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Abstract. A function F from Fpn to itself is planar if for any a ∈F∗

pn the
function F (x+ a)−F (x) is a permutation. CCZ-equivalence is the most
general known equivalence relation of functions preserving planar prop-
erty. This paper considers two possible extensions of CCZ-equivalence
for functions over fields of odd characteristics, one proposed by Coulter
and Henderson and the other by Budaghyan and Carlet. We show that
the second one in fact coincides with CCZ-equivalence, while using the
first one we generalize one of the known families of PN functions. In
particular, we prove that, for any odd prime p and any positive integers
n and m, the indicators of the graphs of functions F and F ′ from Fpn

to Fpm are CCZ-equivalent if and only if F and F ′ are CCZ-equivalent.
We also prove that, for any odd prime p, CCZ-equivalence of functions
from Fpn to Fpm , is strictly more general than EA-equivalence when
n ≥ 3 and m is greater or equal to the smallest positive divisor of n

different from 1.
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1 PN and APN functions

Let p be any prime number and n any positive integer. A function F from the
field Fpn to itself is called planar if all the equations

F (x+ a)− F (x) = b, ∀a, b ∈ Fpn , a 6= 0, (1)

have exactly one solution, that is, if for any non-zero element a of Fpn the
functionDaF (x) = F (x+a)−F (x), called the derivative of F in the direction

of a, is a permutation. Planar functions were introduced in 1968 by Dembowski
and Ostrom [19] in context of finite geometry to describe projective planes with
specific properties. Since 1991 planar functions have attracted interest also from
cryptography as functions with optimal resistance to differential cryptanalysis.
In this context they were first considered in the work of Nyberg [35] where
they were given a new name ”perfect nonlinear” (PN) which described their



important cryptographic property of being as far as possible from being linear
(in certain sense). However, it is obvious that planar or PN functions exist only
for p odd since if p is even and x0 is a solution of (1) then x0 + a is a solution
too, and the functions, whose derivatives DaF , a ∈F∗

pn , are 2-to-1 mappings,
possess the best possible resistance to differential cryptanalysis and are called
almost perfect nonlinear (APN).

There are several equivalence relations of functions for which PN and APN
properties are invariant. Due to these equivalence relations, having only one PN
(or APN) function one can generate a huge class of PN (resp. APN) functions.
The terminology for these equivalence relations was introduced in 2005 in [11]
while the ideas behind this terminology go back to the works of Nyberg [36]
and Carlet, Charpin and Zinoviev [14]. To continue we need first to recall the
following definitions:

Definition 1. A function F from Fpn to itself is called

• linear if

F (x) =
∑

0≤i<n

aix
pi

, ai ∈ Fpn ;

• affine if F is a sum of a linear function and a constant;

• Dembowski-Ostrom polynomial (DO polynomial) if

F (x) =
∑

0≤k≤j<n

akjx
pk+pj

, aij ∈ Fpn ; (2)

• quadratic if it is a sum of a DO polynomial and an affine function.

Definitions for equivalences below are given for functions from Fpn to itself.
However they can be naturally extended to functions from A to B where A and
B are arbitrary groups [11].

Definition 2. Two functions F and F ′ from Fpn to itself are called

• affine equivalent (or linear equivalent) if F ′ = A1 ◦ F ◦ A2, where the
mappings A1, A2 are affine (resp. linear) permutations of Fpn ;

• extended affine equivalent (EA-equivalent) if F ′ = A1 ◦ F ◦ A2 + A,
where the mappings A,A1, A2 are affine, and where A1, A2 are permutations
of Fpn ;

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some affine
permutation L of F2

pn the image of the graph of F is the graph of F ′,
that is, L(GF ) = GF ′ where GF = {(x, F (x)) | x ∈Fpn} and GF ′ =
{(x, F ′(x)) | x ∈Fpn}.

