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Abstract—This paper discusses public-key authenticated key
agreement protocols. First, we critically analyze several authen-
ticated key agreement protocols and uncover various theoretical
and practical flaws. In particular, we present two new attacks
on the HMQV protocol, which is currently being standardized
by IEEE P1363. The first attack presents a counterexample to
invalidate the basic authentication in HMQV. The second attack
is applicable to almost all past schemes, despite that many of
them have formal security proofs. These attacks highlight the
difficulty to design a crypto protocol correctly and suggest the
caution one should always take.

We further point out that many of the design errors are caused
by sidestepping an important engineering principle, namely
“Do not assume that a message you receive has a particular
form (such as gr for known r) unless you can check this”.
Constructions in the past generally resisted this principle on the
grounds of efficiency: checking the knowledge of the exponent
is commonly seen as too expensive. In a concrete example,
we demonstrate how to effectively integrate the zero-knowledge
proof primitive into the protocol design and meanwhile achieve
good efficiency. Our new key agreement protocol, YAK, has
comparable computational efficiency to the MQV and HMQV
protocols with clear advantages on security. Among all the related
techniques, our protocol appears to be the simplest so far. We
believe simplicity is also an important engineering principle.

I. INTRODUCTION

In a seminal paper, Diffie and Hellman started the public key
era by presenting a remarkably simple key agreement protocol
[1]. The protocol works as follows. Suppose two users are
Alice and Bob. Let p be a large prime, and α a primitive root
modulo p. The original scheme operates in the whole cyclic
group Z∗p . Alice chooses a random value x ∈R [1, p− 1] and
sends αx to Bob. Similarly, Bob chooses y ∈R [1, p− 1] and
sends αy to Alice. Finally, both parties can compute a common
key K = αxy .

Later, several changes are made to the original protocol to
improve security and efficiency. First, H(K) is used instead
of K as the session key where H is a one-way hash function.
This is to address the issue that some (least significant) bits
of K may be weaker than others [2]. The second change is
to move the key agreement operation from the whole group
Z∗p to a large subgroup of prime order q where q|p − 1.
This change is made to address the concern that an active
attacker may confine the value K to a small subgroup [24].
However, it does not really solve the problem because the
protocol is unauthenticated per se. Finally, it is increasingly
popular to implement the Diffie-Hellman protocol using the

Elliptic Curve Cryptography (ECC) [10]. Using ECC essen-
tially replaces the underlying (multiplicative) cyclic group
with another (additive) cyclic group defined over some elliptic
curve. The essence of the protocol remains unchanged.

The acute problem with the Diffie-Hellman key agreement
is that it is unauthenticated [2]. While secure against passive
attackers, the protocol is inherently vulnerable to active attacks
such as the man-in-the-middle attack [6]. This is a serious lim-
itation, which for many years has been motivating researchers
to find a solution [3]–[5], [7], [9], [11], [13], [20].

To add authentication, we must start with assuming some
shared secret. In general, there are two approaches. The first
one assumes Alice and Bob share a symmetric secret: a
memorable password. Research following this line is com-
monly called Password Authenticated Key Exchange (PAKE)
[3]–[5]. The second approach assumes Alice and Bob share
some asymmetric secret: each party possesses a unique private
key and his public key is known by others. In the past
literature, protocols under this category are commonly called
Authenticated Key Exchange (AKE) [7], [9], [11], [13], [20].

In this paper, we focus on the second category. To better
differentiate it from the first category, we will call it Public
Key Authenticated Key Exchange (PK-AKE). In the following
section, we will review the state-of-the-art in this field.

II. PAST WORK

There is a large amount of literature on PK-AKE [7], [9],
[11], [13], [20]. Many early protocols were constructed ad-hoc
and were later found vulnerable to attacks [21]. This motivates
defining a formal theoretical model to capture all attacking
scenarios in PK-AKE, so that a scheme that is mathematically
proved secure under the model will be immune to not only
known attacks, but also undiscovered attacks [7], [11]. This is
a noble aim. However, numerous attacks against the provably
secure schemes suggest that defining such a model is not an
easy task [13]–[15], [17].

