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Abstract. FOX is a family of symmetric block ciphers from MediaCrypt AG that helps
to secure digital media, communications, and storage. The high-level structure of FOX is
the so-called (extended) Lai-Massey scheme. This paper presents a detailed fault analysis of
the block cipher FOX64, the 64-bit version of FOX, based on a differential property of two-
round Lai-Massey scheme in a fault model. Previous fault attack on FOX64 shows that each
round-key (resp. whole round-keys) could be recovered through 11.45 (resp. 183.20) faults
on average. Our proposed fault attack, however, can deduce any round-key (except the first
one) through 4.25 faults on average (4 in the best case), and retrieve the whole round-keys
through 43.31 faults on average (38 in the best case). This implies that the number of needed
faults in the fault attack on FOX64 can be significantly reduced. Furthermore, the technique
introduced in this paper can be extended to other series of the block cipher family FOX.
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1 Introduction

1.1 Backgrounds

Last fifteen years saw the rapid development of physical attacks on symmetric key primitives based
on the implementation of cryptographic algorithms in hardware or software environments. Among
these attacks, side-channel attacks and fault attacks attract more attention. Side-channel attack is
a kind of passive attack that could be used to retrieve the secrete key by exploiting some leakage of
the internal states during the encryption process. These leakage includes timing information, power
consumptions, electro-magnetic radiations, etc., and can be collected by some special equipments.
After obtaining these leakage, adversary can efficiently deduce the key through some statistical
tools or algebraic methods.

Fault attack is another kind of powerful physical attacks, where the adversary could actively
disturb part of the internal states, or cause calculation errors during the execution of a crypto-
graphic algorithm, that is to say some faults or errors could be injected in the device running
the encryption procedure. The idea of using faults to break the cryptosystems was introduced by
Boneh, DeMillo, and Lipton [11] from Bellcore in 1996. They showed that in the RSA-CRT setting,
a single computational mistake can completely break the scheme by factoring the public key. Later,
such a method was extended by Biham and Shamir [8] to DES-like secret key cryptosystems and



referred as Differential Fault Analysis. Since then, fault attacks have been used to attack many
other symmetric key ciphers.

1.2 Related Works

Fault Attacks on Block Ciphers. Besides DES-like (Feistel structure) block ciphers, many
research concentrate applying fault attacks against other kinds of block ciphers that adopt (gener-
alized) unbalanced Feistel structure, SPN structure or Lai-Massey structure. For instance, among
fault based attacks on AES [1, 10, 14, 16, 17, 24, 30–32, 36], the works in [31] show the feasibility of
extracting the 128-bit key through one single byte fault under Piret’s attack model [32]. And by
studying the properties of mixing operations (⊕,�,⊙) on different groups, a fault attack on the
nice block cipher IDEA was carefully analyzed in [15].

Faults Attacks on Stream Ciphers. Hoch and Shamir firstly applied fault based attack to sev-
eral stream ciphers [19], including LFSR-based traditional ciphers (schemes based on memoryless
filters and combiners, such as LILI-128 and Sober) and RC4 etc. in 2004. Then in 2005, Biham
et al. investigated impossible fault and differential fault analysis of RC4 [9]. However, those fault
attacks do not work in general for stream ciphers that use combiners with memory. This problem
was later solved in [4] by Armknecht and Meier who developed fault attacks against general com-
biners with memory based on LFSRs (see e.g. E0 and SNOW 2.0). More recently, many winners
of the stream ciphers from eSTREAM project, such as Trivium, Rabbit, HC-128, were also shown
to be suffered from fault attacks [7, 20, 21, 25, 26].

Fault Models and Implementation Aspects. When applying fault attacks, it is usually as-
sumed that the adversary could inject faults during a calculation of the encryption (decryption)
algorithm, thus the fault model (the location and timing of fault injection, and the values of faults)
is the main issue that one must take into account. Many ingredients influence the model, such as
the inner structure, the data register, the powerful equipments possessed by the adversary, etc. In
fact, there are many ways of performing a fault attack [2, 3, 5, 18, 35], such as glitch attack, light
attack, magnetic attack, etc. These methods could induce faults at bit, byte or even multi-bytes
levels.

