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Abstract

Following Gennaro, Gentry, and Parno (Cryptology ePrint Archive 2009/547), we use fully
homomorphic encryption to design improved schemes for delegating computation. In such
schemes, a delegator outsources the computation of a function F on many, dynamically cho-
sen inputs xi to a worker in such a way that it is infeasible for the worker to make the delegator
accept a result other than F (xi). The “online stage” of the Gennaro et al. scheme is very effi-
cient: the parties exchange two messages, the delegator runs in time poly(log T ), and the worker
runs in time poly(T ), where T is the time complexity of F . However, the “offline stage” (which
depends on the function F but not the inputs to be delegated) is inefficient: the delegator runs
in time poly(T ) and generates a public key of length poly(T ) that needs to be accessed by the
worker during the online stage.

Our first construction eliminates the large public key from the Gennaro et al. scheme. The
delegator still invests poly(T ) time in the offline stage, but does not need to communicate or
publish anything. Our second construction reduces the work of the delegator in the offline
stage to poly(log T ) at the price of a 4-message (offline) interaction with a poly(T )-time worker
(which need not be the same as the workers used in the online stage). Finally, we describe a
“pipelined” implementation of the second construction that avoids the need to re-run the offline
construction after errors are detected (assuming errors are not too frequent).

Keywords: verifiable computation, outsourcing computation, worst-case/average-case reductions,
computationally sound proofs, universal argument systems

∗School of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge, MA 02138.
http://seas.harvard.edu/~kmchung. kmchung@fas.harvard.edu. Supported by US-Israel BSF grant 2006060 and
NSF grant CNS-0831289.
†Microsoft Research, One Memorial Drive, Cambridge MA, 02142. http://research.microsoft.com/en-us/um/

people/yael/. yael@microsoft.com.
‡School of Engineering and Applied Sciences & Center for Research on Computation and Society, Harvard Uni-

versity, 33 Oxford Street, Cambridge, MA 02138. http://seas.harvard.edu/~salil. salil@seas.harvard.edu.
Supported by NSF grant CNS-0831289.

http://seas.harvard.edu/~kmchung
http://research.microsoft.com/en-us/um/people/yael/
http://research.microsoft.com/en-us/um/people/yael/
http://seas.harvard.edu/~salil


1 Introduction

The problem of delegating computation considers a scenario where one party, the delegator, wishes
to delegate the computation of a function f to another party, the worker. The challenge is that the
delegator may not trust the worker, and thus it is desirable to have the worker “prove” that the
computation was done correctly. Obviously, we want verifying this proof to be easier than doing
the computation.

This concept of “outsourcing” computation is relevant in several real world scenarios, as illus-
trated by the following three examples (taken from [GGP09, GKR08]):

1. Volunteer computing. The idea of volunteer computing is for a server to split large com-
putations into small units, send these units to volunteers for processing, and reassemble
the results (via a much easier computation). The Berkeley Open Infrastructure for Net-
work Computing (BOINC) [And03, And04] is an example of such a platform. Some famous
projects using the BOINC platform are SETI@home, and the Great Internet Mersenne Prime
Search [Mer07]. We refer the reader to [GKR08] for more details on these projects.

2. Cloud computing. In the setting of cloud computing, businesses buy computing time from
a service, rather than purchasing their own computing resources.

3. Weak mobile devices. Mobile devices, such as cell-phones, security access-cards, music
players, and sensors, are typically very weak computationally, and thus need the help of
remote computers to run costly computations.

A fundamental question about such settings is: what if the workers are dishonest? For example,
in the volunteer computing setting, an adversarial volunteer may introduce errors into the com-
putation. In the cloud computing example, the cloud (i.e., the business providing the computing
services) may have a strong financial incentive to return incorrect answers, if such answers require
less work and are unlikely to be detected by the client. Moreover, in some cases, the applications
outsourced to the cloud may be so critical that the delegator wishes to rule out accidental errors
during the computation. As for weak mobile devices, the communication channel between the
device and the remote computer may be corrupted by an adversary.

In practice, many projects cope with such fraud by redundancy; the same work unit is sent
to several workers and the results are compared for consistency. However, this requires the use of
several workers and provides little defense against colluding workers.

Instead, we would like the worker to prove to the delegator that the computation was performed
correctly. Of course, it is essential that the time it takes to verify the proof is significantly smaller
than the time needed to actually run the computation. At the same time, the running time of the
worker carrying out the proof should also be reasonable — comparable to the time it takes to do
the computation. For example, when delegating the computation of a function f that takes time T
and has inputs and outputs of length n, we would like the delegator to run in time poly(n, log T )
and the worker to run in time poly(T ).

1.1 Previous Work

The large body of work on probabilistic proof systems, starting with [Bab85, GMR89], is very
relevant to secure delegation. Indeed, after computing the delegated function f on input x and
sending the result y, the worker can use various types of proof systems to convince the delegator
of the statement “f(x) = y”.

1



Interactive Proofs. The IP=PSPACE Theorem [LFKN92, Sha92] yields interactive proofs for
any function f computable in polynomial space, with a verifier (delegator) running in polynomial
time. However, the complexity of the prover (worker) is also only bounded by polynomial space
(and hence exponential time). This theorem was refined and scaled down in [FL93] to give verifier
complexity poly(n, s) and prover complexity 2poly(s) for functions f computable in time T and
space s, on inputs of length n. Note that the prover complexity is still superpolynomial in T ,
even for computations that run in the smallest possible space, namely s = O(log T ). However, the
prover complexity was recently improved by Goldwasser et al. [GKR08] to poly(T, 2s), which is
poly(T ) when s = O(log T ). More generally, Goldwasser et al. [GKR08] give interactive proofs for
computations of small depth d (i.e. parallel time). For these, they achieve prover complexity poly(T )
and verifier complexity poly(n, d, log T ). (This implies the result for space-bounded computation
because an algorithm that runs in time T and space s can be converted into one that runs in time
poly(T, 2s) and depth d = O(s2).) However, if we do not restrict to computations of small space or
depth, then we cannot use interactive proofs. Indeed, any language that has an interactive proof
with verifier running time (and hence communication) TV can be decided in space poly(n, TV ).

PCPs and MIPs. The MIP=NEXP Theorem [BFL91] and its scaled-down version by Babai et
al. [BFLS91] yield multiprover interactive proofs and probabilistically checkable proofs for time T
computations with a prover running in time poly(T ) and a verifier running in time poly(n, log T ),
exactly as we want. However, using these for delegation require specialized communication models
— either 2 noncommunicating provers, or a mechanism for the prover to give the verifier ran-
dom access to a long PCP (of length poly(T )) that cannot be changed by the prover during the
verification.

Interactive Arguments. Instead of changing the communication model, interactive arguments
[BCC88] (aka computationally sound proofs [Mic94]) relax the soundness condition to be computa-
tional. That is, instead of requiring that no prover strategy whatsoever can convince the verifier of
a false statement, we instead require that no computationally feasible prover strategy can convince
the verifier of a false statement. In this model, Kilian [Kil92] and Micali [Mic94] gave constant-
round protocols with prover complexity poly(T, k) and verifier complexity poly(n, k, log T ) (where
k is the security parameter), assuming the existence of collision-resistant functions. Under a subex-
ponential hardness assumption, the security parameter can be taken as small as polylog(T ); this
also holds for the schemes described below.

Towards Non-interactive Solutions. In this work, we are interested in getting closer to non-
interactive solutions (with computational soundness). Ideally, the worker/prover should be able to
send a proof to the delegator/verifier in the same message that it sends the result of the computation.

This possibility of efficient non-interactive arguments was suggested by Micali [Mic94], who
showed that non-interactive arguments with prover complexity poly(T, k) and verifier complexity
poly(n, k, log T ) are possible in the Random Oracle Model (the oracle is used to eliminate inter-
action a la Fiat–Shamir [FS86]). Heuristically, one might hope that by instantiating the random
oracle with an appropriate family of hash functions, we could obtain a non-interactive solution
to delegating computation: in an offline stage, the verifier/delegator (or a trusted third party)
chooses and publishes a random hash function from the family, and in the online stage, the proofs
are completely non-interactive (just one message from the prover to the verifier). However, the
Random Oracle Heuristic is known to be unsound in general [CGH04] and even in the context of
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Fiat–Shamir [Bar01, GK03]. Thus, despite extensive effort, the existence of efficient non-interactive
arguments remains a significant open problem in complexity and cryptography.

There has been some recent progress in reducing the amount of interaction needed. Using a
transformation of Kalai and Raz [KR09], Goldwasser, Kalai, and Rothblum [GKR08] showed how
to convert their interactive proofs for small-depth computations into non-interactive arguments in
a “public key” model (assuming the existence of single-server private-information retrieval (PIR)
schemes): in an offline stage, the verifier/delegator generates a public/secret key pair, publishes
the public key and stores the secret key. Then, in the online stage, the prover/worker retrieves the
public key and can construct a proof to send along with the result of the computation. However,
like the interactive proofs of [GKR08], this solution applies only to small-depth computations, as
the verifier’s complexity grows linearly with the depth.

