
AN EFFICIENT PARALLEL ALGORITHM FOR SKEIN HASH FUNCTIONS

Kévin Atighehchi, Adriana Enache, Traian Muntean, Gabriel Risterucci
ERISCS Research Group

Université de la Méditerranée
Parc Scientifique de Luminy-Marseille, France

email: muntean@univmed.fr

ABSTRACT
Recently, cryptanalysts have found collisions on the MD4,
MD5, and SHA-0 algorithms; moreover, a method for find-
ing SHA1 collisions with less than the expected calculus
complexity has been published. The NIST [1] has thus de-
cided to develop a new hash algorithm, so called SHA-3,
which will be developed through a public competition [3].
From the set of accepted proposals for the further steps of
the competition, we have decided to explore the design of
an efficient parallel algorithm for the Skein [12] hash func-
tion family. The main reason for designing such an algo-
rithm is to obtain optimal performances when dealing with
critical applications which require efficiently tuned imple-
mentations on multi-core target processors. This prelimi-
nary work presents one of the first parallel implementation
and associated performance evaluation of Skein available
in the literature. To parallelize Skein we have used the tree
hash mode in which we create one virtual thread for each
node of the tree.

KEY WORDS
Skein, SHA-3, parallel cryptographic algorithms, secure
communicating systems.

1 Introduction

Skein [12] is a new family of cryptographic hash functions
which is one of the candidates in the SHA-3 competition
[15]. Its design combines speed, security, simplicity, anda
great deal of flexibility in a modular package.

In 2005, security flaws were identified in SHA-1
[16][2], indicating that a stronger hash function is highly
desirable. The NIST [1] then published four additional
hash functions in the SHA family, named after their digest
length (in bits): SHA-224, SHA-256, SHA-384, SHA-512.
These are known as the SHA-2 family which does not share
the weakness of SHA-1.

The SHA-3 project was announced in November
2007 and was motivated by the collision attacks on com-
monly used hash algorithms (MD5 and SHA-1). The new
hash function is not linked to its predecessor, so that an
attack on SHA-2 is unlikely to be applicable to SHA-3.

Since the new proposals are intended to be a drop-
in replacement for the SHA-2 family of algorithms, some
properties of the SHA-2 family must be preserved. How-
ever, some new properties and features shall be provided

by SHA-3: it may be parallelizable, more suitable for cer-
tain classes of applications, more efficient to implement
on actual platforms, or may avoid some of the incidental
generic properties (such as length extension) of the Merkle-
Damgard construct ([10] [9]) that often results in insecure
applications.

This paper describes sequential and parallel algo-
rithms for Skein cryptographic hash functions, and the
analysis, testing and optimization thereof. Our approach
for parallelizing Skein uses the tree hash mode which cre-
ates one virtual thread for each node of the tree, thus
providing a generic method for fine-grain maximal paral-
lelism.

The paper is structured as following: Section 2 and
3 give a brief description of Skein and a detailed descrip-
tion of the associated Tree Mode, the Section 4 presents the
potential approaches for parallelism. Then we present the
work done for parallelizing the hash algorithm: speedup,
implementation description, testing and first elements of
performance evaluation for basic platforms parallel im-
plementations. Finally, some recommendations for future
work are given in the last chapter.

2 Brief description of Skein

The structure of the Skein algorithm (Unique Block Itera-
tion, UBI chaining) has its origin in the Sponge hash func-
tions [7][8].

Definition [8]: LetA be analphabetgroup which rep-
resents both input and output characters and letC be a finite
set whose elements represent the inner part of the state of a
sponge. A sponge function takes as input a variable-length
stringp of characters ofA that does not end with0 and pro-
duces an infinite output stringz of characters ofA . It is
determined by a transformationf of A × C .

Skein acts like a sponge function: it takes a variable
length string of characters as its input and produces an infi-
nite output string (it can generate long output by using the
threefish block cipher in counter mode). The capacity of
the sponge function is replaced in Skein by a tweak which
is unique for each block.

A sponge function acts by absorbing and squeezing
its input; these steps in Skein correspond to the process-
ing stage and the output function. The main difference be-
tween sponge functions and UBI chaining is that the input

chaining value for the UBIs of the output function is the
same, while in the sponge function it depends on the previ-
ous state.

Skein also has a configuration block that is processed
before any other blocks.

The hash functions in the Skein family use three dif-
ferent sizes for internal state : 256, 512 and 1024 bits:

• Skein-512: the primary proposal; it should remain se-
cure for the foreseeable future.

• Skein-1024: the ultra-conservative variant. If some
future attack managed to break Skein-512, it should
remain secure. Also, with dedicated hardware it can
run twice as fast as Skein-512.

• Skein-256: the low memory variant. It can be imple-
mented using about 100 bytes of memory.

Skein uses Threefish as a tweakable block cipher,
with the UBI chaining mode to build a compression func-
tion that maps an arbitrary input size to a fixed output size.
For instance, Figure 6 shows a UBI computation for Skein-
512 on a 166-byte (three blocks) input, which makes three
calls to Threefish-512.

