
A Family of Implementation-Friendly

BN Elliptic Curves

Geovandro C. C. F. Pereira1, Marcos A. Simpĺıcio Jr.1, Michael
Naehrig2, and Paulo S. L. M. Barreto1 ?

1 Departamento de Engenharia de Computação e Sistemas Digitais (PCS),
Escola Politécnica, Universidade de São Paulo.
Av. Prof. Luciano Gualberto, trav. 3, № 158

05508-900 São Paulo (SP), Brazil. {geovandro,mjunior,pbarreto}@larc.usp.br
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

mnaehrig@microsoft.com

Abstract. For the last decade, elliptic curve cryptography has gained
increasing interest in industry and in the academic community. This is
especially due to the high level of security it provides with relatively small
keys and to its ability to create very efficient and multifunctional crypto-
graphic schemes by means of bilinear pairings. Pairings require pairing-
friendly elliptic curves and among the possible choices, Barreto-Naehrig
(BN) curves arguably constitute one of the most versatile families.
In this paper, we further expand the potential of the BN curve family.
We describe BN curves that are not only computationally very simple
to generate, but also specially suitable for efficient implementation on a
very broad range of scenarios. We also present implementation results of
the optimal ate pairing using such a curve defined over a 254-bit prime
field.

1 Introduction

Since the introduction of elliptic curves to cryptography [27, 32], they
have raised increasing interest as a useful tool for creating efficient
asymmetric schemes (e.g., digital signatures) with a high security
level per bit of the used keys. Hence, they are able to cope with im-
portant (albeit challenging) requirements of modern systems such as
reductions on the usage of processing power, storage, bandwidth and
energy. Furthermore, elliptic curves are the foundation of pairing-
based cryptography, which has been responsible for the development
of state-of-the-art applications such as identity-based encryption [9]

? Supported by the Brazilian National Council for Scientific and Technological Devel-
opment (CNPq) under research productivity grant 303163/2009-7.

and certificateless public key cryptography [1]. Inherently, feasible
pairing-based cryptography requires pairing-friendly curves.

Barreto-Naehrig (BN) curves arguably constitute one of the
most versatile classes of pairing-friendly elliptic curves. Among other
things, they are known [6] to (this list may not be complete):

– facilitate the deployment of bilinear pairings at the 128-bit secu-
rity level [15, 37, 8, 2];

– enable all kinds of pairing-based cryptographic schemes and pro-
tocols (including short signatures) [19];

– be plentiful and easily found [35, Section 2.1.1];

– support a sextic twist, so pairing arguments can be defined over
relatively small finite fields Fp and Fp2 respectively [24];

– be amenable to twofold or threefold pairing compression [36];

– attain high efficiency for all pairing computation algorithms
known, including the Tate [40], ate [24], eil [23], R-ate [30], Xate
[38] and optimal [45] pairings;

– admit optimizations based on endomorphisms and homomor-
phisms for all groups involved [18, 20], thereby enabling fast non-
pairing operations as well;

– be suitable for software and hardware implementations on a wide
range of platforms [16, 21].

Recent research has focused on certain individual curves to at-
tain exceptional performance gains [37, 8, 2]. This is essential since
pairings are usually the most computationally expensive operation
in any pairing-based cryptographic scheme. On the other hand, one
may argue that only targeting fast pairings is insufficient, and may
lead to annoying or unacceptable inefficiencies on certain highly con-
strained platforms like smart cards or wireless sensor networks. In-
deed, because of the intrinsic high cost of pairings, many protocols
are already designed to rely on them only when the correspond-
ing protocol parties are assumed to have plentiful computational re-
sources (e.g. servers or clusters) while constrained parties only need
to perform non-pairing operations [4, 10, 31, 46]. In such scenarios,
curve parameters leading to fast (but still proportionally slow) pair-
ings at the price of deteriorating performance elsewhere would be
harmful rather than helpful.

A different line of research is that of obtaining parameterized
curves with prescribed properties to avoid computationally expen-
sive tests during curve generation. Simplification of curve parameter
testing is even more important. Certain attacks can be prevented by
checking that the purported BN curve contained in a given digital
certificate does indeed exhibit the expected properties before us-
ing that certificate. This procedure is commonplace for non-pairing-
friendly curves, but the special-purpose nature of BN curves exac-
erbates the amount of necessary computations. By adopting a curve
where certain properties are guaranteed to hold, the testing over-
head would be greatly reduced. It could then be carried out on
much simpler platforms; e.g. a lightweight certificate server would
only need plain integer arithmetic up to primality checking (and no
elliptic curve arithmetic support) to attest the well-formedness of
the curves.

Constructing the right twist of the curve over the base field with-
out resorting to any elliptic curve arithmetic has been carried out
successfully [39]. In contrast, the related tasks of choosing suitable
representations for all extension fields involved and selecting the cor-
rect sextic twist over the quadratic extension field have received lim-
ited attention in the literature. They would still seem to need square
and cube detection in extension fields and full group arithmetic in
that twist. We note that extension fields are usually chosen a pri-
ori, based on features of supporting libraries and oblivious to the
peculiar nature of BN curves.

Our contribution in this paper is the definition of a (rather large)
subclass of BN curves that is particularly suitable for efficient con-
struction, parameter checking and implementation, while retaining
a very simple description. Specifically, we propose to use curves of
form E : y2 = x3 + b over Fp where p ≡ 3 (mod 4) and b = c4 +d6 or
b = c6 + 4d4 for c, d ∈ F∗p, particularly for certain choices of c and d.
We discuss in detail the rationale of this proposal and how it favors
the efficiency of all typical arithmetic operations needed to instanti-
ate cryptographic protocols on the broadest possible landscape, i.e.
in the sense of targeting the widest possible range of platforms and
applications. In particular, our construction automatically yields the
right sextic twist entirely avoiding curve arithmetic for that purpose.
It gives to field representations an overall unity that provides sev-

eral optimization opportunities. Our proposal has intersections with
other interesting curve families that occur in the literature (e.g. [38,
44]), offering additional benefits in those cases.