Although different these equivalence relations are connected to each other. It
is obvious that linear equivalence is a particular case of affine equivalence, and



that affine equivalence is a particular case of EA-equivalence. As shown in [14]
EA-equivalence is a particular case of CCZ-equivalence and every permutation
is CCZ-equivalent to its inverse. For quite a long time it was believed that CCZ-
equivalence class of an arbitrary function F can be completely described by
means of EA-equivalence and of the inverses of permutations EA-equivalent to
F . In [7, 11], it is proven to be false: CCZ-equivalence is much more general. As
proven in [8], CCZ-equivalence is strictly more general than EA-equivalence for
functions from F2n to F2m when n ≥ 5 and m is greater or equal to the smallest
positive divisor of n different from 1. In Section 6 of the present paper we prove
a similar result for any odd prime p: CCZ-equivalence of functions from Fpn to
Fpm , is strictly more general than EA-equivalence when n ≥ 3 and m is greater
or equal to the smallest positive divisor of n different from 1.
However, there are particular cases of functions for which CCZ-equivalence can
be reduced to EA-equivalence. For instance, CCZ-equivalence coincides with

• EA-equivalence for planar functions [12, 29];

• linear equivalence for DO planar functions [12];

• EA-equivalence for all functions whose derivatives are surjective [13];

• EA-equivalence for all Boolean functions [8];

• EA-equivalence for all vectorial bent functions with p even [9].

It is useful to know cases where CCZ- and EA-equivalences coincide because in
general it is very difficult to determine whether two functions are CCZ-equivalent
or not while EA-equivalence is much simpler and has a nice invariant, algebraic
degree of a function.

Nowadays, CCZ-equivalence is the most general known equivalence relation
of functions preserving PN and APN properties and it is appealing to find a
more general equivalence for which PN and APN properties are invariants. The
most intriguing possibility for such generalization is connected with isotopisms
of commutative presemifields and is discussed in Sections 2 and 4 of the present
paper. Other attempts in this direction were made in [8, 24]. In [8] the first
author and Carlet consider two functions F and F ′ from Fpn to Fpm equivalent
if the indicators of the graphs of F and F ′ are CCZ-equivalent. Recall that for
a given function F from Fpn to Fpm the indicator 1GF

of its graph GF is

1GF
(x, y) =

{

1 if y = F (x)
0 otherwise

.

However, as proven in [8], for p even that equivalence coincides with original
CCZ-equivalence of functions, and we prove in Section 5 of this paper that it
coincides with CCZ-equivalence for p odd as well. In [24] Edel and Pott present
so-called ”switching construction” which is proven to be an appropriate method
for constructing APN functions (see also [38] for the case of PN functions). Bas-
ing on this construction they define an equivalence relation, called switching



equivalence, over APN functions. But when considered over all functions switch-
ing equivalence does not preserve APN property, that is, if two functions are
switching equivalent and one of them is APN the second is not necessarily APN.

2 Commutative presemifields and semifields

As shown in [19, 17] quadratic planar functions have important connection with
commutative semifields. A ring with left and right distributivity and with no zero
divisors is called a presemifield. A presemifield with a multiplicative identity is
called a semifield. Any finite presemifield can be represented by S= (Fpn ,+, ⋆),
where p is a prime, n is a positive integer, (Fpn ,+) is the additive group of Fpn

and x ⋆ y = φ(x, y) with φ a function from F2
pn onto Fpn , see [17, 28]. The prime

p is called the characteristic of S. Any finite field is a semifield. A semifield
which is not a field is called proper.

Let S1 = (Fpn ,+, ◦) and S2 = (Fpn ,+, ⋆) be two presemifields. They are
called isotopic if there exist three linear permutations L,M,N over Fpn such
that

L(x ◦ y) = M(x) ⋆ N(y),

for any x, y ∈Fpn . The triple (M,N,L) is called the isotopism between S1 and
S2. If M = N then S1 and S2 are called strongly isotopic.

The investigation of commutative semifields was launched by Dickson [20,
21] in 1906, shortly after the classification of finite filds, and the first family of
proper commutative semifields was constructed by him in 1935.

Let S be a finite semifield. The subsets

Nl(S) = {α ∈ S : (α ⋆ x) ⋆ y = α ⋆ (x ⋆ y) for all x, y ∈ S},

Nm(S) = {α ∈ S : (x ⋆ α) ⋆ y = x ⋆ (α ⋆ y) for all x, y ∈ S},

Nr(S) = {α ∈ S : (x ⋆ y) ⋆ α = x ⋆ (y ⋆ α) for all x, y ∈ S},

are called the left, middle and right nucleus of S, respectively, and the set
N(S) = Nl(S)∩Nm(S)∩Nr(S) is called the nucleus. These sets are finite fields
and if S is commutative then Nl(S) = Nr(S) ⊆ Nm(S). The nuclei measure how
far S is from being associative. The orders of the respective nuclei are invariant
under isotopism [17].

