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Abstract. The AES block cipher has a 128-bit block length and a user
key of 128, 192 or 256 bits, released by NIST for data encryption in the
USA; it became an ISO international standard in 2005. In 2008, Demirci
and Selçuk gave a meet-in-the-middle attack on 7-round AES under 192
key bits. In 2009, Demirci et al. (incorrectly) described a new meet-
in-the-middle attack on 7-round AES under 192 key bits. Subsequently,
Dunkelman et al. described an attack on 8-round AES under 192 key bits
by taking advantage of several advanced techniques, including one about
the key schedule. In this paper, we show that by exploiting a simple ob-
servation on the key schedule, a meet-in-the-middle attack on 8-round
AES under 192 key bits can be obtained from Demirci and Selçuk’s and
Demirci et al.’s work; and a more efficient attack can be obtained when
taking into account Dunkelman et al.’s observation on the key schedule.
In the single-key attack scenario, attacking 8 rounds is the best currently
known cryptanalytic result for AES in terms of the numbers of attacked
rounds, and our attack has a dramatically smaller data complexity than
the currently known attacks on 8-round AES under 192 key bits.

Key words: Block cipher, Advanced Encryption Standard, Meet-in-
middle attack.

1 Introduction

In 2001, NIST published the Advanced Encryption Standard (AES) [14] as the
new-generation data encryption standard for use in the USA, designed to replace
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the Data Encryption Standard (DES) [15]. AES is a 128-bit block cipher with
a user key of 128, 192 or 256 bits, which has a total of 10 rounds for a 128-bit
key, 12 rounds for a 192-bit key and 14 rounds for a 256-bit key. It became a
CRYPTREC-recommended e-government cipher [2] in 2002, a NESSIE selected
algorithm [16] in 2003, and was adopted as an ISO international standard [11] in
2005. Since AES is increasingly widely used in many real-life cryptographic ap-
plications, it is essential to continuing to investigate its security against different
cryptanalytic techniques. In this paper, we denote below by AES-128/192/256
the versions of AES that respectively use 128, 192 and 256 key bits, and we focus
on the security of AES-192 in the single-key attack scenario.

Many cryptanalytic results on the security of AES-192 (in the single-key
attack scenario) have been published so far [4,8,9,12,13,17,18]; and in terms of
the numbers of attacked rounds, the square attack [3] on 8-round AES-192 [8]
is the best currently published cryptanalytic result for AES-192, which requires
almost the entire codebook and has a time complexity of 2188 8-round AES
encryptions.

Building on the work described in [9], in 2008 Demirci and Selçuk [4] de-
scribed a 4-round property of AES, and used it as the basis of meet-in-the-
middle attacks [6] on 7-round AES-192 and 8-round AES-256. In 2009, Deirci et
al. [5] suggested a method to improve the 4-round property, yielding a 4-round
differential [1] property, and they gave meet-in-the-middle attacks on 7-round
AES-128/192 and 8-round AES-256. However, most recently Dunkelman et al. [7]
pointed out a flaw in Deirci et al.’s attacks, and more importantly, Dunkelman et
al. described another variant of the 4-round property due to Demirci and Selçuk,
which they referred to as a multiset variant, and introduced two new cryptan-
alytic techniques, namely differential enumeration and key bridging, where the
key bridging technique was used to drive (from AES-192’s key schedule) the ob-
servation that the last column of the initial subkey can be deduced from three
columns of the 8-th round key, (although they are 8 rounds away). Finally, by
taking advantage of these techniques Dunkelman et al. described an attack on 8-
round AES-192, which requires 2113 chosen plaintexts and has a time complexity
of 2172 8-round AES encryptions.