The core of Threefish is a non-linear mixing func-
tion called MIX that operates on two 64-bit words. This
cipher repeats operations on a block a certain number of
rounds (72 for Threefish-256 and Threefish-512, 80 for
Threefish-1024), each of these rounds being composed of
a certain number of MIX functions (2 for Threefish-256, 4
for Threefish-512 and 8 for Threefish-1024) followed by
a permutation. A subkey is injected every four rounds.
For a parallel implementation, each mix operation could
be assigned to one thread since, for a given round, they
operate on different 128-bit blocks. In theory, we could
achieve a maximum speedup of 2 with Threefish-256, 4
with Threefish-512 and 8 with Threefish-1024 provided
that, at each round, waiting times (for instance for schedul-
ing) between threads are negligible, a permutation being
performed at the end of each round.

Skein is built with three basic elements: the block ci-
pher (Threefish), the UBI, and an argument (containing a
configuration block and optional arguments). The config-
uration block is mainly used for tree hash, while optional
arguments make it possible to create different hash func-
tions for different purposes, all based on Skein.

Skein can work in two modes of operation, which are
built on chaining the UBI operations:

• Simple hash: Takes a variable sized input and returns
the corresponding hash. It is a simple and reduced
version of the full Skein mode. For instance, with a
hash process where the desired output size is equal to
the internal state size it consists of three chained UBI
functions, the first processes the configuration string,
the second the message and the last is used to supply
the output.

• Full Skein: The general form of Skein admits key pro-
cessing, tree hashing and optional arguments (for ex-
ample, personalization string, public key, key identi-
fier, nonce, and so on). The tree mode replaces the
single UBI call which processes the message by a tree
of UBI calls.

The result of the last UBI call (the root UBI call
in the case of tree processing) is an input to the Output
function which generates a hash of desired size.

The followings sections recall the two modes of Skein
intended to be widely used, the Simple Hash mode and the
Hash Tree mode, a mode specifically designed for parallel
implementations (see [12] for more information).

3 Simple Hash Mode

3.1 Specification

A simple Skein hash computation has the following inputs:

Nb The internal state size, in bytes (32, 64 or 128).

No The output size, in bits.

M The message to be hashed, a string of up to299 − 8
bits (296 − 1 bytes).

Let C be the configuration string for whichYl = Yf =
Ym = 0. We define:

K ′ := 0Nb a string ofNb zero bytes (1)

G0 := UBI(K ′, C, Tcfg2
120) (2)

G1 := UBI(G0, M, Tmsg2
120) (3)

H := Output(G1, No) (4)

whereH is the result of the hash.

If the three parametersYl, Yf andYm are not all 0,
then the straight UBI operation of the equation (3) is re-
placed by a tree of UBI operations as defined in the Section
4.1.

3.2 Remarks

UBI is a chaining mode for the Threefish cipher, so there
is no underlying parallelism other than that which can be
obtained with the Threefish block encryption as explained
above. The Output operation of the equation (4) is in fact a
sequence of UBI operations iterated according to a counter
mode, thus the output operation can be done in parallel by
assigning the UBI operations to each thread according to a
round robin arrangement.

4 Hash Tree Mode

4.1 Specification

Tree processing varies according to the following input pa-
rameters:

Yl The leaf size encoding. The size of each leaf of the
tree isNl = Nb2

Yl bytes withYl ≥ 1 (whereNb is
the size of the internal state of Skein).

Yf The fan-out encoding. The fan-out of a tree node is
2Yf with Yf ≥ 1. The size of each node isNn =
Nb2

Yf .

Ym The maximum tree height;Ym ≥ 2. If the hieght of
the tree is not limited this parameter is set to255.

G0 The input chaining value and the output of the previ-
ous UBI function.

M The message data.

UBI UBI UBI UBI UBI

UBI

UBIUBI

UBI UBI

UBI

messageNb-sized

Figure 1: Tree hashing withYl = Yf = 1

We define the leaf sizeNl = Nb2
Yl and the node size

Nn = Nb2
Yf .

We first split the messageM into one or more mes-
sage blocksM0,0, M0,1, ..., M0,k−1, each of sizeNl bytes
except the last, which may be smaller. We now define the
first level of tree hashing by:

M1 =
k−1n

i=0

UBI(G0, M0,i, iNl + 1 · 2112 + Tmsg · 2120)

The rest of the tree is defined iteratively. For any levell =
1, 2, ... we use the following rules:

1. If Ml has lengthNb, then the resultG0 is defined by
G1 = Ml.

2. If Ml is longer thanNb bytes andl = Ym−1, then we
have almost reached the maximum tree height. The
result is then defined by:

G1 = UBI(G0, Ml, Ym · 2112 + Tmsg · 2120)

3. If neither of these conditions holds, we create
the next tree level. We splitMl into blocks
Ml,0, Ml,1, ..., Ml,k−1, where all blocks are of size
Nn, except the last which may be smaller. We then
define:

Ml+1 =

k−1n

i=0

UBI(G0, Ml,i, iNn+(l+1)·2112+Tmsg·2
120)

and apply the above rules toMl+1 again.

The resultG1 is then the chaining input to the output
transformation.

