 936
P-521 1127 N/A 12480 936

Table 11: Comparison of computational cost for NIST curves

In tables 10 and 11 we have compared the computational cost of an isogeny defense with the

modified Coron’s countermeasure against the ZVP attack. We can see that for all curves in SECG

the computational cost for isogeny defense against the ZVP attack is less than Coron’s modified

countermeasure. Interestingly, there is one curve (P-521) in NIST standards (see table 11) where

59

Coron’s second countermeasure (blinding the base point) is less costly than isogeny defense. Hence,

in order to protect from the ZVP attack, all cryptographic devices need to store along with the

original curve from the standard the isogenious curve as well as the equation of the isogeny of the

isogeny and its inverse. Then input points can be mapped over to the isogenious curve for scalar

multiplication and then mapped back to the original curve. This method is described formally on

next page. Please note that Es denotes the standard curve, Ei denotes the isogenious curve, l
′

denotes the isogeny between them, and d is an l-bit private key and Ps ∈ Es is the base point.

Algorithm 6. Isogeny Defense Against ZVP Point Attack in FP .

• Input(Ps = (Xs, Ys, d, Es = (as, bs), l
′
, Ei = (ai, bi), #E = h× q)

1. Compute Isogeny Il′ between Ei and Es (see section 2.28).

2. Compute a corresponding point (Xi, Yi)←− Il′ (Xs, Ys) on Ei.

3. Compute a corresponding point in projective coordinates P J
i

P J
i ←− (α2Xi, α

3Yi, α), for some random α ∈ F∗
p

4. Compute QJ
i ←− Always-add-double (P J

i , ai, h).

5. If QJ
i 6= P∞ then QJ

i ←−Always-add-double (P J
i , ai, d).

6. Compute Isogeny I−1
l′

between Es and Ei (see section 2.28).

7. Compute QJ
s = (X

′

s, Y
′

s , Z
′

s)←− I−1
l′

(Qj).

8. Compute corresponding point Qs = (X,Y) in affine coordinates by setting

X ←− α−2X
′

s Y ←− α−3Y
′

s

• Output Qs.

Algorithm 7. Always-add-double

• Input (P1, a1, d =
∑l−1

j=0 dj2j).

1. Q[0]←− P .

2. for j from l − 2 to 0 do

60

3. Q[0]←− ECDBL (Q[0], a
′
).

4. Q[1]←− ECADD (Q[0], P).

5. Q[0]←− Q[dj].

• Output Q[0].

3.30 Zero Value Attack Over Binary Fields

If we use algorithm 4 for scalar multiplication then for over F2m the most efficient method of point

doubling and point addition was proposed in [LD99]. In their, paper affine coordinates (x, y) were

mapped to projective coordinate (X,Y, Z) by setting x = X/Z and y = Y/Z2. The equation of

elliptic curves over these projective coordinates is given by E : Y 2 +XY Z = X3Z+A(XZ)2 +BZ4.

Let P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) be two points on E. The elliptic curve point doubling

and addition is done as follows 4.

Inverse and Point of infinity

−P1 = (X1, XZ + Y,Z) and P∞ = [(α, 0, 0)] for any α ∈ F2m and α 6= 0

ECDBL-F2m

X2 = X4
1 +BZ4

1 , Y2 = BZ2Z
4
1 +X2(AZ2 + Y 2

1 +BZ4
1), Z2 = X2

1Z
2
1

ECADD-F2m X3 = C2 +H +G, Y3 = HI + Z3J , Z3 = F 2

where,

A0 = Y2Z
2
1 , A1 = Y1Z

2
2 , B0 = X2Z1, B1 = X1Z2, C = A0 + A1, D = B0 + B1, E = Z1Z2,

F = DE, G = D2(F +AE2), H = CF , I = D2B0E +X3, J = D2A0 +X3.

In section 3.25 we saw that ZVP attack depends strongly on the explicit implementation of scalar

multiplication algorithm. In this thesis we assume that ECDBL-F2m and ECADD-F2m is

implemented in the following way [LD99].

• Implementation of Elliptic Curve Point Doublimg (ECDBL-F2m) in F2m

• Input (P1 6= P∞, A, c = B2m−1
)

4These projective coordinates are slightly different than the one we defined in chapter 2

61

• Output (2P1)

1. T1 ←− X1 , T2 ←− Y1 , T3 ←− Z1

2. T4 ←− c

3. T3 ←− T3 × T3 : (= Z2
1)

4. T4 ←− T3 × T4 : (= cZ2
1)

5. T4 ←− T4 × T4 : (= BZ4
1)

6. T1 ←− T1 × T1 : (= X2
1)

7. T3 ←− T1 × T3 : (= X2
1Z

2
1 = Z2)

8. T1 ←− T1 × T1 : (= X4
1)

9. T1 ←− T1 + T4 : (= X4
1 +BZ4

1 = X2)

10. T2 ←− T2 × T2 : (= Y 2
1)

11. If A 6= 0

T5 ←− A :

T5 ←− T3 × T5 :

T2 ←− T5 + T2 : (= AZ2 + Y 2
1)

12. T2 ←− T2 + T4 : (= AZ2 + Y 2
1 +BZ4

1) or (= Y 2
1 +BZ4

1)

13. T2 ←− T1 × T2 : (= X2(AZ2 + Y 2
1 +BZ4

1)) or (= X2(Y 2
1 +BZ4

1))

14. T4 ←− T3 × T4 : (= BZ2Z
4
1)

15. T2 ←− T2 + T4 : (= BZ2Z
4
1 +X2(Y 2

1 + BZ4
1) = Y2) or (= BZ2Z

4
1 +X2(AZ2 + Y 2

1 +

BZ4
1) = Y2)

16. X2 ←− T1

17. Y2 ←− T2

18. Z2 ←− T3

• Implementation of Elliptic Curve Point Addition (ECADD-F2m) in F2m

• Input (P1 6= P∞, P2 6= P∞, A, B)

• Output (P1 + P2)

1. T1 ←− X1, T2 ←− Y1, T3 ←− Z1

62

2. T4 ←− X2, T5 ←− Y2, T6 ←− Z2

3. T7 ←− T4 × T3 : (= X2Z1 = B0)

4. T1 ←− T6 × T1 : (= X1Z2 = B1)

5. T8 ←− T3 × T6 : (= Z1Z2 = E)

6. T3 ←− T5 × T7 : (= Y2Z
2
1 = A0)

7. T6 ←− T6 × T6 : (= Z2
2)

8. T6 ←− T2 × T6 : (= Y1Z
2
2 = A1)

9. T2 ←− T3 + T6 :: (= A0 +A1 = Y2Z
2
1 + Y1Z

2
2 = C)