In this paper, we find that a meet-in-the-middle attack on 8-round AES-192
can be obtained from Demirci and Selçuk’s and Demirci et al.’s work, which is
based on the following two simple observations: First, we use a 4-round differen-
tial property obtained by applying Deirci et al.’s method to Demirci and Selçuk’s
4-round property; and second, we observe that three concerned bytes of the 7-th
round key can be deduced from the 8-th round key (this observation is not novel,
and similar ones had been extensively used in previous work, for instance [12]).
The attack requires 236 chosen plaintexts and has a time complexity of 2190.63

8-round AES encryptions, excluding a one-off precomputation with a time com-
plexity of 2190.63 8-round AES encryptions. Further, we can reduce the attack’s
time complexity to 2182.63 8-round AES-192 encryptions by using Dunkelman et
al.’s observation on the key schedule. Finally, with a data-time-memory trade-
off [10], we can obtain an 8-round AES-192 attack which requires 241 chosen



Table 1. Cryptanalytic results on 8-round AES-192 in the single-key attack scenario

Attack Type Data Memory T ime Precomputation Source

Square 2128 − 2119 CP 264 Bytes 2188 Enc. / [8]

Meet-in-the-middle 2113 CP 2133 Bytes 2172 Enc. 2132 Enc. [7]

236 CP 2193 Bytes 2190.63 Enc. 2190.63 Enc. Sect. 4.2

241 CP 2190 Bytes 2187.63 Enc. 2187.63 Enc. Sect. 4.3

plaintexts and has a time complexity of 2187.63 8-round AES-192 encryptions.
When compared with the currently known attacks on 8-round AES-192, our at-
tack has a greater time and memory complexity, but it has a dramatically smaller
data complexity. Table 1 summarises previous and our new cryptanalytic results
on 8-round AES-192 in the single-key attack scenario, where CP refers to the
required number of chosen plaintexts, and Enc. refers to the required number of
encryption operations of 8-round AES-192.

The remainder of the paper is organised as follows. In the next section we
describe the notation and the AES block cipher when used with a 192-bit key. In
Section 3, we review some related results from previous work. In Section 4, we
present our meet-in-the-middle attacks on 8-round AES-192. Section 5 concludes
the paper.

2 Preliminaries

In this section we give the notation used throughout this paper, and then briefly
describe the AES block cipher when used with a 192-bit key.

2.1 Notation

In all descriptions we assume that a number without a prefix expresses a decimal
number, and a number with prefix 0x expresses a hexadecimal number. We use
the following notation throughout this paper.

⊕ bitwise logical exclusive OR (XOR) of two bit srings of the same length
≪ left rotation of a bit string
• polynomial multiplication modulo the polynomial x8 + x4 + x3 + x+ 1 in

GF(28)

The 16 bytes of a 4 × 4 byte array are numbered from top to bottom from
left to right, starting with 0; an example is given below, where a0, a1, · · · , a15 ∈
{0, 1}8.

A = (ai)i=0,1,···,15 =


a0 a4 a8 a12
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15

 .



2.2 The AES Block Cipher

AES [14] uses the following four elementary operations to construct its round
function:

– The AddRoundKey operation (denoted below by ARK) XORs a 4× 4 byte
array with a 16-byte subkey.

– The SubBytes operation (denoted below by SB) applies the same 8 × 8-bit
bijective S-box (denoted below by S) 16 times in parallel to a 4 × 4 byte
array.

– The ShiftRows operation (denoted below by SR) cyclically shifts the jth row
of a 4× 4 byte array to the left by j bytes, (0 ≤ j ≤ 3).

– The MixColumns operation (denoted below by MC) pre-multiplies a 4 × 4
byte array by a fixed 4 × 4 byte matrix M . The matrix M and its inverse
M−1 are as follows.

M =


0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x02

 , M−1 =


0x0e 0x0b 0x0d 0x09
0x09 0x0e 0x0b 0x0d
0x0d 0x09 0x0e 0x0b
0x0b 0x0d 0x09 0x0e

 .