Countermeasures. Another important issue of fault attacks is the countermeasures. Compared
with the existing fault attacks on various ciphers, the countermeasures seem to belong to another
independent field, and there are many general countermeasures (hardware or software oriented) [6,
23, 29, 33, 34] for protecting ciphers from fault attacks. The main principle is to provide inherent
resistance to prevent specific transient fault, or to offer redundant calculation for error detection.
However, as demonstrated in [12, 27], providing countermeasures against fault attacks of block
ciphers maybe a challenging and hard task.

1.3 Main Contribution and Outline of This Paper

FOX and Previous Fault Attack. FOX [22], also known as IDEA-NXT, is a family of block
ciphers designed by Junod and Vaudenay. It offers a flexible, scalable platform that ensures op-
timal usage across a diverse range of devices and applications, and helps to secure digital media,
communications, and storage. The block size of FOX is either 64-bit or 128-bit, both of which have
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a variable key length ranging from 8 to 256 bits. The high-level structure of FOX is the so-called
(extended) Lai-Massey scheme, whose provable security had been carefully studied in [28, 37]. The
round function is of SPS-type with three layers of round key addition, which could meanwhile
provide its security against differential and linear cryptanalysis.

Another feature of FOX is its key schedule, as has been declaimed in [22]. Unlike most other
block ciphers, given any single or even several round-keys of FOX, it is hard to invert the round-key
generation process to obtain the master key. Due to this, any adversary that basing fault attacks to
deduce the secrete key has to retrieve the whole round-keys, which implies that the number of faults
injected must be large. In fact, this has been verified by Breveglieri, Koren, and Maistri in [13],
where they introduced a first fault attack on FOX64, the 64-bit version of FOX, and demonstrated
that one round-key could be recovered by 11.45 faults on average in the random byte fault model,
and the whole round-keys could be recovered by 183.20 faults on average.

Main Contribution. This paper presents a detailed fault analysis of FOX64, and proposes an
improved fault attack. This is mainly based on an observation of a differential property of two
round Lai-Massey scheme in a fault model. Using the proposed method, faulty ciphertexts that
are obtained when faults are injected in the i-th round can be used twice (previous fault attack
use those ciphertexts only once for deducing the i-th round-key): one for deducing the (i + 1)-th
round-key, and the other for deducing the i-th round-key, thus the number of needed faults are
significantly reduced. The simulation result shows that the 64-bit round-key could be revealed
by 4.25 faults on average, and the whole round-keys can be deduced through only 43.31 faults on
average. Furthermore, such a method could be generalized to other series of the block cipher family
FOX.

Outline. The outline of this paper is as follows: we begin with a brief description of FOX in
Section 2, and then present some properties of the components of FOX in Section 3. The previous
fault attack is described in Section 4, and our improved fault attack is presented in Section 5.
Section 6 demonstrates experimental results, and finally, Section 7 is the conclusion.

2 Description of the Block Cipher FOX

This section briefly describes FOX64, for other series, one can refer [22].

2.1 Encryption of FOX64

FOX64 has a 64-bit block size and a 128-bit key length. It iterates 15 times the round transformation
lmor64, as illustrated in Fig.1, followed by a final round transformation called lmid64.

The round transformation lmor64, which employs a Lai-Massey scheme, transforms a 64-bit
input x(64) and a 64-bit round key rk(64) into a 64-bit output y(64), which is defined as

y(64) = lmor64(xl(32)∥xr(32), rk(64))

= or(xl(32) ⊕ f32(xl(32) ⊕ xr(32), rk(64)))∥(xr(32) ⊕ f32(xl(32) ⊕ xr(32), rk(64))),

where f32 is the round function, and or is an orthomorphism.
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f32

or

xl(32) xr(32)

yl(32) yr(32)

rk(64)

Fig. 1. Round transformation lmor64

xl(16) xr(16)

yl(16) yr(16)

Fig. 2. Orthomorphism or

The orthomorphism or is a function that takes a 32-bit input x(32) and returns a 32-bit output
y(32), as illustrated in Fig.2, which is defined by a simple Feistel transformation as

yl(16)||yr(16) = or(xl(16)||xr(16)) = xr(16)||(xl(16) ⊕ xr(16)).

The lmid64 function is a slightly modified version of lmor64, where the transformation or is
replaced by a identify transformation.

The encryption c(64) by FOX64 of a 64-bit plaintext p(64) is defined as

c(64) = lmid64(lmor64(· · · lmor64(p(64), rk0), · · · , rk14), rk15),

where rki, i = 0, 1, · · · , 15, are round-keys generated through the key schedule from the master
key.