Before reviewing past techniques in detail, we start by
summarizing three general principles. These principles are
important because they can help explain most of the design
errors in the past.
• The sixth principle – Do not assume that a message you

receive has a particular form (such as gr for known r)
unless you can check this [22].

• The explicitness principle – Robust security is about
explicitness; one must be explicit about any properties
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which can be used to attack a public key primitive, such
as multiplicative homomorphism, as well as the usual
security properties such as naming, typing, freshness, the
starting assumptions and what one is trying to achieve
[22].

• The extreme-adversary principle – Robust security is to
protect against an extremely powerful adversary: the only
powers that the adversary does not have are those that
would allow him to trivially break any PK-AKE protocol
[13].

These principles are simple and intuitive. The first two are
time-honored guidance in designing robust cryptographic pro-
tocols, defined by Anderson and Needham back in 1995 [22].
The third one is a theoretical principle that we summarize
from [13]. This principle is particularly important because it
provides the ultimate definition of the protocol security [13].
In the following review, we will apply this extreme-adversary
principle to assess the actual robustness of the protocols.

There is one big family of PK-AKE protocols based on
the use of the digital signature [10]. The basic idea is to use
the static private keys to digitally sign ephemeral public keys
(together with some auxiliary inputs such as identities), so
that man-in-the-middle attacks can be prevented. It was first
described by Diffie, Oorschot and Wiener in the design of the
Station-To-Station (STS) protocol [12]. Subsequent signature-
based protocols can be seen as variants of the STS protocol.

One well-known member in this family is the SIG-DH
protocol due to Canetti and Krawczyk [11]. This protocol is
notable for its provable security in a formal model, commonly
known as the Canetti-Krawczyk (CK) model. The CK model
defines a strong adversary who has the power to corrupt a
session and learn all session-specific transient secrets. The goal
is that a corrupted session must not impact the security of other
sessions.

The SIG-DH protocol is described in Figure 1. It operates in
a subgroup of Z∗p of prime order q. The g is a generator (non-
identity element) of the subgroup. The symbols Â, B̂ denote
the user identities and ga, gb their respective static public keys.
The rest symbols are self-explanatory. More details about the
SIG-DH protocol can be found in [11].

The provable security of SIG-DH is however disputed by
LaMacchia et al [13]. The argument centers on the definition
of the “session-specific transient secrets”. In [11], the formal
proofs only consider the session key and ephemeral exponents
as transient secrets. The SIG-DH protocol however does not
explicitly specify a digital signature scheme. In fact, for com-
mon signature schemes, such as DSA, Schnorr or ElGamal, the
signing operation will introduce an additional ephemeral secret
(for randomization). If that randomization secret is revealed
in a corrupted session, then the static private key will be
disclosed. This will surely impact on the security of other
sessions, thus invalidating the claim in [11]. The same attack
applies to all signature-based PK-AKE protocols. Note, this
attack does not necessarily mean SIG-DH must be insecure in
practice. Nonetheless, it shows the inconsistency between the
claimed (or proved) security and the actual security.

To address the above deficiency, LaMacchia et al proposed
an extended Canetti-Krawczyk (eCK) model [13]. The new

model assumes the attacker can learn all – instead of parts – of
the session specific secrets. Accordingly, the authors presented
a NAXOS protocol, and formally proved it secure under the
eCK model. Their protocol is shown in Figure 2.

The eCK model claims to be the “strongest” among all for-
mal models [13]. However, this claim is disputed by Cremers
[15]. He compares the theoretical properties between the the
CK and eCK models, and demonstrates that a protocol proven
secure in the eCK model may prove insecure in the CK model.
In other words, the two models are simply incompatible:
neither one is stronger than the other (also see [28]).

The problem in LaMacchia et al’s model is that the defini-
tion of “session specific secrets” is still ambiguous. Notice in
Figure 2, Alice uses H1(x, a) instead of x on the exponent –
a technique known as the “NAXOS trick” [28]. Similarly, Bob
uses H1(y, b) instead of y. The underlying assumption in the
NAXOS formal proofs is that the attacker has to steal both the
ephemeral secret x and the static private key a in order to learn
the exponent. This assumption plays a vital role in proving
security in the eCK model. However, one will naturally ask
whether H1(x, a) itself forms part of the “session specific
secrets”. Allowing a powerful attacker to learn one transient
secret x but denying him to learn another transient secret
H1(x, a) contradicts the extreme-adversary principle stated in
the NAXOS paper [13].