AES-192 uses a total of thirteen 128-bit subkeys Ki, (0 ≤ i ≤ 12), all derived
from a user key K of six 32-bit words long. The key schedule is as follows, where
Rcon[i/6] are public constants.

1. Represent the user key K as six 32-bit words (W0,W1, ...,W5).
2. For j = 6 to 51:

– if j mod 6 = 0 then Wj = Wj−6 ⊕ SB(Wj−1 ≪ 8)⊕Rcon[j/6];
– else Wj = Wj−6 ⊕Wj−1.

3. Ki = (W4i,W4i+1,W4i+2,W4i+3), (0 ≤ i ≤ 12).

AES takes as input a 128-bit plaintext block P , represented as a 4× 4 byte
array. AES-192 has a total of 12 rounds, and its encryption procedure is follows,
where x is a 16-byte variable.

1. x = ARK(P,K0).
2. For i = 1 to 11:

x = SB(x),
x = SR(x),
x = MC(x),
x = ARK(x,Ki).

3. x = SB(x), x = SR(x).
4. Ciphertext = ARK(x,K12).

An equivalent description of the algorithm can be derived by reversing the
order of the third and fourth operations of Step 2 of the above description, i.e.
the operations involving MC and ARK. These two steps then become:

x = ARK(x, K̂i),



x = MC(x),

where K̂i = MC−1(Ki). We use this alternative representation in certain of the
attacks described later.

The ith iteration of Step 2 in the above description is referred to below as
Round i, and the transformations in Steps 3 and 4 are referred to below as the
final round (i.e. Round 12). We write Ki,j (respectively, K̂i,j) for the jth byte

of Ki (respectively, K̂i), (0 ≤ j ≤ 15).

3 Related Results from Previous Work

In this section, we briefly review some related results from Demirci and Selçuk’s,
Demirci et al.’s and Dunkelman et al.’s work, which will be used in our attack.
We refer the reader to [4, 5, 7] for details.

3.1 Demirci and Selçuk’s Attack on 7-Round AES-192

In 2008, Demirci and Selçuk [4] described the following 4-round property for
AES.

Proposition 1 (A 4-Round Property). Let S be a set of 256 4×4 byte arrays

X(i) = (x
(i)
j )j=0,1,···,15 with byte (0) taking all the possible values and the other 15

bytes fixed, (i = 0, 1, · · · , 255). If Y (i) = (y
(i)
j )j=0,1,···,15 is the result of encrypting

X(i) using 4 rounds of AES, then y
(i)
0 can be expressed with a function of x

(i)
0

and 25 constant 8-bit parameters c0, c1, · · · , c24, written y
(i)
0 = fc0,c1,···,c24(x

(i)
0 ).

Building on the 4-round property, Demirci and Selçuk first gave a basic meet-
in-the-middle attack on 7-round AES; the attack procedure can be described as
follows.

1. For each of the 225×8 = 2200 possible values of the 25 parameters c0, c1, · · · ,
c24, precompute fc0,c1,···,c24(x) sequentially for x = 0, 1, · · · , 255. Store the
2200 256-byte sequences in a hash table.

2. Choose a set of 232 plaintexts with bytes (0,5,10,15) of the 232 plaintexts
taking all the possible values and the other 12 bytes fixed. In a chosen-
plaintext attack scenario, obtain the corresponding ciphertexts.

3. Guess a value for (K0,0,K0,5,K0,10,K0,15,K1,0), and then do as follows.
(a) Partially encrypt the set of 232 plaintexts with the guessed (K0,0, K0,5,

K0,10,K0,15,K1,0) to get the intermediate values for byte (0) just after
the first round.

(b) Choose 256 plaintexts such that the intermediate values for byte (0)
just after the first round distribute uniformly among [0, 1, · · · , 255] and
the intermediate values for the other bytes just after the first round are
constant.

(c) Sort the 256 plaintexts chosen in Step 3(b) in the sequence indexed by
their values in byte (0) just after the first round.