Every commutative presemifield can be transformed into a commutative
semifield. Indeed, let S = (Fpn ,+, ⋆) be a commutative presemifield which does
not contain an identity. To create a semifield from S choose any a ∈ F∗

pn and
define a new multiplication ◦ by

(x ⋆ a) ◦ (a ⋆ y) = x ⋆ y

for all x, y ∈ Fpn . Then S′ = (Fpn ,+, ◦) is a commutative semifield isotopic
to S with identity a ⋆ a. We say S′ is a commutative semifield corresponding

to the commutative presemifield S. An isotopism between S and S′ is a strong
isotopism

(

La(x), La(x), x
)

with a linear permutation La(x) = a ⋆ x, see [17].



Every commutative presemifield defines a planar DO polynomial and vice
versa [17]. Let F be a quadratic PN function over Fpn . Then S = (Fpn ,+, ⋆),
with

x ⋆ y = F (x+ y)− F (x)− F (y)

for any x, y ∈ Fpn , is a commutative presemifield. We denote by SF = (Fpn ,+, ◦)
the commutative semifield corresponding to the commutative presemifield S with
isotopism

(

L1(x), L1(x), x
)

and we call SF = (Fpn ,+, ◦) the commutative

semifield defined by the quadratic PN function F . Conversely, given a
commutative presemifield S = (Fpn ,+, ⋆) of odd order, the function given by

F (x) =
1

2
(x ⋆ x)

is a planar DO polynomial [17].

We have the following known facts on connection between CCZ-equivalence,
isotopisms and strong isotopisms:

• two planar DO polynomials F and F ′ are CCZ-equivalent if and only if the
corresponding commutative semifields SF and SF ′ are strongly isotopic [12];

• two commutative presemifields of order pn with n odd are isotopic if and
only if they are strongly isotopic [17];

• any commutative presemifield can generate at most two equivalence classes
of planar DO polynomials [17];

• if S1 and S2 are isotopic commutative semifields of characteristic p with the
order of the middle nuclei and nuclei pm and pk, respectively, then one of
the following statements must hold

(a) m/k is odd and S1 and S2 are strongly isotopic,

(b) m/k is even and either S1 and S2 are strongly isotopic or the only iso-
topisms between S1 and S2 are of the form (α ⋆ N,N,L) where α is a
non-square element of Nm(S1) [17] ;

• there exist two commutative semifields of order 36 which are isotopic but
not strongly isotopic [41].

Thus, in the case n even it is possible that isotopic commutative presemifields
define CCZ-inequivalent quadratic PN functions. However, isotopisms define an
equivalence relation only over quadratic PN functions, and it is an open question
whether this can be extended to an equivalence relation over all functions (from
Fpn to Fpm for any positive integers n,m, and any prime p) preserving differential
properties.



3 Known cases of planar functions and commutative

semifields

Almost all known planar functions are DO polynomials. The only known non-
quadratic PN functions are the power functions

x
3t+1

2

over F3n , where t is odd and gcd(t, n) = 1 [16, 27]. Although commutative semi-
fields have been intensively studied for more than a hundred years there are only
a few cases of commutative semifields of odd order known (see [12, 17]):

(i) x2

over Fpn which corresponds to the finite field Fpn ;

(ii) xpt+1

over Fpn , with n/ gcd(t, n) odd, which correspond to Albert’s commutative
twisted fields [1, 19, 26];

(iii) the functions over Fp2k , which correspond to the Dickson semifields [21];

(iv) the functions over Fp2k

(ax)p
s+1 − (ax)p

k(ps+1) +
k−1
∑

i=0

cix
pi(pk+1), (3)

bxps+1 + (bxps+1)p
k

+ cxpk+1 +
k−1
∑

i=1

rix
pk+i+pi

, (4)

where a, b ∈ F∗
p2k , b is not a square, c ∈ Fp2k \ Fpk , ri ∈ Fpk , 0 ≤ i < k,

∑k−1
i=0 cix

pi

is a permutation of Fpk with coefficients in Fpk , gcd(k+s, 2k) =
gcd(k + s, k), and for (3) also gcd(ps + 1, pk + 1) 6= gcd

(

ps + 1, (pk + 1)/2
)

(see [12, 13]);
(v) the function over Fp2m for m = 2k + 1 (see [30, 4])

F (x) = x2 + x2pm

+

k
∑

i=0

(−1)ixp2i(p2+1) +

k−1
∑

j=0

(−1)k+jxp2j+1(p2+1)