Very recently, Gennaro, Gentry, and Parno [GGP09] showed how to delegate arbitrary computa-
tions by increasing the verifier’s offline complexity and public-key size, and using a fully homomor-
phic encryption (FHE) scheme (as recently constructed by Gentry [Gen09]). In their construction,
the delegator invests poly(T, k) work in the offline stage to construct a public key of size poly(T, k)
and a secret key of size poly(k) (for delegating a function f that is computable in time T ). In
the online stage, the delegator’s running time is reduced to poly(n, k, log T ) for an input of length
n, and the worker’s complexity is poly(T, k). Thus, the delegator’s large investment in the offline
stage can be amortized over many executions of the online stage to delegate the computation of f
on many inputs. Their online stage is not completely non-interactive, but consists of two messages.
However, in many applications, two messages will be necessary anyway, as the delegator may need
to communicate the input x to the worker.

We remark that in the schemes where the delegator has a secret key (namely [GKR08] and
[GGP09], as well as two of our constructions below), soundness is only guaranteed as long as
the adversarial worker does not learn that the delegator has rejected a proof. Thus, either the
accept/reject decision should be kept secret, or the (possibly expensive) offline stage should be
re-run after rejection.

1.2 Our Results

In this work, we provide the following protocols that improve over the work of Gennaro et al. [GGP09]:

• Our first protocol eliminates the large public key of the Gennaro et al. scheme. That is, the
delegator still performs poly(T, k) work in the offline stage, but the result of this computation
is just a secret key of length poly(n, k, log T ); there is no need for any interaction with the
worker(s) in advance of the online stage (not even to transmit a public key).

• Our second protocol reduces the work of the delegator in the offline stage to poly(n, k, log T ),
at the price of a constant-round interaction with a worker that runs in time poly(T, k). With
this protocol, re-running the offline stage after a rejected proof becomes more reasonable, and
thus there is no reason to keep the accept/reject decisions secret.

• Finally, we describe a “pipelined” implementation of our second protocol that avoids the
latency of re-running the offline stage, while maintaining soundness even if the accept/reject
decisions are revealed. This solution requires both parties to maintain state, and completeness
holds provided that faults do not occur too often. Thus, this solution is most suitable for
cases where the delegator is using a single worker many times and there are random faults
(in communication or computation) that may cause the delegator to reject occasionally.
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Like [GGP09], all of our protocols require the use of a fully homomorphic encryption scheme, and
have a 2-message online stage.

A full comparison of our model and results with previous work is given in Table 1.

2 Outline of Our Constructions

Inspired by the recent work of Gennaro, Gentry, and Parno [GGP09] on secure delegation, our
constructions rely on the use of a fully homomorphic encryption scheme.

Fully Homomorphic Encryption. A public-key encryption scheme E = (KeyGen,Enc,Dec) is
said to be fully homomorphic if it is associated with an additional polynomial-time algorithm Eval,
that takes as input a public key pk, a ciphertext x̂ = Enc(x) and a circuit C, and outputs, a new
ciphertext c = Evalpk(x̂, C), such that Decsk(c) = C(x), where sk is the secret key corresponding
to the public key pk. It is required that the size of c = Evalpk(Encpk(x), C) depends polynomially
on the security parameter and the length of C(x), but is otherwise independent of the size of the
circuit C. We also require that Eval is deterministic, and the the scheme has perfect correctness
(i.e. it always holds that Decsk(Encpk(x)) = x and that Decsk(Evalpk(Encpk(x), C)) = C(x)). For
security, we simply require that E is semantically secure.

In a recent breakthrough, Gentry [Gen09] proposed a fully homomorphic encryption scheme
based on ideal lattices. In his basic scheme, the complexity of the algorithms (KeyGen,Enc,Dec)
depends linearly on the depth of the circuit C, where d is an upper bound on the depth of the
circuit C that are allowed as inputs to Eval. However, under the additional assumption that his
scheme is circular secure (i.e., it remains secure even given an encryption of the secret key), the
complexity of these algorithms are independent of C. Furthermore, Gentry’s construction satisfies
the perfect correctness and the Eval of his scheme can be made deterministic. We refer the reader
to [Gen09] for details.

An interesting aspect of the [GGP09] construction is how they use the secrecy property of fully
homomorphic encryption schemes into order to achieve a soundness property in their delegation
scheme; this phenomenon also recurs several times in our work.

Our Constructions. We now informally explain our delegation schemes, by starting with a
simple scheme Del1 that achieves rather weak properties, and strengthen it through a series of
steps leading to our main delegation schemes Del4 and Del5. We make use of a fully homomorphic
encryption scheme in several steps, to achieve different properties. Thus, the final schemes Del4
and Del5, use several layers of fully homomorphic encryption.

Formal descriptions and analyses for all of the protocols can be found in Sections 5–9.

• Protocol Del1 = 〈D1,W1〉: one-time delegation scheme for a random input with
soundness error 1/2. This simple scheme handles the case of delegating the evaluation of
a function F on a single and random input x, that will be drawn from a known, efficiently
samplable distribution D and given to the delegator in the online stage.

In the offline stage, the delegator D1 samples a random input r ← D and precomputes F (r).
In the online stage, D1 receives x (which is drawn from the same distribution as r), sends
both x and r to W1 in a random order, and asks W1 to compute both F (x) and F (r). Upon
receiving the answers from W1, the delegator D1 checks the correctness of the returned value
F (r); if it is correct then he accepts the returned F (x), and otherwise he rejects. Thus, a
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malicious worker W∗ can convince D1 with a wrong answer iff W∗ can guess which input
is the delegator’s real input. Since x and r are independent and identically distributed, no
malicious prover can guess the real input x and cheat successfully with probability greater
than 1/2.

• Protocol Del2 = 〈D2,W2〉: one-time delegation scheme for an arbitrary input with
soundness error 1/2. In the delegation scheme Del1 = 〈D1,W1〉 above, it was essential that
the input x is hidden from the worker in the online stage to guarantee the soundness. If the
worker knew x, he could discriminate between r and x, and cheat by answering correctly on
r and incorrectly on x. We eliminate this strong limitation by using a fully-homomorphic
encryption scheme to “computationally randomize” the input: Instead of giving the worker x

in the clear, the delegator will encrypt the input x to obtain x̂
def
= Encpk(x). Then the delegator

will ask the worker to compute the deterministic homomorphic evaluation F̂ (x̂)
def
= Evalpk(x̂, F )

of F on the encrypted value x̂, from which he can decrypt to obtain the desired answer F (x).1

Notice that even if x is fixed, the distribution of x̂ = Encpk(x) is computationally indistin-
guishable from the distribution of Encpk(0̄), which is efficiently samplable and independent
of x. Thus, in the offline stage, the delegator can precompute an encryption r̂ = Encpk(0̄)

together with F̂ (r̂) = Evalpk(r̂, F ), and use the pair (r̂, F̂ (r̂)) to verify the worker’s answer in
the online stage as before. This computational randomization technique extends the random-
input delegation scheme Del1 to a (standard) delegation scheme Del2 with one-time soundness
error 1/2.

We note that the computational randomization technique also yields a worst-case/average-
case connection for functions in deterministic time classes: given a function F : {0, 1}n →
{0, 1} that is computable in deterministic time T (n) but is worst-case hard for probabilistic
algorithms running in some time S(n) < T (n), we obtain a function F̂ : {0, 1}poly(n) →
{0, 1}poly(n) that is computable in deterministic time poly(T (n)) but is average-case hard for
probabilistic algorithms running in time S(n)/poly(n), under a fixed poly(n)-time samplable
distribution (namely, random encryptions of 0).2 This is all under the assumption that we
have a fully homomorphic encryption scheme that is secure against algorithms running in
time poly(T (n)), on security parameter k = n.

• Protocol Del3 = 〈D3,W3〉: one-time delegation scheme for an arbitrary input with
negligible soundness error. Here we employ a standard amplification technique to improve
the soundness. The delegator D3 asks the worker to compute F̂ on multiple independent
rerandomized inputs x̂i = Encpk(x) together with multiple r̂i’s (sent in a random order), as
opposed to a single x̂ and a single r̂. Upon receiving the worker’s answers, the delegator
D checks whether (i) the returned value for r̂i is equal to F̂ (r̂i) for every r̂i, and (ii) the
decryption of the returned values for x̂i are consistent, and accepts the consistent value if
the worker’s answers pass these two tests. Observe that for a malicious worker to cheat, he
needs to simultaneously cheat on all the x̂i’s while provide correct answers on all the r̂i’s.
Since the x̂i’s and the r̂i’s are computationally indistinguishable, the probability of cheating
is exponentially small in the number of repetitions (i.e., the number of x̂i).