4. Guess a value for (K̂6,0,K7,0,K7,7,K7,10,K7,13), and then partially decrypt
the sequence of ciphertexts corresponding to the sequence of 256 plaintexts
obtained in Step 3(c) with the guessed (K7,0,K7,7,K7,10, K7,13, K̂6,0) to
get the sequence of the intermediate values for byte (0) just before the
sixth round. Compare this sequence with each of the 2200 sequences ob-
tained in Step 1; if it matches one of them, record the guessed value for
(K0,0,K0,5,K0,10,K0,15,K1,0, K̂6,0,K7,0,K7,7, K7,10, K7,13) and execute Step
5; otherwise, repeat Steps 3 and 4 with another guess.

5. Execute similarly Steps 1–4 with y
(i)
0 being replaced by y

(i)
1 , y

(i)
2 , y

(i)
3 in turn,

and finally obtain (K̂6,1, K̂6,2, K̂6,3,K7,1, · · · ,K7,6,K7,8,K7,9, K7,11,K7,12,
K7,14,K7,15).

6. Exhaustively search the remaining key bytes.

The precomputation has a time complexity of approximately 256 × 2200 ×
1.5 × 1

7 ≈ 2205.78 7-round AES encryptions under the rough estimate that a
computation of fc0,c1,···,c24 equals 1.5 one-round AES encryption in terms of
time. The attack requires 232 chosen plaintexts and a memory of 2210 bytes; its
time complexity is dominated by that for executing Step 4 four times, and it has
a time complexity of approximately 256× 28×10 × 2

4×7 × 4 ≈ 286.2 7-round AES

encryptions, where 2
4×7 represents the ratio of the number of the columns that

need to decrypt to the total number of the columns in 7-round AES.
Finally, Demirci and Selçuk described a data-time-memory tradeoff version

of the above basic attack which can be applied to 7-round AES-192 (for some
n > 14): The precomputation has a time complexity of 2205.78−n 7-round AES
encryptions, and with a success probability of 98%, the attack requires 234+n

chosen plaintexts and a memory of 2210−4×n bytes, and has a time complexity
of 288.2+n 7-round AES encryptions.

3.2 Demirci et al.’s Method to Improve the 4-Round Property

Observe that there are 25 constant parameters for f in Demirci and Selçuk’s
4-round property. It would be desirable to decrease the number of parameters.

In 2009, Demirci et al. [5] suggested the following method to improve Demirci
and Selçuk’s 4-round property: Consider the difference between the result of
encrypting X(i) using 4 rounds of AES and the result of encrypting another

byte array X(l) = (x
(l)
j )j=0,1,···,15 from the set S using 4 rounds of AES, that is

y
(i)
0 ⊕ y

(l)
0 = fc0,c1,···,c24(x

(i)
0 ) ⊕ fc0,c1,···,c24(x

(l)
0 ). By this method, one constant

parameter (i.e., the first byte of the 4-th round key) is canceled out. We refer to
a 4-round property using this method as a 4-round differential property.

If we apply Demirci et al.’s method to Demirci and Selçuk’s 4-round prop-
erty, then we can easily get a 4-round differential property with 24 constant
parameters. Demirci et al. did not describe this 4-round differential property in
their paper, but instead they gave a 4-round differential property with 15 con-
stant parameters that holds with probability 2−72, and finally used it to conduct
meet-in-the-middle attacks on 7-round AES-128/192 and 8-round AES-256; the



attack procedures are similar to Demirci and Selçuk’s attacks, and the main
difference is due to use of the 4-round differential property with 15 constant

parameters. Besides, it is worthy to note that Demirci et al. computed y
(i)
0 ⊕y

(l)
0

only for 32 pairs of (x
(i)
0 , x

(l)
0 ), where x

(i)
0 is fixed to 0 and x

(l)
0 ranges from 1 to

32. However, Dunkelman et al. [7] found recently that the time complexities of
Demirci et al.’s attacks are highly underestimated.

