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Abstract

We use the concept of rational secret sharing, which was initially introduced by Halpern and Teague
[2], where players’ preferences are that they prefer to learn the secret than not, and moreover they prefer
that as few others learn the secret as possible. This paper is an attempt to introduce a rational secret
sharing scheme which defers from previous RSS schemes in that this scheme does not rely on broadcast
to send messages but instead uses point to point transmissions. Not only that, but the protocol will not
rely on any cryptographic primitives and is coalition resilient except for when the short player colludes
with a long player.

1 Introduction

1.1 Background

The notion of secret sharing was introduced by Shamir [5]. His scheme was based upon the fact that it
requires m unique points in order to define a polynomial of degree (m − 1). According to the scheme, a
dealer generates a random polynomial, f , of degree (m − 1) such that f(0) = s, where s is the secret to
be shared. Then he generates n points on the polynomial and distributes the couplet (xi, f(xi)) to every
player i. If any m players come together, they will be able to regenerate the polynomial via Lagrange’s
interpolation and hence will be able to obtain the secret. Secret sharing is in essence the ability of several
parties to work together to reconstruct a secret using information about the secret available with them.
Until recently, the players involved in secret sharing were only looked upon as being either totally honest
or arbitrarily malicious.

With the help of game theory, we are able to view the players in a different light, which more closely
resembles human behaviour. In the case of rational secret sharing, players will behave in a way which
maximizes their profit. This is modelled via a utility function whose input is the set of actions of the
player and the other players, and whose output is the expected gain for that player. Halpern and Teague
[2] introduced this problem with their seminal paper on rational secret sharing.

1.2 Related Work and Contribution

Previous work done includes a protocol presented by Kol and Naor [4] using a simultaneous broadcast
channel to share a secret among the players. The other protocol by Kol and Naor [3] solves the same
problem and is also coalition resilient, but requires cryptographic primitives. The protocol by Fuchsbauer
et. al. [1] solves the rational secret sharing problem, while using simultaneous point to point channels,
assuming the use of cryptographic primitives. However, there is a drawback to protocols which use a
broadcast channel. The problem is that it is difficult to simulate a broadcast channel among rational play-
ers because of their rational behaviour and inclinations. So then, in order to overcome these difficulties, we
must look to a new method to spread the messages instead of a broadcast channel. Such a method would
be to have players send messages individually to each other, in a point to point manner. This was done
by Fuchsbauer et. al. [1], but they used cryptographic primitives. The use of cryptographic primitives
provides quite a bit of overhead and also brings in the problem of backward induction. Hence an interesting
question arises, that of whether it is possible to come up with a rational secret sharing protocol without
having to simulate a broadcast channel and without using cryptographic primitives. Our main contribu-
tion is in essence an affirmative answer to this question in the form of a protocol for rational secret sharing
problem, which uses simultaneous point to point channels and which does not use cryptographic primitives.
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As an extension to our work, solutions to rational multiparty computation problems, using simultane-
ous point to point channels, can be attempted using our solution as a basis.

1.3 Assumptions on the Utilities

We assume that the player wishes to learn the secret than not learn it and he also wishyes that as few
others learn it as possible. We extend this assumption to coalitions of players as well such that any coali-
tion wishes to learn the secret and wishes that as few other players learn the secret as possible. Let α be
the upper bound on the probability that a coalition CεC can guess the right value in advance. Let β be
the upper bound on the probability that the current iteration is definitive. It is used as the parameter to
the geometric distribution from which share sizes are chosen.

In order to upper bound α and β, we use two values α0 and β0 respectively, the computations of which
will be discussed in the next section.

2 The Protocol

2.1 Establishing the Communication Links

The number of players participating in the secret construction can vary from time to time. But the min-
imum number of shares required to construct the secret is constant. We consider the case where all the
players come together to compute the secret. In this case, every rational player does not want to send his
share to all the players. Proving that the strategy, sending share to all the players, is dominant, is difficult
due to the possible collusions of the players. So we adopt a different approach where every player sends
his share to at most m− 1 other players. This is communication efficient. Hence the intrinsic complexity
of the solution depends on the question, is it always possible for every player to send his share to m − 1
players and receive m− 1 other players’ shares? We answer this question via the following lemma, which
says that if n(m − 1) is even, then every player can be in communication with the other m − 1 players.
We show such a construction by regular graphs.

Consider an undirected graph G(V, E) which represents the game. Let V denote the set of players
(V = {p1, . . . , pn}) and E denote the sharing relationship between two players. If there is an edge between
vertices pi and pj , that is (pi, pj) ∈ E, then pi sends his share to pj and pj sends his share to pi. In this
way, every vertex belonging to V should have a degree of (m− 1) to get the secret(as every player needs
(m − 1) other shares). Thus, the problem is reduced to that of forming an (m − 1)-regular graph (every
node has a degree (m − 1)) with n vertices). We present such a graph construction when n ∗ (m − 1) is
even.