1We note that in order to compute Evalpk(x̂, F ), the Turing machine F needs to be turned into a circuit. This
can be done via a standard simulation of Turing machines by circuits.

2For the worst-case/average-case connection, the public key should be included as an input to F̂ and the samplable
distribution on inputs should include choosing a random public key.
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• Protocol Del4 = 〈D4,W4〉: many-time delegation scheme for arbitrary inputs with
negligible soundness error. Now we give an overview of our first reusable delegation
scheme Del4. However, let us first take a closer look at why the previous delegation scheme
Del3 is not reusable. The reason Del3 is not reusable is that it is essential for the worker to not
know the r̂i’s: Once a malicious worker W∗ learns the values of the r̂i’s, he can cheat easily by
answering correctly only on those r̂i’s. In other words, each precomputed pair (r̂i, F̂ (r̂i)) can
be used only once. Hence, Del3 is only one-time secure. Phrased in a more abstract way, the
soundness of the protocol Del3 relies on the assumption that the secret key of the delegator
D3 (i.e., the pairs (r̂i, F̂ (r̂i))’s) remains secret, and yet this key is revealed after delegating a
single input.

To make the protocol reusable, we use an idea of Gennaro, Gentry, and Parno [GGP09], and
run the protocol under a fully homomorphic encryption scheme using the delegator’s keys.
This hides the delegator’s message (which contains the information of the delegator’s secret
state) from the worker, while still allowing the worker to do the computation for the delegator.
Therefore, information about the delegator’s secret state is not leaked, and thus the delegator
can reuse the secret state to delegate multiple inputs.

In Sections 8, we abstract [GGP09], and present a generic transformation that converts any
delegation scheme with one-time soundness to a reusable delegation scheme. Applying this
transformation to the previous delegation scheme Del3, we obtain our first main delegation
scheme Del4. Note that the messages exchanged in the delegation scheme Del4 are doubly
encrypted: Each x̂i = Encpk(x) and r̂i = Encpk(0̄) are encrypted using one public key pk.
Then, the entire message (pk, {x̂i}, {r̂i}) is encrypted using another (independent) public key.

• Protocol Del5 = 〈D5,W5〉: many-time delegation scheme for arbitrary inputs with
negligible soundness error, with efficient (but interactive) offline stage. We note
that in all the delegation schemes above, the delegator needs to run heavy computations in the
offline stage. For example, in the offline stage of Del4, the delegator needs to compute pairs
of the form (r̂i, F̂ (r̂i)), where each r̂i = Encpk(0̄), and therefore runs in time comparable to
the runtime of F . The idea is to make the offline stage efficient by delegating its computation
as well. However, since we do not know how to do non-interactive delegation (this is the
problem we started with!), this will come at the price of making the offline stage interactive.
In particular, we use universal arguments, developed by [Mic94, Kil92, BG02], and which
yield a 4-message delegation scheme. However, we cannot apply universal arguments directly,
as they allow the worker to learn the result of the computation, which in our case is supposed
to be the secret key of the delegator. To solve this problem, we use yet another layer of fully
homomorphic encryption. If g is the function that takes D4’s coin tosses r in the offline stage
to its secret state g(r), then D5 sends r̂ = Encpk(r) to the worker, uses the universal argument
to delegate the computation of ĝ = Evalpk(·, g) on r̂, and decrypts the result. (The efficiency
of the universal argument relies on the fact that the result of the offline stage is short, and
thus this technique cannot be applied directly to the [GGP09] protocol.)

We note that the worker that participates in the offline stage does not need to be the same
worker that participates in the online stage (and these workers do not even need to know of
the existence of the other).

• Pipelined Implementation of Del5: maintaining soundness after errors. As men-
tioned in the introduction, the soundness of our main schemes Del4 and Del5 is only guaranteed
as long as the adversarial worker does not learn that the delegator has rejected a proof, as

7



this may leak information about the delegator’s secret key. Hence, the delegator needs to
re-run the offline stage after rejection.

Our “pipelined” scheme avoids this issue by having the delegator keep c secret keys (for a
constant c) and continually refresh them during the online stage. Recall that Del5 has an
efficient but 4-message offline stage where the delegator delegates the computation of his
secret key to a worker. The idea is that, in each execution of the 2-message online stage, the
delegator and the worker shall simultaneously run 2c copies of offline stages in the background.
These are run in a pipelined fashion so that with each online stage, c copies of the offline stage
are finished and can be used to refresh secret keys that are expired. We consider a secret key
to be expired when it has been used in an online stage of Del5 in which the delegator has
rejected. Thus, the delegator will always have a fresh secret key available provided that for
every c online stages in which there is an error (i.e. rejection), there are at least 2 consecutive
errorless stages. We note that this implementation requires the worker and delegator to
maintain state, and thus is most useful for settings in which the delegator is interacting with
a single worker for many executions and wishes to avoid disruption from benign faults. (If
the worker were truly cheating, then it seems prudent to halt the interaction and restart with
a different worker...)

3 The Model

In this section, we formally define a model that captures the delegating computation scenario we
are interested in.

Definition 1 (Delegation Scheme) A delegation scheme is an interactive protocol Del = 〈D,W〉
between a delegator D and a worker W with the following structure:

1. The scheme Del consists of two stages: an offline/preprocessing stage and an online stage.
The offline stage is executed once before the online stage, whereas the online stage can be
executed many times.

2. In the offline stage, both the delegator D and the worker W receive a security parameter k
and a function F : {0, 1}n → {0, 1}m, represented by a Turing machine M and a time bound
T for M . At the end of the interaction, the delegator D decides whether to accept or reject.
If D accepts, then D outputs a secret key σD and a public key σW. We will denote this by
(σD, σW) = 〈D,W〉(F, 1k). We will use the notation M , n, m, and T as the Turing machine
and parameters associated with F throughout the paper, and we will often omit the security
parameter from the notation.

3. In the online stage, both parties receive F , 1k, and an input x ∈ {0, 1}n, and execute a one
round communication protocol. Namely, D sends q = D(F, x, σD) to W, and then W sends
a = W(F, x, σW, q) to D. Then the delegator D either accepts or rejects. If D accepts, then D
also generates a private output y = D(F, x, σD, q, a) ∈ {0, 1}m, which is supposed to be F (x).
For simplicity, we will omit the function F and the security parameter from the input of the
online stage.

We also define the following properties of delegation schemes.

• A delegation scheme Del has an efficient delegator in the online (resp., offline) stage if the
computational complexity of D in the online (resp., offline) stage is poly(k, n,m, |M |, log T ).
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• A delegation scheme Del has an efficient worker if the computational complexity of W is
poly(k, |M |, T ).

• A delegation scheme Del has a non-interactive offline stage if D and W do not interact
at all during the offline stage, and only D does some computation. Note that if Del has a
non-interactive offline stage, then we can assume w.l.o.g. that D always accepts in the offline
stage.

For a delegation scheme to be meaningful, it needs to have completeness and soundness prop-
erties. Informally, the completeness property says that the delegator D always learns the desired
value F (x), assuming both parties follow the prescribed protocol. The soundness property says
that the delegator D mistakenly accepts a wrong value y 6= F (x) from a malicious worker with only
negligible probability.

Definition 2 (Completeness) A delegation scheme Del = 〈D,W〉 has perfect completeness if
for all parameters n,m, T, k, for every function F and every x ∈ {0, 1}n, the following holds with
probability 1: When D and W run the offline stage protocol with input F , and then run the online
stage protocol with input x, the delegator D accepts in both the offline and the online stage, and
outputs y = F (x) in the online stage.

In order to define the soundness, we introduce the following security game.

Definition 3 (Security Game for Delegation Schemes) Let Del = 〈D,W〉 be a delegation
scheme and k ∈ N be the security parameter. The security game G(k) for Del is the following
game played by a worker strategy W∗.

• The game starts with the offline stage of Del, and is followed by many rounds of the online
stage.

• W∗(1k) first chooses the delegated function F and then D and W∗ interact in the offline stage
of Del with input F .

• At the beginning of each round of the online stage (indexed by `), W∗ can either terminate
the game or choose an input x` ∈ {0, 1}n. If the game is not terminated, D and W∗ interact
in the online stage of Del on input x`.

• Whenever the delegator D rejects, the game terminates.

W∗ succeeds in the game G(k) if there exists a round ` of the online stage such that D accepts and
outputs a wrong value y` 6= F (x`), where x` is the delegated input chosen by W∗.