There is a secondary reason for using H1(x, a) instead of
x in NAXOX [13]. That is to address the problem that “the
random number generator of a party is corrupted”. In that case,
the ephemeral secret x will have low entropy. Consequently,
an attacker may be able to uncover x say by exhaustive search.
On the other hand, if the low-entropy x is combined with a
high-entropy private key a to form H1(x, a), the exponent will
have high entropy. As plausible as this analysis may sound, it
fails to consider the correlation between the exponents. Figure
3 shows a replay attack if the random number generator is
corrupted. Assume in one past session, Alice had transferred
$1m to Charlie. Since x has low entropy, with some non-
negligible probability the same x value may repeat in a future
session. When that occurs, the attacker simply replays the old
values Y and M as in the past session, to cause Alice to
transfer money again.

This attack shows that hashing x together with a does not
really solve any problem. Even worse, it may provide a false
sense of security. In fact, if the end user’s random number
generator is corrupted, no PK-AKE protocols can guarantee
security under that setting. The NAXOS protocol is of course
no exception.

We now move on to study a different protocol: HMQV
(see Figure 4) [7]. The HMQV protocol is modified from
MQV [20] with the primary aim for provable security. The
modifications come in two favors. First, HMQV uses a hash
function to derive d and e instead of a linear function as
defined in MQV. It also mandates the use of a hash function to
derive the session key. Second, HMQV provably drops some
mandated verification steps in MQV, including the Proof of
Possession check during the CA registration and the prime-
order validation check of the ephemeral public key.

The changes in the second category are highly controversial
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Alice ( Â, ga) Bob (B̂, gb)

1. x ∈R Zq Â, sid, gx

−−−−−−−−−−−−−−−−−−−−−−−−−→
2. Verify signature B̂, sid, gy, SIGB(B̂, sid, gy, gx, Â)←−−−−−−−−−−−−−−−−−−−−−−−−−− y ∈R Zq

3. Â, sid, SIGA(Â, sid, gx, gy, B̂)−−−−−−−−−−−−−−−−−−−−−−−−−−→ Verify signature

Alice and Bob compute κ = H(gxy)

Figure 1. SIG-DH protocol. The session identifier sid is unique among all sessions owned by Â, the initiator.

Alice (Â, ga) Bob (B̂, gb)
1. x ∈R Zq X = gH1(x,a)

−−−−−−−−−−→ Verify X has prime order q

2. Verify Y has prime order q Y = gH1(y,b)

←−−−−−−−−− y ∈R Zq

Alice and Bob compute κ = H2(ga·H1(y,b), gb·H1(x,a), gH1(y,b)·H1(x,a), Â, B̂)

Figure 2. NAXOS protocol. The H1 and H2 are two independent hash functions.

Alice (Â, ga) Attacker (pretend “Bob”)
1. x (repeat) X = gH1(x,a)

−−−−−−−−−−→ Detect same X as in the past

2. Verify Y has prime order q Y = gH1(y,b)

←−−−−−−−−− Replay old Y

Pay Charlie $1m M = Eκ(“Transfer $1m to Charlie”)←−−−−−−−−−−−−−−−−−−−−−−−−−−−− Replay old M

Alice compute κ = H2(ga·H1(y,b), gb·H1(x,a), gH1(y,b)·H1(x,a), Â, B̂)

Figure 3. Replay attack on NAXOS protocol if x has low entropy

Alice (Â, ga) Bob (B̂, gb)
1. x ∈R Zq X = gx

−−−−−−→ Verify X 6= 0

2. Verify Y 6= 0 Y = gy

←−−−−− y ∈R Zq

d = H̄(X, B̂), e = H̄(Y, Â)

Alice computes: κ = H((Y Be)x+da) = H(g(x+da)(y+eb))

Bob computes: κ = H((XAd)y+eb) = H(g(x+da)(y+eb))

