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Abstract—Recent cryptanalysis on SHA-1 family has led the
NIST to call for a public competition named SHA-3 Contest.
Efficient implementations on various platforms are a criterion for
ranking performance of all the candidates in this competition.
It appears that most of the hardware architectures proposed
for SHA-3 candidates are basic. In this paper, we focus on an
optimized implementation of the Shabal candidate. We improve
the state-of-the-art using the unfolding method. This transforma-
tion leads to unroll a part of the Shabal core. More precisely,
our design can produce a throughput over 3 Gbps on Virtex-5
FPGAs, with a reasonable area usage.

Index Terms—SHA-3 Contest, Hash functions, Shabal, High-
speed, Hardware, FPGA.

I. INTRODUCTION

Hash functions are commonly used in digital signature
applications, authentication protocols, key establishment and
random number generation. They are designed in order to
convert one large message with arbitrary length to one fixed
length digest. Due to this feature, generic attacks exist to
find collisions, first pre-image or second pre-image. Important
properties for hash functions are computational resistance to
these attacks. Security bounds of these functions must be as
close as possible to generic attacks complexity.

The current standard is defined in FIPS 180-31 by the
National Institute of Standards and Technology (NIST). Recent
cryptanalysis on SHA-1 family has led the NIST to open
a public competition called SHA-3 Contest2, similar to the
past one for Advanced Encryption Standard (AES). Its aim is
to choose a new standard for hash functions. The submitted
algorithms must respect some requirements, such as different
sizes of message digest, security bounds, tunable parameters
to adjust security and efficiency on various platforms.

In this contest, 64 candidates were submitted. 51 of these
candidates were accepted in the first round. The second round
begun on July 24, 2009 and the list of the candidates were
reduced to 14 submissions3: BLAKE, BLUE MIDNIGHT
WISH, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak,
Luffa, Shabal, SHAvite-3, SIMD and Skein.

The candidates are submitted to public comments for se-
curity aspects. Efficient implementations, both software and
hardware, on various platforms are also a criterion for ranking

1This publication is available electronically from the NIST web site:
http://csrc.nist.gov/publications/PubsFIPS.html.

2All details are available on the website:
http://csrc.nist.gov/groups/ST/hash/sha-3/.

3Information about theses submissions are available on the website:
http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo.

performance of all the candidates of the SHA-3 competition.
Some comparative studies of SHA-3 candidates are published
on hardware platforms [1], [2], [3]. However, these proposed
designs are close to the description given by the submission.
Only a few have proposed design optimizations [4].

1) Contributions: Shabal’s permutation can be viewed as
a NLFSR. This structure allows us to apply the unfolding
method, well known for the stream ciphers like Grain [5] and
Trivium [6]. The previous works on Shabal do not mention
optimizations and point out restricted parallezibility as a limit
of performance.

In this paper, we present optimizations for designing highly
efficient implementations of Shabal, using intensive unfolding
transformation described for example in [7], [8], [9]. This
method leads to unroll the Shabal core.

We design our implementations on a FPGA platform rather
than in an ASIC because of its low cost, its greater flexibility,
and its easier validation process. FPGAs are re-programmable
platforms. So they allow to propose quickly different designs
in order to compare their efficiency. To ease comparisons with
the state-of-the-art, we choose to give our implementation
results of Shabal on the same platform, which is Virtex-5
FPGA [10].

Our goal is to present a high-efficient implementation of
Shabal, i.e. with a high throughput (TP) with a minimum area
usage defined as follows.

The throughput for long messages can be calculated with
the following equation:

TP =
#Message block length× Frequency

#Cycles per message block
. (1)

2) Outline: First of all, we will give a short description of
the Shabal specifications. Then, our different implementations
and results will be provided as well as a comparison with
the state-of-the-art. Finally, our results will be put back in the
wider context of the SHA-3 competition.

http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/groups/ST/hash/sha-3/
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo


II. SHABAL

Shabal is a SHA-3 candidate designed by the Saphir project.
The Shabal construction is an iterative hash function based

on a keyed permutation P . The message blocks are 512-
bit long. As required by the NIST, Shabal is declined in
different versions, each corresponding to one output length,
noted lh, where lh ∈ {192, 224, 256, 384, 512}. Shabal have
the same structure for all output sizes, i.e. the TP for the FPGA
implementations are the same.