4.2 Sequential implementation

The straightforward method would consist of implement-
ing this algorithm as it is described in its specifications.
This implementation constitutes a scheduling method for
the node processing that we callLower level and leftmost
node first(or Lower level node firstfor short). Such an
implementation has the disadvantage of consuming a lot
of memory. For instance if we takeYl = 1, we need an
amount of avalaible memory space of up to half of the
message size, which may be impossible for long messages.
There is an effective algorithm (see [13]) which computes
a value of a node of heighth, while storing only up toh+1
hash values. The idea is to compute a new parent hash
value as soon as possible before continuing to compute
the lower level node hash values; we call this method
heigher level node first. The interest of this method,
which maintains a stack in which the intermediate values
are stored, is to rapidly discard those that are no longer
needed. This stack, which is initially empty, is used as
follows: we use (push) leaf values one by one from left to
right and we check at each step whether or not the last two
values on the stack are of the same height. If such is the
case, these last two values are popped and the parent hash
value is computed and pushed onto the stack, otherwise we
continue to push a leaf value and so on. Note that we could
use a two hash-sized buffer at each level (from1 to h)
instead of a unique stack, even though it is useless in such a
sequential implementation. This algorithm can be applyed
to Skein trees, in which case the memory consumption
does not exceed(h − 1)(2Yf − 1) + 2Yl blocks of sizeNb

for the computation of a node of heighth, on the condition
that we include a special termination round since they are
not necessarily full trees (as we can see in Figure 1).

We assume the existence of the following elements:

• oracles:

– S(n) which returns the node value.

– LEAFCALC(l) which returns a pair of ele-
ments(S(nl), t) whereS(nl) is the leaf value
(aNb-sized block of the message) andt a binary
variable indicating whether it is the last leaf (1)
or not (0).

– TOPNUMBER(s) which returns the number
of top nodes on the stack of equal height.

– SIZE(s) which returns the number of staked
nodes.

• variables:

– l: a counter which starts from0, the leftmost
leaf.

– np: the number of nodes processed.

– cl: the current level.

– t: the termination variable

– Dl: the internal node degree at level1.

– Dn: the internal node degree at level> 1.

– s: the stack.

• other notation: nl, np, nr, ni denote respectively a
leaf node, a parent node, a root node and thei-th child
of a parent node.

Then the Algorithm 1 describes the message process-
ing stage with Skein tree hashing.

5 Approaches for parallelism

In the following sections, we denoten the number of
blocks1 of the message andNt the number of threads.
These threads are then indexed0, 1, ..., Nt − 1.

We assume thatk1 = k =
⌈

n
2Yl

⌉

is the number of
Nb-sized blocks of level 1. We define a recursive sequence
starting at an initial valuek2 by

k2 =

⌈

k

2Yf

⌉

andki =

⌈

ki−1

2Yf

⌉

.

There exists an indexv for which kv = 1. The tree height
is thenp = min(v, Ym). The bytes string produced at level
i of the tree (except the base leveli = 0) can be split into
ki blocksMi,0, Mi,1, Mi,2, ..., Mi,ki

of sizeNb.

5.1 Addressing parallelism

Two possible ways to address parallelism can be applied:
(i) a deterministic way, in which a thread with indexj
must take into account, at the current step, the predictable
behavior of the threads0, 1, 2, ..., j − 1; and (ii) a non-
deterministic way, in which thefirst node whose child val-
ues are available is assigned to the first ready thread. The
meaning of the termfirst depends on the strategy adopted
to parallelize this algorithm as described bellow. The fol-
lowing sections illustrate several methods.

Algorithm 1 Skein tree hashing using a stack

1: Setl = 1, np = 0, cl = 1, t = 0, Dl = 2Yl , Dn = 2Yf

ands = [].
2: if cl < Ym − 1 and(t 6= 0 or (TOPNUMBER(s) =

Dl and cl = 1) or (TOPNUMBER(s) =
Dn andcl > 1)) then

3: ComputeN = TOPNUMBER(s)
4: for i = N − 1 to 0 do
5: PopS(ni) from s

6: end for
7: ConcatenateS =

fN−1
i=0 S(ni)

8: ComputeS(np) = UBI(G, S, (np − N) · Nb + cl ·

2112 + Tmsg · 2
120)

9: PushS(np) ontos

10: if cl = 1 then
11: Computenp =

⌈

np
Dl

⌉

12: else
13: Computenp =

⌈

np
Dn

⌉

14: end if
15: Incrementcl
16: else
17: Compute(S(nl), t) = LEAFCALC(l)
18: PushS(nl) ontos

19: Setnp = l

20: Setcl = 1
21: Incrementl
22: end if
23: ComputeR = TOPNUMBER(s)
24: if t 6= 0 andR = SIZE(s) andcl > 1 then
25: for i = R − 1 to 0 do
26: PopS(ni) from s

27: end for
28: ConcatenateS =

fR−1
i=0 S(ni)

29: ComputeS(nr) = UBI(G, S, cl ·2112+Tmsg ·2
120)

30: ReturnS(nr)
31: else
32: Loop to line 2
33: end if

5.2 Lower level node priority

This method consists in processing the tree levels succes-
sively. It should, in theory, offer the best performances
due to the (almost) absence of synchronization between
threads, apart from synchronization due to dependencies
between worker threads and main thread which provides
the input data. An example is shown in Figure 2, in which
a job is indexed asij wherei denotes the iteration step and
j the index of the assigned thread. If one counts the jobs
on each level from left to right, then we can assign a job
j to a thread indexedj mod Nt. This method, although
intended to get the best performances, has the drawback of
requiring huge amount of memory as explained above.

1When it is not specified, the blocks are of sizeNb bytes and we in-
clude the last block which can be of size less or equal thanNb.