We stress that it is not the purpose of this paper to evaluate
optimization techniques that are exclusive to a particular platform,
nor to focus on the operation of pairing computation itself or on
techniques that are only available on a narrow set of circumstances.
Our goal is rather to explore a simple yet comprehensive theoretical
setting that avoids most if not all general drawbacks and implemen-
tation hindrances, while favoring complete pairing-based cryptosys-
tems.

To underline the flexible nature of our proposal and to reproduce
the operation counts, we have implemented in Java the optimal ate
pairing on one of the proposed curves (254 bits). We have focused
on employing the best known techniques and algorithms for each
operation as listed in Section 5. The implementation is available
online3.

The remainder of this paper is organized as follows. We intro-
duce theoretical concepts related to bilinear maps and BN curves in
Section 2. We describe the proposed implementation-friendly family
of BN curves and discuss its features in Section 3. Concrete exam-
ples tailored for practical deployment are suggested in Section 4. In
Section 5, we compare the efficiency of our pairing implementation
on one of the proposed curves to previous work, and we conclude in
Section 6.

2 Preliminaries

Let p be a prime and let e > 0. The conjugates of a ∈ Fpe are the

elements ap
i
, 0 6 i < e. The norm N(a) of a ∈ Fpe is defined to be

the product of all its conjugates, N(a) :=
∏

i a
pi . Whenever p ≡ 3

(mod 4), the finite field Fp2 can be represented as Fp[i]/(i2 + 1). In
analogy to the complex numbers, the non-trivial conjugate of the
field element γ = α + iβ ∈ Fp2 is γ̄ := γp = α− iβ.

Given three groups G1, G2, and GT of the same prime order n,
a pairing is a feasibly computable, non-degenerate bilinear map e :

3 http://code.google.com/p/bnpairings/

G1×G2 → GT . Usually G1 and G2 are written additively, while GT

is written multiplicatively. In practice, the pairing groups G1 and G2

are most commonly determined by the eigenspaces of the Frobenius
endomorphism φp on some elliptic curve E/Fp of embedding degree
k > 1. Specifically, G1 is taken to be the 1-eigenspace E[n]∩ker(φp−
[1]) = E(Fp)[n]. The group G2 is taken to be the preimage E ′(Fpe)[n]
of the p-eigenspace E[n]∩ker(φp− [p]) ⊆ E(Fpk)[n] under a twisting
isomorphism ψ : E ′ → E, (x, y) 7→ (µ2x, µ3y) for some µ ∈ F∗

pk
. In

particular, e = k/d where the curve E ′/Fpe is the unique twist of
largest possible twist degree d | k for which n divides #E ′(Fpe) (see
[24] for details). This means that e is as small as possible. Typical
pairing algorithms are based on Miller’s algorithm [33] with a number
of optimizations [3, 24, 30, 38, 45], most notably optimal pairings [45]
which have loop order of length dlg ne/ϕ(k) in general, where ϕ
is Euler’s totient function. Note that this compares well with the
original Tate pairing which has loop order of length dlg ne.

A Barreto-Naehrig (BN) curve [5] is an elliptic curve Eb : y2 =
x3+b defined over a finite prime field Fp with the following properties.
It has prime order n = #E(Fp), and the primes p and n are given
by p = p(u) = 36u4 + 36u3 + 24u2 + 6u + 1 and n = n(u) = 36u4 +
36u3 + 18u2 + 6u + 1 for some u ∈ Z. We drop the subscript and
simply write E when the specific equation coefficient b is irrelevant
to the discussion or clear from context. For primes p of the above
polynomial form the condition p ≡ 3 (mod 4) holds if and only if
u is odd. The BN field Fp contains a primitive cube root of unity
ζ(u) = 18u3 + 18u2 + 9u + 1 as one can check by straightforward
inspection. BN curves have embedding degree k = 12 and admit a
sextic twist (d = 6), so that one can set G2 = E ′(Fp2)[n], and there
exists an optimal ate pairing with loop order ω = |6u+ 2|.

Since BN curves have j-invariant 0, it is relatively easy to find
them when compared to pairing-friendly curves from other families
(see [17] for an extensive survey). In particular, there is no need to
resort to the CM method explicitly. To generate a BN curve, one
chooses an integer u until p and n as given by the above polynomials
are prime. The size of u is selected such that it yields a desired
size for p and n. To find a corresponding curve, one chooses b ∈ Fp
so that the curve E : y2 = x3 + b has order n. For these steps,

we need primality tests, possibly square detection and square root
computations in Fp to obtain a point in E(Fp), and finally a scalar
multiplication to check for order n.

The corresponding twist E ′/Fp2 is usually selected by finding
a non-square and non-cube ξ ∈ Fp2 and then checking via scalar
multiplication whether the curve E ′ : y2 = x3 + b′ given by b′ = b/ξ
or by b′ = b/ξ5 has order divisible by n. The element ξ can be
used to represent the field extensions of Fp2 contained in Fp12 since
the polynomial zr − ξ is irreducible over Fp2h for r ∈ {2, 3, 6} and
h ∈ {1, 2, 3} whenever gcd(h, r) = 1 [35, Lemma 2.14].