The internal state is 1408-bit long, divided into 3 parts
(A,B,C). As specified, A is respectively 12 × 32-bit words,
and B, C are 16 × 32-bit words.

A. Notations

In this section, we introduce notations used in this paper.
Let x and y be 32-bit words.

1) Bitwise operations: x⊕y represents the bitwise exclusive
or (XOR) of x and y. We denote the bitwise logical and of
x and y by x ∧ y. The complement of x is indicated by x,
equivalent to x⊕ 0xFFFFFFFF. Finally x≪ j means the left
rotation of x by j, with j ∈ {1, 15}.

2) Wordwise operations: Shabal will also use wordwise
operations such as addition and subtraction modulo 232. We
denote the addition modulo 232 by�, and� for the subtraction
modulo 232.

B. Description
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Fig. 1. Shabal mode of operation

Concerning the mode of operation, which is shown on see
Fig. 1, the internal state is initialized by an Initial Vector (IV),
which can be computed on the fly or pre-computed. The IV
computation depends on the output length.

For the message rounds, the current message block Mk is
added to the B part of the internal state. A counter W is
incremented and XORed to the two leftmost words of A. The
keyed permutation P is applied on A and B, with Mk and
C as key materials. At the end, the message block Mk is
subtracted to C. Finally B and C are swapped.
P is the core of the round function. It can be viewed as a

Non-Linear Feedback Shift Register (NLFSR). The operations
realized during permutation are quite simple: XORs, ANDs,
NOTs, rotations and multiplications by small constant. Figure
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Fig. 2. Permutation P of Shabal

2 illustrates one iteration of the permutation, which is applied
48 times by message round Mk.

In this paper, we will introduce two notations concerning
the permutation P , in order to simplify upcoming figures:
COMBINE and NL. Each entity gathers some operations
in one iteration in P .

Here is one iteration of the permutation P as defined in the
submission package:

A[i+ 16j mod 12]← U
(
A[i+ 16j mod 12]

⊕V(A[i− 1 + 16j mod 12]≪ 15)

⊕ C[8− i mod 16]
)

⊕ B[i+ 13 mod 16]

⊕ (B[i+ 9 mod 16] ∧B[i+ 6 mod 16])

⊕ M [i].

It can be written as:

A[i+ 16j mod 12]← COMBINE(A[i+ 16j mod 12],

A[i− 1 + 16j mod 12]≪ 15,

C[8− i mod 16],

NL(B[i+ 13 mod 16], B[i+ 9 mod 16],

B[i+ 6 mod 16]),

M [i]).

III. OUR DIFFERENT HARDWARE IMPLEMENTATIONS

In this section, our different hardware implementations will
be described, from the basic one to the improved-throughput
one.

A. Our first implementation

Our first implementation is close to the original description
given by the Shabal’s submission package [11]. The previous



works [1], [2], [3] are quite similar. In the following, we
discuss some implementation details which have been inves-
tigated in our study.

1) P as a NLFSR: As described by Shabal contributors (see
Fig. 2), all our hardware implementations keep the NLFSR
structure of the permutation P . So after each iteration in P ,
the whole internal state is shifted.

2) U and V with shift-then-add method: In one iteration in
P , it is applied two multiplications by small constant 3 and
5, denoted respectively by U and V (see COMBINE part in
Fig. 2). We choose to implement each multiplication with the
shift-then-add method.

3) Final additions in parallel: At the end of the permuta-
tion, additions of words of C to A are required4 (see Fig. 3).

For j from 0 to 35
Do
• A[j mod 12]← A[j mod 12]�C[j+3 mod 16]

Next j
Done.

Fig. 3. Last loop of P

By unrolling this loop, it can be noticed that each new A
word can be computed using three additions [2], [11] (see Fig.
4).