2.2 Round Function f32

The round function f32 consists of three main parts: a substitution part, denoted sigma4, a diffusion
part, denoted mu4, and a round key addition part. Formally, the round function f32 takes a 32-bit
input x(32) , a 64-bit round key rk(64) = rk0(32)||rk1(32) and returns

y(32) = f32(x(32), rk(64))

= sigma4(mu4(sigma4(x(32) ⊕ rk0(32)))⊕ rk1(32))⊕ rk0(32).

The fuction sigma4 takes a 32-bit input x(32) = x0(8)∥x1(8)∥x2(8)∥x3(8) and returns a 32-bit
output y(32), it consists of 4 parallel computations of a non-linear mapping sbox, i.e.

y(32) = sigma4
(
x0(8)∥x1(8)∥x2(8)∥x3(8)

)
= sbox(x0(8))∥sbox(x1(8))∥sbox(x2(8))∥sbox(x3(8)).

The function mu4 takes a 32-bit input x0(8)∥x1(8)∥x2(8)∥x3(8) and returns a 32-bit output
y0(8)∥y1(8)∥y2(8)∥y3(8). It is defined by

y0(8)
y1(8)
y2(8)
y3(8)

 =


1 1 1 θ
1 z θ 1
z θ 1 1
θ 1 z 1

×


x0(8)

x1(8)

x2(8)

x3(8)

 ,
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where θ ∈GF(28) is the root of the irreducible polynomial m(x) = x8+x7+x6+x5+x4+x3+1 ∈
GF(2)[x] and z = θ−1 + 1.

2.3 Key Schedule

The key schedule procedure of FOX64 generates 16 round-keys rki, i = 0, 1, . . . , 15, from a master
key K. Each round-key is 64-bit, denoted as a concatenation of two 32-bit strings, i.e. rki =
rki,0∥rki,1.

The key schedules of FOX series are very complex compared with other existing block ciphers,
each round-key is related to the secret key and it is very difficult to acquire information about
secret key or other round-keys from some certain round-keys. Due to this, in this paper, we assume
that all round-keys are independent with each other. One can refer [22] for the detail of the key
schedule.

3 Some Properties of the Components of FOX64

In this section, we study some properties of the components of FOX64 that are related to the fault
attacks.

3.1 Differential Property of the S-box in the Substitution Layer

Given an 8 × 8 Sbox S(·), α, β ∈ {0, 1}8, define NS(α, β) = #{x ∈ {0, 1}8 : S(x) ⊕ S(x ⊕ α) =
β}, then the differential property of the Sbox can be characterized by all the possible triplets
(α, β,NS(α, β)). Table 1 summarizes the differential property of the Sbox employed in the substi-
tution layer of FOX64.

Table 1. Differential property of the Sbox in FOX64

NS(α, β) Frequency NS(α, β) Frequency

0 42871 10 19
2 15377 12 6
4 5758 16 70
6 680 256 1
8 754 – –

Remark 1. Assume S(·) is the Sbox of FOX64, if NS(α, β) ̸= 0, then the expected value of NS(α, β)
is

65536

65536− 42871
≈ 2.89

This indicates that on average, one pair (α, β) could provide about 2.89 inputs x such that S(x)⊕
S(x⊕ α) = β.
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3.2 Inverse Property of the Diffusion Layer

The differential branch number of mu4 is 5, which implies that any input with one non-zero byte
will lead to some output with four non-zero bytes. Moreover, the inversion of mu4, denoted as
mu4−1, can be expressed as follow: 

a c d e
a d e c
a e c d
b a a a

 ,

where a = θ6+θ5+θ4+θ3+θ2+θ, b = θ7+θ6+θ+1, c = θ7+θ6+θ5+1, d = θ7+θ5+θ3+θ2+1
and e = θ7 + θ5 + θ4.

4 Previous Fault Attack on FOX64

To briefly describe the previous fault attack [13] and our improved fault attack on FOX64 in the
next section, we first introduce the following notations that will be used throughout this paper.

– Assume all the round-keys, generated from the secret master key K through the key schedule,
are rki = rki,0∥rki,1, i = 0, 1, 2, . . . , 15.

– Denote a plaintext by p = pl∥pr, and the corresponding ciphertext by c = EK(p) = cl∥cr. This
ciphertext is called the right ciphertext and any indeterminate states corresponding to it are
called the right indeterminate states.