Figure 4. HMQV protocol. H̄ and H are two independent hash functions.

despite that they are backed up by a formal model and
full proofs [7]. Dropping the public key validations is the
direct cause of several attacks against HMQV [14], [17]. In
one example, Menezes and Ustaoglu demonstrated a small
subgroup confinement attack that could lead to the disclosure
of the user’s private key [14]. That attack assumes a corrupted
session where the attacker can learn the ephemeral exponent.
This assumption is allowed in the original adversarial model in
HMQV, hence the attack is valid. In the subsequent submission
to IEEE P1363 Working Group [8], Krawczyk revised the
HMQV protocol by adding the following check1: Alice verifies
the term Y Be has the correct prime order and Bob does the
same for XAd. This change prevents the attack reported in
[14], but decreases the claimed efficiency of HMQV. The
revised HMQV had been included into the IEEE P1363
standards draft (2009-06-30) [29].

1Actually, Krawczyk does not mandate this check in [8]. He specifies that
such a check is necessary to thwart a strong adversary and not necessary if the
adversary is less powerful. This is ambiguous. In this paper, we only analyze
the stronger (or more secure) version of the revised HMQV, in which the
additional check is in place.

However, the revised HMQV still has flaws. First, we
present a new “invalid public key attack” that exploits the lax
CA requirement in HMQV. In both the original and revised
versions of HMQV, CA is only required to check the submitted
public key is not 0. The attack works as follows. Assume Bob
(attacker) registers a small group element s ∈ Gw as the public
key where w|p − 1. Bob chooses an arbitrary value z ∈ Zq .
Let Y = gz · s′ where s′ is an element in the same small
subgroup Gw. Exhaustively, Bob tries every element s′ in Gw

such that Y Be = gz · s′ · se = gz . In other words, the small
subgroup elements s and s′ cancel each other out. Suppose
H̄ works like a random oracle as assumed in HMQV (see
Figure 4). Then, for each try of s′, the probability of finding
s′ · se = 1 is 1/w. It will be almost certain to find such s′

after searching all w elements in Gw (if not then change a
different z and repeat the procedure). Following the HMQV
protocol, Bob sends Y = gz · s′ to Alice. Alice checks Y Be

has the correct prime order and computes the session key
κ = H((Y Be)x+da) = H(gz·(x+da)). Because Bob knows
z, he can compute the same session key κ and successfully
authenticates himself to Alice. In fact, anyone can do the same
pre-computation as above and authenticate to Alice as “Bob”.

The fact that an obviously invalid public key is totally
undetected by all flows in HMQV is unsettling. For any PK-
AKE protocol, the basic goal of authentication is to assure
one party that the other party is the legitimate holder of the
supplied public key certificate – more technically, someone
who knows the private key [2]. However, in this case, the
private key does not even exist, but the authentication is
successful. This indicates a protocol design error. Among a
number of key agreement schemes [9], [11], [13], [20], it
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Figure 5. Worm-hole attack on HMQV

seems only HMQV has this problem. (The NAXOS protocol
has the same kind of lax CA requirement as HMQV, but it
mandates the end user to validate the certified public keys
before any key exchange. [13])

We now describe a different “wormhole attack” on HMQV.
This attack works when the two parties use the same certificate
for self-communication. Self-communication is considered a
useful application in [7]. For example, a mobile user and the
desktop computer may hold the same static private key (regis-
tering two public key certificates costs more). Krawczyk for-
mally proved that self-communication is “secure” in HMQV
[7]. However, the formal model in [7] only considers the user
talking to one copy of self, but neglects the possibility that
the user may talk to multiple copies of self at the same time.

The following attack works similar to a typical “wormhole
attack” in wireless networks where the attacker replicates the
identity from one place to another through a wormhole tunnel
[6]. Figure 5 illustrates the steps of the attack:

1) Alice initiates the connection to a copy of herself by
sending gx. The connection is intercepted by Mallory
who pretends to be Alice-1.

2) Mallory starts a separate session by pretending to be
Alice-2. He initiates the connection by sending to Alice
gx (this is possible because HMQV does not require the
sender to know the exponent).