10. T4 ←− T1 + T7 : (= B0 +B1 = X2Z1 +X1Z2 = D)

11. T5 ←− T4 × T8 : (= D(Z1Z2) = F)

12. T6 ←− T5 × T5 : (= F 2 = Z3)

13. T4 ←− T4 × T4 : (= D2)

14. T9 ←− T8 × T8 : (= E2)

15. T9 ←− A× T9 : (= AE2)

16. T9 ←− T5 + T9 : (= F +AE2)

17. T9 ←− T4 × T9 : (= (D2)(F +AE2) = G)

18. T1 ←− T2 × T2 : (= (Y2Z1)2 + (Y1Z2)2 = C2)

19. T2 ←− T2 × T5 : (= CF = H)

20. T1 ←− T1 + T2 : (= C2 +H)

21. T1 ←− T1 + T9 : (C2 +H +G = X3)

22. T5 ←− T4 × T7 : (= D2B0)

23. T5 ←− T5 × T8 : (= B0D
2E)

24. T5 ←− T5 +X2 : (= B0D
2E +X3 = I)

25. T8 ←− T4 + T3 : (= A0D
2)

26. T8 ←− T8 + T2 : (= A0D
2 +X3 = J)

27. T8 ←− T6 × T8 : (= Z3J)

28. T2 ←− T2 × T5 : (= HI)

63

29. T2 ←− T2 + T8 : (= HI + Z3J = Y3)

ECDBL-F2m required 5 field multiplications and 5 squarings in general. If a = 0 or 1, then it

required 4 multiplications and 5 squarings. Please note that in F2m , the cost of squaring is much

lower than cost of field multiplication [IBS06].

ECADD-F2m required 14 field multiplications and 4 squarings in general and if a = 0 or 1 and

Z = 1, then ECADD-F2m required 9 multiplications and 4 squarings.

3.31 Zero Value Point from ECDBL-F2m

Theorem 6. Let E : y2 + xy = x3 + Ax2 + B be an elliptic curve over F2m such that B 6= 0. The

elliptic curve E has a zero value point P = (x, y) from ECDBL-F2m if and only if the following

conditions are satisfied:

1. x2 + y = 0.

2. Ax2 + y2 = 0.

3. y2 +B = 0.

4. y(P) = 0 or y([2]P) = 0.

5. x(P) = 0 or x([2]P) = 0.

Moreover, the zero-value points are not randomized by Coron’s third countermeasure (randomized

projective coordinates).

Proof. Let P1 = (X1, Y1, Z1) 6= P∞ be the corresponding point in projective coordinates. Let

P2 =ECDBL-F2m(P1). The algorithm ECDBL-F2m has a zero value register if and only if one of

the following values are zero

X1, Y1, X2, Y2, Z2, AZ2 + Y 2
1 , Y

2
1 +BZ4

1 , AZ2 +BZ4
1 , AZ2 + Y 2

1 +BZ4
1

• AZ2 + Y 2
1 + BZ4

1 = 0⇐⇒ AX2
1Z

2
1 + Y 2

1 + BZ4
1 = 0, which is in affine coordinate (X1 = xZ1

and Y1 = yZ2
1) is

Ax2Z4
1 + y2Z4

1 +BZ4
1 = 0

64

Ax2 + y2 +B = 0

Ax2 + y2 + (y2 + xy + x3 +Ax2) = 0

2Ax2 + 2y2 + xy + x3 = 0

xy + x3 = x(x2 + y) = 0 =⇒ x = 0 or (x2 + y) = 0

(x2 + y) = 0 is condition (1) and x = 0 condition (5) x(P) = 0

• AZ2 + Y 2
1 = 0⇐⇒ AX2

1Z
2
1 + Y 2

1 =⇒ Ax2 + y2 = 0 in affine coordinate which is condition (2).

Similarly Y 2
1 +BZ4

1 =⇒ y2 +B = 0 in affine coordinate which is condition (3) and

• X1 = 0 =⇒ x(P) = 0 and X2 = 0 =⇒ x(2P) = 0 which is condition (4).

• Y1 = 0 =⇒ x(P) = 0 and Y2 = 0 =⇒ x(2P) = 0 which is condition (5).

These points cannot be randomized by Coron’s third countermeasure. Let P = (x, y) such that

x2 + y = 0, then the corresponding point in randomized projective coordinates is (αx, α2y, α), for

some non-zero α ∈ F2m . We have (αx)2 + α2y = α2(x2 + y) = 0. If P satisfies Ax2 + y2 = 0, then

in corresponding projective coordinates we have Aα2(αx)2 + (α2y)2 = α4(Ax2 + y2) = 0. A similar

argument shows that other ZVP points cannot be randomized by Coron’s third countermeasure.

3.31.1 Finding ZVP in ECDBL-F2m

In this section we will discuss how to find ZVP in ECDBL-F2m . Let E : y2 + xy = x3 +Ax2 +B

be an elliptic curve over F2m .

• Condition(1) x2 + y = 0. Let P ∈ E be such that x2 = y =⇒ x4 +Ax2 +B = 0. The solution

of this polynomial can easily be found efficiently [Coh93].

• Condition(2) Ax2 + y2 = 0. Let P ∈ E such that y2 = Ax2 =⇒ x3 +
√
Ax2 + B = 0. As

mentioned above solving this polynomial is easy. Please note that the equation y2 = A is

trivially solved in F2m

y = A2m−1
=⇒ y2 = A

• Condition(3) y2 + B = 0. Therefore point (0,
√
B) will always lie on the curve. But point

(0,
√
y) has order 2. We saw in section 3.21, ZVP points of small order can easily be dealt with

65

by careful implementation of the scalar multiplication algorithm. However, if point (x,
√
y) for

any x ∈ F∗
2m lies on the curve, then this point can have a large order. Such a point lies on the

curve if and only if x2 + ax+
√
B = 0 has a solution in F2m .

• Condition(4) y(P) = 0 requires to solve polynomial x3 + Ax2 + B = 0 which can be easily

solved in polynomial time [Coh93]. For condition y([2]P) = 0 requires to solve ψ3(x2 + x +

y) − (x2 + xy) = 0, where ψ3 is a division polynomial defined in section 3.32.1. Note that if

x3+Ax2+B has no roots, then there can be no point (x, y) on the curve such that y([2]P) = 0.

3.32 Zero Value Points from ECADD-F2m

Theorem 7. Let E : y2 +xy = x3 +Ax2 +B be an elliptic curve over F2m . The elliptic curve E has

a zero value point P = (x, y) of ECADD-F2m(cP, P) if and only if one of the following conditions

are satisfied:

1. P = (x, y) is a y-coordinate self collision point i.e. ∃c ∈ Z+ such that y([c]P) = y(P)

2. x(P) + x([c]P) +A = 0

3. m = 1, where

m =

y(P)−y([c]P)
x(P)−x([c]P) if P 6= [c]P

3x2+A
2y if P = [c]P

4. x(P) = 0 or x([c]P) = 0 or x([c+ 1]P) = 0

5. y(P) = 0 or y([c]P) = 0 or y([c+ 1]P) = 0

6. x(P) + x([c+ 1]P) = 0

7. y([c]P) + x([c+ 1]P) = 0

Proof. Let P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) be two points such that P1 = [c]P2 for some

c ∈ Z and P3 =ECADD-F2m(P1, P2). ECADD-F2m has a zero value register if and only if one of

the following values is zero

X1, Y1, X2, Y2, X3, Y3, Z3, C, D, F +AE2, C2 +H, I, J

66

• C = Y2Z
2
1 + Y1Z

2
2 = 0 =⇒ y2 + y1 = 0 (in affine coordinates) which is condition (1).