Two well-known ways of computing the new value of one
A word can be used. The first one consists in cascading
three Ripple-Carry Adders (RCAs). The second one con-
sists in computing a multi-operand addition using four-to-
two ([4:2]) Carry-Save Adders (CSAs) (see [12], Chapter 3
and Appendix A for more explanations). A priori, the second
solution leads to a shorter critical path delay. However, this
statement must be checked by a complete analysis based on the
post-place and route results for both alternative architectures
(see Section V). Indeed, Virtex 5 FPGAs contain embedded
hardware structures for fast Ripple-Carry Addition.

For j from 0 to 11
Do
• A[j]← A[j]� C[j + 3 mod 16]
� C[j + 15 mod 16]� C[j + 27 mod 16]

Next j
Done.

Fig. 4. Last loop of P unrolled

B. Unfolding method on P
In order to improve performance, we perform an unfolding

transformation [9] on P . This technique is often used in
designs which have a NLFSR structure, such as some stream
ciphers like Grain and Trivium; it is also interesting to measure
its efficiency on Shabal, since one iteration in P is viewed as
a NLFSR (see Fig. 2).

4These additions are not depicted in Fig. 2 in order to keep this latter
readable.
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Fig. 5. DFG of the permutation P

Considering the Data Flow Graph (DFG) of P , we can
unroll the 48 iterations as illustrated in Fig. 5. The internal
state is updated at each iteration.
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Fig. 6. Applying unfolding transformation with factor 2 to Fig. 5

This can be viewed as an unfolding transformation of
“factor” 1. The requirement on this “unfolding factor” is
to be a denominator of the iteration bound [9]; in Shabal
permutation case: 48.

With an unfolding method of factor 2, we compute 2
iterations in P in one clock cycle (see Fig. 6).
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Fig. 7. Applying unfolding transformation with factor f to Fig. 5

As a general rule, the unfolding method with factor f
gathers f iterations between internal state updates (see Fig. 7).

So, if the critical path delay is not multiplied by a factor
greater than the factor f when the number of clock cycles per
message block is divided by f , the new design obtains a better
throughput (see relation (1) in Section I).

This method is detailed in the following sections for unfold-
ing 2, 3, 4, 6 and 8 iterations. Other divisors of 48 are also
possible values for f (12, 16, 24), but applying only unfolding
method, they do not bring any improvement on the throughput.
For these great factors, it will be necessary to apply retiming
methods[9].

1) Unfolding 2 iterations in P: So the unfolding method
transforms the NLFSR. Here is represented the transformation
using the unfolding factor 2 (see Fig. 8).

It shows how we put the computation of two values in a
same iteration. The result A[11] depends on A[10]. So when
A[10] is computed, it is chained directly in the rotation by 15,
without taking the value from A.

2) Unfolding 3 iterations in P: As explained in the previ-
ous section, we apply the method with the factor 3. Adapting
the previous figure for 3 computations is quite immediate.

3) Unfolding 4 iterations in P: Now with an unfolding
factor equals to 4, the new iteration computes 4 iterations
before updating the internal state(see Fig. 9).

Due to dependence between computed values, the first input
of NL(3) is one of the new value computed at the first
iteration. So, in order to avoid synchronization issues, we
decide to directly input this value in NL(3). This implies that
NL(3) takes only 2 of these inputs in the register latch B.
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Fig. 9. Four iterations of the permutation P

4) Unfolding 6 iterations in P: As mentionned before, a
factor greater than 3 leads to map some intermediate values
directly on previous outputs, i.e. before storing them in register
files.

5) Unfolding 8 iterations in P: The unfolding method is
similarly applied with the factor 8. This version is not depicted
in order to stay clear in this paper.

IV. HARDWARE CONSIDERATIONS

A. Around the mode of operation

A cryptographic hash function outputs a hash message by
breaking an input message into a serie of fixed-length blocks,
and by operating on them. Many hash algorithms include
initialization, padding and finalization steps.