Example 1. Let pe ≡ 1 (mod 6). For each ξ ∈ Fpe that is neither a
square nor a cube, one can represent Fp6e as a tower extension of Fpe
in the following three different ways:

– Fp6e = Fpe [u]/(u6 − ξ);
– Fp6e = Fp2e [v]/(v3 − ξ) with Fp2e = Fpe [s]/(s2 − ξ);
– Fp6e = Fp3e [w]/(w2 − ξ) with Fp3e = Fpe [t]/(t3 − ξ).

The components of an element from Fp6e in any of these can be
extracted directly without the need to perform expensive computa-
tions. Thus: a0 + a1u + a2u

2 + a3u
3 + a4u

4 + a5u
5 ↔ (a0 + a3s) +

(a1 + a4s)v + (a2 + a5s)v
2 ↔ (a0 + a2t+ a4t

2) + (a1 + a3t+ a5t
2)w,

for ai ∈ Fpe . This shows that the suggested setting automatically
yields so-called “compositum” or tower-friendly fields [7, 22], with
their associated efficiency gains. ut

We will propose a subfamily of BN curves that does away with the
square and cube detection tests usually needed when deciding how
to represent the finite field extensions that occur in a typical imple-
mentation of pairing-based protocols. The following lemma captures
an important property of the class of elliptic curves to which BN
curves belong:

Lemma 1. ([35, Lemma 2.7]) Let E : y2 = x3 + b be an elliptic
curve over Fp of order n = #E(Fp) such that 2 - n and 3 - n. Then
b is neither a square nor a cube in Fp.
Proof. For any γ, δ ∈ Fp, the point (0, γ) on E : y2 = x3 + γ2 has
order 3 and hence 3 | n, while the point (−δ, 0) on E : y2 = x3 + δ3

has order 2 and hence 2 | n, either way contradicting the assumption
that 2 - n and 3 - n. ut

As a consequence, we arrive at the following useful lemma:

Lemma 2. Let ξ ∈ F∗pe and let b = N(ξ) ∈ Fp. If E : y2 = x3+b has
order n = #E(Fp) with 2 - n and 3 - n, then ξ is neither a square
nor a cube in Fpe.

Proof. Assume that ξ is a square or a cube in Fpe , i.e. ξ = γr for
some γ ∈ Fpe and r ∈ {2, 3}. Then b = N(ξ) = N(γr) = N(γ)r, i.e.
b is a square or a cube in Fp, contradicting Lemma 1. ut

This means that square or cube detection is not necessary in ei-
ther Fp or Fpe . In particular, the element ξ specified in Lemma 2 can
be used to define all extensions of Fpe that are of interest to pairing
implementation and to facilitate changes of representations in field
towers, as shown in Example 1. We remark that this choice of repre-
sentation for finite field extensions may favor the implementation of
other families of pairing-friendly elliptic curves (see [17]). Pursuing
this possibility, however, transcends the scope of this paper.

The next result addresses the matter of avoiding order computa-
tion and arithmetic on the sextic twist E ′(Fp2) by revealing imme-
diately which twist has the correct order. To that end we need one
more property:

Lemma 3. Let p ≡ 1 (mod 3) be a prime. For any ξ ∈ Fp2, let
b = N(ξ) = ξξ̄. Then b/ξ5 is a cube.

Proof. We first notice that b = ξξ̄ = ξξp = ξp+1 and thus b/ξ5 =
ξp−4. Since p− 4 is divisible by 3, we see that b/ξ5 is a cube. ut

We are finally in a position to state the following theorem which
allows capturing the right twist:

Theorem 1. Given a BN curve of form E : y2 = x3 + b with b =
N(ξ) for some ξ ∈ Fp2, the particular sextic twist E ′ : y2 = x3 + ξ̄
satisfies #E(Fp) | #E ′(Fp2).

Proof. Since E is assumed to be a BN curve, the parameter b cannot
be the norm of an element in Fp, because such a norm is a square
in Fp, contradicting Lemma 1. Therefore, the assumptions imply
ξ ∈ Fp2 \Fp. Remark 2.13 in [35] shows that the order of the desired
twist E ′ over Fp2 is n′ = #E ′(Fp2) = n(2p− n). Since n is odd, also

n′ is odd. If ξ ∈ Fp2 is neither a square nor a cube, the correct twist is
either given by y2 = x3 + b/ξ or y2 = x3 + b/ξ5. Since p ≡ 1 (mod 3)
and b = N(ξ) the value b/ξ5 is a cube by Lemma 3. This means that
the curve given by y2 = x3 + b/ξ5 has a point of order 2, hence the
order of this particular twist is even. Therefore, E ′ : y2 = x3 + b/ξ
is the twist one seeks. Notice that b/ξ = ξ̄. ut

3 The proposed family of curves

As our main contribution in this work, we propose to use curves of
a certain form, belonging to a subfamily of BN curves defined as
follows:

Definition 1. A BN curve Eb : y2 = x3+b over Fp is called friendly
if p ≡ 3 (mod 4) and if there exist c, d ∈ F∗p such that either b =
c4 + d6 or b = c6 + 4d4.

A friendly BN curve E = Eb with corresponding parameters c and d
as defined above has the following properties. Note that since p ≡ 3
(mod 4), we represent Fp2 by Fp[i]/(i2 + 1).

– The parameters c and d automatically provide ξ ∈ Fp2 with b =
N(ξ) according to Lemma 2 to represent the required extensions
of Fp2 . The element ξ is ξ = c2 +d3i or ξ = c3 +2d2i, respectively.

– Since b = N(ξ), the parameters c and d determine the sextic twist
of correct order according to Theorem 1 as given by the equation
y2 = x3 + ξ̄.

– Generators of E(Fp) are given by obvious solutions to the curve
equation as G = (−d2, c2) or G = (−c2, 2d2), respectively.