• F + AE2 = 0 ⇐⇒ (X2Z1 + X1Z2)(Z1Z2) + A(Z1Z2)2 = 0 =⇒ x2(Z2Z1)2 + x1(Z1Z2)2+

A(Z1Z2)2 = 0 which implies x2 + x1 +A = 0 which is condition (2).

• C2 +H = 0⇐⇒ C = F ⇐⇒ y2(Z1Z2)2 + y1(Z1Z2)2 = x2(Z1Z2)2 + x1(Z1Z2)2 =⇒ y2 + y1 =

x2 + x1 ⇐⇒ y2+y1
x2+x1

= 1 which is condition (3).

• X1 = 0 =⇒ x(P) = 0 and if X2 = 0 =⇒ x([c]P) or X3 =⇒ x([c+ 1]P) which is condition (4).

• Y1 = 0 =⇒ y(P) = 0 and if y2 = 0 =⇒ y([c]P) or Y3 =⇒ y([c+ 1]P) which is condition (5).

• I = B0D
2E +X3 = 0 =⇒ x+ (x[c+ 1]P = 0) which is condition (6)

• J = A0D
2 +X3 = 0 =⇒ y([c]P) + (x[c+ 1]P = 0) which is condition (7)

3.32.1 Finding ZVP in ECADD-F2m

Let E : y2 + xy = x3 +Ax2 +B be an elliptic curve over F2m and P = (x, y) be a point on E. Let

c be a positive integer. Then the point [c]P can be given as follows [Was03]:

[c]P =
(
x+

ψc−1(P)ψc+1(P)
ψ2

c (P)
, x+ y +

(x2 + x+ y)ψc−1(P)ψc(P)ψc+1(P) + ψc−2(P)ψ2
c+1(P)

xψ3
c (P)

)

where polynomials ψc called division polynomial is defined recursively as follows

ψ0 = 0

ψ1 = 1

ψ2 = x

ψ3 = x4 + x3 +B

ψ4 = x6 +Bx2)

ψ2k+1 = ψk+2ψ
3
k + ψk−1ψ

3
k+1 , for k ≥ 2

ψ2k =

(
ψk+2ψ

2
k−1 + ψk−2ψ

3
k+1

)
ψk

x
, for k > 3

67

It is easy to see that all 6 conditions in ECADD-F2m require to solve ψc, for example let

P = (x, y) which satisfies condition (2) i.e.

x(P) + x([c]P) +A = 0⇐⇒ xP + x+
ψc−1(P)ψc+1(P)

ψ2
c (P)

+A = 0

= ψ2
c (P)(A) + ψc−1(P)ψc+1(P) = 0

The polynomial ψc has degrees of order O(c2) which increase exponentially in size of c. Therefore,

it is believed to be a hard problem to find solution of these polynomials for a large c [Was03].

3.33 Defense Against ZVP Attack over F2m

Preventing ZVP point attack or existence of ZVP points on standard curves (SECG, NIST) over

F2m was not discussed in [AT05] or [AT03]. We have found that 15 out of 18 SECG curves and

7 out of 10 NIST have ZVP points from ECDBL-F2m (see tables 12 and 13). We recall that

ZVP points of small order can easily be dealt with by using the method described in section 3.21,

in parenthesis () we list whether the ZVP points are of large or small order. Please also note that

we will only discuss defense against ZVP points from ECDBL-F2m , since finding ZVP point from

ECADD-F2m is believed to be a hard problem.

We notice that Koblitz curves 5 (in SECG names ending with k1 e.g. sectk1, and in NIST

starting with K e.g. K-571) have ZVP points of small order only. Hence, these can be protected

easily by implementing the scalar multiplication as in algorithm 8. For all other curves we will apply

isogeny defense if a = 1, and elliptic curve isomorphism, if a 6= 1.

Algorithm 8. (Defense against ZVP attack for Koblitz curves over F2m)

• Input (p = (x, y), d, E = (a, b), #E = h× q)

• Set P ←− (rx, r2, r), for some random non-zero r ∈ F2m .

1. Compute Q←− BMR (P, a, b, h).

2. If Q 6= P∞ then Compute BMR (P, a, b, A, d).

Algorithm 9. BMR

• Input P , a, b, d =
∑l−1

j=0 dj2j

5Koblitz curves refer to binary curves over F2m which have a, b ∈ {0, 1}

68

Name of Curve x2 + y = 0 Ax2 + y2 = 0 y2 +B = 0 (x, 0) Curve Order
sect113r1 no no yes(large) no 2× Prime
sect113r2 no yes(large) no yes(large) 2× Prime
sect131r1 yes(large) no yes(large) yes(large) 2× Prime
sect131r2 no no no yes(large) 2× Prime
sect163k1 no no no no 4× Prime
sect163r1 yes(large) no yes(large) no 2× Prime
sect163r2 no yes(large) no yes(large) 2× Prime
sect193r1 yes(large) no no yes(large) 2× Prime
sect193r2 yes(large) yes(large) no no 2× Prime
sect233k1 yes(small) yes(small) yes(small) yes(small) 4× Prime
sect233r1 no no no no 2× Prime
sect239k1 yes(small) yes(small) yes(small) yes(small) 4× Prime
sect283k1 yes(small) yes(small) yes(small) yes(small) 4× Prime
sect283r1 no yes(large) no yes(large) 2× Prime
sect409k1 yes(small) yes(small) yes(small) yes(small) 4× Prime
sect409r1 no no no no 2× Prime
sect571k1 yes(small) yes(small) yes(small) yes(small) 4× Prime
sect571r1 no yes(large) no yes(large) 2× Prime

Table 12: SECG curves over F2m and ZVP points from ECDBL-F2m

1. Q[0]←− P .

2. For j from l − 2 to 0 do

3. Q[0]←− ECDBL-F2m (Q[0], a, b2
m−1

).

4. Q[1]←− ECADD-F2m (Q[0], P , a, b).

5. Q[0]←− Q[dj].

• Output Q[0].

3.34 Elliptic Curve Isomorphism over F2m

We will quickly recap few properties of elliptic curves over binary fields, for details see [Men93]. Let

E1 : y2
1 + x1y1 = x3

1 + a1x
2
1 + b1 and E2 : y2

2 + x2y2 = x3
2 + a2x

2
2 + b2 be two elliptic curves over

F2m with bi 6= 0 for i = 1, 2. Then E1 and E2 are isomorphic over F2m if and only if there exists

s ∈ F2m such that a2 = a1 + s+ s2 and b2 = b1. The j-invariants are given by ji = b−1
i , for i = 1, 2.

Furthermore, isomorphisms ϕ and ϕ−1 are given by.