3.3 An Observation on the Key Schedule due to Dunkelman et al.

In [7], Dunkelman et al. introduced another variant of Demirci and Selçuk’s 4-
round property, which looks similar to but rather different in nature from the
4-round differential property obtained by applying Demirci et al.’s method to
Demirci and Selçuk’s 4-round property. It yields an attack on 8-round AES-192,
together with two other cryptanalytic techniques. Here we are only interested in
their novel observation on the key schedule of AES-192, as follows.

Proposition 2. The subkey bytes (K0,12,K0,13,K0,14,K0,15) can de deduced
from the subkey bytes (K8,0, · · · ,K8,7,K8,12, · · · ,K8,15).

4 Meet-in-the-Middle Attack on 8-Round AES-192

In this section, we show that by exploiting a simple observation on the key
schedule, a meet-in-the-middle attack on 8-round AES-192 can be obtained based
on Demirci and Selçuk’s and Demirci et al.’s work. Finally, we improve the attack
following Dunkelman et al.’s observation described in Proposition 2.

4.1 Preliminary Results

First, by the key schedule of AES-192, we easily get the following equations:

K̂7,3 = 0x0b • (K8,4 ⊕K8,8)⊕ 0x0d • (K8,5 ⊕K8,9)⊕
0x09 • (K8,6 ⊕K8,10)⊕ 0x0e • (K8,7 ⊕K8,11); (1)

K̂7,6 = 0x0d • (K8,8 ⊕K8,12)⊕ 0x09 • (K8,9 ⊕K8,13)⊕
0x0e • (K8,10 ⊕K8,14)⊕ 0x0b • (K8,11 ⊕K8,15); (2)

K̂6,12 = 0x0e • (K8,0 ⊕K8,4)⊕ 0x0b • (K8,1 ⊕K8,5)⊕
0x0d • (K8,2 ⊕K8,6)⊕ 0x09 • (K8,3 ⊕K8,7). (3)

Next, we can similarly obtain the following 4-round differential property by
applying Demirci et al.’s method to Demirci and Selçuk’s 4-round property. The
reason that we target byte (12) is that we can deduce byte (12) of K̂6 (i.e. K̂6,12)
from the 8-th round key K8 by Eq. (3).

Proposition 3 (A 4-Round Differential Property). Consider a set of 256

4 × 4 byte arrays X(i) = (x
(i)
j )j=0,1,···,15 with byte (12) taking all the possible



values and the other 15 bytes fixed, (i = 0, 1, · · · , 255). If Y (i) = (y
(i)
j )j=0,1,···,15

is the result of encrypting X(i) using 4 rounds of AES, then y
(i)
12 ⊕ y

(m)
12 can be

expressed with a function of x
(i)
12 , x

(m)
12 and 24 constant 8-bit parameters c′0, c

′
1, · · · ,

c′23, written y
(i)
12 ⊕ y

(m)
12 = gc′0,c′1,···,c′23(x

(i)
12 , x

(m)
12 ), where m ∈ [0, 255].

4.2 Attacking 8-Round AES-192

Using the 4-round differential property given in Proposition 3, we can now devise
a meet-in-the-middle attack on 8-round AES-192; the attack is solely based on
Demirci and Selçuk’s and Demirci et al.’s work and the above observation on
the key schedule, and its procedure is as follows, where n1 and n2 are small
non-negative numbers and their specific values will be given below.

1. For each of 2192−n1 possible values of the 24 parameters c′0, c
′
1, · · · , c′23, pre-

compute gc′0,c′1,···,c′23(0, x) sequentially for x = 1, 2, · · · , 32. Store the 2192−n1

32-byte sequences in a hash table L.
2. Choose 2n2 structures Si, (i = 0, 1, · · · , 2n2 − 1), where a structure Si is

defined to be a set of 232 plaintexts Pi,j with bytes (1,6,11,12) of the 232

plaintexts taking all the possible values and the other 12 bytes fixed, (j =
0, 1, · · · , 232−1). In a chosen-plaintext attack scenario, obtain the ciphertexts
for the 2n2 structures of 232 plaintexts; we denote by Ci,j the ciphertext for
plaintext Pi,j .