3) Alice responds to Alice-2 by sending gy .
4) Mallory replays gy to Alice as Alice-1.
5) Alice derives a session key and sends an encrypted

message to Alice-1, say: “Transfer to me $1m”.
6) Mallory replays the encrypted message to Alice. (After

receiving money from Alice, Mallory disconnects both
connections.)

In the above attack, we only demonstrated the attack against
the two-pass HMQV (implicit authentication). For the three-
pass HMQV (explicit authentication), the attack works exactly
the same. Also, we have omitted the identities in the message
flows, because they are all identical (see [7]).

This attack is essentially an unknown key sharing attack.
Alice thinks she is communicating to a mobile user with the
same certificate, but she is actually communicating to herself.
The attacker does not hold the private key, but he manages to
establish two fully authenticated channels with Alice (server).
In a different attacking scenario, if Alice sends an encrypted
command “shutdown” to its mobile user in step 5, the same
command may be replayed back to Alice to shutdown the

system. This shows such an attack can be dangerous. The
same attack also applies to other PK-AKE schemes, including
NAXOS [13], KEA+ [9], CMQV [18], MQV [20], and SIG-
DH [11] etc.

III. THE YAK PROTOCOL

In this section, we explore a new approach to construct
the PK-AKE protocol. So far, almost all of the past PK-
AKE protocols [7], [9], [11], [13], [18] have sidestepped the
sixth robustness principle that we explained in Section II. The
reason has mainly been for the concern on efficiency: verifying
the knowledge on the exponent is considered too expensive
[7], [11]. In the following sections, we will demonstrate how
to effectively integrate the zero-knowledge primitive into the
protocol design and meanwhile achieve good efficiency.

Our new PK-AKE protocol is called YAK2. For simplicity,
we describe it in the DSA-like cyclic group setting [2], [10]
(the protocol works basically the same in the ECDSA-like
setting where an additive cyclic group over some elliptic curve
is used). Let G denote a subgroup of Z∗p with prime order q
in which the Computational Diffie-Hellman problem (CDH) is
intractable. Let g be a generator in G (any non-identity element
in G can be used as a generator). The two communicating
parties, Alice and Bob, both agree on (G, g).

A. stage 1: public key registration

In stage 1, Alice and Bob exchange an authentic copy of
each other’s static public key. There are two ways to do this.
A naive approach is that Alice and Bob meet in person. Alice
selects a random secret a ∈R Zq as her private key. Similarly,
Bob selects b ∈R Zq as his private key.

Personal Registration: Alice gives Bob ga with a knowl-
edge proof for a. Similarly, Bob gives Alice gb with a
knowledge proof for b.

Alternatively, this can be done via a trusted third party:
Certificate Authority (CA) in a PKI.

CA Registration: Alice sends to the CA ga with a knowl-
edge proof for a. Similarly, Bob sends to the CA gb with a
knowledge proof for b.

We provide two registration methods to help explain secu-
rity. The two methods are actually equivalent though they look
quite different. In the first approach, Alice and Bob act like a
personal “CA” for each other. Alice verifies Bob’s identity
and checks the knowledge proof to ensure Bob possesses
the private key. Bob does the same. In the second approach,
the CA resumes the responsibility to verify the applicant’s
identity (Distinguished Name) and check the knowledge proof
to ensure the Proof of Possession (PoP) of the private key. The
PoP check is a mandatory requirement for the CA, as stated
in all PKI standards (see [19]). Because of the involvement
of a trusted third party, the second approach is more scalable
than the first, but it requires users to trust the CA.