ϕ : E1 −→ E2, ϕ (x, y) 7−→ (x, y + sx)

69

Curve x2 + y = 0 Ax2 + y2 = 0 y2 +B = 0 (x, 0) Curve Order
B-163 no yes(large) no yes(large) 2× Prime
K-163 no no no no 2× Prime
B-233 no no no no 2× Prime
K-233 yes(small) yes(small) yes(small) yes(small) 4× Prime
B-283 no yes(large) no yes(large) 2× Prime
K-283 yes(small) yes(small) yes(small) yes(small) 4× Prime
B-409 no no no no 2× Prime
K-409 yes(small) yes(small) yes(small) yes(small) 4× Prime
B-571 no yes(large) no yes(large) 2× Prime
K-571 yes(small) yes(small) yes(small) yes(small) 4× Prime

Table 13: NIST curves over F2m and ZVP points from ECDBL-F2m

and

ϕ−1 : E2 −→ E1, ϕ−1 (x, y) 7−→ (x, y + sx)

3.35 Defense Against ZVP Attack Through Isomorphism For

Binary Curves with a 6= 1

In this section we present a countermeasure against ZVP attack using elliptic curve isomorphism.

In order to thwart the ZVP attack we have to choose a curve which has no ZVP points of large

orders. Our focus will be on non-Koblitz binary curves for which a 6= 1. For each curve we pick a

random s in F∗
2m and using isomorpishm ϕ we compute the corresponding curve E

′
. If E

′
has no

ZVP we will return s, otherwise we will pick another random s. It took me on average less than

30 tries to find a suitable curve. Below in the table 14 we list s for each SECG curve with a 6= 1.

Furthermore, we will represent s in hexadecimal for convenience. The conversion from hexadecimal

to a field element is done by converting it to binary number and each coefficient of the binary string

represents coefficients of s.

Therefore, to protect against the ZVP attack, cryptographic devices need to store the original

curve, as well as the isomorphic curve and isomorphisms ϕ and ϕ−1. Input points can then be

mapped to the isomorphic curve for scalar multiplication(using algorithm 8) and then mapped

back again to the original curve. The additional computational cost of the isomorphism defense is

negligible (2 field multiplications).

70

Name Of Curve s
sect113r1 18FAA414E74440750490C01BB277D
sect113r2 1D15B022CC73D9E966F8A0ABFA26F
sect131r1 5EF4C6145AA39FFACD6C3296E49AB1246
sect131r2 71C674FDCAE7A4BDE497F58E833EDF9F2
sect163r1 5277F5AB7FFFF42D506904A46AE18086F317DFD86
sect193r1 163E42DF9E7D5373A9C1610E3758E626CC784110B676111AD
sect193r2 1D1A0FD2202E04C7E7EF572304AE231CCBDE817720884068F

Table 14: Isomorphism defense for SECG curves over F2m with a 6= 1

3.36 Isogeny Defense Against ZVP Attack for Binary Curves

with a = 1

First of all we should stress the fact that if an elliptic curve E := y2 + xy = x3 + ax2 + b over

F2m satisfies a = 1 and b 6= 0, 1, then it cannot be mapped to an isomorphic curve E
′
: y2 + xy =

x3 + a
′
x2 + b that satisfies a

′
= 1. Since by isomorphism we have a

′
= a+ s+ s2 for some s ∈ F∗

2m ,

if a = a
′

= 1, then s(1 + s) = 0, is only possible when s = 0. Hence, for these curves we have to

apply isogeny defense in order to obtain curves that are safe against ZVP attack and satisfy a = 1.

In table 15 we list the minimal degree of isogeny (lm) to a curve that is secure against ZVP attack.

Curve lm
sect163r2 37
sect283r1 23
sect571r1 7

B-163 37
B-283 23
B-571 7

Table 15: Isogeny Defense against ZVP points

In table 16 we compare the computational cost of the isogeny defense to Coron’s third counter-

measure (blinding the base point, see section 3.13). The isogeny defense costs us an additional 3× lm

field multiplications and Coron’s countermeasure costs us 39×4+39×9 = 507 field multiplications.

Therefore, for isogeny degree < 169, the isogeny defense is faster than Coron’s third countermeasure.

Please note that if we use an isomorphism to protect these curves then the additional computational

cost would be 5 × l + 5 × l, where l is the number of bits in scalar (see section 3.30). It follows

that the isogeny defense requires an additional 1630, 2830 and 5710 field multiplications for curves

71

sect163r2(B-163), sect283r1(B-283), sect571r1(B-571), respectively.

Curve #multiplication Isogeny defense #multiplication blinding
sect163r2 111 507
sect283r1 69 507
sect571r1 21 507

B-163 111 507
B-283 69 507
B-571 21 507

Table 16: Comparison of computational cost of isogeny defense with Coron’s Countermeasure

In order to protect these curves from ZVP attack, cryptographic devices such as Smart cards

etc, need to store along with the original curve from the standard, the isogenious curve and the

equation of isogeny and its inverse. The input points can then be mapped to the isogenious curve

for scalar multiplication and then mapped back to the original curve.

72

Chapter 4

A Public Key Crytosystem Based

on Isogenies

In 1997 Peter Shor proposed an algorithm that can factor a composite number and solve discrete

logarithm problem in a cyclic group in polynomial time on a quantum computer [RS06]. Since

security of many cryptosystems is based on either factoring a composite number, or solving discrete

logarithm in a cyclic group, there have been attempts to come up with cryptosystems whose security

is based on problems [RS06] other than factoring and discrete log. In this spirit Rostovtsev and

Stolbunov proposed a new public key cryptosystem whose security is based on computing an isogeny

between two given elliptic curves. In this chapter we will study this cryptosystem. The chapter is

organized in the following way. In section 4.1 we will describe the public key Cryptosystem based on

isogenies. In section 4.2 we will describe the cryptosystem security. In section 4.3 we will discusses

cryptosystem parameter selection. In section 4.5 we will estimate the computational complexity of

the encryption and decryption algorithms. In section 4.6 we will describe the drawbacks of this

cryptosystem.

4.1 Cryptosystem

4.1.1 Common Parameters (Public Information)

• D < 0 such D ≡ 1 (mod 4) or D ≡ 0 (mod 4) such that class number hD is a prime (see

section 2.5).

73

• Choose prime p such that 4p = x2 + |D|y2 for x, y ∈ Z.

• jinit a root of Hilbert polynomial HD over Fp (see section 2.16).

• d is the number of isogeny degrees.

• L = l1, ..., ld is the set of Elkies isogeny degrees (see section 2.24).

• F = {π1, .., πd} set of Frobenius eigenvalues, which specify the direction for every isogeny

degree li (see section 2.24).

• k a limit for the number of steps by any isogeny degree in L.

• Private Key is route Rpriv = {r1, r2, ..., rd| − k ≤ ri ≤ k}

• Public Key is a jpub = Rpriv(jinit, F)

• Plaintext is a set P = {m|m ∈ Fp
∗}.

• Ciphertext is a set C = {(c1, c2)|c1, c2 ∈ Fp
∗}

4.1.2 Encryption Algorithm

• Input (Common parameters, jpub, m)

1. Choose a random route Renc subject to constraints above. If Renc = {0, 0, ..., 0}, then repeat

this step.