– Generators for E ′(Fp2)[n] can be found as [h]G′, where h = 2p−n
and G′ = (−di, c) or G′ = (−c, d(1− i)), respectively.

Remark 1. In order to achieve highly efficient implementation results
in practice, we propose to use friendly BN curves with the following
additional properties. We assume p to have a fixed bit length ` :=
dlg pe.

– The BN prime p satisfies p2 ≡ 9 (mod 16) or p2 ≡ 17 (mod 32)
(and possibly also p ≡ 4 (mod 9));

– The Hamming weights of the (signed) binary representations of
either the BN parameter u or the loop order ω = 6u + 2 of the
optimal ate pairing (or both) are minimal for the given bit length
` = dlg pe;

– The integer in [0, p− 1] representing b is as small as possible;

– A careful choice of c and d, specifically taking c and d to be
small powers of 2 so that b has low Hamming weight, enables
further efficiency advantages in field and elliptic curve arithmetic,
since multiplication by b (and by ξ) consists only of shifts and
additions.

Notice that the choice of b in Definition 1 is compatible with [39,
Algorithm 3.5] in the sense that one can certainly look for c and d
such that the resulting b has the form prescribed by that algorithm.

3.1 Rationale

We now examine the rationale for our proposal from the points of
view of pairing efficiency, overall efficiency, uniform finite field arith-
metic, generator simplicity, and choice of suitable field sizes:

Pairing efficiency

First and foremost, pairing computation must be as efficient as pos-
sible, since this is the most expensive operation in any pairing-based
protocol. Low-weight ω minimizes the cost of the Miller loop in op-
timal pairings, while low-weight u minimizes the cost of the final
exponentiation [42]. Small values of b favor faster pairing computa-
tion [14], especially if b has low Hamming weight, which is clearly
possible with the prescribed form we suggest (e.g. if c and d are small
powers of 2). One of the best situations, though not the only one,
arises when b = 2 and ξ = 1 + i. In this case, multiplications by b
are most efficient on all platforms (not only on those where a dedi-
cated multiplication by a small constant is readily available, but also
those where it has to be emulated with simpler operations like shifts
or additions). Furthermore, the computation of conjugates, which
involves multiplications by ξ, incurs the least overhead.

Overall efficiency

All operations involved in pairing-based protocols must be as effi-
cient as possible. Works like [37] and [8] only consider pairing com-
putation speed as a metric, disregarding operations like generating
random points or hashing to the pairing groups G1 and G2 which
are essential to most cryptographic schemes based on pairings. For
BN curves, this means there must be a very efficient method to com-
pute square roots in Fp and Fp2 . This is least expensive when p ≡ 3
(mod 4) and p2 ≡ 9 (mod 16), since the Cippolla-Lehmer method
simplifies to one square detection and one exponentiation for square
roots in Fp, namely,

√
a = a(p+1)/4, and the KCYL [28] method ap-

plies to the computation of square roots in Fp2 , taking one square
detection and 1.5 exponentiations. The case p2 ≡ 17 (mod 32) is al-
most as efficient, taking one square detection and 2 exponentiations
to compute roots in Fp2 with the method of [34]. In certain scenarios
(e.g. when threefold pairing compression is desired) one might wish
to require p ≡ 4 (mod 9) as well, since this facilitates the compu-
tation of cube roots with methods similar to those for computing
square roots [5, Section 3.1].

Uniform finite field arithmetic

Arithmetic in all finite fields involved must be efficient. Operations
in G1 and G2 already need efficient arithmetic in Fp and Fp2 . Further
processing of pairing values as for example explicit or implicit expo-
nentiation needs efficient algorithms for Fp12 itself, or in some cases
for the subfields Fp6 or Fp4 . Efficient subfield arithmetic is needed
if pairing compression techniques are adopted (by factors of 2 and
3, respectively). Also, potential support for efficient conversions be-
tween different representations has to be planned for the sake of
interoperability.

Generator simplicity

Obvious generators that do not involve any extra processing or
storage are clearly desirable. A curve equation of form E : y2 =
x3 + (c4 + d6) admits the obvious solution G = (−d2, c2), while one
of form E : y2 = x3 + (c6 + 4d4) admits the solution G = (−c2, 2d2).

By Theorem 1 the sextic twists of form E ′ : y2 = x3 + (c2− d3i) and
E ′ : y2 = x3 + (c3 − 2d2i), respectively, always contain a subgroup
of the same order n as E, and the curve equations for E ′ admit the
obvious solution G′ = (−di, c) and G′ = (−c, d(1− i)), respectively.
Then the point [h]G′, where h = 2p− n, only fails to be a generator
of E ′(Fp2)[n] with negligibly low probability O(1/h). The cofactor
multiplication can be carried out very efficiently [41, Section 6].

Choice of suitable field sizes

An obvious bottleneck is Fp2 arithmetic, since it is the foundation
of all operations in G2, GT , and pairing computation. Choosing p
slightly smaller than a multiple of the platform word size (say, more
than two bits but less than three bits) is interesting because it en-
ables not only postponing modular reductions in critical operations
like Fp2 multiplication or squaring, but also simplifying the actual
reduction when it is finally applied, as pointed out in [8, Section 5.2].

4 Sample curves

In Table 1, we provide practical friendly BN curves for fields of bit
length ` := 32m− 2 where 5 6 m 6 20, thus ranging between 158-
bit and 638-bit prime fields, covering security levels roughly between
80 and 192 bits. We denote them by Eb,` where we include the bit
length ` in the index. All suggested curves have the form Ec4+1,` :
y2 = x3 + (c4 + 1) over Fp with p = p(u), prime order n = n(u), and
admit a twist of correct order given by E ′ : y2 = x3 + (c2 − i) over
Fp2 . Also, c is always a power of 2. These parameters were obtained
from a script in Magma [11] that searches primes with prescribed
properties.