Definition 4 (Soundness) Let ε : N→ [0, 1] be an efficiently computable functions. A delegation
scheme Del = 〈D,W〉 has soundness error ε if for every PPT worker strategy W∗, who chooses a
polynomial-time delegated function, and for every k,

Pr[W∗ succeeds in G(k)] ≤ ε(k),

where G(k) is the corresponding security game for Del. We say that Del has negligible soundness
error if Del has soundness error 1/kc for every constant c.
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Note that the above definition does not guarantee soundness for delegating functions of complexity
superpolynomial in k. However, we have soundness for functions of complexity that is an arbitrarily
large polynomial in k, whereas an efficient delegator would run in time that is a fixed polynomial
in k; so the delegation is still quite useful. This quantitative relationship stems from the standard
asymptotic formulation of security as being with respect to polynomial-time adversaries. If we use
a fully homomorphic encryption scheme that is secure against adversaries running time subexpo-
nential in k, then we would obtain soundness for delegating functions of subexponential complexity
(while the delegator still runs in fixed polynomial time).

In terms of concrete security, the security parameter k should be chosen by the delegator so
that breaking the encryption scheme requires an infeasible amount R of resources for the worker,
and thus the delegator should only be delegating functions that require significantly less resources
than R.

Note that in the security game G, the delegator D rejects and terminates the game, whenever
he catches the worker cheating. Thus, the soundness is only guaranteed until the worker cheats.
In other words, once the worker cheats, the delegator D can catch this mistake with overwhelming
probability, but the delegation scheme no longer guarantees soundness for the next delegated inputs.
Therefore, D should restart the delegation scheme from the offline stage to ensure the soundness of
future delegated inputs.

The model of [GGP09] takes a different approach. Rather than halting the game after a rejec-
tion, they instead consider a game where the delegator’s accept/reject decisions are kept secret from
the worker. Our protocols also satisfy their definition; indeed, the two definitions are equivalent
for schemes where the delegator has no state (other than the secret key).

4 Our Results

Now we can formally state the properties of our two main delegation schemes, Del4 and Del5
sketched in Section 2. We begin with Del4, which has non-interactive offline stage in which the
delegator does a lot of work, but does not need to produce any public key.

Theorem 5 Assume that there exists a fully homomorphic encryption scheme. Then there is a
secure delegation scheme Del = 〈D,W〉 with the following properties, for delegating the computation
of a function F : {0, 1}n → {0, 1}m computable by a Turing machine M that runs in time T ≥
max{n,m}, on security parameter k:

• Perfect completeness and negligible soundness error.

• Non-interactive offline stage, with D running in time poly(T, |M |, k) and generating a secret
key of length poly(n,m, k), but not creating any public key.

• 2-message online stage, with D running in time poly(n,m, k) and W running in time poly(T, |M |, k).
That is, both D and W are efficient in the online stage.

The next theorem describes Del5, which makes the delegator efficient in the offline stage, at the
price of some interaction with a worker.

Theorem 6 Assume that there exists a fully homomorphic encryption scheme. Then there is a
secure delegation scheme Del = 〈D,W〉 with the following properties, for delegating the computation
of a function F : {0, 1}n → {0, 1}m computable by a Turing machine M that runs in time T ≥
max{n,m}, on security parameter k:
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• Perfect completeness and negligible soundness error.

• 4-message offline stage, with D running in time poly(n,m, k, |M |, log T ) and W running in
time poly(T, |M |, k).

• Secret key of length poly(n,m, k) for D, and no public key.

• 2-message online stage, with D running in time poly(n,m, k) and W running in time poly(T, |M |, k).

Thus, D and W are efficient in both stages.

As mentioned in Section 2, Del5 can be implemented in a pipelined fashion so as to avoid the
need to re-run the offline stage after rejection (provided that errors do not occur too often).

5 Del1 = 〈D1,W1〉: One-time, Random-Input Delegation Scheme

In this section, we present our first warmup delegation scheme Del1 = 〈D1,W1〉 for the following
one-time and random-input scenario.
Scenario: Suppose the delegator D knows that at some point in the future, he will receive a
random input x ∈ {0, 1}n drawn from a certain (samplable) distribution D and he will want to
learn the value F (x) quickly. Thus, D decides to delegate the computation of F (x) to an untrusted
worker W (who does not know the random x), and D wants to be able to verify the answer from
W. In this scenario, D is willing to spend a lot of effort during an offline stage (say, is willing to
run in time proportional to T , which is the time it takes to run F ), but during the online stage,
once he receives x, D wants to be able to delegate the computation of F (x) and verify the answer
very efficiently.

As outlined in Section 2, the idea is very simple: In the offline stage, the delegator D1 samples
a random input r ← D and precomputes F (r). In the online stage, D1 sends both x and r to W1

in a random order, and asks W1 to compute both F (x) and F (r). Upon receiving the answers
from W1, the delegator D1 checks the correctness of the returned value F (r); if it is correct then he
accepts the returned F (x), and otherwise he reject. Thus, a malicious worker W∗ can convince D1

with a wrong answer iff W∗ can guess which input is the delegator’s real input. Since x and r are
independent and identically distributed, no malicious prover can guess the real input x and cheat
successfully with probability greater than 1/2.

To formalize the above argument, we modify the definition of a delegation scheme, and modify
the soundness definition, as follows.

Definition 7 (Random-input Delegation Scheme) A random-input delegation scheme
Del = 〈D,W〉 is a delegation scheme with the following modifications:

1. In the offline stage, in addition to F , both the delegator D and the worker W receive a sampling
circuit D : {0, 1}` → {0, 1}n.

2. In the online stage, only the delegator receives x← D.

A formal description of our random-input delegation scheme Del1 = 〈D1,W1〉 can be found in
Figure 1.

Clearly, Del1 has perfect completeness. In order to analyze its soundness, we need to define the
notion of one-time soundness.
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• Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M , and a time bound T .

• Offline Stage. Both D1 and W1 receive input (F,D)

1. D1 samples a random input r ← D, computes w = F (r), and stores the pair (r, w) as his
secret state.

• Online Stage. D1 receives x ∈ {0, 1}n (where x is expected to distribute according to D), and
W1 does not receive any input.

1. D1 sets r0 = r and r1 = x. It then samples a random bit b ∈R {0, 1}, and sends (z0, z1) =
(rb, r1−b) to W1.

2. W1 computes and sends (y0, y1) = (F (z0), F (z1)) to D1.

3. D1 accepts and outputs the answer y1−b iff w = yb.

Figure 1: Delegation Scheme Del1 = 〈D1,W1〉

Definition 8 (One-time Soundness for Random-input Delegation Schemes) Let Del = 〈D,W〉
be a random-input delegation scheme, and k ∈ N be a security parameter. The one-time security
game G(k) for Del is the following game played by a worker strategy W∗.

• W∗(1k) first chooses an input (F,D), and then D and W∗ interact in the offline stage of Del
on input (F,D).

• An input x← D is generated, and then D and W∗ interact in the online stage, where only D
gets the input x.

W∗ succeeds in the game G(k) if D accepts in both the offline and online stages and outputs
a wrong value y 6= F (x). We say that Del has one-time soundness error ε if for every
PPT worker strategy W∗ who chooses a polynomial-time delegated function, and for every k,
Pr[W∗ succeeds in G(k)] ≤ ε(k).

Lemma 9 The random-input delegation scheme Del1 has one-time soundness error 1/2.

Proof. In fact, we will show that Del1 has one-time soundness error 1/2 even against computa-
tionally unbounded cheating workers.

Fix an arbitrary security parameter k ∈ N and an arbitrary (cheating) worker W∗, and consider
the corresponding security game G(k). By definition, in the security game G(k), the worker W∗(1k)
first generates (F,D), and then receives from D1 the pair (z0, z1), which is a random ordering of
the real input x and a random input r. Then W∗ sends (y0, y1) to D1. At the end of the game, W∗

succeeding implies that W∗ cheats only on x. Namely, W∗ sends a correct answer F (r) to r, and
an incorrect answer to x. Note that x and r are independent and identically distributed, and W∗

does not know the bit b. Therefore,

Pr[ W∗ cheats only on x ] = Pr[ W∗ cheats only on r ],
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which implies that both the probabilities are at most 1/2. Thus,

Pr[W∗ succeeds in G(k)] = Pr[ W∗ cheats only on x ] ≤ 1/2.

6 Del2 = 〈D2,W2〉: One-time, Arbitrary-input Delegation Scheme

Recall that in the random-input delegation scheme Del1 = 〈D1,W1〉, it was essential that the input
x is hidden from the worker in the online stage to guarantee the soundness. If the worker knew x,
he could discriminate between r and x, and cheat by answering correctly on r and incorrectly on x.

As outlined in Section 2, we eliminate this strong limitation by using a fully-homomorphic
encryption scheme to “computationally randomize” the input: Instead of sending x in the clear,

the delegator will encrypt the input x to obtain x̂
def
= Encpk(x). Then the delegator will ask the

worker to compute the deterministic homomorphic evaluation F̂ (x̂)
def
= Evalpk(x̂, F ) of F on the

encrypted value x̂, from which he can decrypt to obtain the desired answer F (x).3 Notice that
even if x is fixed, the distribution of x̂ = Encpk(x) is computationally indistinguishable from the
distribution of Encpk(0̄), which is efficiently samplable and independent of x. Thus, the delegator

can precompute an encryption r̂ = Encpk(0̄) together with F̂ (r̂) = Evalpk(r̂, F ), and use the pair

(r̂, F̂ (r̂)) to verify the worker’s answer as before.
The above computational randomization technique extends the random-input delegation scheme

Del1 to a (standard) delegation scheme Del2 with one-time soundness error 1/2. We formally
describe the delegation scheme Del2 = 〈D2,W2〉 in Figure 2 below.

• Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M , and a time bound T .

• Offline Stage. Both D2 and W2 receive as input a function F .

1. D2 generates a pair of keys (pk, sk) ← KeyGen(1k), computes an encryption r̂ = Encpk(0̄)

and the (deterministic) homomorphic evaluation ŵ = F̂ (r̂) = Evalpk(r̂, F ), and stores the
tuple (pk, sk, r̂, ŵ) as his secret key.

• Online Stage. Both D2 and W2 receive an input x ∈ {0, 1}n.

1. D2 computes an encryption x̂ = Encpk(x), sets r̂0 = r̂ and r̂1 = x̂, samples a random bit
b ∈R {0, 1}, and sends the public key pk and (ẑ0, ẑ1) = (r̂b, r̂1−b) to W2.

2. W2 computes ŷi = F̂ (ẑi) = Evalpk(ẑi, F ) for i ∈ {0, 1}, and sends (ŷ0, ŷ1) = (F̂ (ẑ0), F̂ (ẑ1))
to D2.

3. D2 accepts and outputs the answer Decsk(ŷ1−b) iff ŵ = ŷb.

Figure 2: Delegation Scheme Del2 = 〈D2,W2〉
3We note that in order to compute Evalpk(x̂, F ), the Turing machine F needs to be turned into a circuit. This

can be done via a standard simulation of Turing machines by circuits.
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It is straightforward to check that if the fully homomorphic encryption scheme has perfect
correctness, then Del2 has the perfect completeness. As in the previous section, before arguing that
the scheme has sound error 1/2, we first give the definition of one-time soundness.

Definition 10 (One-time Soundness for Delegation Schemes) Let Del = 〈D,W〉 be a dele-
gation scheme and k ∈ N be a security parameter. The one-time security game G(k) for Del is the
same as security game for Del defined in Definition 3 excepts that it only allows one round in the on-
line stage. We say that Del has one-time soundness error ε if for every PPT worker strategy W∗

who chooses a polynomial-time delegated function, and for every k, Pr[W∗ succeeds in G(k)] ≤ ε(k).

The following lemma analyzes the one-time soundness of Del2.

Lemma 11 Assume that the fully homomorphic encryption is semantically secure. Then the del-
egation scheme Del2 has one-time soundness error 1/2 + ngl(k).

Proof. Fix any security parameter k ∈ N and any efficient (cheating) worker W∗. By definition
of the security game G(k), the worker W∗(1k) first generates F , and then receives from D2 a public
key pk and (ẑ0, ẑ1), which are encryptions Encpk(0̄) and Encpk(x) in a random order. Then W∗

replies with answers (ŷ0, ŷ1) to D2. At the end of the game, if W∗ succeeded in cheating, it must
have sent a correct answer F̂ (r̂) to r̂, and an incorrect answer to x̂ — by which we mean a value
other than F̂ (x̂) (even if it still decrypts to F (x)). We say that W∗ cheats on x̂ (resp., r̂) if W∗

sends an incorrect answer to x̂ (resp., r̂).
We next upper bound the probability that W∗ cheats only on x̂. By the security of a fully homo-

morphic encryption scheme, (pk,Encpk(0̄),Encpk(x)) and (pk,Encpk(0̄),Encpk(0̄)) are computation-
ally indistinguishable to W∗. Hence, let us consider a modified game G′(k) where D2 generates x̂ =
Encpk(0̄) instead of x̂ = Encpk(x). Since in G(k) it holds that (pk, r̂, x̂) ≡ (pk,Encpk(0̄),Encpk(x)),
and in G′(k) it holds that (pk, r̂, x̂) ≡ (pk,Encpk(0̄),Encpk(0̄)), by the indistinguishability, we have

Pr[ W∗ cheats only on x̂ in G(k)] ≤ Pr[ W∗ cheats only on x̂ in G′(k) ] + ngl(k).

Remark. In order to obtain the above inequality, we relied on the fact that given pk, x̂, r̂, one
can check whether W∗ cheats only on x̂ by applying F̂ . Hence, if W∗ behaves differently in G(k)
and in G′(k), then we can use W∗ to break the underlying fully homomorphic encryption scheme in
time polynomial in the running time of W∗ and the running time of the delegated function chosen
by W∗; this is why we restrict W∗ to choose polynomial-time delegated functions in Definition 4.

Now, in the modified game G′(k), both x̂ and r̂ are independent and identically distributed,
and W∗ does not know the bit b. Therefore,

Pr[ W∗ cheats only on x̂ in G′(k)] = Pr[ W∗ cheats only on r̂ in G′(k)],

and thus both the probabilities are at most 1/2. Therefore, we have

Pr[W∗ succeeds in G(k)]

≤ Pr[ W∗ cheats only on x̂ in G(k)]

≤ Pr[ W∗ cheats only on x̂ in G′(k)] + ngl(k)

≤ 1/2 + ngl(k),

which proves the lemma.
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7 Del3 = 〈D3,W3〉: One-time, Arbitrary-input Delegation Scheme
with Negligible Soundness

In this section, we exploit the above computational randomization technique to improve the sound-
ness. As outlined in Section 2, the idea is simple: The delegator D asks the worker to compute
F̂ on multiple independent rerandomized inputs x̂i = Encpk(x) together with multiple r̂i’s (sent in
a random order), as opposed to a single x̂ and a single r̂. Upon receiving the worker’s answers,
the delegator D checks whether (i) the returned value for r̂i is equal to F̂ (r̂i) for every r̂i, and (ii)
the decryption of the returned values for x̂i are consistent, and accepts the consistent value if the
worker’s answers pass these two tests. Observe that for a malicious worker to cheat, he needs to
simultaneously cheat on all the x̂i’s while providing correct answers on all the r̂i’s. The formal
description of the delegation scheme Del3 = 〈D3,W3〉 appears in Figure 3.

• Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M and a time bound T , and an additional parameter t.

• Offline Stage. Both D3 and W3 receive as input a function F

1. D3 generates a pair of keys (pk, sk) ← KeyGen(1k), computes t independent encryptions
r̂i = Encpk(0̄) and the homomorphic evaluations ŵi = F̂ (r̂i) = Evalpk(r̂i, F ) for i ∈ [t], and
stores pk, sk, and the pairs (r̂1, ŵ1), . . . , (r̂t, ŵt) as his secret key.

• Online Stage. Both D3 and W3 receive an input x ∈ {0, 1}n.

1. D3 computes t independent encryptions r̂i+t = Encpk(x) for i ∈ [t], samples a random
permutation π ∈R S2t, and sends the public key pk and (ẑπ(1), . . . , ẑπ(2t)) = (r̂1, . . . , r̂2t) to
W3.

2. W3 computes ŷi = F̂ (ẑi) = Evalpk(ẑi, F ) for i ∈ [2t], and sends to D3 the tuple

(ŷ1, . . . , ŷ2t) = (F̂ (ẑ1), . . . , F̂ (ẑ2t)).

3. D3 checks two things. First, D3 checks if ŵi = ŷπ(i) for all i ∈ [t]. Second, D3 decrypts
ŷπ(i+t) for i ∈ [t], and checks if the decrypted values are the same. D3 accepts and outputs
the consistent decrypted value if the returned values pass the two tests.

Figure 3: Delegation Scheme Del3 = 〈D3,W3〉

In the following lemma, we argue that since the x̂i’s and the r̂i’s are computationally indis-
tinguishable, the probability of cheating is exponentially small in t (which is the number of x̂i’s).
Thus, by setting t = ω(log k), the protocol 〈D3,W3〉 achieves negligible soundness error.

Lemma 12 Assume that the fully homomorphic encryption is semantically secure. Then the del-

egation scheme Del3 has one-time soundness error
(
2t
t

)−1
+ ngl(k).

Proof. Fix any security parameter k ∈ N and an efficient (cheating) worker W∗. By definition,
in the security game G(k), the worker W∗(1k) first generates F , and then receives from D3 a public
key pk and (ẑ1, . . . , ẑ2t), which are t independent copies (r̂1, . . . , r̂t) of Encpk(0̄) and t independent
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copies (r̂t+1, . . . , r̂2t) of Encpk(x) in a random order. Then W∗ sends answers (ŷ1, . . . , ŷ2t) to D3.

At the end of the game, if W∗ succeeded in cheating, then it must have sent correct answers F̂ (r̂i)
to r̂i for all i ∈ [t], and incorrect answers to the remaining r̂i for i ∈ {t+ 1, . . . , 2t} (in a consistent
way). Again, we say that W∗ cheats on x̂i (resp., r̂i) if W∗ sends an answer different than F̂ (x̂i)
(resp., F̂ (r̂i)).