2The yak lives in the Tibetan Plateau where environmental conditions are
extremely adverse.
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In both approaches, the sender needs to produce a valid
knowledge proof to demonstrate the Proof of Possession (PoP)
of the private key. Fortunately, Zero Knowledge Proof is a
well-established primitive in cryptography [10]. It allows the
sender to prove the knowledge of the exponent without leaking
it. For example, we can use Schnorr’s signature, which is
made non-interactive by applying the Fiat-Shamir heuristics
to an interactive Schnorr identification protocol [27]. Let H
be a secure hash function. This function works like a random
oracle (replacing the honest verifier who supplies random
challenges in the interactive identification protocol). To prove
the knowledge of the exponent for X = gx, one sends
{SignerID, OtherInfo, V = gv , r = v−x ·h} where SignerID
is the unique user identifier (also called Distinguished Name
[2]), OtherInfo includes auxiliary information to indicate this
is a request for certifying a static public key and may include
other practical information such as the name of the algorithm
etc, v ∈R Zq and h = H(g, V, X, SignerID, OtherInfo).
The receiver checks that X has prime order q and verifies
that V = grXh (computing grXh requires roughly one
exponentiation using the simultaneous computation technique
[10]). We will assess the cost in more detail in Section VI.

In the past literature, several papers allow arbitrary key
registration at the CA [7], [9], [13]. In other words, the
CA indiscriminately certifies any binary string even if it
is obviously not a valid public key (say a small subgroup
element). For example, the NAXOS protocol only requires the
CA to check the public key is not 0 [13]. But, it mandates that
the users must verify the order of each other’s certified public
keys before the key agreement. The cost of this expensive
operation is however not counted in the NAXOS paper.

To have a meaningful discussion, we need to assume a
properly functional CA (the same assumption is made in
[20]). As stated in every PKI standard, a CA must verify the
PoP before certifying the public key [19]. It must also check
the user’s identity properly. If the CA is not trustworthy in
fulfilling its duties, then we may have to revert to the personal
registration approach.

B. stage 2: key agreement
Alice and Bob execute the following protocol to establish a

session key. For simplicity of discussion, we explain the case
that Alice and Bob have different certificates (a 6= b) and will
cover self-communication later.

YAK protocol: Alice selects x ∈R Zq and sends out gx

with a knowledge proof for x. Similarly, Bob selects y ∈ Zq

and sends out gy with a knowledge proof for y.

When this round finishes, Alice and Bob verify the re-
ceived knowledge proof to ensure the other party possesses
the ephemeral private key. As explained earlier, we can use
Schnorr’s signature to realize the knowledge proof. Both
parties also need to ensure the identity (i.e., SignerID) in
the knowledge proof must match3 the one in the public key

3By “match”, we mean the identity is identical to the one on the X.509
certificate, or the two have an unambiguous one-to-one mapping relationship.
The latter is useful to provide anonymity in key agreement: both parties use
pseudo-identities to prove the possession of the ephemeral exponents and they
know how to match the pseudo-identities to real ones at the two ends.

certificate.
Upon successful verification, Alice computes a session key

κ = H((gy · gb)x+a) = H(g(x+a)(y+b)). And Bob computes
the same key: κ = H((gx · ga)y+b) = H(g(x+a)(y+b)). The
protocol has the same round efficiency and symmetric property
as the original Diffie-Hellman protocol [1]. Figure 6 shows
how to implement the protocol in two passes, as one party
usually needs to initiate the connection.

The two-pass YAK protocol can serve as a drop-in re-
placement for face-to-face key exchange. It is equivalent to
Alice and Bob meeting in person and secretly agreeing a
common session key. After Alice and Bob depart, they can
use the session key to secure the communication. So far, the
authentication is implicit: Alice believes only Bob has the
same key and vice versa. In some applications, Alice and
Bob may want to perform an explicit key confirmation before
starting any communication just to make sure the other party
actually holds the same session key.

The method for explicit key confirmation is generally ap-
plicable to all key exchange protocols. Often, it is considered
desirable to use a different key from the session key κ for
key confirmation4, say use κ′ = H(K, 1). We summarize a
few methods here. A simple method is to use a hash function
as presented in [3]: Alice sends H(H(κ′)) to Bob and Bob
replies with H(κ′). Another straightforward way is to use κ′

to encrypt a known value (or random challenge) as explained
in [2]. Other approaches make use of MAC functions as
suggested in [7], [9]. Given that the underlying functions are
secure, these methods do not differ significantly in security.

IV. SECURITY ANALYSIS

A common approach in past work is to model an adversary
in terms of what he is capable of. This methodology evolves
progressively over the past decade by adding more power
to the attacker. In this section, we attempt a new approach.
Instead of defining what the attacker is capable of, we focus
on what the attacker is not capable of. As we will demon-
strate, this allows capturing the crux of the extreme-adversary
principle more directly.