We note that the values for u and c uniquely determine all needed
parameters, i.e. the primes p and n, the curve equations for E and
its twist as well as the generator points. Namely, field extensions Fp2r
can be represented directly as Fp2 [z]/(zr−c2−i) for r = 2, 3, 6, or via
towers as indicated in Example 1. The pairing groups are G1 = 〈G〉
for G = (−1, c2), and G2 = 〈H ′〉 for H ′ = [h](−i, c) with h = 2p−n,
respectively. The low weight of u enables very efficient multiplication
by the cofactor h [41, Section 6].

The peculiar choice ` = 32m − 2 deserves some attention, since
it is smaller (albeit not by much) than a multiple of typical word
sizes (more precisely, a multiple of 8 bits) and hence leads to secu-
rity levels that are very slightly lower than usual. This was done so
that, adopting Montgomery arithmetic in the base field, all values
listed here enable all modular reductions involved in an Fp2 multi-
plication or squaring to be postponed and carried out only once at
the very end of that operation, in a very simple and efficient manner
as suggested by [8, Section 5.2]. The value b232m/pc indicates how
many modular reductions can be postponed if Fp elements are held
in 32m-bit variables. With the suggested choice of ` = 32m − 2,
b232m/pc = 7 for all examples on Table 1 except for the entry at
` = 254, where it is 6 (Fp2 multiplication and squaring do not need
this value to be larger than 5).

Square roots in Fp2 can be efficiently computed with the sug-
gested method, either KCYL [28] or Müller [34].

Example 2. The 254-bit curve corresponding to the parameter u =
−(262 + 255 + 1) is given by E2,254 : y2 = x3 + 2 with G = (−1, 1),
E ′ : y2 = x3 + (1− i), G′ = [h](−i, 1).

Example 3. All the examples on Table 1 are of the first form of
friendly BN curves we suggest. As an example of the second form, to
be used in scenarios where efficient cube root computation is desired,
one could adopt the 254-bit curve (not listed on Table 1) with u =
−(262− 249− 22 + 1) and E5,254 : y2 = x3 + 5, G = (−1, 2), E ′ : y2 =
x3 + (1− 2i), G′ = [h](−1, 1− i). One can check by direct inspection
that p ≡ 4 (mod 9) for this curve.

The particular curve of Example 2 has been apparently first sug-
gested in [38, Section 4.2], and curves with c = 1 (and hence b = 2),
which make up the majority of Table 1, have been singled out in [44],
albeit without the benefit of a unified view of the curve equation,
its correct twist, and the finite fields involved as pointed out in Sec-
tion 3.

5 Efficiency

It is instructive to compare the relative efficiency of the proposed
family with available results in the literature. Curves at roughly the

Table 1. Sample curves Eb,` : y2 = x3 + b with b = c4 + 1 over Fp, where p = p(u),
bitsize of p is l = 32m− 2, and suggested method for square root computation in Fp2

m ` u wt(6u+ 2) c b
√

Fp2

5 158 −(238 + 228 + 1) 5 2 17 KCYL
6 190 −(246 + 223 + 222 + 1) 5 8 4097 KCYL
7 222 254 − 244 + 1 5 4 257 Müller
8 254 −(262 + 255 + 1) 5 1 2 KCYL
9 286 −(270 + 258 + 238 + 1) 7 1 2 KCYL
10 318 278 + 262 + 21 + 1 6 1 2 KCYL
11 350 −(286 − 269 + 228 + 1) 7 1 2 KCYL
12 382 −(294 + 276 + 272 + 1) 7 1 2 KCYL
13 414 −(2102 + 284 − 255 + 1) 7 1 2 KCYL
14 446 2110 + 236 + 1 5 4 257 Müller
15 478 −(2118 − 255 − 219 + 1) 7 1 2 KCYL
16 510 −(2126 + 253 − 250 + 1) 6 4 257 KCYL
17 542 −(2134 + 2114 + 230 + 1) 7 1 2 KCYL
18 574 −(2142 + 2120 − 299 + 1) 7 1 2 KCYL
19 606 −(2150 − 295 + 28 + 1) 7 1 2 KCYL
20 638 2158 − 2128 − 268 + 1 7 4 257 Müller

same security level as E2,254 of Example 2 appeared in [37, 8, 2]. The
results are summarized on Table 2. Following [2, 8], we denote by m̃u

the number of Fp2 multiplications performed without modular reduc-
tions, by s̃u the number of Fp2 squarings performed without modular
reductions, by r̃ the number of Fp2 modular reductions (counting one
half when only a simple Fp modular reduction is needed), and by ã
the number of Fp2 additions/subtractions involved in computing one
(optimal ate) pairing, within the Miller loop (ML), the final expo-
nentiation (FE), and the total count (TC).

We also denote by mu the number of Fp multiplications per-
formed without modular reductions, by r the number of Fp modular
reductions, and by a the number of Fp additions/subtractions cor-
responding to the aforementioned number of operations in Fp2 , with
each Fp2 multiplication incurring 3mu+2r+8a and each Fp2 squaring
incurring 2mu + 2r + 3a. We do not further break down Fp2 arith-
metic for [37], since it is rather based on digit-sliced simultaneous
than on separate, single Fp operations. We only provide operation
counts for on-the-fly arithmetic without precomputations.