7

3

11 12 13

5251

71

81

91

82

73

453

2 2 2

1 6

74

421 2 3

6 6 6

2 1

2

4

5

24 13 3 33 43 4 4 43 41

2 4

Figure 2: Lower level node first
(Yf = Yl = 1, Ym = 255, Nt = 4)

For an implementation, worker threads could wait for
themselves when the end of the tree level is reached. This
does not minimize the number of steps. Indeed, at the same
iteration it is possible to assign the last nodes of leveli to
the first threads and the first nodes of leveli + 1 to the
last threads2, when the number of nodes of leveli is not
a multiple ofNt. Note that the other methods described
hereafter do not seem to offer the opportunity to gain a few
steps in order to optimize speed.

5.3 Higher level node priority

3 5

1

1

1 12

2 22

1

1

1

32313 14

3

42 3 3 4 4 44

1

6

17

1

1

53

7 18

6

11

10

9

22625412

4 2 3 54 63 4 73

Figure 3: Higher level node first
(Yf = Yl = 1, Ym = 255, Nt = 4)

This method consists in assigning3 to a thread the
higher level node among all those that may be assigned
to it. Apply this method in a deterministic way need that
each thread maintains a vector describing, at each step, the
number of nodes that can be processed on each level tak-
ing into account the tasks performed by all threads. Thus,
knowing the state of the tree, a thead indexed0 will choose
the higher level node, a thread indexed1 will choose the
second higher level node, and so on (an example is shown
in Figure 3). Apply this method in a non-deterministic way
means that the higher level node whose child values are
avalaible is assigned to the first ready thread.

The advantage of this approach is to conserve at best
the memory usage during the hash process. Indeed, if we
denote byNt the number of threads, and byp the height of
the produced tree, we define a recursive sequence by

n1 = Nt, np−1 = kp−1 and

2A step in between two successive levels is possible if the child values
of the first nodes of leveli + 1 do not belong to the same iteration step.

3An assignment of a node to a thread means that the thread is respon-
sible for producing the hash value of this node using the hashvalues of its
children.

ni = max(
⌊ni−1

2Yf

⌋

, 2Yf) for i ∈ J1, p − 1J.
Thus, at each level of the tree, we can use buffers of size
n1Nb bytes for the first one,n2Nb bytes for the second, and
so on. If theYm parameter does not constrain this tree, then
a memory space of onlyNb

∑p−1
i=1 ni bytes seems suffi-

cient for a deterministic implementation (the memory con-
sumption for the non-deterministic case should approach
the deterministic case with high probability). Note that this
estimate does not represent the maximum memory used
at every moment because not all buffers will be entirely
filled. In fact the real memory usage is much lower, the
worst case occurring when all the buffers are not empty
and not necessarily filled. Furthermore, we cannot be sure
that the lengths of the first level buffers at the bottom of
the tree are multiples of2Yf (take an example with 5 or
6 threads), so we have to consider them as cyclic buffers.
Note also that this is only the recommended memory for
the produced/consumed digests at the nodes; we must add
the data input buffer cost and some other data such as mu-
texes, semaphores or eventual conditional variables needed
for synchronization. Also, if we look at Figure 3, we must
be careful that thread32 does not produce a digest before
thread31 has finished consuming digest produced by21,
forcing these threads to perform a data recopy in order not
to lose too much parallelism.

This scheduling method, which must be further stud-
ied, seems not easy to implement and it is not clear if it
offers good performance in practice because of the large
number of synchronization mechanisms required. There-
fore a deterministic case implementation should be avoided
since the threads might wait for themselves uselessly. Fi-
nally, note that the total number of steps increases com-
pared to the first scheduling method because of the number
of purely sequential steps, which can approach the height
of the tree (see, for example, the right side of the tree in Fig-
ure 3). This number of additional steps depends on the con-
figuration of the tree and the number of threads generated.
Thus the inherent unbalanced loading between threads of
this scheduling approach can induce a performance penalty,
a priori negligible.

5.4 Priority to a fixed number of nodes of higher level
and same level

7

2 3 4

11 12 13

3231

71

81

91

82

73

433

2 2 22 41

3 1

4

6

74

45535254431 2 3 4

6 6 6

2 4 1

2

41

Figure 4: Fixed number and same level nodes first
(Yf = Yl = 1, Ym = 255, Nt = 4)

A third method takes again the idea of using a stack
(see Section 4.2), but applies it to an arbitrary number of

threads. ForNt threads, at each level we use buffers which
can receiveNt2

Yf blocks of sizeNb, except the base level
where the leaves are the input data buffer blocks. For the
same level these threads have to computeNt2

Yf node val-
ues in order to move up and computeNt node values at the
next level. Once theseNt nodes values are computed, the
Nt2

Yf child values are removed. If the current level occu-
pied by threads is greater than1 and the lack of resources
on the level below prevents them from finishing the com-
pution of theNt2

Yf blocks, then they return down to level
1, otherwise they continue, and so on (see Figure 5). In the
termination phase for the end of the message, buffers’ con-
tents of less thanNt2

Yf blocks have to be processed. Fur-
thermore, top levels may need narrower buffers (see Figure
4) and when theYm = p parameter constrains the tree,
the penultimate level buffer must always have a capacity
of kp−1 blocks. When a levell is reached, buffers are not
all filled, except one, and the effective consumption does
not exceed(l(2Yf − 1) + 1)Nt blocks of sizeNb. Such an
algorithm requires aboutNt times more memory for stor-
ing internal node values than the sequential algorithm using
level buffers instead of a stack.