−
(

k
∑

i=0

(−1)ixp2i(p2+1) +

k−1
∑

j=0

(−1)k+jxp2j+1(p2+1)
)pm

;

(vi)

xps+1 − ap
t−1xpt+p2t+s

over Fp3t , where a is primitive in Fp3t , gcd(3, t) = 1, t − s = 0 mod 3,
3t/ gcd(s, 3t) is odd (see [40]);



(vii)

xps+1 − ap
t−1xp3t+pt+s

over Fp4t , where a is primitive in Fp4t , ps ≡ pt ≡ 1 mod 4, 2t/ gcd(s, 2t) is
odd (see [3]);

(viii)
x10 ± x6 − x2

over F3n , with n odd, corresponding to the Coulter-Matthews and Ding-
Yuan semifields [16, 23];

(ix) the function over F32k , with k odd, corresponding to the Ganley semifield
[25];

(x) the function over F32k corresponding to the Cohen-Ganley semifield [15];

(xi) the function over F310 corresponding to the Penttila-Williams semifield [37];

(xii) the function over F38 corresponding to the Coulter-Henderson-Kosick semi-
field [18];

(xiii) x2 + x90

over F35 (see [39]).

The first seven cases above are defined for any odd prime p while the last six are
defined only for p = 3. The polynomial representations of functions (iii), (viii)-
(x) can be found in [32]. Note that PN functions (4) of family (iv) and families
(vi) and (vii) were constructed by following patterns of some known families
of APN functions over fields of even characteristic, see [6, 10]. In Section 4 we
present a generalization of the function F of (v) for k odd case:

(v*) the function over Fp2m for m = 2k + 1, k odd, a ∈ F∗
p2 ,

F ′(x) = a1−px2 + x2pm

+ a1−p

k
∑

i=0

(−1)ixp2i(p2+1) +
k−1
∑

j=0

(−1)k+jxp2j+1(p2+1)

−
(

k
∑

i=0

(−1)ixp2i(p2+1) + ap−1
k−1
∑

j=0

(−1)k+jxp2j+1(p2+1)
)pm

is PN.

We construct F ′ by using isotopisms. Hence, F ′ and F define isotopic semifields.
Moreover, F and F ′ coincide for a ∈ F∗

p. Nevertheless, for a ∈ Fp2 \ Fp, the
functions F and F ′ are CCZ-inequivalent in general.

Further we have the following results on classification of commutative pre-
semifields:

• any semifield of order p2 is a finite field [28];



• any semifield of order p3 is either a finite field or Albert’s commutative
twisted field [31];

• a commutative presemifield which is three dimensional over its middle nu-
cleus is necessarily isotopic to Albert’s commutative twisted field [31];

• Albert’s commutative twisted fields have left and middle nuclei of order pgcd(t,n)

[2];

• Dickson semifields have middle nuclei of order pk [22];

• for a ∈ Fpk the commutative semifields corresponding to the functions (3) of
the family (iv) have middle nuclei of order pd where d is even and divisible
by gcd(s, k) [9];

• a DO polynomial (2) is CCZ-inequivalent to the planar function x2 if ajj = 0
for all j [12];

• a DO polynomial (2) is CCZ-inequivalent to the planar function xpt+1, with
n/ gcd(t, n) odd, if akj = 0 for all k and j = k ± t mod n [12];

• for p = 3 and n = 6 semifield (v) is isotopic but not strongly isotopic one of
the semifields (iv) [41].

4 On isotopisms of commutative presemifields

As mentioned in Section 2, under some condition on n, Coulter and Henderson
proved in [17] that commutative presemifields of order pn are isotopic if and only
if they are strongly isotopic. However, there are cases when isotopic commutative
presemifields define CCZ-inequivalent quadratic PN functions, as shown in [41]
by using function (v) with parameters p = 3 and k = 1. Below we show that this
example is generalizable for any odd prime p and any odd positive integer k. In
particular, we extend the family of functions (v) to the family of the functions
F ′ below with larger CCZ-equivalence class.