The initialization step uses IV to modify the internal state
before inserting message blocks.

The input message is then padded so that its length becomes
a multiple of the block length. We consider that the padding
step is done in software: already padded message blocks are
used as inputs to hardware cores. This statement allows to
compare our implementation with the state-of-the-art. How-
ever the padding could be computed in hardware [13].

Finally, a hash function can use finalisation step before
outputting the digest.

We focus on implementing the mode of operation, excluding
initialisation, padding and final steps. The throughput of the
algorithm is determined by the throughput of a message round.
This is especially true for long messages.

B. Interfaces

In order to take into account the restricted number of I/O
pins in the place and route process, we have to use a wrapper
[14]. This latter connects the I/O of our core to I/O pins of
the FPGA. To ensure that the wrapper does not affect the
throughput of the design, the number of clock cycles needed
to load data must be less than the number of clock cycles
needed for core computation. So, 32-bit I/O are needed for
the first version (resp. 32-bit I/O for the second, 64-bit for the
third and 128-bit I/O for the fourth) in order to load data in
less than 48 cycles (resp. 24, 16, 12, 8, 6) 5.

V. RESULTS

The four proposed Shabal hardware modules described in
Section III were implemented in VHDL. Each description was
then verified against the official test vectors using simulations
with ModelSim R©. Synthesis and Place and Route process were
carried out using XilinxTM ISE R© tools (v11.1i). Since our
main goal was to optimize throughput, synthesis options were
then chosen to maximize the operating frequency of all the
presented designs. The target device was a XilinxTM Virtex-5 R©

FX70T, speed grade 3, package FF1136 (xc5vfx70t-3ff1136).
In this section, we firstly analyse the relative performance

of our four hardware implementations of Shabal before ex-
plaining why our results should be considered for the SHA-3
Contest.

A. Analysis of our implementation results

Post-Place and Route results for the Shabal compression
function are summarized in Table I. Besides TP, we introduce
the ratio “throughput per slice” in order to determine which
Shabal version makes the most efficient use of Virtex-5 R© area.

5Instead of increasing continuously I/O bus width, a second faster I/O clock
could be used on top of the main clock used for core computation. This
solution has not been implemented since we want to manage only one clock.



Unfolding Area Max. Freq. TP TP/Area
factor f (slices) (MHz) (Gbps) (Mbps/slice)

1 1533 247 2.634 1.718
2 1556 144 3.072 1.974
3 1607 101 3.232 2.011
4 1715 76 3.242 1.890
6 1884 50 3.200 1.698
8 1958 37 3.157 1.612

TABLE I
SHABAL IMPLEMENTATION RESULTS

It must be noticed that in our first implementation, the criti-
cal path is from register A[11] to register B[15] (see Fig. 2) and
not on the final adders. Due to the CSAs use, the critical path
changed and the performance improved. For the next versions,
replacing CSAs by RCAs leads to similar performance. We
keep the CSAs for all the implementations, in order to measure
the unfolding influence.

Our first implementation can be viewed as a reference
implementation in order to measure the benefits brought by
our other implementations.

Using the unfolding method, it is expected that the fre-
quency will be lower. However, if the loss factor is less than
the unfolding factor, the TP will be improved. This effect
happens for the factors up to 4. But with 6 and 8, the TP
decreases, showing up the limit of the unfolding method due
to operations added and more complex place-route step. We
hope that this effect can be reduced with retiming method
described in [9].

Concerning area, the unfolding method leads to a slight
overhead, improving the FPGA usage (TP/slices ratio). This
ratio increases up to 2.011 for the factor 3.

As expected, the frequency is higher in the basic implemen-
tation. In terms of TP (resp. TP/slice) the unfolding factor
4 (resp. 3) produces the best implementation, with an area
similar to the basic one. Among the four implementations, the
third is the most efficient. The last version points out the limit
of the unfolding method concerning Shabal architecture.
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Fig. 10. Improvement of TP/slices on each implemented version

1) Our main contribution: As expected, the critical path of
each design increases with the degree of unfolding (see Fig.
10). However the TP is improved up to 3.242 Gbps. Results
have shown that the best TP is obtained by unfolding 4 iter-
ations in P . This version presents improvements concerning
TP with slight overhead, comparing to the first implementation
(see Table I). So the unfolding method with factor 3 leads to
a better efficient implementation. They also shows that it is
possible optimize Shabal even if it has limited parallelizability.