Our goal is to upper bound the probability that W∗ answers correctly on (r̂1, . . . , r̂t) and incor-
rectly on (r̂t+1, . . . , r̂2t). Note that in game G(k), D3 generates

(pk, r̂1, . . . , r̂2t) ≡ (pk,Encpk(0̄)t,Encpk(x)t),

which is computationally indistinguishable from (pk,Encpk(0̄)2t), where the notation Encpk(0̄)t

denotes t independent copies of Encpk(0̄). Hence, let us consider a modified game G′(k) where D3

generates r̂i = Encpk(0̄) instead of r̂i = Encpk(x) for i ∈ {t+1, . . . , 2t}. In the modified game G′(k),
(pk, r̂1, . . . , r̂2t) ≡ (pk,Encpk(0̄)2t), and thus, by the indistinguishability, we have

Pr[ W∗ correct on (r̂1, . . . , r̂t) and incorrect on (r̂t+1, . . . , r̂2t) in G(k)]

≤ Pr[ W∗ correct on (r̂1, . . . , r̂t) and incorrect on (r̂t+1, . . . , r̂2t) in G′(k)] + ngl(k)

As in the proof of Lemma 11, to obtain the above equation, we relied on the fact that given
(pk, r̂1, . . . , r̂2t) one can check in time poly(T, t, k), whether W∗ cheats only on (r̂t+1, . . . , r̂2t). Hence,
if W∗ behaves differently in G(k) and in G′(k), then we can use W∗ to break the semantic security
of the underlying fully homomorphic encryption scheme in time poly(T, t, k) (thus we need our
encryption scheme to be semantic secure against adversaries running in time poly(T, t, k)).

We proceed to upper bound the right-hand side probability. In the modified game G′(k), for
every i ∈ [2t]:

• Let Xi be an indicator random variable that indicates whether W∗ returns an incorrect answer
to r̂i. Namely, Xi = 1 iff ŷπ(i) 6= F̂ (r̂i).

• Let Yi be an indicator random variable that indicates whether W∗ returns an incorrect answer
to ẑi. Namely, Yi = 1 iff ŷi 6= F̂ (ẑi).

Note that by definition, Xi = Yπ(i). Moreover, for every i ∈ [2t], the random variables r̂1, . . . , r̂2t
are independent and identically distributed in G′(k), and W∗ does not know the permutation π.
Therefore,

Pr[ W∗ answers correctly on (r̂1, . . . , r̂t) and incorrectly on (r̂t+1, . . . , r̂2t) in G′(k)]

= Pr [(X1 = · · · = Xt = 0) ∧ (Xt+1 = · · · = X2t = 1)]

= Pr
[
(Yπ(1) = · · · = Yπ(t) = 0) ∧ (Yπ(t+1) = · · · = Yπ(2t) = 1)

]
≤ Pr

[
(Yπ(1) = · · · = Yπ(t) = 0) ∧ (Yπ(t+1) = · · · = Yπ(2t) = 1)

∣∣∣∣∣
2t∑
i=1

Yi = t

]

=
1(
2t
t

) ,
where the last equality holds because (Y1, . . . , Y2t) is independent of π (i.e., the random variables
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r̂1, . . . , r̂2t are i.i.d. and W ∗ receives them in a random order). Therefore, we have

Pr[W∗ succeeds in G(k)]

≤ Pr[ W∗ correct on (r̂1, . . . , r̂t) and incorrect on (r̂t+1, . . . , r̂2t) in G(k)]

≤ Pr[ W∗ correct on (r̂1, . . . , r̂t) and incorrect on (r̂t+1, . . . , r̂2t) in G′(k)] + ngl(k)

≤ 1(
2t
t

) + ngl(k),

which proves the lemma.

8 The First Main Delegation Schemes Del4

All the delegation schemes presented in Section 5 – 7 had only one-time soundness. Namely, the
delegator could delegate the computation of only one input x. In this section, we present reusable
delegation schemes, which satisfy the (standard) soundness property of Definition 4. To this end,
we abstract the idea of Gennaro, Gentry, and Parno [GGP09] and present a generic transformation
that converts any delegation scheme with one-time soundness to a reusable delegation scheme (i.e.,
one which satisfies the soundness property of Definition 4). Applying the transformation to the
previous delegation scheme Del3, we obtain our first main delegation scheme Del4.

For intuition, let us take a closer look at why the previous delegation scheme Del3 = 〈D3,W3〉
is not reusable. Recall that in that scheme it is essential for the worker to not know the r̂i’s: Once
a malicious worker W∗ learns the values of the r̂i’s, he can easily cheat by answering correctly only
on those r̂i’s. Therefore, each precomputed pair (r̂i, Ĉ(r̂i)) can be used only once. Phrased more
abstractly, the security of the protocol 〈D3,W3〉 relies on assumption that the secret key of the
delegator D3 (i.e., the pairs (r̂i, Ĉ(r̂i))), remains secret. However, in that protocol, this secret key
is revealed after delegating one input.

To make the protocol reusable, we use the idea of [GGP09], of running the protocol under a
fully-homomorphic encryption scheme. Namely, our transformation takes any delegation scheme
Del = 〈D,W〉 which has only one-time soundness, and converts it into a new delegation scheme
D̃el = 〈D̃, W̃〉 with (standard) soundness, as follows: The delegator D̃, instead of sending the
message of D in the clear (which may reveal information about his secret key), will send a public
key pk corresponding to a fully homomorphic encryption scheme, and will send the message of D
encrypted under the public key pk. The worker W̃ will then use the homomorphic property of the
encryption scheme, to compute an encrypted reply of W. This enables the delegator D̃ to hide
its message (which contains the information about the delegator’s secret key) from the worker W̃,
while still allowing the worker to do the computation for the delegator. A formal description of the
transformation can be found in Figure 4.

We next analyze the properties of the resulting (reusable) delegation scheme D̃el.

• If the one-time delegation scheme Del has a non-interactive off-line stage, then so does D̃el,
since the offline stage remains unchanged.

• If the one-time delegation scheme Del has an efficient worker W, then the resulting (reusable)
delegation scheme D̃el also has an efficient worker W̃, since W̃ does the same computation
as W, but in an encrypted manner.
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The transformation. Let Del = 〈D,W〉 be a one-time delegation scheme. We define a transformed
delegation scheme D̃el = 〈D̃, W̃〉 from Del as follows.

• Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M and a time bound T .

• Offline Stage. D̃el has exactly the same offline stage as Del.

(Recall that in this stage both players receive a function F .)

• Online Stage. both D̃ and W̃ receive input x ∈ {0, 1}n.

1. D̃ generates a fresh pair of keys (pk, sk)← KeyGen(1k) of a fully-homomorphic encryption
scheme, computes D’s message q = D(F, x, σD) and its encryption q̂ = Encpk(q), and sends
pk and q̂ to W̃.

2. W̃ homomorphically computes an encrypted version of W’s message â =
Eval(q̂,W(F, x, σW, ·)), and sends â to D̃.

3. D̃ decrypts â to obtain a = W(F, x, σW, q), and computes his decision and his output
according to D.

Figure 4: Transforming one-time delegation scheme Del into a reusable delegation scheme D̃el

• The fact that the complexity of the algorithms (KeyGen,Enc,Dec) are independent of the
runtime of F , implies that if the one-time delegation scheme Del has an efficient delegator D
then the delegator D̃ in the resulting (reusable) delegation scheme D̃el is also efficient.

• The completeness of the fully homomorphic encryption scheme implies that if the one-time
delegation scheme Del is complete then the resulting (reusable) delegation scheme D̃el is also
complete.

Thus, it remains to analyze the soundness of the resulting delegation scheme D̃el. In the following, to
prevent confusion between the secret key σD of the delegator and the secret key sk of a homomorphic
encryption scheme, we refer to the secret key σD of the delegator as his secret state. Intuitively,
if information about the delegator’s secret state is not leaked, the delegator can reuse the secret
state to delegate the computation on multiple inputs. However, note that not only the delegator’s
message, but also the delegator’s decision bit can leak information about the delegator’s secret
state, since the delegator’s decision depends on his secret state. Hence, in the security game (see
Definition 3), the delegator terminates the scheme once he rejects to ensure the delegator’s secret
state is not leaked. (As discussed in Section 3, an alternative option is to assume that the worker
does not learn the decision of the delegator, and our scheme is also sound in this model.)

Lemma 13 Assume that the fully homomorphic encryption is semantically secure. Let Del =
〈D,W〉 be a delegation scheme with negligible one-time soundness error, and let D̃el = 〈D̃, W̃〉 be
the delegation scheme obtained by applying to Del the transformation described in Figure 4. Then
D̃el also has negligible soundness error.