2. Compute jenc = Renc(jpub, F).

3. Compute c = m× jenc (mod p).

4. Compute jadd = Renc(jinit).

5. Output ciphertext (c, jadd).

Note that steps 2 and 4 are series of steps themselves for details see section 2.25, 2.24 and 2.26.

4.1.3 Decryption Algorithm

• Input(Common parameters, Rpriv, c, jadd)

74

1. Compute jenc = Rpriv(jadd).

Rpriv(jadd) = Rpriv(Renc(jinit)) = Renc(Rpriv(jinit)) = Renc(jpub) = jenc

2. Compute m = c
jenc

mod p.

4.2 Crytosystem Security

First we note that any route from jinit to jpub or from jinit to jadd will break the cryptosystem 4.1.

To see this let R be any route from jinit to jpub and (c, jadd) be the ciphertext.

R(jadd) = R(Renc(jinit)) = Renc(R(jinit)) = Renc(jpub) = jenc

m =
c

jenc
(mod p)

The strength of Crytosystem 4.1 is based on the assumption that finding a route between two

elliptic curves is hard. This problem is equivalent to the problem of computing an isogeny between

two elliptic curves. To see this let R = {r1, ..., rd} be a route from jinit to jpub, then there exists an

isogeny Eini to Epub of degree l where l = lr1
1 × ... × l

rd

d . Similarly if we know the isogeny degree

between jinit to jpub, then we can easily find a route by dividing the isogeny degree from the elements

of L = {l1, ..., ld}.

To find a route from jinit to jpub the following techniques can be used.

• Brute Force

Using one isogeny degree, move from jinit in one direction until we reach to jpub. The complex-

ity of this attack is O(n) (where n = hD). A similar attack is to generate all possible routes

from jinit to jpub, according to the restrictions of L, d, k, until we reach jinit. The complexity

of this attack is also O(n)

• Meet-in-Middle

Let n = hD. For a single isogeny degree the average route length between jinit and jpub is

O(n). For two isogeny degrees the average route length is O(
√
n). For m isogeny degrees the

average route length is Rm ≈ O(m m
√
n). The minimum of function Rm(m) is O(lnn) when

m ≈ O(lnn). For the meet-in-middle-attack, the attacker selects O(lnn) elkies isogeny degrees

(see section 2.5), than in this case the average route length from jini to jpub does not exceed

75

Rm. The attacker than constructs all routes from Eini, not longer than Rm

2 and stores them

in a database. The attacker than selects a random route R
′
of length no greater than Rm

2 and

applies to jpub and looks to see if there is a route R in database such that

R
′
(jpub) = R(jinit)

It should succeed with high probability according to the birthday paradox. The complexity of

this attack is O(
√
n) isogeny computations.

• Compute an Isogeny

In [Gal99] a probabilistic algorithm to compute an isogeny between two elliptic curves over

Fp has been proposed whose running time in worst case is O
(√

p3 ln p
)

and in most cases is

O
(

4
√
p ln p

)
.

4.3 Parameter Selection

For a fixed discriminant D the corresponding class number asymptotically equals hD = O
(√

D
)

[Coh93]. In [RS06] it has been suggested that for minimizing computational complexity the number

of isogeny degrees should equal to O (log2(hD)) and the number of k steps should not exceed 2. To

provide 280 secrecy we should choose

• prime p ≈ 2320.

• D ≈ 2180.

• hD ≈ 2180.

• d ≈ 40

4.4 Prime Class Number

The best known algorithm for computing the class number hD runs in sub-exponential time, to obtain

a prime class number is quite impractical. The requirement that hD has to be a prime can be replaced

by the requirement that hD is divisible by a large prime. In this case the cryptosystem strength

will be estimated at O(
√
r), where r is the largest prime divisor. Below we provide an example with

76

D = 239, hD = 15. The divisors of hD are 3, 5, 15. The roots of HD(Hilbert polynomial) form three

disjoint cycles of size 5 for elkies isogeny degree l = 3 and one cycle of size 15 for l = 5 see tables

18 and 17. Note 1 is also a divisor of 15, but theorem 3 guarantees that there can be no cycle of

size 1 for elkies isogeny degrees.

Example 3.

D = −239, p = 92509430656348909215157097, Dφ = −369557620453916349649648064,

hD = 15 = 5× 3 (Frobenius discriminant), and l = {3, 5} (Set of elkies isogeny degrees). All 15

roots (j-invariants) of the Hilbert polynomials over Fp are given below

{34664314880184897854066447, 91759613407260720335767156, 48056966310244979865459329,

35785819301790353121799408, 36686821072310455235960695, 45222600282096952558309960,

45544569353491886282107080, 63606223206356386605749452, 86213767687379248106559639,

22650120787929679679909462, 69387360793240473889501349, 12808126089717932373847650,

56341770482404363108802548, 84825386470083372492769962, 6520747052416256803132143 }

Cycle
34664314880184897854066447
36686821072310455235960695
45544569353491886282107080
69387360793240473889501349
56341770482404363108802548
12808126089717932373847650
63606223206356386605749452
6520747052416256803132143
45222600282096952558309960
35785819301790353121799408
86213767687379248106559639
22650120787929679679909462
48056966310244979865459329
91759613407260720335767156
84825386470083372492769962

Table 17: Single Isogeny cycle of size 15 for degree l=5

77

Cycle 1 Cycle 2 Cycle 3
34664314880184897854066447 91759613407260720335767156 45222600282096952558309960
35785819301790353121799408 6520747052416256803132143 45544569353491886282107080
69387360793240473889501349 36686821072310455235960695 22650120787929679679909462
48056966310244979865459329 86213767687379248106559639 12808126089717932373847650
63606223206356386605749452 56341770482404363108802548 84825386470083372492769962

Table 18: Three Disjoint isogeny cycles of size 5 for degree l=3

4.4.1 Discriminant and Class Number Selection

Theorem 8 provides an efficient way of obtaining a class number which has a large prime factor.

Theorem 8. Let D < 0 be a fundamental discriminant as describe in section 2.3 and Dπ = Df2

be an order in Q(
√
D), then

hDπ

wDπ

=
hD

wD
f
∏
q|f

1−

(
D
q

)
q

where the product is over all prime divisors q of f and

(
D
q

)
is kronecker-jacobi symbol and wD

is the number of invertible elements in the quadratic order OD

wD =

2 if D < −4

4 if D = −4

6 if D = −3

Proof. See [Coh93]

Suppose hD is small, (e.g. D = −3 hD = 1). Let p be a prime in Q(
√
D) such that p = x2+ |D|y2

and y is prime. Let Dφ be the discriminant of frobenius characteristic equation (see section 2.19),

then ODφ
is an order with discriminant Dφ = D(2y)2. From theorem 8 it follows that

hDφ
≥

2yhD if D < −4

yhD if D = −4

2
3yhD if D = −3

I have found that in practice to find a prime of form p = x2 + |D|y2 such that y is also a large

prime takes less than a minute (see table 19 and 20). Another way to obtain a class number with a

large prime divisor is to choose D such that −D is a large prime, then set f = −D, from theorem 8