– Consider the last round of FOX64: Let A16 denote the input of the round function f32; I1 and
B16 denote the input and output of the first substitution layer, respectively, i.e. I1 = A16 ⊕
rk15,0, B16 = sigma4(I1); C16 denote the output of the diffusion layer, i.e. C16 = mu4(B16); I2
and D16 denote the input and output of the second substitution layer, i.e. I2 = C16 ⊕ rk15,1,
D16 = sigma4(I2).

– Given a 32-bit right state X, X∗ denotes the faulty counterpart, and ∆X = X ⊕X∗ denotes
their difference.

As discussed in Section 2.3, due to the complexity of the key schedule, any fault attack on
FOX64 aims to deduce all the round-keys.

Take the last round of FOX64 as an example, see Fig.3, both the previous fault attack and our
improved fault attack (as described later) try to retrieve the 64-bit round-key by recovering the
right intermediate state I1 and I2. Once I1 and I2 are known, one can do as follows:

– According to I1 = A16 ⊕ rk15,0 = cl ⊕ cr ⊕ rk15,0, we thus have rk15,0 = cl ⊕ cr ⊕ I1.
– According to I2 = C16 ⊕ rk15,1 = mu4(B16)⊕ rk15,1 = mu4(sigma4(I1))⊕ rk15,1, we thus have

rk15,1 = I2 ⊕ mu4(sigma4(I1)).

In order to recover the right state I1 and I2, previous fault attack adopts the random byte fault
model and divides the attack procedure into the following two phases.

– In the first phase, the adversary injects faults into the calculation of round function, and the
location is between the input of the round function and input of the diffusion layer. By using
both the correct ciphertext and faulty ciphertexts, he applies differential cryptanalysis on the
second substitution layer to recover I2. The number of faults in this phase is about 2 ∼ 8 and
2.94 on average.
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rk15,0

rk15,1

rk15,0

L15 R15

L16 R16

sigma4

mu4

sigma4

A16

B16

C16

D16

I2

I1

Fig. 3. Last round of FOX64

– In the second phase, the adversary also injects faults into the calculation of the round function
and the location this time is only before the first substitution layer. He then applies differential
cryptanalysis to the first substitution layer to recover I1 based on the correct ciphertext and
those faulty ciphertexts. The number of faults in this phase is about 8 ∼ 28 and 8.51 on average.

In total, about 8 ∼ 31 faults (11.45 on average) are needed to recover the right state I1 and I2.

5 Improved Fault Attack On FOX64

In this section, we present our improved fault attack on FOX64, which is, in fact, based on a
differential property of two-round Lai-Massey Scheme in a fault model.

5.1 A Differential Property of Two-round Lai-Massey Scheme In a Fault Model

Consider a two-round Lai-Massey scheme in a fault model as shown in Fig.4. Let Li and Ri be the
left and right halves of the round input or output, where i = 0, 1, 2. Let Aj and Dj be the input
and output of the bijective round function f32, where j = 0, 1. Assume a fault is induced into A0,
and denote the difference of a 32-bit state X as ∆X, then we have the following proposition:

Proposition 1. Given a two-round Lai-Massey scheme as described above, assume ∆L0 = 0,
∆R0 = 0, and a fault is induced into A0, i.e. ∆A0 ̸= 0. Let ∆L2 = (α0, α1, α2, α3), ∆R2 =
(β0, β1, β2, β3) be known values, then both the input difference and output difference of f32 in the
second round, i.e. ∆A1 and ∆D1, could be calculated.
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f32

or

L0 R0

f32

L1 R1

L2 R2

D0

A0

A1

D1

Fig. 4. Two round Lai-Massey scheme in a fault model

Proof. From ∆A0 ̸= 0, we have ∆D0 ̸= 0. Assume ∆D0 = (x0, x1, x2, x3), then

∆L1 = or(∆L0 ⊕∆D0) = or(x0, x1, x2, x3) = (x2, x3, x0 ⊕ x2, x1 ⊕ x3),

∆R1 = (x0, x1, x2, x3).