Proof. Let G and G̃ be the security games corresponding to Del and D̃el, respectively. We refer to
G as the one-time game, and to G̃ as the repeated game. Suppose for the sake of contradiction that
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there exists a PPT worker strategy W̃∗ (for the repeated game G̃) and a non-negligible function ε̃
such that

Pr[ W̃∗ succeeds in G̃(k) ] ≥ ε̃(k). (1)

We construct a PPT worker strategy W∗ (for the one-time game G), and prove that there exists a
non-negligible function ε such that ,

Pr[ W∗ succeeds in G(k) ] ≥ ε(k).

Recall that W̃∗ cheats in the repeated game G̃, whereas W∗ needs to cheat in the one-time game
G. Let L be an upper bound on the number of times that W̃∗ repeats the online stage in G̃(k)
(e.g., we can take L to be an upper bound on the runtime of W̃∗). Loosely speaking, our worker
W∗ plays the one-time game G(k) by simulating the worker W̃∗ playing the repeated game G̃(k),
while embedding his single online stage in a random round `∗ ∈ [L] of the online stage of G̃(k) and
simulating the messages of D̃ in the other rounds by encryptions of the all-zeroes message (which
are indistinguishable from actual messages of D̃). Formally, we define the PPT worker W∗, as
follows.

• In the offline stage of G(k), the worker W∗ plays exactly as W̃∗ does. In other words, W∗

simulates W̃∗ in the offline stage.

Recall that in our transformation (from one-time delegation to reusable delegation) the offline
stage remains unchanged.

• W∗ chooses a random `∗ ∈R [L], and simulates the interaction of W̃∗ and D̃ in the first
`∗ − 1 rounds of the online stage of G̃(k). In the simulation, the query of D̃ is replaced by
(pk`,Encpk`(0̄)) for every round ` ∈ [`∗−1], for a fresh, randomly chosen public key pk`. Also,

in the simulation, D̃ never rejects.

• If W̃∗ terminates the game before the `∗th round, then W∗ gives up; otherwise, in the online
stage of G(k), the worker W∗ plays the following strategy.

– W∗ simulates W̃∗ to generate a delegated input x`∗ in the game G̃(k), and uses x`∗ as
his delegated input in the game G(k).

– Upon receiving a query q from D, the worker W∗ generates a fresh pair of keys (pk`∗ , sk`∗)←
KeyGen(1k), computes q̂ = Encpk`∗ (q), and sends (pk`∗ , q̂) to W̃∗.

– W∗ simulates W̃∗ to generate â, decrypts â to obtain a, and sends a to D.

Note that W∗ plays G(k) by simulating the game G̃(k) played by W̃∗, with the following modi-
fications:

1. The simulated D̃ sends (pk`,Encpk`(0̄)) instead of (pk`,Encpk`(q`)), up until a random `∗th
round of the online stage.

2. The simulated D̃ never rejects before the `∗th round of the online stage.

3. The simulated game G̃(k) ends after the `∗th round of the online stage.
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For notational convenience, let us refer to this modified (simulated) game by G̃′(k), and to the
modified (simulated) delegator by D̃′. It follows that

Pr[ W∗ succeeds in G(k)] = Pr[ W̃∗ convinces D̃′ to accept a wrong answer in `∗th round in G̃′(k)],

where `∗ is chosen uniformly at random. In the remainder of the proof we focus on proving that

Pr[ W̃∗ convinces D̃′ to accept a wrong answer in the `∗th round in G̃′(k)] ≥ ε̃(k)/L− ngl(k).

Note that according to our contradiction assumption in Equation (1), it suffice to prove that

Pr[ W̃∗ convinces D̃′ to accept a wrong answer in the `∗th round of G̃′(k)] (2)

≥ Pr[ W̃∗ convinces D̃ to accept a wrong answer in the `∗th round of G̃(k)]− ngl(k),

We will actually prove the equation above, while assuming that the delegator D̃ in the game G̃(k)
never rejects before the `∗th round of the online stage. Note that this is obviously enough, since
this only increases the success probability of W̃∗ in convincing D̃ to accept a wrong answer in the
`∗th round of G̃(k). To prove Equation (2) above, we rely on the security of the fully homomorphic
encryption scheme and use a standard hybrid argument, as we sketch below.

For every j = 0, 1, . . . , L, we define the hybrid game Hj(k), where Hj(k) is the same as G̃(k)
for the first j rounds of the online stage, and the same as G̃′(k) for the remaining rounds. Suppose
for the sake of contradiction that Equation (2) does not hold. Then a standard hybrid argument
implies that there exists j ∈ [L] and a polynomial p such that for infinitely many k’s∣∣∣Pr[ W̃∗ succeeds in cheating in the `∗th round of Hj(k) ]−

Pr[ W̃∗ succeeds in cheating in the `∗th round of Hj−1(k) ]
∣∣∣ ≥ 1

p(k)

Assume without loss of generality that

Pr[ W̃∗ succeeds in cheating in the `∗th round of Hj(k)] ≥ (3)

Pr[ W̃∗ succeeds in cheating in the `∗th round of Hj−1(k) ] +
1

p(k)

We next show that this implies the existence of a PPT adversary A that breaks the semantic
security of the fully homomorphic encryption scheme.

Note that Equation (3) above implies that for every k ∈ N there exists a secret state σ(k)
(generated by the delegator during the offline stage) such that the equation above holds when the
delegator in the hybrid games Hj−1(k) and Hj(k) use σ(k) as their secret state. Now, consider
the (non-uniform) PPT adversary A that for every security parameter k, has the secret state σ(k)
hardwired into it, and distinguishes between (pk,Encpk(0̄)) and (pk,Encpk(q)) with non-negligible
probability, where q ← D(Fj , xj , σ), where Fj is the function chosen by the worker W̃∗ in the j
round of the online stage, and xj is the input chosen by W̃∗ in the j round of the online stage. We
note that the distribution of q is efficiently sampleable, and thus the existence of such an adversary
A indeed breaks the semantic security of the underlying fully homomorphic encryption scheme.

The adversary A uses its input pair to simulate either the hybrid game Hj−1(k) or the hybrid
game Hj(k), by running internally both the worker W̃∗ and the delegator in each of these hybrid
games, and by placing its input as the delegator’s message in the j’th round of the online stage. It
then continues the simulation, and checks whether the worker W̃∗ indeed cheated in the `∗th round.
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If W̃∗ cheated in the `∗th round, then A guesses that he received an encryption of q. Otherwise, A
guesses that he received and encryption of the zero vector. Equation (3) immediately implies that
the adversary A distinguishes between his two input distributions with non-negligible probability.

Applying the above transformation to the previous delegation scheme Del3, we obtain our main
delegation scheme Del4. (A formal description of the resulting scheme Del4 appears in Figure 5.)

• Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M and a time bound T , and an additional parameter t.

• Offline Stage. Both D4 and W4 receive as input a function F

1. D4 generates a pair of keys (pk, sk) ← KeyGen(1k), computes t independent encryptions
r̂i = Encpk(0̄) and the homomorphic evaluations ŵi = F̂ (r̂i) = Evalpk(r̂i, F ) for i ∈ [t], and
stores pk, sk, and the pairs (r̂1, ŵ1), . . . , (r̂t, ŵt) as his secret key.

• Online Stage. Both D4 and W4 receive an input x ∈ {0, 1}n.

1. D4 computes t independent encryptions r̂i+t = Encpk(x) for i ∈ [t], samples a random

permutation π ∈R S2t. Let q denote (pk, ẑπ(1), . . . , ẑπ(2t))
def
= (pk, r̂1, . . . , r̂2t). D4 then

generates a fresh pair of keys (pk′, sk′) ← KeyGen(1k), and sends the public key pk′ and
q̂ = Encpk′(q) = Encpk′(pk, ẑ1, . . . , ẑ2t) to W4.

2. W4 homomorphically computes an encryption of ŷi = F̂ (ẑi) = Evalpk(ẑi, F ) for i ∈ [2t], and
sends to D4 the tuple

Encpk′(ŷ1, . . . , ŷ2t) = Encpk′(F̂ (ẑ1), . . . , F̂ (ẑ2t)).

3. D4 decrypts the worker’s message to obtain (ŷ1, . . . , ŷ2t), and then checks two things. First,
D4 checks if ŵi = ŷπ(i) for all i ∈ [t]. Second, D4 decrypts ŷπ(i+t) for i ∈ [t], and checks if
the decrypted values are the same. D4 accepts and outputs the consistent decrypted value
if the returned values pass the two tests.

Figure 5: Main Delegation Scheme Del4 = 〈D4,W4〉

We summarize the properties of Del4 in the following theorem.

Theorem 14 (Theorem 5 restated) Assume that the fully homomorphic encryption scheme is
semantically secure. Then the delegation scheme Del4 = 〈D4,W4〉 has the following properties, for
delegating the computation of a function F : {0, 1}n → {0, 1}m computable by a Turing machine M
that runs in time T ≥ max{n,m}, on security parameter k:

• Perfect completeness and negligible soundness error.