78

we have

hDπ = f × hD

D hD Average Time bits x bits y
-3 1 31 seconds ≈ 16 ≈ 160
-7 1 22.5 seconds ≈ 16 ≈ 160
-8 1 40.7 seconds ≈ 16 ≈ 160
-11 1 36.8 seconds ≈ 16 ≈ 160
-19 1 39.2 seconds ≈ 16 ≈ 160
-43 1 23.91 seconds ≈ 16 ≈ 160
-67 1 28.35 seconds ≈ 16 ≈ 160
-163 1 9.50 seconds ≈ 16 ≈ 160

Table 19: Computation of a random prime with y is also prime for all D with hD = 1

D hD Average Time bits x bits y
-15 2 28.33 seconds ≈ 16 ≈ 160
-20 2 31.20 seconds ≈ 16 ≈ 160
-24 2 27.06 seconds ≈ 16 ≈ 160
-35 2 17.12 seconds ≈ 16 ≈ 160
-40 2 29.70 seconds ≈ 16 ≈ 160
-51 2 23.21 seconds ≈ 16 ≈ 160
-52 2 33.99 seconds ≈ 16 ≈ 160
-88 2 30.78 seconds ≈ 16 ≈ 160
-91 2 36.03 seconds ≈ 16 ≈ 160
-115 2 45.38 seconds ≈ 16 ≈ 160
-123 2 21.40 seconds ≈ 16 ≈ 160
-148 2 21.50 seconds ≈ 16 ≈ 160
-187 2 29.35 seconds ≈ 16 ≈ 160
-232 2 24.98 seconds ≈ 16 ≈ 160
-235 2 32.0 seconds ≈ 16 ≈ 160
-267 2 24.83 seconds ≈ 16 ≈ 160
-403 2 23.43 seconds ≈ 16 ≈ 160
-427 2 29.17 seconds ≈ 16 ≈ 160

Table 20: Computation of a random prime with y is also prime for all D with hD = 2

4.5 Running Time of Crytosystem 4.1

We assume that Müller′s modular polynomials Gl are precomputed and stored. The most costly

steps in the encryption algorithm are steps 2 and 4 which require factoring the polynomial Gl. The

79

overall complexity of factoring Gl over Fp is O
(
l1.815 log p

)
[KS98]. Let Renc = {r1, r2, ..., rd| − k ≤

ri ≤ k} be a route, then the computational complexity of encryption algorithms is

2k ×
d∑

i=1

O
(
l1.815
i log p

)
= O

(
k ×

d∑
i=1

(l1.815
i log p

)

Let l = max{l1, l2, ..., ld}, then substituting l for each li in the above equation we get.

O
(
k × d× l1.815 log p

)
If we take k = 2 and d = O (log hD) as suggested in [RS06], then the computational complexity

of encryption algorithms is bounded by

O
(
l1.815 log hD log p

)
= O

(
l1.815(log p)2

)
Note that d = O (log hD) ⇒ d = O

(
log
√
p
)
. Since d = O (log hD) = O

(
log
√
D
)

[Coh93] and

p = x2 + |D|y2 ⇒ |D| ≤ p therefore, we can write d = O
(
log
√
p
)
.

This is also the complexity of decryption algorithm. In [RS06] it was also never mentioned

explicitly that Müller′s modular polynomials should be precomputed or should be computed during

running time. Storing these polynomials in memory-constrained devices can be a problem. For

example for l = 197 Gl has 4754 coefficients with the largest coefficient of 516 digits. The overall

complexity of computing Gl over Fp is O
(
l3+ε log p log log p

)
[IFBS99]. It can take several minutes

for computing Gl for l ≈ 200. Hence, computing these polynomial during running time is also very

costly.

4.6 DrawBacks of Isogeny-Based Cryptosystems

In this section, we will describe the drawbacks of this Cryptosystem. The security of any public

key cryptosystems is based on certain assumptions, for example the security of RSA public key

cryptosystem based on the assumption that factorization of a large composite number into its prime

factors is computationally infeasible and its function fd(m) = me mod N is one way. In Isogeny

based cryptosystems we not only assume that the isogeny problem is hard and its encryption is one

way, but in addition to this we make an additional assumption. Recall from section 2.24 we have

stated that

80

If the class number hD is prime, then the roots of Hilbert polynomial will form a single isogeny

cycle and if class number is not a prime, then the roots of the Hilbert polynomial will form disjoint

cycles of divisors of hD.

This statement is merely conjectured by the authors of [RS06] based on computational experi-

ments, there is no proof known to this date. If this conjecture is false, the cryptosystem is vulnerable

to attacks whenever the elements of UD form small disjoint cycles. The second problem which is

more crucial than the first one is that there is no known efficient way of computing the jinit (a root

of Hilbert polynomial HD(X) over Fp).

HD(X) =
hD∏
i=1

(X − j(τi)) ∈ Z[X]

where τi = −bi+
√

D
2ai

and ClD = {(ai, bi, ci)|1 ≤ i ≤ hD} is the set of reduced triplets described in

section 2.5 and the function j(τ) is defined in section 2.15. The Hilbert polynomials are first

computed over integers and then reduced modulo a suitable prime. These polynomials have two

drawbacks. First they have coefficients of astronomical size even for small discriminant e.g.

H−71(X) = x7 + 313645809715x6 − 3091990138604570x5 + 98394038810047812049302x4−

823534263439730779968091389x3 + 5138800366453976780323726329446x2−

425319473946139603274605151187659x+ 737707086760731113357714241006081263

Secondly, very high precision is required to compute the Hilbert polynomials [IBS06]. The

precision needed will be about

PH = 10 +
(

hD

bhD/2c

)
π
√
D

log 10

∑
(ai,bi,ci)∈ClD

1
ai

where
(

hD

bhD/2c

)
are possible combinations. For hD = 100 the precision required to compute

HD(X) is greater than 729826235521340289034212447957 (a 30 digit number), for hD = 10000 the

precision is greater than 5 × 103009 (a 3000 digit number), for hD > 105, calculation of a Hilbert

polynomial is practically infeasible. Therefore, we cannot compute jinit using Hilbert polynomials.

There is an alternate polynomial called the Weber polynomial WD ([YZ97]) which has much smaller

81

coefficients and require much smaller precision, from the roots of Weber polynomials WD we can

easily compute the roots of Hilbert polynomial HD(X). In the next section we will describe the

Weber polynomials and we will see that even Weber polynomials have their limitations.