Notice that ∆A1 = ∆L1 ⊕∆R1 = ∆L2 ⊕∆R2, thus

∆A1 = (α0 ⊕ β0, α1 ⊕ β1, α2 ⊕ β2, α3 ⊕ β3)

is known. Meanwhile, from

(x2, x3, x0 ⊕ x2, x1 ⊕ x3)⊕ (x0, x1, x2, x3) = (α0, α1, α2, α3)⊕ (β0, β1, β2, β3),

we get

(x0, x1, x2, x3) = (α2 ⊕ β2, α3 ⊕ β3, α0 ⊕ α2 ⊕ β0 ⊕ β2, α1 ⊕ α3 ⊕ β1 ⊕ β3).

Thus

∆D1 = ∆R2 ⊕∆R1

= (β0, β1, β2, β3)⊕ (x0, x1, x2, x3)

= (α2 ⊕ β0 ⊕ β2, α3 ⊕ β1 ⊕ β3, α0 ⊕ α2 ⊕ β0, α1 ⊕ α3 ⊕ β1).

which ends the proof. ⊓⊔

Remark 2. Proposition 1 also holds in the situation, where the second round transformation in the
two-round Lai-Massey scheme contains the orthomorphism or. This is due to the simplicity of or,
leading to easy calculation of the input from the output.
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5.2 General Idea of the Improved Fault Attack

We adopt the same attack model as in [13] and improve the efficiency of the previous fault attacks
in the following two ways:

– To retrieve the 64-bit round-key for some certain round, say the i-th round, previous fault
attack injects sufficient faults (about 8 ∼ 31) to the same i-th round, while ours is to induce
(less) faults at both the i-th and (i−1)-th rounds to deduce the round-key, and it can decrease
the number of needed faults.

– In our improved attack, the faulty ciphertexts that are obtained when faults are injected in
the i-th round are used twice (one for deducing the (i + 1)-th round-key, and the other for
deducing the i-th round-key), thus the number of needed faults is reduced (previous fault attack
use those ciphertexts only once for deducing the i-th round-key).

We briefly summarize the improved fault attack below:

1. Choose an arbitrary plaintext, encrypt it with the secret key and obtain the ciphertext. For
the same plaintext, induce several random byte faults into the input of the round function in
each round, obtain these faulty ciphertexts.

2. Deduce the last round-key through the right ciphertext and the faulty ciphertexts that are
obtained when faults are induced in the last round and penultimate round.

(a) Consider the right ciphertext and faulty ciphertexts that are obtained when faults are
induced into the last round, recover the right input state before the second substitution
layer sigma4 in the last round.

(b) Consider the right ciphertext and faulty ciphertexts that are obtained when faults are in-
duced into the penultimate round, recover the right input state before the first substitution
layer sigma4 in the last round.

(c) Use the right intermediate states obtained from (a)(b) and the correct ciphertext, directly
deduce the 64-bit round-key in the last round.

3. Since the last round-key is obtained, we can peel off the last round encryption to obtain the
output of the penultimate round, thus the other faulty ciphertexts could be similarly used
to recover the last second round-key. In general, this technique can be iteratively adopted to
deduce all round-keys from the 2nd round to the 15-th round in the reverse order.

4. Recover the first round-key as described in Section 4.

5.3 Attack Procedure

Step 1 Data gathering. Choose an arbitrary plaintext p = pl∥pr, and obtain the right ciphertext
c = cl∥cr under the secret user key K. For the same plaintext p, induce several random byte faults
into the input of the round function f32 in each round, and obtain these faulty ciphertexts.

Step 2 Recover the last round-key rk15.
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Fig. 5. Attack last round in Step 2.1
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Fig. 6. Attack last round in Step 2.2
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Step 2.1 Recover the right input state I2 before the second substitution layer in the
last round This is finished by considering the right ciphertext and faulty ciphertexts c∗ = c∗l ∥c∗r ,
which are obtained when faults are induced into the last round. The attack procedure is depicted
in Fig.5.

On the basis of assumption of one random byte fault, ∆A16 has 4 × 255 = 1020 possibilities,
so is ∆B16, thus ∆C16 = mu4(∆B16) also has only 1020 possibilities. The output difference after
the second substitution layer can be calculated by ∆D16 = ∆L16 ⊕ ∆L15 = cl ⊕ c∗l . For all
possible values of (∆C16,∆D16), when apply differential cryptanalysis, this would lead to many
possibilities of I2 = C16⊕rk15,1. We can further decrease the number of I2 candidates by repeating
the above method through other collected faulty ciphertexts, until the candidate set of I2 has only
one element.