Let F be function (v) with k odd. Let ”∗” denotes the multiplication of SF ,
and a ∈ F∗

p2 . Then we have

x ∗ a = F (x+ a)− F (x)− F (a)

= 2ax+ 2apxpm

+

k
∑

i=0

(−1)i(axp2(i+1)

+ axp2i

)

+

k−1
∑

j=0

(−1)k+j(apxp2(j+1)+1

+ apxp2j+1

)

−
(

k
∑

i=0

(−1)i(axp2(i+1)

+ axp2i

)



+

k−1
∑

j=0

(−1)k+j(apxp2(j+1)+1

+ apxp2j+1

)
)pm

= 2ax+ 2apxpm

+ (ax− axpm+1

) + (−apxp − apxpm

)

−
(

(ax− axpm+1

) + (−apxp − apxpm

)
)pm

= 4ax.

And

F ′(x) = (x ∗ a) ∗ x = (4ax) ∗ x

= 4
(

2ax2 + 2apx2pm

+ 2a

k
∑

i=0

(−1)ixp2i(p2+1)

+2ap
k−1
∑

j=0

(−1)k+jxp2j+1(p2+1)

−
(

2a

k
∑

i=0

(−1)ixp2i(p2+1) + 2ap
k−1
∑

j=0

(−1)k+jxp2j+1(p2+1)
)pm

)

= 8ap
(

a1−px2 + x2pm

+ a1−p

k
∑

i=0

(−1)ixp2i(p2+1)

+
k−1
∑

j=0

(−1)k+jxp2j+1(p2+1)

−
(

k
∑

i=0

(−1)ixp2i(p2+1) + ap−1
k−1
∑

j=0

(−1)k+jxp2j+1(p2+1)
)pm

)

.

Obviously, SF and SF ′ are isotopic by construction. According to Theorem 2.4 of
[17], SF and SF ′ can be potentially non-strongly isotopic if a ∈ Nm(SF )\N(SF ).
It can be easily checked that (x ∗ a) ∗ y = (4ax) ∗ y = (4ay) ∗ x = (y ∗ a) ∗ x
for any x, y ∈ Fp2m . That is, Fp2 is a subset of Nm(SF ). On the other hand,
a ∗ (x ∗ y) = 4a(x ∗ y), and if (4ax) ∗ y = 4a(x ∗ y) for any x, y ∈ Fp2m , then the
coefficient of the monomial xpm

yp
m

would be the same in (4ax)∗y and 4a(x∗y),
while it is 8ap in the first one and 8a in the second. Hence, a ∈ Nm(SF )\N(SF )
for a ∈ Fp2 \ Fp. According to [41], if p = 3 and m = 3 then SF and SF ′ are
not strongly isotopic. Hence the function F ′ is a generalization of family (v):
it coincides with F for a ∈ F∗

p and, in general, it is CCZ-inequivalent to F for
a ∈ Fp2 \Fp. Note that the function F ′ is constructed for k odd. However, for k
even and a ∈ Fp2 \ Fp the function F ′ may be PN as well (as checked for small
values of p and k).



5 On CCZ-equivalence of the indicators of the graphs of

functions of odd characteristics

The following natural generalization of CCZ-equivalence of functions was con-
sidered in [8]. Let n and m be any positive integers, p any prime. Two functions
F and F ′ from Fpn to Fpm are considered equivalent if their graphs 1GF

and
1G′

F
are CCZ-equivalent. However, as proven in [8], for p even this equivalence

coincides with original CCZ-equivalence of functions. Below we prove that it
coincides with CCZ-equivalence for p odd as well. First we need some auxiliary
results.

Lemma 1. Let p be an odd prime, n a positive integer, a ∈Fpn and f any
function from Fpn to itself with the image set {0, a}. If the function F (x) =
x+ f(x) is a permutation of Fpn then x− f(x) is its inverse.

Proof. Denoting F ′(x) = x− f(x) we get

F ′ ◦ F (x) = x+ f(x)− f(x+ f(x)).

If f(x) = 0 then obviously F ′ ◦ F (x) = x.
If f(x) = a then F ′◦F (x) = x+a−f(x+a). Moreover, we have f(x+a) = a since
otherwise F (x + a) = F (x) which contradicts F being a permutation. Hence,
when f(x) = a, we have also F ′ ◦ F (x) = x. Therefore, F−1 = F ′. ⊓⊔

As mentioned in [11], CCZ-equivalence can be considered not only for functions
from Fpn to itself but also for functions between arbitrary groups H1 and H2.
In the following proposition we consider CCZ-equivalence of functions from Fpn

to F2.