We may think that thisfixed number and same level
nodes firstscheduling is as efficient as thelower level node
first version described above in Section 5.2. Just like the
higher level node firstscheduling, any recurrent waiting be-
tween threads should reduce performance, though it has the
advantage of being simpler to implement.

Termination phase

step

1

3

2

1

4

starts this step

2

lvl

Figure 5: level buffer utilization for a message of32Nb bytes
(Yf = Yl = 1, Ym = 255, Nt = 4)

5.5 Assigning subtrees

If we consider the case where a thread is processing a sub-
tree, the user could control an additional parameter, the
heighths of the subtree. Threads should be able to process
full subtrees, not necessarilly full subtrees at the right side
of the original tree and finally a last top subtree of height
less than or equal tohs.

Although the use of sub-trees may slightly unbalance
loading between threads, it would have the advantage of
reducing the total number of dependencies during the exe-
cution and thus improve performance. Note that the effect
of this parameter could be similar to theYf andYl effect but
the user might have an interest in treating a tree of a partic-
ular configuration, for example to check a hash issued from

a tree of a particular configuration.
The scheduling policies outlined above can always be

applied.

6 From Simple hash to Tree hash

The Tree mode allows the calculation of a hash in an in-
cremental way; that is to say, it allows updating the hash
whenever a new data field is concatenated after the actual
data. It also offers the possibility of authentication and up-
dating the hash when the data to be authenticated is never
truncated or concatenated with additional fields (e.g: mem-
ory authentication [11], or a static dictionary).

Note that computing a hash with the Hash Tree mode
requires more basic operations than Simple Hash mode (be-
sides, there are more sophisticated mechanisms for these
types of application, such as incremental hash and mem-
ory authentication). So if these features are absent, be-
cause of the overhead that represents the tree structure, it
would not be worth providing this functionality in a non-
multithreaded implementation.

The object of this section is to confront the Simple
Hash Mode to the Tree Hash Mode. Then, we estimate the
following speedups:

• Parallel tree processing compared to the sequential
UBI operation of the equation (3).

• Parallel tree processing compared to the sequential
tree processing.

In each case, we give the potential speedup for which the
number of hardware processing units is large enough to not
be a limiting factor.

6.1 Elementary operations and time complexity

The time complexity of a function UBI for the evaluation
UBI(G, M, Ts) can be described by

T (l) = a · (

⌈

l

8Nb

⌉

· 1l>0 + 1l=0) + b

wherel is the message length in bits, the constanta is the
time complexity for a block ciphering operation and the
constantb corresponds to the time complexity for the ini-
tialization operations such as padding operation and argu-
ment evaluation.

We can assume thatb is much lower thana, so we
parametrizeb by αa with α ∈ [0, 1] and define this time
complexity by

T (n, α) = a · (n + α) (5)

wheren =
⌈

l
8Nb

⌉

is not zero.

The block ciphering operation by Threefish is then
considered as an elementary operation; it constitutes one

iteration of the UBI chaining mode, framed in Figure 6,
which gives an example of three-block message hashing
using UBI.

Figure 6: Processing a message of 166 bytes

6.2 Comparing the two algorithms

The number of basic operations of a single UBI application
is n + α. Let’s consider the Tree hash mode in the best
case where there is ak ∈ N such thatn = 2Ylk and also
an h ∈ N such thatk = 2Yf h. The associated tree is a
complete tree of2Yf nodes and of depthh. If h ≤ Ym − 1,
the number of basic operations without the contributions in
α is given by

Nnc
s (n) = n ·

(

1 +
2Yf−Yl

2Yf − 1

)

−
2Yf

2Yf − 1
.

Forh > Ym − 1, this becomes

N c
s (n) = n ·

(

1 +
2Yf (Ym−1) − 1

2Yl+Yf (Ym−2)(2Yf − 1)

)

.

The associated contributions inα are

Mnc
s (n, α) =

n · 2Yf−Yl − 1

2Yf − 1
· α,

M c
s (n, α) = (n ·

2Yf (Ym−1) − 1

2Yl+Yf (Ym−2)(2Yf − 1)
+ 1) · α.

Following the model of equation (5), the time complexity
Tt(n, α) of a calls tree UBI forn of the form2Yl+Yf h is
given by

Tt(n, α) =

{

a · (Nnc
s (n) + Mnc

s (n, α)) if h ≤ Ym − 1

a · (N c
s (n) + M c

s (n, α)) otherwise.

From Nnc
s (n) andN c

s (n), for a fixed message size
and not taking into account the contributions inα, one can
observe the following:

• If Yl = Yf = 1 andh ≤ Ym − 1, then the maximum
number of basic operation is reached. Such parame-
ters can be of interest if we can usen

2 parallel process-
ing units.

• If Ym = 2 andh > Ym − 1, thenYf is not used,
the number of operations is function only ofYl and is
maximized forYl = 1.

• IncreasingYl will minimize the overhead of the num-
ber of operations but requires the use of larger buffers,
mainly in a multi-threaded implementation.

• IncreasingYf tends to decrease the number of opera-
tions as well, but it is much less significant compared
to Yl.

• The choice of the two parametersYl and Yf influ-
ences the deep of the tree and therefore the memory
usage overhead. Increasing these two parameters will
decrease the overhead. A constraintYm on the tree
depth does not affect the amount of memory required
for a hash computation (though when using mecha-
nisms for memory authentication one needs to store
the intermediary levels of the tree).