3. Guess a value for (K0,1,K0,6,K0,11,K0,12,K1,12), and then do as follows for
each structure Si.

(a) Partially encrypt the set of 232 plaintexts Pi,j with the guessed (K0,1,K0,6,
K0,11,K0,12,K1,12) to get the intermediate values for byte (12) just after
the first round.

(b) Choose 33 plaintexts such that the intermediate values for byte (12)
just after the first round distribute uniformly among [0, 1, · · · , 32] and
the intermediate values for the other bytes just after the first round are
constant. Sort them in the sequence indexed by their values in byte (12)

just after the first round; and we denote it by (P̂i,0, P̂i,1, · · · , P̂i,32).

(c) Guess a value for (K8, K̂7,9, K̂7,12), and do as follows.

i. Compute (K̂6,12, K̂7,3, K̂7,6) by Eqs. (1)–(3).

ii. Partially decrypt the sequence of ciphertexts corresponding to (P̂i,0,

P̂i,1, · · · , P̂i,32) with (K8, K̂7,3, K̂7,6, K̂7,9, K̂7,12, K̂6,12) to get the se-
quence of the intermediate values for byte (12) just before the sixth
round; and we denote it by (Ti,0, Ti,1, · · · , Ti,32).

iii. Compute (Ti,0 ⊕ Ti,1, Ti,0 ⊕ Ti,2, · · · , Ti,0 ⊕ Ti,32), and then check
whether this sequence matches a sequence in L; if so, record the
guessed value for (K0,1,K0,6,K0,11,K0,12,K1,12, K̂7,9, K̂7,12,K8) and
execute Step 4; otherwise, repeat Step 3 with another structure of
plaintexts (or another subkey guess when all the 2n2 structures are
tested).



4. For every recorded value for (K̂7,9, K̂7,12,K8), exhaustively search the re-
maining key bytes.

The attack requires 232+n2 chosen plaintexts. The one-off precomputation
has a time complexity of 33 × 2192−n1 × 1.5 × 1

8 ≈ 2194.63−n1 8-round AES-192
encryptions. The time complexity of Step 3(a) is 232+n2 × 240× 1

4×8 = 267+n2 8-

round AES-192 encryptions, where 1
4×8 represents the ratio of the number of the

columns that need to encrypt to the total number of the columns in 8-round AES.
The time complexity of Step 3(c) is dominated by the time complexity of Step
3(c)-(ii), which is 2n2×33×240+144× 6

4×8 ≈ 2186.63+n2 8-round AES-192 encryp-

tions, where 6
4×8 represents the ratio of the number of the columns that need to

decrypt to the total number of the columns in 8-round AES. In Step 3(c)-(iii), for

a wrong guess of (K0,1,K0,6,K0,11,K0,12,K1,12, K̂7,9, K̂7,12,K8), the probability
that the sequence (Ti,0 ⊕ Ti,1, Ti,0 ⊕ Ti,2, · · · , Ti,0 ⊕ Ti,32) matches a sequence

in L is approximately 1 −
(
2192−n1

0

)
(2−32×8)0(1 − 2−32×8)2

192−n1 ≈ 2−32×8 ×
2192−n1 = 2−64−n1 , and thus the probability that a sequence from the set
{(Ti,0⊕Ti,1, Ti,0⊕Ti,2, · · · , Ti,0⊕Ti,32)|i = 0, 1, · · · , 2n2−1}matches a sequence in

L is approximately 1−
(
2n2

0

)
(2−64−n1)0(1−2−64−n1)2

n2 ≈ 2−64−n1+n2 , (assuming
both the events have a binomial distribution). Consequently, it is expected that
about 240+144 × 2−64−n1+n2 = 2120−n1+n2 values for (K0,1,K0,6,K0,11,K0,12,

K1,12, K̂7,9, K̂7,12,K8) are recorded in Step 3(c)-(iii). As a result, Step 4 takes
at most 2120−n1+n2 × 248 = 2168−n1+n2 8-round AES-192 encryptions.