Lemma 1 With n vertices, forming an (m− 1)-regular graph is possible, if n ∗ (m− 1) is even.

Proof: We can analyse the construction of the graph in two cases. In both the cases, we show that every
vertex vi is connected to the other m− 1 vertices.
Case 1: (m− 1) is even.

{p(i+j)mod n; j = 1, 2 . . . m−1
2 } ∪ {p(i−j)mod n; j = 1, 2 . . . m−1

2 }

Case 2: (m− 1) is odd and n is even
{p(i+j)mod n; j = 1, 2 . . . m−2

2 } ∪ {p(i−j)mod n; j = 1, 2 . . . m−2
2 } ∪ p(i+ n

2 )mod n ¤

Corollary 1 If n ∗ (m − 1) is odd, then forming an m-regular graph with n vertices is possible as n ∗m
is even.

Suppose that n = 5 and m = 3. We cannot form a coalition of three players leaving out the other two
players, as shown in fig-1. But we can form a single coalition by means of a 2-regular graph with 5 vertices
as shown in fig-2, thereby ensuring that every player gets the secret.
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Figure 1: Example illustrating single coalition formation when n = 5, m = 3

2.2 Communication Set Construction Protocol

In our protocol, every player pisends his share to only a few players and likewise receives the set of shares
from only a few players. A player pidynamically decides to which players he has to send his share (also
receive) depending on the number of players. The communication set for a player pi, CSi, contains the
identities of the players for which the player pishould send his share to, and receive from also. When
n(m− 1) is even, a player pi’s communication set, CSi, size is of m− 1. If n(m− 1) is odd, then the size
of communication setof player pi, CSi is m, i.e. player pi, sends his share to m other players. Note that
if n = m, then n ∗ (m− 1) is even, so it will not create any problems as |CSi| = m− 1.

The player piconstructs the communication setas follows.

• If n(m− 1) is even:

– If (m− 1) is even.

1. Add players {p(i+j) mod n; j = 1, 2 . . . m−1
2
}

2. Add players {p(i−j) mod n; j = 1, 2 . . . m−1
2
}

– If (m− 1) is odd.

1. Add players {p(i+j) mod n; j = 1, 2 . . . m−2
2
}

2. Add players {p(i+j) mod n; j = 1, 2 . . . m−2
2
}

3. Add player p(i+ n
2 ) mod n

• If n(m− 1) is odd:

1. Add players {p(i+j) mod n; j = 1, 2 . . . m
2
}

2. Add players {p(i−j) mod n; j = 1, 2 . . . m
2
}

Table 1: Player pi’s Communication Set Construction protocol

2.3 Calculating α0 and β0

2.3.1 Calculating α0

The derivation of the value of α0 is the same as that in the paper by Kol and Naor [3].

α0 = αC
0 = miniεC{ Ui−U−i

U+
i −U−i

}

2.3.2 Calculating β0

As with α0, β0 can be taken from Kol and Naor’s paper [3].

β0 = βC
0 = minCεC{miniεC{ Ui−Uguess,C

i

U+
i −Uguess,C

i

}}
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2.4 The Dealer’s Share Assignment Algorithm

Each player is assigned a share which decides what values he will broadcast. The size of the share is
determined by the number of cells. Out of n shares, n− 1 of them are of size L = l + d− 1 and one is of
size l− 1, where l and d are chosen using G(β). Each share consists of several cells which, in turn, consist
of stages, a short mask, a long mask, a masked secret, a boolean indicator and authentication information.

Dealer(y,β)

G(β) is a geometric distribution with parameter β. Let F = GF (p) for p ≥ |Y | and the element of the secret
is identified with an element of F.

• Create the list of possible secrets

– Choose l, d from G(β). The two possible list lengths are l − 1 and
L = l + d − 1,i.e. the number of possible secrets. The number of the definitive iteration is
denoted by l.

– Fill the list L with random elements such that the lth element is y.

• Create Shares
The dealer creates n vectors, among which one list length is l − 1 and the rest of the list lengths are
L = l+d−1. Each cell k ≥ 1, consists of the data which is used in the kth iteration of reconstruction
protocol. Every cell consists of the following elements:

– Short Mask: We use this short mask set when n(m − 1) is even. The mask represents an
m-out-of-n secret share. The share consists of randomly chosen elements of F. This mask is
used to unveil the secret in the next iteration, when n(m− 1) is even.

– Long Mask: We use this long mask set when n(m − 1) is odd. The mask represents an
(m + 1)-out-of-n secret share. The share consists of randomly chosen elements of F. This mask
is used to unveil the secret in the next iteration, when n(m− 1) is odd.