The choice of parametersYf , Yl andYm depends on the
degree of parallelism for a particular implementation, the
synchronization primitives of a specific implementation,
and the constraints associated with the memory require-
ments.

Now we consider the optimal configuration withk
processing units. Ifh ≤ Ym − 1, the number of operations
by processing unit, without the contribution inα, shall be

Nnc
p (n) = 2Yl + h · 2Yf .

Forh > Ym − 1, this becomes

N c
p(n) = 2Yl + (Ym − 2) · 2Yf + 2Yf (h−Ym+2).

The associated contributions inα are

Mnc
p (n, α) = (h + 1) · α,

M c
p(n, α) = Ym · α.

Following always the model of equation (5), the time com-
plexity T

p
t (n, α) of a calls tree UBI performed by a sys-

tem with at leastk processing units and forn of the form
2Yl+Yf h is given by

T
p
t (n, α) =

{

a · (Nnc
p (n) + Mnc

p (n, α)) if h ≤ Ym − 1

a · (N c
p(n) + M c

p(n, α)) otherwise.

We definePSpt/u(n) to be the potential speedup of the
Tree mode in an optimal configuration system, forn of
the form2Yl+Yf h, when compared to the Simple hash (a
straight UBI operation).PSpt/u(n) is given by

PSpt/u(n) =
T (n, α)

T
p
t (n, α)

.

For any n, there exists two full trees, one with a

lower valueh1 =

⌊

ln(
j

n

2
Yl

k

)

ln(2Yf)

⌋

and the other with an up-

per valueh2 =

⌈

ln(
l

n

2
Yl

m

)

ln(2Yf)

⌉

, which allow to bound the not

constrained tree generated over then-block-sized message
(h2 − h1 ≤ 1). Then, for alln and a not constrained tree,

PSpt/u(n) ≥
T (n, 0)

T
p
t (2Yl+Yf h2 , 1)

and we can deduce the following result.

Lemma 1. In the general case, for alln but a not con-
strained tree in height,PSpt/u(n) ∈ Ω(n

log n).

Note that if we takeα = 0, for n of the form2Yl+Yf h

andh ≤ Ym − 1, we have

PSpt/u(n) =
n

Nnc
p (n)

=
n · log(2Yf)

(log(n) − log(2Yl)) · 2Yf + log(2Yl) · 2Yl
.

Similarly, in this case and ifh > Ym − 1, the speed-up is
thenPSpt/u(n) = n

Nc
p(n) .

6.3 Speed-up of the Tree hash

We definePSpt/st(n) the potential speedup of the Tree
mode in an optimal configuration system, forn of the form
2Yl+Yf h and when compared to a one processor implemen-
tation, by

PSpt/st(n) =
Tt(n, α)

T
p
t (n, α)

.

In the general case, for alln and a not constrained
tree, we can give a following lower bound

PSpt/st(n) ≥
Tt(2

Yl+Yf h1 , 0)

T
p
t (2Yl+Yf h2 , 1)

.

Then, adequate lower bound and upper bound for
Tt(2

Yl+Yf h1 , 0) and T
p
t (2Yl+Yf h2 , 1) respectively allow

to express exclusively in terms ofn a lower bound for
PSpt/st(n).

Note that if we takeα = 0, for n of the formn =
2Yl+Yf h andh ≤ Ym − 1, then the potential speed-up of
Hash Tree when compared to a single processor implemen-
tation isPSpt/st(n) =

Nnc
s (n)

Nnc
p (n) and in case of a constrained

tree withh > Ym − 1 we havePSpt/st(n) =
Nc

s (n)
Nc

p(n) .

6.4 Numerical estimates

In order to compare implementation speedup to a not pes-
simistic speedup reference, a user must estimate time com-
plexity T N.E.

st (n) of the sequential version of the tree for
all n by

T N.E.
st (n, α) = n +

p−1
∑

i=1

ki +

p
∑

i=1

kiα.

In a same way, an upper bound for the time complexity
T N.E.

Nt
(n, α) of the parallel version executed byNt pro-

cessing units is given by

T N.E.
Nt

(n, α) =

⌈

k1

Nt

⌉

(2Yl + α) +

p
∑

i=2

⌈

ki

Nt

⌉

(2Yf + α).

Then a good lower bound for the performance improve-
mentSN.E.

Nt/st, when an implementation dedicated toNt pro-
cessing units is used, is given by

SN.E.
Nt/st =

T N.E.
st (n, 0)

T N.E.
Nt

(n, 1)
.

7 Java implementation

This section provides some details on a Java implementa-
tion of Skein based on an approach like the first one in Sec-
tion 5, which offers maximum parallelism in theory and is
independent of the algorithm parameters (in particular the
parameters influencing the node sizes and tree structure in
Skein Hash Tree mode). Details of the performance given
here are for illustrative purposes, only. We have not at-
tempted to optimize the method for practical use; we are
aiming solely to demonstrate the performance improve-
ments that can be obtained on a lambda system configu-
ration.

Thread scheduling in Java.There are two kinds of
schedulers : green and native. A green scheduler is pro-
vided by the Java Virtual Machine (JVM), and a native
scheduler is provided by the underlying OS. In this work,
tests were performed on a Linux operating system with a
JVM using the native thread scheduler. This provides a
standard round-robin strategy.