4.7 Weber Polynomials

Let τ ∈ H (upper half-plane) and q = e2πiτ . The classical Weber functions are defined by

f(τ) = q−
1
48

∞∏
i=1

(1 + qn− 1
2)

f1(τ) = q−
1
48

∞∏
i=1

(1− qn− 1
2)

f2(τ) =
√

2q−
1
24

∞∏
i=1

(1 + qn− 1
2)

Let D be a negative integer such that D ≡ 1 (mod 4) and D 6≡ 0 (mod 3), for other discriminant

see [IBS06]. Let hD be the corresponding class number and ClD = {[ai, bi, ci]|1 ≤ i ≤ hD} be the

set of equivalence classes of ideals of OD as defined in (section 2.7). Set τi = bi+
√

D
2ai

, for each

[ai, bi, ci] ∈ ClD.

g([ai, bi, ci]) =

ζb(a−c−c2) × f(τ) if 2|ai, 2|ci

(−1)
D−1

8 × ζb(a−c−c2) × f(τ) if 2|ai, 2 - ci

(−1)
D−1

8 × ζb(a−c−a2c) × f(τ) if 2 - ai, 2|ci

where ζ = exp 2πi/48. The Weber polynomial WD(X) is

WD(X) =
∏
τi

(X − g(τi)) ∈ Z[X]

Let jw be the root of WD(X) over Fp, then the root (jh) of Hilbert polynomial HD(X) over Fp

is given by

jh = (j24w − 16)3/j24w

The Weber polynomials have much smaller coefficients, e.g.

82

W−71(X) = x7 − x6 − x5 + x4 − x3 − x2 + 2x+ 1

and the precision required to compute these polynomials is

PW =
G+ hD

4 + 5
45

+ 1

Where,

G =
π
√
|D|

log 10
×

∑
(ai,bi,ci)∈ClD

1
ai

Table 21 shows that the Weber polynomials are much more computationally friendly, then Hilbert

polynomials. Recall that in section 4.3 we have shown that in order to provide 280 we should choose

D ≈ 2320 and hD ≈ 2180. The precision required to compute Weber polynomials for discriminant

of this size is > 5.5 × 1053. The total running time it took to compute Weber polynomial with

D = −10000031, hD = 5426 and PW = 1986 was around 1.5 days. These computations carried out

on Solaris 2.6 at 333 MHz and having 512 MB of main memory[BB01]. Hence to compute a Weber

polynomials for D ≈ 2320 and hD ≈ 2180 is also impractical.

D hD PW PH Digits in PH

-7991 100 24 101900257991019835268160622228570 33
-21311 200 48 ≈ 1.9× 1062 63
-412079 1000 294 ≈ 3.70× 10302 303
-10000031 5426 1986 ≈ 2.50× 101636 1637

Table 21: Precision comparison for Weber and Hilbert polynomials

Theorem 9.

• Every element in Fp is the j-invariant of an elliptic curves over Fp.

• If |D| > 4, then all elliptic curves with the given j-invariants, j 6= 0, 1728 over Fp are given by

y2 = x3 + 3kc2x+ 2kc3

where k = j/(1728− j) and c is any element in Fp.

• Suppose E and E
′

have the same j-invariant but are not isomorphic over the field Fp. If

j 6= 0, 1728, then E
′
is the quadratic twist if #E = p+ 1− t then #E

′
= p+ 1 + t.

83

• Assume that j 6= 0, 1728. If E is given by

y2 = x3 + ax+ b

then E
′
is given by

y2 = x3 + ac2x+ bc3

where c is any quadratic non-residue in Fp

Proof. (See [IBS06])

Theorem 10. The number of isomorphism classes of elliptic curves over finite field Fp, p > 3 is

2p+ 6, 2p+ 2, 2p+ 4, 2p, for p ≡ 1, 5, 7, 11 (mod 12) respectively.

Proof. (See [Men93])

4.8 Finding a Root (jinit) of Hilbert Polynomials over Fp

Let D < 0 be any non-square integer such that D ≡ 0 or 1 (mod 4) and suppose there exists a prime

p for which the diophantine equation

4p = x2 + |D|y2

can be solved. Recall from section 2.16 that the roots of Hilbert polynomial HD(X) over Fp

will give j-invariants of elliptic curves. Each j-invariant will correspond to two elliptic curves E

and E
′
one has order p+ 1− x and the other has order p+ 1 + x. The equations of E and E

′
can

easily be obtained from the j-invariant using theorem 9. Similarly, if an elliptic curve E over Fp has

order p + 1 − x or p + 1 + x then the j-invariant of E is a root of Hilbert polynomial. According

to [Coh93], over Fp the number of isomorphic classes of elliptic curves whose orders are p + 1 + x

or p + 1 − x asymptotically equals to O(
√
D). Therefore, if we choose D close to p, then we can

randomly choose an elliptic curve E over Fp and check if #E = p+ 1 + x or #E = p+ 1− x. The

fastest known deterministic algorithm known to count the number of points on an elliptic curve over

a finite field is the Schoof-Elkies-Atkin algorithm (SEA). The running time complexity of this

algorithm is O((log p)4+ε)[Sat02]. Hence to find an initial elliptic curve using the above method is

also computationally infeasible, however a more efficient way to find an initial elliptic curve is to

84

use a combination of (SEA) and scalar multiplication algorithm 3 (see section 3.3) and theorem 9.

We will approach as follows, we will first choose a curve E over Fp using theorem 9 and then will

choose a random point Q on E and check the condition [p+ 1− x]Q = P∞ or [p+ 1 + x]Q = P∞, if

neither of the conditions hold, then p+ 1 + x or p+ 1− x cannot be the group order. If one of the

condition hold, then there is a high likelihood that this is the group order. The probability can be

increased by drawing and checking further random points. I have find that in practice if we found

a point P on E whose order is either [p+ 1 + x] or [p+ 1− x] then it is almost always the case that

the order E is the order of P . The method is formally describe below.

Algorithm 10. Find Initial Curve.

• Input (p, x).

1. For i from 1 to Max do

2. Choose j randomly in Fp − {0, 1728}.

3. A = j/(1728− j) mod p and B = j/(1728− j) mod p (Theorem 9).

4. Randomly choose a point Q ∈ y′2 = x′
3 +Ax′ +B.

5. If [p+ 1− x]Q = P∞ or [p+ 1− x]Q = P∞ then

6. If SEA(A,B, p) or SEA(A,B, p) then

7. Output j.

Clearly, this is a much more efficient way of finding a root, since we will invoke the SEA algorithm

only if p + 1 − x(P) = P∞ or p + 1 + x(P) = P∞. Once we have found such a curve, we can use

SEA algorithm to compute the number of points on E and if the number of points on E is either

p + 1 − x or p + 1 + x, then we are done otherwise we can choose another random j-invariant and

repeat the process. How many times are we are expected to try before we can find the right curve.

Let NE denote the number of isomorphism classes of elliptic curves over Fp. The number of times

we expect to try, is

O(
√
D)

NE

Curves, before a suitable curve can be found. According to theorem 10 NE = O(p). Let D ≈ p, the

probability that we choose a random curve E(Fp) such that #E = p+ 1− x or p+ 1 + x is

85

O(
√
p)

O(p)
≈ 1
O(
√
p)

Therefore, we are expected to try
√
p times before we can find an elliptic curve of a desired order.

Recall from chapter 3 that a prime p will provide 4
√
p secrecy. In order to provide 280 secrecy we are

expected to try 2160 times before we can find a root of Hilbert polynomial over Fp. This is a huge

number and it is quite impractical to find a root like this. I have implemented algorithm 10 in Maple

9 and found that it takes on average 0.5 seconds for algorithm 10. Hence it will take approximately

0.5× 2160 seconds (≈ 1041 years) to find a root of Hilbert polynomial over a prime field of size 2320.