First, we need to define what are the “session specific
secrets” in YAK. Simply put, they include all transient secrets
in a session. More specifically, the session specific secrets –
for Alice – include the ephemeral exponent x and the raw
session key K. This definition has covered the randomization
factor v in Schnorr’s signature since one can easily compute v
from x and the public items within Schnorr’s signature. It has
also covered the session key κ, which can be computed from
H(K). If the attacker is powerful enough to access Alice’s
session state, we assume he can learn all of the transient
secrets including x and K .

So, a powerful attacker is able to learn all transient secrets
in a session, but he cannot learn the user’s private key. This is
consistent with reality. In the real world, the standard practice
is to store the private key in a Hardware Security Module

4Using a different key for key confirmation has a (subtle) theoretical advan-
tage that after the key confirmation, the session key is still indistinguishable
from random. However, this trick has limited pratical signifiicance and is not
used in for example [3], [4].
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Alice (Â,ga) Bob (B̂, gb)
1. x ∈R Zq gx,KP{x}−−−−−−−−→ Verify KP{x}
2. Verify KP{y} gy,KP{y}←−−−−−−−− y ∈R Zq

Compute κ = H(g(x+a)(y+b)) κ = H(g(x+a)(y+b))

Figure 6. YAK protocol

(HSM) [6]. The HSM may consist of two security boundaries
[15]. The inner boundary has an embedded processor and
limited memory. It is heavily protected and is where the private
key is stored. Due to the extremely constrained resource, the
embedded processor only performs the most critical operation:
raising the base to the power of the private key. Thus, inner
boundary works like a private key oracle, whose access must
be denied to attackers. The outer boundary has more abundant
computing resources. It performs all the remaining operations.
However, the outer boundary is relatively less protected. So,
it might leak transient information (say through side-channels
[6] to an attacker nearby). Hence, the goal of a robust key
agreement protocol is to minimize the trust on both the inner
and outer boundaries as much as possible.

First, we formulate the following requirements for the PK-
AKE protocol.

1) Private key security: An attacker cannot learn any
useful information about the user’s static private key
even if he is able to learn all session specific secrets
in any session.

2) Full forward secrecy: Session keys that were securely
established in the past uncorrupted sessions will remain
secure in the future even when both users’ static private
keys are disclosed.

3) Session key security: An attacker cannot compute the
session key if he impersonates a user but has no access
to the user’s private key.

These requirements summarize essential security properties of
a PK-AKE protocol. They even cover those that are missing
in the existing formal model definitions. The first requirement
is generally not covered by a formal model, but we think it
is crucially important. For example, both the SIG-DH [11]
and (original) HMQV [7] protocols have been formally proven
secure in the CK model. Yet attacks reported in [13] and [14]
show that in both protocols, an attacker is able to disclose the
user’s private key. In the second requirement5, we use “full”
to distinguish it from the “half” forward secrecy, which only
allows one user’s private key to be revealed (e.g., KEA+ [9]).
In the past literature it is common to add “perfect” before
“forward secrecy” [7], [9], [11]. However, we drop “perfect”
here because it has no concrete meaning [10], [20]. The third
requirement concerns both the secrecy and authenticity of
the session key. It has already covered the Key Compromise
Impersonation (KCI) attack [20]. The “invalid public key”
attack in Section II indicates that HMQV does not satisfy this
property.

5It is essentially the same as the weak Perfect Forward Secrecy (wPFS)
defined in [7].

Figure 7. The oracle diagrams for the attacker. Alice is honest.

The strategy of our design is to make the best use of well-
established techniques such as Schnorr’s signature. This allows
us to leverage upon the provable results of Schnorr’s signature
(see [10], [27]), and thus greatly simplify the security analysis.
In the following, we will aim to provide a simple and intuitive
security analysis.