• Non-interactive offline stage, with D4 running in time poly(T, |M |, k) and generating a secret
key of length poly(n,m, k), but not creating any public key.

• 2-message online stage, with D4 running in time poly(n,m, k) and W4 running in time
poly(T, |M |, k). That is, both D4 and W4 are efficient in the online stage.
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9 The Second Main Delegation Scheme Del5

We note that in all the delegation schemes presented in Section 5 – 8, the delegator needs to run
heavy computations in the offline stage. For example, in the offline stage of Del4, the delegator
needs to compute pairs of the form (r̂i, F̂ (r̂i)), where each r̂i ← Encpk(0̄), and therefore runs in
time comparable to the runtime of F .

In this section, we show how to make the offline stage efficient by delegating its computation
as well. However, since we do not know how to do non-interactive delegation (this is the problem
we started with!), this will come at the price of making the offline stage interactive. In particular,
we will use universal arguments, a notion developed by [Mic94, Kil92, BG02], and which yields
a 4-message delegation scheme. However, we cannot apply universal arguments directly, as they
allow the worker to learn the result of the computation, which in our case is supposed to be the
secret state of the delegator. To solve this problem, we use yet another layer of fully homomorphic
encryption, and use the universal argument to delegate an encrypted form of the computation.

In Section 9.1, we describe the notion of universal arguments. Then, in Section 9.2, we describe
how to use universal arguments (together with a fully homomorphic encryption) to modify any
delegation scheme Del with a non-interactive offline stage into a new delegation scheme D̃el, where
in D̃el the delegator is efficient even in the offline stage, but the offline stage is interactive (consists
of 4 messages). By applying this transformation to the delegation scheme Del4 we get our new
delegation scheme Del5, in which the delegator is efficient in both the offline and the online stages,
but the offline stage is interactive and consists of 4 messages.

9.1 Universal Arguments

Consider the language

Luni , {(M,x, y, t) : M is a Turing machine that on input x outputs y after at most t steps}

Definition 15 (Universal Arguments [BG02]) A universal argument system is a pair of
interactive Turing machines, denoted by (P, V ), that satisfy the following properties.

• Efficient verification. There exists a polynomial p such that for any z = (M,x, y, t) the
total runtime of V , on common input z, is at most p(|z|). In particular, all the messages
exchanged in the protocol have length smaller than p(|z|).

• Completeness via a relatively-efficient prover. For every (M,x, y, t) ∈ Luni,

Pr[(P, V )(M,x, y, t) = 1] = 1.

Furthermore, there exists a polynomial p such that for every (M,x, y, t) ∈ Luni, the total
runtime of P on input z = (M,x, y, t) is at most p(|M |, t).

• Computational soundness. For every polynomial-size circuit family P ∗ = {P ∗n}n∈N there
exists a negligible function µ such that for every (M,x, y, t) ∈ {0, 1}n \ Luni,

Pr[(P ∗n , V )(M,x, y, t) = 1] ≤ µ(n).
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Remark. We note that Barak and Goldreich [BG02] consider a more general language L, where
they allow the Turing machine M to be non-deterministic. Moreover, they require an additional
proof-of-knowledge type property. In this work, we are only interested in deterministic Turing
machines, and only focus on the properties that we need.

Theorem 16 ([Kil92, Mic94, BG02]) Assuming the existence of collision-resistant hash func-
tions, there exists a 4-message (2-round) universal argument system.

We remark that the existence of fully homomorphic encryption schemes implies the existence
of collision-resistant hash functions [IKO05].

9.2 Our New Delegation Scheme Del5

We now show how to use a universal argument (P, V ), together with a fully homomorphic encryption
scheme E = (KeyGen,Enc,Dec), to convert any delegation scheme Del = (D,W) with a non-
interactive offline stage into a delegation scheme D̃el = (D̃, W̃), such that the online stage remains
unchanged, but the offline stage of D̃el is now interactive (consists of 4 messages) and the delegator
D̃ is efficient in the offline stage.

Instead of having the delegator carry out its computations on its own in the offline stage, it
will use a worker to do it for him. However, as previously noted, there is a subtle issue here:
the result of the computation done by the delegator in the offline stage should remain secret for
soundness to hold. Therefore, we cannot simply delegate this computation. Instead, will delegate
this computation in a secret manner; namely, we will do a universal argument over encrypted data,
as follows.

Suppose without loss of generality, that in the offline stage the delegator D chooses some ran-
domness r ∈ {0, 1}` for ` = poly(k)4 computes a function g(r), where g may depend on both the
delegated function F and the security parameter k. The delegator D can delegate this computation,
in a secret manner, by giving the worker an encryption of r (rather than r in the clear); i.e., giving
the worker a pair (pk,Encpk(r)), and delegating the computation of the function Evalpk(Encpk(r), g)
to the worker, by running a universal argument protocol. Then all the delegator needs to do is to
decrypt the message he gets from the worker. A formal description of this transformation can be
found in Figure 6.

We next analyze the properties of the resulting (efficient) delegation scheme D̃el.

• The completeness condition of the universal argument and the completeness condition of the
fully homomorphic encryption scheme imply that if the original delegation is complete then
the resulting delegation scheme D̃el is also complete.

• The soundness condition of the universal argument and the semantic security of the fully
homomorphic encryption scheme imply that if the original delegation is sound (i.e., has neg-
ligible soundness error) then the resulting delegation scheme D̃el is also sound.

• The “completeness via a relatively-efficient prover” condition of the universal argument and
the efficiency of the Eval algorithm of the fully homomorphic encryption scheme imply that
the complexity of new worker W̃ in the offline stage is polynomially related to the complexity
of the original delegator D in the offline stage (and k and |F |).

4The randomness of D can always be reduced to poly(k) by use of a pseudorandom generator if needed.
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The transformation. Let Del = 〈D,W〉 be a delegation scheme with a non-interactive offline stage.
We define a transformed delegation scheme D̃el = 〈D̃, W̃〉 from Del as follows.

• Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M and a time bound T .

• Offline Stage. Both D̃ and W̃ receive as input the functin F .

Suppose that in the delegation scheme Del, the delegator D chooses a random r ← {0, 1}` (where

` = poly(k)) and computes σD = D(1k, F ; r). We denote by g(·) def
= D(1k, F ; ·). The offline stage

of D̃el proceeds as follows.

1. The delegator D̃ chooses a random r ← {0, 1}`; chooses a random key pair (pk, sk) ←
KeyGen(1k); computes r̂ = Encpk(r); and sends the pair (pk, r̂) to the worker W̃.

2. The worker W̃ computes c = Evalpk(r̂, g) and sends c to the delegator.

3. Then the worker W̃ and the delegator D̃ engage in a universal argument, where the worker
proves to the delegator that indeed c = Evalpk(r̂, g).

4. If the delegator D̃ accepts the universal argument, then he decrypts the ciphertext c and
outputs σD ← Decsk(c).

• Online Stage. The online stage of D̃el is identical to the online stage of Del.

Figure 6: Transforming delegation scheme Del with non-interactive but inefficient offline stage into
D̃el with an efficient but interactive offline stage

• The “efficient verification” condition of the universal argument and the fact that complexity
of the algorithms (KeyGen,Enc,Dec) are poly(k), imply that the complexity of the new
delegator D̃ in the offline stage is polynomially related to k, |F |, and the logarithm of the
running time of the original delegator D in the offline stage.

• The fact that the online stage remains unchanged implies that the efficiency of the delegator
D̃ and the worker W̃ in the online stage remains unchanged.

• The offline stage defined in Figure 6 consists of six messages – two messages from Step 1 and
2, and four messages from the universal argument. However, the number of messages can be
reduced to four by parallelizing the two messages in Step 1 and 2, and the first two messages
of the universal argument, if we use the universal argument system of Barak and Goldreich
[BG02]. The reason is that the verifier’s first message in [BG02] is independent of the input
to the universal argument so that the verifier’s first message can be sent before the input is
determined (by messages in Step 1 and 2). Therefore, we have a 4-message (2-round) offline
stage.

Thus, applying the transformation above to the delegation scheme Del4, and relying on Theo-
rem 14, we get the following theorem.

Theorem 17 (Theorem 6 restated) Assume that there exists a fully homomorphic encryption
scheme. Then there is a secure delegation scheme Del = 〈D,W〉 with the following properties, for
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delegating the computation of a function F : {0, 1}n → {0, 1}m computable by a Turing machine M
that runs in time T ≥ max{n,m}, on security parameter k:

• Del has perfect completeness and negligible soundness error.

• The offline stage consists of 4 messages, with D running in time poly(n,m, k, |M |, log T ) and
W running in time poly(T, |M |, k).

• The offline stage produces a secret key of length poly(n,m, k) for D, and no public key.

• In the (2-message) online stage, D runs in time poly(n,m, k) and W runs in time poly(T, |M |, k).

Thus, D and W are efficient in both stages.
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