– Masked Secret: It is an element from F. The mask (either short mask or long mask) is
obtained by taking the interpolation of the previous round mask shares. The actual secret is
obtained by summing the masked secret and the previous iteration’s mask and the actual secret
can be obtained (if the current iteration is definitive).

– Indicator: It is an m-out-of-n secret share, after combining the secret we can get the actual
boolean value which indicates whether the next iteration is definitive or not.

– Authentication information: It contains a ”tag” and ”hash functions”. The tag is used to
prove the authenticity of the previous elements in the cell. With this tag other players can
verify the correctness of the message you sent. Hash functions are used to verify the correctness
of the messages sent by the other players, with probability at least 1 − β.

The cell ’0’, added at the beginning of the vector, constitutes an m-out-of-n Shamir share of mask,
and (m + 1)-out-of-n Shamir share of mask, which are going to be used in the first iteration, and
authentication information for it and to check other players’ values.

• Assign shares
Randomly assign shares to all the players.

Table 2: The dealer’s share assignment algorithm

2.5 Secret Reconstruction Protocol

We present the player pi’s reconstruction protocol. This is similar to Kol and Naor’s protocol [4]. The
changes we made in the algorithm are emphasised in bold. Every player pisends his share to the set CSi

that he constructed during the Communication Set Construction protocol.

2.6 Theorem

Theorem 1 Let 2 ≤ m ≤ n, Y be a finite set of secrets, and dealer be an algorithm assigning m-out-of-n
shares. Assume that α < α0 and β < β0. The protocol is a rational m-out-of-n secret sharing scheme for
Y with running time O(1/β2) and number of iterations O(1/β).
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Playeri(share)
Set secret revealed ← FALSE and Cheater detected← FALSE
Repeat until secret revealed←TRUE or Cheater detected←TRUE

• If your share ended:

– Keep silent.

– If someone has sent share, secret revealed ← TRUE.

• If your share did not end: use the corresponding cell of share to check whether this is the last
stage of this iteration.

– If this is not the last stage:

∗ Keep silent.

∗ If someone has sent share, secret revealed ← TRUE.

– If this is the last stage:

∗ Send the the masked secret to CSi, tag, and shares of the random mask (short mask
if n ∗ (m− 1) is even, and long mask if n ∗ (m− 1) is odd) and indicator, as they appear
in the corresponding cell of share.

∗ If more than a single player did not send the share, or if some of the messages do not
pass the authenticity check (the tags and hash functions do not match), cheater detected
← TRUE.

∗ If Out of CSi, all but a single player send share, or if the reconstructed indicator
shows that the iteration is definitive, secret revealed ← TRUE. Let the Masked secret
be MS

• Leave the game: Quit and output the current possible secret (obtained by subtracting the mask
reconstructed using the shares received in the previous iteration from the Masked secret, MS,
constructed after definitive iteration).

Table 3: Player pi’s reconstruction protocol

Proof: If everyone follows the protocol, then with probability 1 they will get the secret. Since the prob-
ability that a given iteration is the definitive iteration is β, the number of iterations required to get the
secret is O(1/β).
Given that each iteration consists of several stages, also determined by the parameter β, we can easily see
that the running time of the protocol is O(1/β2).
In order for this protocol to be a rational m-out-of-n secret sharing scheme, players should have an in-
centive to not deviate. This incentive can be created via a function of their utilities. The idea is that
the players should gain more from following the protocol than from deviating. The same holds true for
coalitions. The utility of a player i when following the protocol is Ui. Let U+

i be the utility of a player
who successfully guesses the secret. Let Uguess,C

i be the utility of a player i belonging to coalition C when
the coalition does not participate in the protocol and instead tries to guess the secret.
We can provide an incentive for players to follow the protocol so long as the following inequality holds
true for every player i, belonging to a coalition C.

β.U+
i + (1− β).Uguess,C

i < Ui

β.(U+
i − Uguess,C

i ) < Ui − Uguess,C
i

β <
Ui−Uguess,C

i

U+
i −Uguess,C

i

As we can see, it suffices to require β < β0 for β0 = minCεC{miniεC{ Ui−Uguess,C
i

U+
i −Uguess,C

i

}} where Cm−1 is the set

of coalitions of size at most m− 1.

3 Conclusion and Open Problems

We have successfully presented the protocol for rational secret sharing with simultaneous point to point
channels, without using cryptographic primitives. It shows a way to come up with the solutions to the
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rational multiparty computation problems, which are information theoretically secure. Our protocol is
collusion free, except when the short player colludes with any long player. An interesting question that
arises is if it is possible to find a solution to rational secret sharing using point to point non-simultaneous
channels.
Acknowledgement: The authors would like to acknowledge William Kumar Moses, Jr., for his insightful
remarks on theorem.
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