The figures in Table 2 refer to the following implementation de-
cisions:

Table 2. Experimental comparison of optimal ate pair-
ing performance for 254 bits

source part m̃u s̃u r̃ ã mu r a

Naehrig ML 2022 590 2612 7140 NA NA NA
et al. [37] FE 673 1719 2392 7921 NA NA NA

TC 2695 2309 5004 15061 NA NA NA

Beuchat ML 1952 568 2520 6912 6992 5040 13824
et al. [8] FE 403 1719 2122 7021 4647 4244 14042

TC 2355 2287 4642 13933 11639 9284 27866

Aranha ML 1857 392 1335 10047 6355 2670 20094
et al. [2] FE 430 1179 963 8435 3648 1926 16870

TC 2287 1571 2298 18482 10003 4596 36964

This work ML 1256 1209 1169 9328 6186 2338 21030
FE 1162 66 902 6745 3618 1804 13590
TC 2418 1275 2071 16073 9804 4142 34620

– Joint point-and-line computations within the Miller loop as sug-
gested by Costello et al. [14, Section 5] (see also [13, Section 4]);

– Tailored multiplication in Fp12 to accumulate line function val-
ues, which are known to be rather sparse for even embedding
degrees [14, Section 3];

– Improved computation of the hard part of the final exponentia-
tion as proposed by Scott et al. [42];

– Squaring in Fp12 via the Chung-Hasan SQR3 algorithm [12], which
positively affects both the joint point-and-line computations and
the easy part of the final exponentiation after the Miller loop;

– Lazy modular reduction for Fp2 multiplications and squarings
that occur inside Fp12 multiplications and squarings, as described
in [2];

– Improved Granger-Scott squaring [22] and Karabina compressed
squaring [26] in the cyclotomic subgroup of Gφ6(q), which posi-
tively affects the hard part of the final exponentiation and also
contributes for efficient post-processing (e.g. further exponentia-
tion) of pairing values as needed in several protocols;

– Careful scheduling of the product of conjugates during the com-
putation of the inverse in Fp12 (see A) to keep most of the oper-
ations in subfields;

– (Minor optimization) Simplification of the final line functions
that occur in the optimal ate pairing [37, Section 3.2]. This in-

cludes omitting the third line function and multiplying together
the sparse values of the two remaining ones.

– (Minor optimization) When the BN parameter u is negative, re-
placement of the extra inversion incurred by a conjugation after
final exponentiation [2].

After a preliminary version of this paper was completed, [2]
pointed out that [26] offers further optimization opportunities for
exponentiating elements in the cyclotomic subgroup with sparse ex-
ponents when using the BN subclass proposed herein. However, due
to distinct implementation choices motivated by a rather different re-
search focus, overall [2] does not attain the full level of optimization
achievable by following the above list of recommended techniques.

While we do not claim that these figures are optimal, on a high-
end processor a C implementation of our proposal using the Mir-
acl [43] library achieves about 9% better pairing computation speed
than the best previous results [2] for this particular example, or
about 38% better speed than the best results that do not take ad-
vantage of the proposed subfamily [8]. A Java implementation on the
same platform achieves a pairing computation speed that is 8% bet-
ter than the techniques in [2] and 70% better than the proposal in [8].
These results are complemented by the bonus of simpler, enhanced
arithmetic (including faster square root extraction) in the finite fields
Fp and Fp2 underlying groups G1 and G2 as needed by most pairing-
based protocols. Automatically, this also holds for arithmetic in GT

enabled by the tower-friendly nature of the suggested finite-field rep-
resentation.

Most of the listed techniques are applicable to different parameter
choices as well as to other pairing-friendly elliptic curve families. Our
proposal was chosen so as to favor the best cases of each technique,
and hence to maximize their potential for efficient processing.

6 Conclusion

We have presented a subclass of Barreto-Naehrig curves that generi-
cally favors efficient implementation while retaining a very simple de-
scription. Our proposal targets not only pairing computation speed
but also the efficiency of all typical arithmetic operations needed to

instantiate pairing-based cryptographic protocols, and focuses on of-
fering optimization opportunities on the broadest possible landscape
of platforms rather than narrowing down to any particular one.

Adopting a BN curve with one of the proposed forms in Defini-
tion 1 (regardless of the coefficients c and d) is a sufficient condition
for

– doing away with usual square and cube detection tests in Fp and
Fp2 when constructing the curve;

– automatically suggesting finite field representations amenable to
efficient arithmetic;

– indicating the correct sextic twist directly;
– providing simple generators for both the curve and its twist;
– enabling virtually all optimizations proposed in the literature for

all involved algebraic structures.

As a highlight for future research, we point out that one problem
still open regarding efficient implementation of pairing-based cryp-
tography is that of deterministic, highly efficient hashing onto the
groups G1 and G2. Although our proposal partially addresses this
problem by supporting the fastest known arithmetic algorithms for
these groups (particularly square root extraction), more advanced
hashing techniques like that of Icart [25] are currently not applica-
ble to any BN curve. Finding a secure hashing method of that kind
for those groups or describing a subclass of BN curves where such
a method is available is of great importance for many pairing-based
protocols.

Acknowledgments

We are grateful to Diego F. Aranha and Mike Scott for enlightening
discussions during the preparation of this work.

References

1. S. S. Al-Riyami and K. G. Paterson. Certificateless public key cryptography. In
Advances in Cryptology – ASIACRYPT 2003, volume 2894 of Lecture Notes in
Computer Science, pages 452–473. Springer, 2003.

2. D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López. Faster explicit
formulas for computing pairings over ordinary curves. In Advances in Cryptology –
EUROCRYPT 2011, Lecture Notes in Computer Science, Tallinn, Estonia, 2011.
Springer. To appear.

3. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In Advances in Cryptology – CRYPTO 2002, volume
2442 of Lecture Notes in Computer Science, pages 354–368. Springer, 2002.

4. P. S. L. M. Barreto, B. Libert, N. McCullagh, and J.-J. Quisquater. Efficient and
provably-secure identity-based signatures and signcryption from bilinear maps. In
Advances in Cryptology – ASIACRYPT 2005, volume 3788 of Lecture Notes in
Computer Science, pages 515–532. Springer, 2005.

5. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.
In Selected Areas in Cryptography – SAC 2005, volume 3897 of Lecture Notes in
Computer Science, pages 319–331. Springer, 2006.

6. P. S. L. M. Barreto, M. Naehrig, and M. Scott. Pairing-friendly curves of prime or-
der with embedding degree 12. IEEE P1363.3 Standard Specifications For Public-
Key Cryptography – Identity Based Public Key Cryptography using Pairings,
2007. Technique submitted to standardization body.

7. Naomi Benger and Michael Scott. Constructing tower extensions of finite fields
for implementation of pairing-based cryptography. In M. Anwar Hasan and Tor
Helleseth, editors, Arithmetic of Finite Fields – WAIFI 2010, Istanbul, Turkey,
volume 6087 of Lecture Notes in Computer Science, pages 180–195. Springer, 2010.

8. J.-L. Beuchat, J. E. González Dı́az, S. Mitsunari, E. Okamoto, F. Rodŕıguez-
Henŕıquez, and T. Teruya. High-speed software implementation of the optimal
ate pairing over Barreto-Naehrig curves. In Pairing-Based Cryptography – Pairing
2010, volume 6487 of Lecture Notes in Computer Science, pages 21–39. Springer,
2010.

9. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In Ad-
vances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 213–229. Springer, 2001.

10. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In Advances in Cryptology – EUROCRYPT
2003, volume 2656 of Lecture Notes in Computer Science, pages 416–432, Warsaw,
Poland, 2003. Springer.

11. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

12. J. Chung and M. A. Hasan. Asymmetric squaring formulae. In IEEE Symposium
on Computer Arithmetic – ARITH 2007, Proceedings, pages 113–122. IEEE Press,
2007.

13. C. Costello, H. Hisil, C. Boyd, Juan Gonzalez Nieto, and K. K.-H. Wong. Faster
pairings on special Weierstrass curves. In Pairing-Based Cryptography – Pairing
2009, volume 5671 of Lecture Notes in Computer Science, pages 89–101. Springer,
2009.

14. C. Costello, T. Lange, and M. Naehrig. Faster pairing computations on curves
with high-degree twists. In Public Key Cryptography – PKC 2010, volume 6056 of
Lecture Notes in Computer Science, pages 224–242. Springer, 2010.

15. A. J. Devegili, M. Scott, and R. Dahab. Implementing cryptographic pairings over
Barreto-Naehrig curves. In Pairing-Based Cryptography – Pairing 2007, volume
4575 of Lecture Notes in Computer Science, pages 197–207. Springer, 2007.

16. J. Fan, F. Vercauteren, and I. Verbauwhede. Faster arithmetic for cryptographic
pairings on Barreto-Naehrig curves. In Cryptographic Hardware and Embedded
Systems – CHES 2009, volume 5747 of Lecture Notes in Computer Science, pages
240–253. Springer, 2009.

17. D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology, 23(2):224–280, 2010.

18. S. D. Galbraith, X. Lin, and M. Scott. Endomorphisms for faster elliptic curve
cryptography on general curves. In Advances in Cryptology – EUROCRYPT 2009,
volume 5479 of Lecture Notes in Computer Science, pages 518–535. Springer, 2009.

19. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16):3113–3121, 2008.

20. S. D. Galbraith and M. Scott. Exponentiation in pairing-friendly groups using
homomorphisms. In Pairing-Based Cryptography – Pairing 2008, volume 5209 of
Lecture Notes in Computer Science, pages 211–224. Springer, 2008.

21. C. P. L. Gouvêa and J. C. López. Software implementation of pairing-based cryp-
tography on sensor networks using the MSP430 microcontroller. In Progress in
Cryptology – Indocrypt 2009, volume 5922 of Lecture Notes in Computer Science,
pages 248–262. Springer, 2009.

22. R. Granger and M. Scott. Faster squaring in the cyclotomic subgroup of sixth
degree extensions. In Public Key Cryptography – PKC 2010, volume 6056 of Lecture
Notes in Computer Science, pages 209–223. Springer, 2010.

23. F. Hess. Pairing lattices. In Pairing-Based Cryptography – Pairing 2008, volume
5209 of Lecture Notes in Computer Science, pages 18–38. Springer, 2008.

24. F. Hess, N. P. Smart, and F. Vercauteren. The eta pairing revisited. IEEE Trans-
actions on Information Theory, 52(10):4595–4602, 2006.

25. T. Icart. How to hash into elliptic curves. In Advances in Cryptology – CRYPTO
2009, volume 5677 of Lecture Notes in Computer Science, pages 303–316. Springer,
2009.

26. Koray Karabina. Squaring in cyclotomic subgroups. Cryptology ePrint Archive,
Report 2010/542, 2010. http://eprint.iacr.org/2010/542.

27. N. Koblitz. Elliptic curve cryptosystem. Mathematics of Computation,
48(177):203–209, 1987.

28. F. Kong, Z. Cai, J. Yu, and D. Li. Improved generalized Atkin algorithm for
computing square roots in finite fields. Information Processing Letters, 98(1):1–5,
2006.

29. K. Lauter, P. L. Montgomery, and M. Naehrig. An analysis of affine coordinates
for pairing computation. In Pairing-Based Cryptography – Pairing 2010, volume
6487 of Lecture Notes in Computer Science, pages 1–20. Springer, 2010.