In Step 3(c)-(iii), for the correct guess of (K0,1,K0,6,K0,11,K0,12,K1,12, K̂7,9,

K̂7,12,K8), the probability that a sequence from the set {(Ti,0 ⊕ Ti,1, Ti,0 ⊕
Ti,2, · · · , Ti,0 ⊕ Ti,32)|i = 0, 1, · · · , 2n2 − 1} matches a sequence in L is 1 −(
2n2

0

)
( 2192−n1

2192 )0(1− 2192−n1

2192 )2
n2

= 1− (1− 1
2n1

)2
n2

.
Let n1 = n2 = 4, then the one-off precomputation has a time complexity of

2190.63 8-round AES-192 encryptions, and the attack requires 236 chosen plain-
texts and a memory of 2193 bytes, and has a time complexity of 2190.63 8-round
AES-192 encryptions. The attack has a success probability of 1 − (1 − 1

24 )2
4 ≈

65%.

Notes:

1. As mentioned in [10], the time complexity of a one-off precomputation is typ-
ically not counted as part of the time complexity of an attack, since it can be
performed at the cryptanalyst’s leisure. We notice that this might be contro-
versial, and for conservatism we make the sum of all the time complexities
in each of our attacks smaller than that for exhaustive key search.

2. Observe that meet-in-the-middle attacks on 8-round AES-256 can be easily
obtained by modifying the above 8-round AES-192 attack procedure. A typi-
cal one requires 232 chosen plaintexts and a memory of 2197.33 bytes, and has
a time complexity of 2202.95 8-round AES-256 encryptions, plus a precompu-
tation that has a time complexity of 2194.95 8-round AES-256 encryptions.
This is slightly better than but comparable to the 8-round AES-256 attack
presented in [4].



4.3 Improving the 8-Round AES-192 Attack

By Dunkelman et al.’s proof for the observation described in Proposition 2, we
have the following equation, where θ represents the first byte of Rcon[4].

K8,0 = K0,12 ⊕K8,4 ⊕ S(K8,5 ⊕K8,13)⊕ θ.

Thus, we do not need to guess K8,0 in Step 3(c) of the above 8-round AES-
192 attack, reducing the attack’s time complexity by a factor of 28. Further, we
can obtain a data-time-memory tradeoff version with a success probability of
98%: The precomputation has a time complexity of 2194.63−n1 8-round AES-192
encryptions, and the attack requires 234+n2 chosen plaintexts and a memory of
2197−n1 bytes, and has a time complexity of 2180.63+n2 8-round AES-192 encryp-
tions. Typically, let n1 = n2 = 7, then the precomputation has a time complexity
of 2187.63 8-round AES-192 encryptions, and the attack requires 241 chosen plain-
texts and a memory of 2190 bytes, and has a time complexity of 2187.63 8-round
AES-192 encryptions.

5 Conclusion

We have given a meet-in-the-middle attack on 8-round AES-192, building solely
on Demirci and Selçuk’s and Demirci et al.’s work [4,5] plus a simple observation
on the key schedule. Finally, we have described a more efficient attack which is
based on encrypting 241 chosen plaintexts and has a time complexity of 2187.63

8-round AES-192 encryptions. Our attack has a greater time and memory com-
plexity than the currently known attacks on 8-round AES-192, however its data
complexity is dramatically smaller.
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4. Demirci, H., Selçuk, A. A.: A meet-in-the-middle attack on 8-round AES. In: Ny-
berg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008)
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