Until we can find an efficient way of computing a root of a Hilbert polynomial over prime fields, this

cryptosystem cannot be used in practice.

86

Chapter 5

Conclusion

In this thesis we studied and analysed the application of isogenies and elliptic curve isomorphisms

for defense against various power analysis attacks. Our focus was on elliptic curve cryptosystems.

We saw that these attacks can easily be thwarted by the help of isogenies and elliptic curve iso-

morphisms (for curves over F2n). These side channel attacks also point to the fact that traditional

assumptions in cryptography need to be reevaluated. Traditionally the designer of a cryptosystem

assumes that an adversary knows everything about the cryptosystem being used, except the key,

and has pairs of plaintext/ciphertext. This is referred to as Kerchoff’s principle. However in

practice more information is often available to the adversary. For example in chapter 3 we saw that

cryptographic devices leak information about private key through side channels (power consumption

etc). Therefore, it is important that the cryptosystem should be designed with the assumption that

unintended information is leaked by these devices. Although it’s worth noting that researchers have

developed hardware that leak significantly less information, so far no feasible alternatives to tran-

sistors are available. However, alternate computation technologies such as pure optical computing 1

may exist in the future [PKJ98].

In this thesis we also studied this cryptosystem. We found that in order to use this cryptosystem

in practice one has to compute a root of the Hilbert polynomialHD over Fp, which becomes infeasible

when D is large.

1An optical computer is a computer that uses light instead of electricity to manipulate, store and transmit data

87

Bibliography

[ABaS96] B. Salvy A. Bostan, F. Morain and É. Schost. Fast algorithms for computing isogenies

between elliptic curves. http://arxiv.org/abs/cs/0609020, 1996.

[AT03] Toru Akishita and Tsuyoshi Takagi. Zero-value point attacks on elliptic curve cryptosys-

tem. In ISC 2003, vol 2851, Lecture Notes in Computer Science (LNCS), pages 218–233.

Springer-Verlag, 2003.

[AT05] Toru Akishita and Tsuyoshi Takagi. On the optimal parameter choice for elliptic curve

cryptosystems using isogeny. IEICE Transactions on Fundamentals of Electronics, Com-

munications and Computer Sciences, E88-A:140–146, 2005.

[BB01] Harald Baier and Johannes Buchmann. Efficient construction of cryptographically strong

elliptic curves. Technical report, Darmstadt University of Technology, 2001.

[Bucon] Johannes Buchmann. Algorithms for binary quadratic forms. Springer-Verlag, in prepa-

ration.

[CJM] Dewaghe L. Couveiges J.M and F. Morain. Isogeny cycles and the schoof-elkies-atkin

algorithm. http://citeseer.ist.psu.edu/couveignes96isogeny.html.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag,

1993.

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic curve

cryptosystems. In Cryptographic Hardware and Embedded Systems-CHESS(99), volume

1717, pages 292–302. Springer-Verlag, 1999.

88

[EKZ03] Yannis C. Stamatiou Elisavet Konstantinou and Christos Zaroliagis. On the construction

of prime order elliptic curves. In Progress in Cryptology - INDOCRYPT 2003, volume

2904/2003, pages 309–322. Springer Berlin / Heidelberg, 2003.

[Gal99] Steven Galbraith. Constructing isogenies between elliptic curves over finite fields. Journal

of Computational Mathematics, 2:118–138, 1999.

[Gou03] Louis Goubin. A refined power-analysis attack on elliptic curve cryptosystems. In Pro-

ceedings of the 6th International Workshop on Theory and Practice in Public Key Cryp-

tography: Public Key Cryptography, volume Lecture Notes in Computer Science 2567,

pages 199–210. Springer-Verlag, 2003.

[Hun96] Thomas W. Hungerford. Abstract Algebra: An Introduction. Thomson Brooks/Cole, 1996.

[IBS06] Gadiel Seroussi Ian Blake and Nigel Smart. Elliptic Curves in Cryptography. London

Mathematical Society Lecture Note Series. Cambridge University press, 2006.

[IFBS99] Michael Rubinstein Ian F. Blake, JÁnos A. Csirik and Gadiel Seroussi. On the computa-

tion of modular polynomials for elliptic curves. Technical report, University of Texas at

Austin, 1999.

[JT01] Marc Joye and Christophe Tymen. Protections against differential analysis for elliptic

curve cryptography. In Cryptographic Hardware and Embedded Systems-CHESS (2001),

volume Lecture Notes in Computer Science 2162, pages 377–390. Springer-Verlag, 2001.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other

systems. In Advances in Cryptology, volume 1109, pages 104–113. Springer-Verlag, 1996.

[Koh96] David R. Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis,

University of California, Berkeley, 1996.

[KS98] Erich Kaltofen and Victor Shoup. Subquadratic-time factoring of polynomials over finite

fields. Math. Comp, 67:398–406, 1998.

[LD99] J. Lopez and R. Dahab. Fast multiplication on elliptic curves over gf(2m) without pre-

computation. In Cryptographic Hardware and Embedded Systems-CHESS(99), volume

1717, pages 292–302. Springer-Verlag, 1999.

[Men93] Alfred J. Menezes. Elliptic Curve Public Key Cryptosystems. Springer, 1993.

89

[nis] Recommended Elliptic Curves For Federal Goverment Use.

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf.

[Os00] Katsuyuki Okeya and Kouichi sakurai. Power analysis breaks elliptic curve cryptosystems

even secure against the timing attack. In Progress in Cryptology, volume 1977, pages 178–

190. Springer-Verlag, 2000.

[PKJ98] Joshua Jaffe Paul Kocher and Benjamin Jun. Introduction to differential power analysis

and related attacks. Technical report, Cryptography Research, 1998.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public key cryptosystems based on isogenies.

http://eprint.iacr.org/2006/145.ps, 2006.

[Sat02] Takakazu Satoh. On p-adic point counting algorithms for elliptic curves over finite fields.

In Algorithmic Number Theory, volume 3076, pages 44–66. Springer Berlin / Heidelberg,

2002.

[sec00] The standards for efficient cryptography group (secg), 2000. http://www.secg.org/.

[Sma03] Nigel P. Smart. An analysis of goubin’s refined power analysis attack. In Cryptographic

Hardware and Embedded Systems-CHESS (2003), volume Lecture Notes in Computer

Science 2779, pages 281–290. Springer Berlin / Heidelberg, 2003.

[Tat66] John Tate. Endomorphisms of abelian varieties over finite fields. Inventiones Mathemat-

icae, 2:134–144, 1966.

[Was03] Lawrence C. Washington. Elliptic curves Number theory and Cryptography. CHAPMAN

AND HALL, 2003.

[Wil74] Malcolm J. Williamson. Non-secret encryption using a finite field. 1974.

[YZ97] Noriko Yui and Don Zagier. On the singular values of weber modular functions. Mathe-

matics of Computation, 66:1645–1662, 1997.

90