Threads can have different states : initial state (when
not started), runnable state (when the thread can be exe-
cuted), blocked state and terminating state. The main issue
is when a thread is in the blocked state,i.e. waiting for
some event (for example, a specific I/O operation or wait-
ing for a signal notification), in which case the thread is
not consuming CPU resources at all, meaning that having a
large number of blocked threads does not impact much on
the efficiency of the system.

7.1 Class organization

Our implementation of Skein is composed of several
classes, splitting the core functionality and special codeof
the algorithm:

• Main algorithm: The Skein core is implemented as
three classes, Skein256, Skein512 and Skein1024.
They all provide the same interface, and support Sim-
ple Hash as well as Full Skein. Tree and thread man-
agement is done in other support classes.

• Tree and thread support: Different class were imple-
mented, each representing the different kind of nodes

we can have in the hash tree. All of these classes have
a similar interface:

- TreeNode: used when hashing a file with a hash
tree

- NodeThread: used in a hash tree with one thread
per node

- NodeJob: used in a hash tree with one job per
node, and processes those jobs with a thread pool

- ThreadPool: manage the pool of thread used
with NodeJob instance.

- Other classes are needed for the pipeline im-
plementation of Skein: SimplePipeFile and
TreePipeFile are used, the first one for Simple
Hash and the second one for Full Skein with tree.

In addition to these classes, two main classes were
written. The Speed class is used to test the speed-up of
the algorithm, and the Test class implements direct calls to
the different hash methods on different inputs, as well as
running tests provided in the Skein reference paper.

7.2 Sequential Skein implementation

To do a Simple Hash, one simply calls the update() and
digest() methods on a Skein class. There are also meth-
ods available to perform the Tree hash computation sequen-
tially.

7.3 Parallel Skein implementation

1. One thread per node
We create one thread per node, and let the scheduler
handle how they are executed.

2. One thread per node with a thread pool
To optimize the first implementation we create a
thread pool that has a fixed number of threads. These
threads accept jobs in a FIFO manner and then exe-
cutes them (Figure 7).

3. Pipe input file
Because most of the time people hash many files at
the same time, we have decided to implement a pipe
that applies the hash function in parallel for each input
file. This implementation uses the thread pool with a
thread count equal to the number of files to be hashed.
It is implemented using both the Simple hash and the
Tree hash methods.

8 Testing and performances

The tests were done using a basic platform for illustrative
purpose only: a Dell Latitude D830, Intel(R) Core(TM)2
Duo CPU T7500 @ 2.20Ghz, 2GB RAM, L2 cache size
4MB with a Ubuntu 9.10 operating system. For evaluating

Job

Job

Job

Job Job

Job Job

Job

Job Job

Job

Job Job

Job

Job

Job

CPU

Job

Thread
scheduler

Working
threads

queue

Figure 7: Parallel Skein using one thread per node and a thread
pool

the performance of the various implementations we wrote
the Speed class, used in conjunction with the YourKit pro-
filing tool [4], which allows monitoring the CPU and mem-
ory usage. In order to determine the efficiency of the im-
plementation, we have performed tests using a fixed file of
700MB. The performance results are illustrated in the chart
below:

Figure 8: Processing speed (in MB/s) comparison between the
Skein versions

Although the fastest version should theoretically be
Skein-1024, from this chart we can see that the version us-
ing a block size of 512 bits is faster. That is because the
computer used for these tests has a 64 bit processor. Fur-
thermore, the slowest for our test is Skein-256, but this one
would be the fastest on a 32 bit CPU.

The tests using the YourKit profiler showed that the
parallel versions use more heap memory, but theCPU load
stay close to 100%, meaning both processors available on
the platform are used at their full capacity.

In terms of execution time theOne Thread per Node
implementation is the slowest. This is mainly due to the
overhead of the thread scheduler and poor memory man-
agement. Creating a lot of threads, although highly scal-
able, for single use is quite costly: it triples the heap mem-
ory usage in comparison to the sequential version, but is not
very effective. It is also slower when compared to the se-
quential version, due to excessive synchronization required
between threads.

To optimize this parallel implementation, we created
a thread pool class. With a limited number of threads, we
use less memory, although it is still high when compared
to the sequential version. On the other hand, the execution

time for this implementation is less than half of the sequen-
tial version.

The last parallel implementation uses the thread pool
class with as many threads as input files. This is an efficient
implementation as the execution time is half of the sequen-
tial version, and the difference for the used heap memory is
quite small for the simple mode hash it is less than 0.2MB.
Also an important factor is that when running the tests on
a computer with two CPUs, having two input files means
that both threads stay in the runnable state, which allows us
to maximize CPU utilization.

Comparing the three versions of Skein implementa-
tions, we noticed that for the simple sequential implemen-
tation the amount of heap memory used is almost the same.
A small difference was noted for Skein-1024, which uses
0.1MB more heap memory and 0.1MB more non-heap
memory. This is because this last version uses blocks of
1024 bits. In terms of execution time the results reflected
the ones in the chart above.

For the tree implementations, we used the same pa-
rameters for all three versions of Skein. The results showed
that for the sequential version Skein-256 uses less memory,
and for the parallel implementations Skein-1024 uses less
heap memory. The reason is that the number of nodes is
smaller for Skein versions with bigger block sizes, and the
size of each node does not vary much between the three
versions.