Proposition 1. Let p be an odd prime and n a positive integer. Two functions
f and f ′ from Fpn to F2 are CCZ-equivalent if and only if f ′ = f ◦A for some
affine permutation A of Fpn .

Proof. Let the functions f and f ′ be CCZ-equivalent. Then there exists an affine
permutation L of Fpn×F2 such that L(Gf ) = Gf ′ . Without loss of generality
we can assume that L is linear. Then there exist linear functions L :Fpn →Fpn ,
φ :F2 →Fpn , l :Fpn →F2 and an element a ∈F2 such that

L(x, y) =
(

L(x) + φ(y), l(x) + ay
)

,

and for

F1(x) = L(x) + φ ◦ f(x),

F2(x) = l(x) + af(x),

F1 is a permutation of Fpn and

f ′(x) = F2 ◦ F
−1
1 (x).



Note that any linear function l from Fn
p to F2 must be 0 since otherwise it is

balanced which is impossible since pn is an odd number. Hence, we have l(x) = 0
and, since L is a permutation, a = 1, that is, F2(x) = f(x). Besides, if φ ◦ f = 0
then obviously L is a permutation and f ′ = f ◦ L−1 and we can take A = L−1.
Hence we assume that φ has the image set {0, b} where b 6= 0 and φ ◦ f is not a
zero function.
Since F1 is a permutation and the image of φ ◦ f consists of 2 elements then the
function L must have at most 2 zeros, and, since p ≥ 3 and L is a linear function
from Fpn to itself then it has exactly one zero, that is, L is a permutation. Hence,

F1(x) = L
(

x+ L−1 ◦ φ ◦ f(x)
)

,

where the function F ∗
1 (x) = x+L−1◦φ◦f(x) is a permutation too, and therefore,

by Lemma 1 its inverse is F ∗−1
1 (x) = x− L−1 ◦ φ ◦ f(x). We get

F−1
1 (x) = F ∗−1

1 ◦ L−1(x)

and then
f ′ ◦ L(x) = F2 ◦ F

∗−1
1 (x) = f

(

x− L−1 ◦ φ ◦ f(x)
)

.

If f(x) = 0 then f ′ ◦ L(x) = 0 = f(x).
If f(x) = 1 then we have f(x − L−1(b)) = 1 = f(x). Indeed, if f(x) = 1 and
f(x− L−1(b)) = 0 then

F ∗−1
(

x− L−1(b)
)

= x− L−1(b)− L−1 ◦ φ ◦ f
(

x− L−1(b)
)

= x− L−1(b),

F ∗−1(x) = x− L−1 ◦ φ ◦ f(x) = x− L−1(b),

which contradict F ∗−1 being a permutation. Hence, f ′ ◦L(x) = f(x) and we can
take A = L−1. ⊓⊔

Now we can proof the main result of this section:

Theorem 1. Let n and m be any positive integers, p any prime, and F and F ′

any functions from Fpn to Fpm . Then F and F ′ are CCZ-equivalent if and only
if the indicators of their graphs 1GF

and 1GF ′
are CCZ-equivalent.

Proof. For the case p even this theorem states Corollary 1 of [8]. Let p be odd.
Since 1GF

and 1GF ′
are functions from Fpn×Fpm to F2 then according to Propo-

sition 1 they are CCZ-equivalent if and only if there exists an affine permutation
A of Fpn×Fpm that 1GF ′

= 1GF
◦ A, that is, if and only if F and F ′ are CCZ-

equivalent. ⊓⊔

6 Relation between CCZ-equivalence and EA-equivalence

for functions of odd characteristics

Let p be any prime and n any positive integer. Any function F : Fpn → Fpn is
uniquely represented as a univariate polynomial over Fpn of degree smaller than
pn

F (x) =

pn−1
∑

i=0

cix
i, ci ∈ Fpn .



If m is a divisor of n then a function F from Fpn to Fpm can be viewed as
a function from Fpn to itself and, therefore, it admits a univariate polynomial
representation. More precisely, if trn(x) denotes the trace function from Fpn into
Fp, and trmn (x) denotes the trace function from Fpn into Fpm , that is,

trn(x) = x+ xp + xp2

+ ...+ xpn−1

,

trmn (x) = x+ xpm

+ xp2m

+ ...+ xp(n/m−1)m

,

then F can be represented in the form trmn (
∑pn−1

i=0 cix
i) (and in the form

trn(
∑pn−1

i=0 cix
i) for m = 1). Indeed, there exists a function G from Fpn to

itself (for example G(x) = aF (x), where a ∈ Fpn and trmn (a) = 1) such that F
equals trmn (G(x)).