B. Improvements on previous works

Reference Area Max. Freq. TP TP/Area
(slices) (MHz) (Gbps) (Mbps/slice)

[2] 2768 138 1.450 0.523
[15] 1171 126 2.588 2.210
[16] 1251 214 2.282a 1.390

Our work 1607 101 3.232 2.011

aReplacing SASEBO 16-bit interface by one like ours

TABLE II
COMPARISON OF PREVIOUS WORKS

In Table II, we summarize the results of our best high-
efficiency implementation, i.e. better TP per slice ratio, and
compare it with the results for other Shabal implementations
on Virtex-5 R©. Our goal is to provide an high-efficient design.
Taking the third implementation (unfolding factor = 3), our
design produces substantial improvements in Shabal hardware
implementation. Despite its restricted parallelizability, Shabal
shows a good high-efficient performance in hardware with
acceptable area usage. In terms of TP, our implementation with
unfolding factor equals to 4 outperforms the state-of-the-art by
a significant margin (+20%).

VI. CONCLUSION

In the SHA-3 Contest, efficiency of hardware implemen-
tation is an important criterion for ranking the candidates.
Moreover, the state-of-the-art proposes only basic designs.
This is why we propose in this paper a high-throughput per
slice optimized implementation of Shabal on a Virtex-5 FPGA
that outperforms the state-of-the-art.

Particularly, the unfolding transformation leads to interest-
ing results, through our proposed designs. Mainly, our best
design is the first which produces a throughput over 3 Gbps,
with a reduced overhead in area comparing to the state-of-the-
art. A higher throughput rate makes Shabal attractive for some
applications which needs efficiency in constrainted area.

Also, we have shown that the unfolding method has some
limits. A perspective is to combine this with retiming methods
[9].

Low-area cost allows to put several Shabals in the same
FPGAs, useful to process several independant messages in
parallel. In this kind of applications, the throughput can be
multiplied by the number of implemented Shabal cores.



Finally, in a wider context, we hope that our work provides
a significant contribution in the hardware benchmarking of the
SHA-3 candidates.
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APPENDIX

Let’s take the example of the computed value A[0]← A[0]�
C[3] � C[15] � C[11] in the loop described in Fig. 4, for

j = 0. Initially, the operands A[0], C[3], C[15] and C[11] use
a conventional binary representation. For example,

A[0] = (A[0]31 · · ·A[0]1A[0]0)2 =

31∑
i=0

A[0]i2
i, with A[0]i ∈ {0, 1}.

FA

FA

a b d e

fc’

c s

Fig. 11. [4:2] CSAi

The [4:2] CSAi (see Fig. 11) sums up four-bit inputs that
are a = A[0]i, b = C[3]i, d = C[15]i and e = C[11]i and
outputs two bits in the redundant Carry-Save (CS) form.

It must be noted that the c′ value of the [4:2] CSAi is
connected to the f value of the CSAi+1. Thus, 32 [4:2] CSAs
are needed per 32-bit 4-input addition.

The output of a 4-input addition using [4:2] CSAs (in our
example A[0]) is given in CS. In this notation, the number
A[0] is represented in radix 2 using digits A[0]i ∈ {0, 1, 2}
coded by 2 bits such that A[0]i = A[0]i,c + A[0]i,s where
(A[0]i,c, A[0]i,s) ∈ {0, 1} × {0, 1}:

A[0] =

31∑
i=0

A[0]i2
i =

31∑
i=0

(A[0]i,c +A[0]i,s). (2)

In order to convert the result A[0] in a conventional binary
representation, the final step shown in Equation 2 must be
computed with Ripple-Carry Adder.
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