9 Comparing with other implementations

Our implementations were also tested and compared to
other Skein implementations, one in Java, from sphlib-2.0,
and the second in C from the NIST submission of Skein.

In Java, using our Speed class to test both our imple-
mentation and sphlib-2.0 implementation, we obtained the
results in Table 1. As we can see the Skein implementa-

Implementation Processings speed
Skein-512 our implementation 36MB/s

Skein-512 sphlib-2.0 34MB/s
SHA-512 sphlib-2.0 27MB/s

Table 1: Speed results - sphlib-2.0

tion from the sphlib-2.0 is slower. Also it is important to
notice that this Skein implementation is much faster when
compared to the SHA-512 one (Skein is therefore a good
candidate for replacing the current SHA-2).

For the second comparison in terms of execution time
we used a 700MB file and hashed it using both our im-
plementation in Java and the C reference implementation
of Skein. The execution times are the followings: 27 sec-
onds with the Java sequential version, 20 seconds with the
Java parallel version and 24 seconds with the C reference
(sequential) version. The Java implementation of the tree
mode was of course slower than the C version, but not sig-
nificantly; therefore some Java applications can use Java

implementation of Skein with no very significant loss of
performances. On the other hand, the parallel implementa-
tion using the thread pool is faster than the C implementa-
tion.

10 Conclusion and further work

Hash functions are the most commonly used cryptographic
primitives. These functions can be found in almost any
application and they secure the fundamental levels of our
information infrastructures. Currently the SHA family of
functions is the most popular, but because the SHA-1 ver-
sion was broken a new SHA family is needed.

Skein is one of the candidates to the second round
of the SHA-3 competition and, judging by the results ob-
tained, it is one of the promising candidates.

Skein is appropriate for hardware implementation,
both for devices with little memory and high speed needs.
Furthermore, software implementations of this family of
hash functions in C or Java can be used immediately, in-
creasing its accessibility. The C version is the fastest, but
the availability of a pure Java implementation with accept-
able performance is interesting for a large class of Java ap-
plications.

Further work is in progress for testing the parallel im-
plementation on a highly multi-core/multi-processor sys-
tem. Moreover, further research should be done to imple-
ment a more specific thread scheduling policy that would
increase performances by minimizing the scheduling over-
head.

References

[1] Nist. http://www.nist.gov/index.html.

[2] Schneier on security (web site). http:
//www.schneier.com/blog/archives/
2005/02/cryptanalysis_o.html.

[3] Sha-3 competition. http://www.nist.gov/
itl/csd/ct/hash_competition.cfm.

[4] Yourkit profiler (web site). http://www.
yourkit.com.

[5] G. S. Almasi and A. Gottlieb.Highly parallel comput-
ing. Benjamin-Cummings Publishing Co., Inc., Red-
wood City, CA, USA, 1989.

[6] M. Bellare, T. Kohno, S. Lucks, N. Ferguson,
B. Schneier, D. Whiting, J. Callas, and J. Walker.
Provable security support for the skein hash family,
2009. http://www.skein-hash.info/
sites/default/files/skein-proofs.
pdf.

[7] Guido Bertoni, Joan Daemen, Michael Peeters, and
Gilles Van Assche. On the indifferentiability of the

sponge construction. InEUROCRYPT, pages 181–
197, 2008.

[8] Guido Bertoni, Joan Daemen, Michael Peeters,
Gilles Van Assche, Guido Bertoni, Joan Daemen,
Michal Peeters, and Gilles Van Assche. Sponge func-
tions, 2007.

[9] Jean-Sbastien Coron, Yevgeniy Dodis, Ccile Malin-
aud, and Prashant Puniya. Merkledamgrd revisited:
How to construct a hash function. pages 430–448.
Springer-Verlag, 2005.

[10] Ivan Damgård. A design principle for hash func-
tions. In CRYPTO ’89: Proceedings of the 9th
Annual International Cryptology Conference on Ad-
vances in Cryptology, pages 416–427, London, UK,
1990. Springer-Verlag.

[11] Reouven Elbaz, David Champagne, Catherine H.
Gebotys, Ruby B. Lee, Nachiketh R. Potlapally, and
Lionel Torres. Hardware mechanisms for memory au-
thentication: A survey of existing techniques and en-
gines. volume 4, pages 1–22, 2009.

[12] Niels Ferguson, Stefan Lucks Bauhaus, Bruce
Schneier, Doug Whiting, Mihir Bellare, Tadayoshi
Kohno, Jon Callas, and Jesse Walker. The skein hash
function family (version 1.2), 2009.

[13] Markus Jakobsson, Tom Leighton, Silvio Micali, and
Michael Szydlo. Fractal merkle tree representation
and traversal, 2003.

[14] Alfred J. Menezes, Paul C. Van Oorschot, Scott A.
Vanstone, and R. L. Rivest. Handbook of applied
cryptography, 1997.

[15] Andrew Regenscheid, Ray Perlner, Shu jen Chang,
John Kelsey, Mridul Nandi, Souradyuti Paul Nistir,
Andrew Regenscheid, Ray Perlner, Shu jen Chang,
John Kelsey, Mridul Nandi, and Souradyuti Paul.
The sha-3 cryptographic hash algorithm competition,
2009.

[16] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu.
Finding collisions in the full sha-1. InIn Proceedings
of Crypto, pages 17–36. Springer, 2005.