30. E. Lee, H. S. Lee, and C.-M. Park. Efficient and generalized pairing computation
on Abelian varieties. IEEE Transactions on Information Theory, 55(4):1793–1803,
2009.

31. B. Libert and J. J. Quisquater. Improved signcryption from q-Diffie-Hellman prob-
lems. In Security in Communication Networks – SCN 2004, volume 3352 of Lecture
Notes in Computer Science, pages 220–234. Springer, 2005.

32. V. Miller. Uses of elliptic curves in cryptography. In Advances in Cryptology –
CRYPTO 1985, volume 218 of LNCS, pages 417–426. Springer, 1985.

33. V. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology,
17(4):235–261, 2004. See also “Short programs for functions on curves,” 1986
unpublished manuscript, http://crypto.stanford.edu/miller/miller.pdf.

34. S. Müller. On the computation of square roots in finite fields. Designs, Codes and
Cryptography, 31(3):301–312, 2004.

35. M. Naehrig. Constructive and Computational Aspects of Cryptographic Pairings.
PhD thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2009.

36. M. Naehrig, P. S. L. M. Barreto, and P. Schwabe. On compressible pairings and
their computation. In Progress in Cryptology – AFRICACRYPT 2008, volume
5023 of Lecture Notes in Computer Science, pages 371–388. Springer, 2008.

37. M. Naehrig, R. Niederhagen, and P. Schwabe. New software speed records for
cryptographic pairings. In Progress in Cryptology – LATINCRYPT 2010, volume
6212 of Lecture Notes in Computer Science, pages 109–123. Springer, 2010.

38. Y. Nogami, M. Akane, Y. Sakemi, H. Kato, and Y. Morikawa. Integer variable
χ-based ate pairing. In Pairing-Based Cryptography – Pairing 2008, volume 5209
of Lecture Notes in Computer Science, pages 178–191. Springer, 2008.

39. K. Rubin and A. Silverberg. Choosing the correct elliptic curve in the CM method.
Mathematics of Computation, 79:545–561, 2010.

40. M. Scott. Computing the Tate pairing. In Topics in Cryptology – CT-RSA 2005,
volume 3376 of Lecture Notes in Computer Science, pages 293–304. Springer, 2005.

41. M. Scott, N. Benger, M. Charlemagne, L. J. Domı́nguez Pérez, and E. J. Kachisa.
Fast hashing to G2 on pairing friendly curves. In Pairing-Based Cryptography –
Pairing 2009, volume 5671 of Lecture Notes in Computer Science, pages 102–113.
Springer, 2009.

42. M. Scott, N. Benger, M. Charlemagne, L. J. Domı́nguez Pérez, and E. J. Kachisa.
On the final exponentiation for calculating pairings on ordinary elliptic curves.
In Pairing-Based Cryptography – Pairing 2009, volume 5671 of Lecture Notes in
Computer Science, pages 78–88. Springer, 2009.

43. Shamus Software. Multiprecision integer and rational arithmetic C/C++ library
(MIRACL) v.5.4.4. http://www.shamus.ie/, 2010.

44. M. Shirase. Barreto-Naehrig curve with fixed coefficient. IACR ePrint Archive,
report 2010/134, 2010. http://eprint.iacr.org/2010/134.

45. F. Vercauteren. Optimal pairings. IEEE Transactions on Information Theory,
56(1):455–461, 2010.

46. F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme from
bilinear pairings and its applications. In Public Key Cryptography – PKC 2004,
volume 2947 of Lecture Notes in Computer Science, pages 277–290. Springer, 2004.

A Scheduling the product of conjugates for Fp12

inversion

We now describe a simple technique to save operations when invert-
ing an element γ ∈ Fq6 by keeping most of the involved operations
in subfields. We follow the notation of Example 1 and Section 5.

One can invert γ ∈ Fq6 \ {0} by computing (see e.g. [29, Sec-
tion 3.1])

γ−1 = γv−1 · γ−v,
where v := 1+q+q2+q3+q4+q5. Defining the quantities λ := γ1+q

3 ∈
Fq3 , µ := λq · λq2 ∈ Fq3 , ε := γv ∈ Fq, and η := µ · ε−1, we can write

ε = γ1+q+q
2+q3+q4+q5 = λ·µ and γv−1 = γq+q

2+q3+q4+q5 = γq
3 ·γq(1+q3)·

γq
2(1+q3) = γq

3 ·λq ·λq2 = γq
3 ·µ, whereby γ−1 = γq

3 ·(µ ·ε−1) = γq
3 ·η.

Writing γ = α+βw for α, β ∈ Fq3 , one sees that λ = (α+βw)(α−
βw) = α2 − β2ξ, where the Fq3 squarings can be performed via the
Chung-Hasan SQR3 method for Fq3 over Fq, incurring an overall cost
of 2m̃+8s̃, while µ = (λ·λq)q can be computed at a cost 3m̃+3s̃, apart
from conjugation. Performing the product ε = λ ·µ requires only 3m̃,
since this value is known to lie in Fq. Computing η = µ · ε−1 then
incurs one Fq inversion and one multiplication between an element
from Fq3 and another from Fq (which takes 3m̃). Finally we are faced

with the multiplication γ−1 = γq
3 · η between an element from Fq6

and another from Fq3 , which takes 2 · 6m̃, apart from conjugation.
Therefore, apart from conjugations and one Fq inversion, the

overall cost is 23m̃ + 11s̃ ≈ 91m, which compares well against the
corresponding 288m cost incurred by naively computing γ−1 as a
product of conjugates in sequential order.