Step 2.2 Recover the right input state I1 before the first substitution layer in the last
round This is finished by considering the right input state I2 deduced in step 2.1 and the faulty
ciphertexts c∗ = c∗l ∥c∗r , which are obtained when faults are induced in the penultimate round. The
attack procedure is depicted in Fig.6.

Since the round-key addition layer doesn’t influence the difference, according to proposition 1,
both ∆A16 and ∆D16 could be calculated by ∆L16 = ∆cl and ∆R16 = ∆cr. Moreover, D16 is
obtained through D16 = sigma4(I2), thus D

∗
16 = D16⊕∆D16 is known, and ∆C16 can be obtained

as

∆C16 = C16 ⊕ C∗
16

= sigma4−1(D16)⊕ rk15,1 ⊕ sigma4−1(D∗
16)⊕ rk15,1

= sigma4−1(D16)⊕ sigma4−1(D∗
16),

where sigma4−1 is the inversion of sigma4.
According to mu4−1, ∆B16 can be calculated by ∆B16 = mu4−1(∆C16). After getting sufficient

pairs (∆A16,∆B16) from the correct and faulty ciphertexts, we can apply the differential crypt-
analysis on the first substitution layer to uniquely deduce the right input state I1 = A16 ⊕ rk15,0
before this substitution layer.

Step 2.3 Recover the last round-key rk15,0 and rk15,1 This is finished by directly calculating
these round-keys from the right intermediate state I1, I2 as described in Section 4.

Step 3 Recover round-keys from the 2-nd round to the 15-th round in reverse order.
Since the last round-key is obtained, we can peel off the last round to obtain the output of the
penultimate round. Then the same technique as described in Step 2 could be used to recover other
round-keys. More precisely, we can do as follows:

For i = 2, 3, . . . , 15, consider the right ciphertext and faulty ciphertexts when faults are induced
in the (16−i)-th and (17−i)-th round, peel off the last (i−1)-th round(s) according to the deduced
round-key(s), and use these outputs of the (17− i)-th round to recover the (17− i)-th round-key.
This can be finished by adopting the same technique as in Step 2.

Step 4 Recover the first round-key. According to the recovered round-keys from the 2-nd
round to the 16-th round, obtain the outputs of the first round for the right ciphertext and faulty
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ciphertexts when faults are induced in the first round. Retrieve the first round-key using the same
technique as described in Section 4.

5.4 Complexity Analysis

To evaluate how many faults are needed to recover the whole round-keys, we firstly concentrate
on the one round situation. It is easy to show that, to recover one round-key, the main complexity
is dominated by step 2.1 and step 2.2.

In step 2.1, ∆C16 has 1020 possibilities, so to uniquely deduce all bytes of I2 (thus D16), the
number of faulty ciphertexts, denoted by N , must be satisfied

2564 ×
(
1020

2554

)N

≤ 1.

In general, if the differential distribution table of the S-box is good enough, two faults (i.e. N = 2)
can uniquely retrieve I2.

According to the differential property of the Sbox of FOX64, if NS(α, β) ̸= 0, this difference
pair (α, β) will lead to about 2.89 ≈ 3 possible inputs to the Sbox. Then we can use a similar
technique [17] to analyze the complexity in step 2.2 as follows:

When the number of faulty ciphertexts is 2, we have one possible value left for I1 with probability

Prob =

((
255
2

)
×
(
255−2

2

)(
255
2

)2
)4

≈ 93.88%.

When the number of faulty ciphertexts is 3, we have one possible value left for I1 with probability

Prob =

2∑
k=0

((
255
2

)
×
(
2
k

)
×
(
255−2
2−k

)(
255
2

)2 ×
(
255
k

)
×
(
255−k

2

)(
255
k

)
×
(
255
2

) )4

≈ 99.95%.

The above analysis indicates that, in most cases, about 4 ∼ 6 faults are enough to uniquely
deduce the round-key (excluding the first round). Note that, to recover the first round-key, we have
to use the same technique as in [13], i.e. we must induce about 8 ∼ 31 faults. Thus, to retrieve the
whole round-keys, we need 2× 16 + 6 = 38 faults in the best case. The general case of the needed
faults for obtaining the whole (each) round-key(s) are analyzed in Section 6.