Let k be an integer such that 0 ≤ k < pn. Then k =
∑n−1

s=0 psks for some

0 ≤ ks < p. We call the integer wp(k) =
∑n−1

s=0 ks th p-weight of k. The algebraic
degree of a function F : Fpn → Fpn is equal to the maximum p-weight of the
exponents i of the polynomial F (x) such that ci 6= 0, that is,

d◦(F ) = max
0≤i<pn, ci 6=0

wp(i).

The algebraic degree of a function (if it is not linear) is invariant under EA-
equivalence but it is not preserved by CCZ-equivalence.

For functions of even characteristics the following theorem is proven in [8]:

Theorem 2. [8] Let n ≥ 5 and k > 1 be the smallest divisor of n. Then for any
m ≥ k CCZ-equivalence for functions from F2n to F2m is strictly more general
than EA-equivalence.

We are going to obtain an analogue of this theorem for functions of odd
characteristics.

Proposition 2. Let p be an odd prime, n ≥ 3, and m > 1 be a divisor of n.
Then there exist functions from Fpn to Fpm for which CCZ-equivalence is strictly
more general than EA-equivalence.

Proof. The linear permutation of Fpn × Fpm

L(x, y) = (x+ trm(y), y)

maps the graph of a quadratic function F : Fpn → Fpm

F (x) = trmn (x2 − xp+1)

to the graph of a cubic function

F ′(x) = trmn (x2 − xp+1) + trn(x
2 − xp+1)trmn (xp − x).

That is, the functions F and F ′ are CCZ-equivalent but EA-inequivalent.



Indeed, L is obviously a permutation since (0, 0) is the only solution of the
system

x+ trm(y) = 0,

y = 0.

The function

F1(x) = x+ trm(F (x)) = x+ trn(x
2 − xp+1)

is a permutation of Fpn since for any a ∈ F∗
pn

F (x+ a)− F (x) = x+ a+ trn(x
2 + 2ax+ a2 − xp+1 − axp − apx− ap+1)

−x− trn(x
2 − xp+1)

= a+ trn(a
2 − ap+1)− trn(x(a

p + ap
n−1

− 2a))

and the equality F (x+ a) = F (x) would imply a+ trn(a
2 − ap+1) = trn(x(a

p +

ap
n−1

− 2a)), that is, a ∈ F∗
p, that is, a = 0, a contradiction. Note further that

the inverse of the function F1 is

F−1
1 (x) = x− trn(x

2 − xp+1)

since

F−1
1 ◦ F1(x) = x+ trn(x

2 − xp+1)− trn

(

x2 + 2x trn(x
2 − xp+1)

+trn(x
2 − xp+1)2 − xp+1 − xp trn(x

2 − xp+1)

−x trn(x
2 − xp+1)p − trn(x

2 − xp+1)p+1
)

= x− trn(x
2 − xp+1) trn(x− xp) = x.

Hence, for F2(x) = F (x) we get

F2 ◦ F
−1
1 (x) = trmn

(

(

x− trn(x
2 − xp+1)

)2
−

(

x− trn(x
2 − xp+1)

)p+1
)

= trmn (x2 − xp+1) + trn(x
2 − xp+1)trmn (xp − x) = F ′(x).

It is easy to check that for m ≥ 2 and n ≥ 3 the term x2p+1 has coefficient
−2 in the polynomial representation of F ′. Hence, F ′ has algebraic degree 3. By
construction F and F ′ are CCZ-equivalent but they are EA-inequivalent because
of the difference of their algebraic degrees. ⊓⊔

Next proposition was proven in [8] for p even case but the proof works for
any prime p.

Proposition 3. [8] Let p be a prime, n and m any positive integers. If there exist
CCZ-equivalent functions F and F ′ from Fpn to Fpm which are EA-inequivalent
then for any positive integer k the functions H(x) = (F (x), 0) and H ′(x) =
(F ′(x), 0) from Fpn to Fpm+k are also CCZ-equivalent and EA-inequivalent.



Proposition 2 and Proposition 3 give

Theorem 3. Let p be an odd prime, n ≥ 3 and k > 1 the smallest divisor of n.
Then for any m ≥ k, CCZ-equivalence of functions from Fpn to Fpm is strictly
more general than their EA-equivalence.
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