6 Experimental Results

Our proposed fault attack against the last round of FOX64 has been successfully implemented
through computer simulation, and the fault injection is simulated by computer software. We im-
plement the attack procedure in C++ code and execute it on a PC with Intel Pentium 1.80 GHz
processor. We repeat the attack 10000 times and the results are shown in Fig.7.

From Fig.7, it is observed that step 2.1 requires from 2 to 5 faults (2.11 on average), while step
2.2 requires from 2 to 7 faults (2.14 on average). The complete attack requires from 4 to 9 faults
and the average value is 4.25. A comparison between our proposed and the previous fault attack
[13] against the last round of FOX64 is shown in Table 2.
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Fig. 7. Simulation results of the improved fault attack against the last round of FOX64

Table 2. Comparison with fault attacks against the last round of FOX64

Fault Location No. of Faults No. of Faults No. of Faults Source

Minimum Average Maximum

Last round 8 11.45 31 [13]

Last and penultimate round 4 4.25 9 Section 5

Table 3. Comparison with fault attacks against the whole rounds of FOX64

No. of Fault Locations No. of Faults No. of Faults Source

Best Case Average

16 128 183.20 [13]

16 38 43.31 Section 5

Table 2 shows that to derive the last round-key, our improved fault attack requires less faulty
ciphertexts, an average of about 4.25 faults compared to 11.45 faults required in the previous
fault attack [13]. Thus to recover the whole round-keys, our fault attack needs about 4.25 × 8 +
(11.45 − 2.14) = 43.31 (4 × 8 + (8 − 2) = 38 in the best case) faults on average, while about
11.45× 16 = 183.20 (8× 16 = 128 in the best case) faults on average are needed using the method
in [13]. This is shown in Table 3.
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7 Conclusion

A detailed fault analysis of FOX64 is studied in this paper, after carefully observing a differential
property of two round Lai-Massey scheme in a fault model, an improved fault attack on FOX64 is
proposed. Compared with the previous attack, the number of needed faults in the proposed attack
is significantly reduced, this is caused by the fact that many faulty ciphertexts can be used twice
according to the observed property.

We remind that the technique of the new attack on FOX64 can also be extended to other
series of the block cipher family FOX. We also point out that, due to the characteristic of the key
schedule, it seems hard to improve the efficiency of the fault based attack on FOX.

Acknowledgements

The work in this paper is supported by the National Natural Science Foundation of China (No:
61103192, 61070215), the Program for Changjiang Scholars and Innovative Research Team in
University of Ministry of Education of China (No: IRT1012), the Fund for Creative Research
Groups of the Natural Science Foundation of Hunan Province, China (No: 11FH002), and the
open research fund of State Key Laboratory of Information Security (No: 01-02-5).

References

1. S. Ali and D. Mukhopadhyay and M. Tunstall. Differential Fault Analysis of AES using
a Single Multiple-Byte Fault. Cryptology ePrint Archive: Report 2010/636, available through:
http://eprint.iacr.org/2010/636.

2. R. Anderson and M. Kuhn. Tamper resistance – a cautionary note. Second USENIX workshop on
eletronic commerce, 1996, pp. 1–11.

3. R. Anderson and M. Kuhn. Low cost attacks on tamper resistant devices. Security Protocols 1997,
LNCS 1361, pp. 125–136, Springer, 1997.

4. Frederik Armknecht and Willi Meier. Fault Attacks on Combiners with Memory. SAC 2005, LNCS
3897, pp. 36–50, Springer, 2006.

5. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sorcerer’s apprentice guide to
fault attacks. Proceedings of the IEEE, Vol 94(2): 370–386, 2006.

6. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, Error Analysis and Detection Proce-
dures for a Hardware Implementation of the Advanced Encryption Standard, IEEE Transactions on
Computers, Vol 52(4): 492–505, 2003.

7. Alexandre Berzati, Cécile Canovas-Dumas, and Louis Goubin. Fault Analysis of Rabbit: Toward a
Secret Key Leakage. INDOCRYPT 2009, LNCS 5922, pp. 72–87, Springer, 2009.

8. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems. CRYPTO 97,
LNCS 1294, pp. 513–525, Springer, 1997.

9. E. Biham, L. Granboulan and P. Q. Nguyn, Impossible Fault Analysis of RC4 and Differential Fault
Analysis of RC4. FSE 2005, LNCS 3557, pp. 359-367, Springer, 2005.
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