First, Let us discuss the private key security. Without loss
of generality we assume Alice is honest. Unless mentioned
otherwise, this assumption will be made throughout the rest
of the analysis. As shown in Figure 7 (1), Mallory totally
controls Bob’s static and ephemeral private keys; additionally,
he has the extreme power that allows him to learn Alice’s
transient secrets in an arbitrary session. The only power that
he does not have is the access to Alice’s private key.

Claim 1 (Private Key Security): An attacker can not learn
any useful information about Alice’s static private key even
if he is able to learn all transient secrets in any of Alice’s
sessions.
proof. As shown in Figure 7 (1), an extremely powerful
attacker completely corruptes Bob and has access to all of
the transient secrets in Alice’s session. The knowledge proofs6

defined in the YAK protocol prove that the attacker knows the
values of y and b (i.e., these variables are not correlated with
a). He also knows Alice’s public key ga. By revealing Alice’s
transient secrets in a session, he learns x and the raw session
key K = g(a+x)(b+y). But learning K does not give Mallory
any infomation, because he can compute it by himself from
{x, y, b, ga}. Since Mallory knows the values of {x, y, b, ga},
he can effectively simulate the same session all by himself by
defining arbitrary values of x, y, b. Clearly, he does not learn
any useful information about Alice’s private key from his own
simulations.

6If Schnorr’s signature is used to realize the knowledge proof, we need to
add a random oracle assumption (i.e., a secure one-way hash function), as
Schnorr’s signature is provably secure in the random oracle.
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Intuitively, the above proof assumes an attacker simulating
a (gigantic) list of transcripts that include arbitrary values of
{x, y, b}. By corrupting any of Alice’s sessions, the attacker
learns nothing more than what he can possibly simulate.

On the other hand, the same simulation does not work in
NAXOS and HMQV. Take NAXOS as an example. Assume
Bob (the attacker) sends to Alice ga. By accessing Alice’s
transient items within the key derivation function, Bob learns
ga·a. Bob cannot simulate the session because he cannot
compute ga·a by himself. In another session, Bob can send
to Alice ga2

and then learn ga3
. Similarly, he can learn

ga4
, ga5

. . .. In other words, every corrupted session gives the
attacker new information that he cannot learn by simulation.
The same argument applies to HMQV.

The use of the knowledge proofs greatly simplifies the
analysis. Without the knowledge proofs, the simulation in
our proof will not work. We illustrate this with an example.
Assume there were no knowledge proof (i.e., no PoP check)
during the CA registration. Mallory can choose a small sub-
group element, e.g., s ∈ Gw where w|p− 1. He then registers
s/gy as his static public key. During the key agreement, Alice
will compute Z = (s/gy×gy)x+a = sx+a. If Mallory can also
reveal Alice’s ephemeral secret x, he can compute a mod w.
This is the same kind of the small subgroup attack as reported
against HMQV [14]. Note that in this case, the simulation in
the proof no longer works: Mallory does not know the value b.
In fact, the value b does not even exist because the registered
public key is not in the form of gb at all. This example
shows the importance of the sixth robustness principle: “Do
not assume the message you receive has a particular form
(such as gr for known r) unless you can check this” [22].

Next, we discuss the full forward secrecy requirement.
In the definition, we specify that the past sessions must be
“uncorrupted”7, namely the session-specific transient secrets
must remain unknown to the attacker. In YAK, this means x,
y and K must remain unknown to the attacker. Obviously,
knowing K would have trivially broken the past session.
Also, if Mallory can learn any ephemeral exponent x or
y in the past session in addition to knowing both parties’
static private keys (see Figure 7 (2)), he has possessed the
power to trivially compromise any PK-AKE. This contradicts
the extreme-adversary principle. Therefore, in the following
analysis, we assume the attacker knows both Alice and Bob’s
private keys, but not any transient secrets in the past session.

Claim 2 (Full Forward Secrecy): Under the Computational
Diffie-Hellman (CDH) assumption, an attacker who knows
both parties’ static private keys but not transient secrets in
the past session cannot compute K.
proof. To obtain a contradiction, we assume the attacker can
compute K = g(a+x)(b+y). The attacker knows the values of
a, b (see Figure 7 (2)). The ephemeral public keys gx and gy

are public information. Therefore, he can compute gab, gay

7Krawczyk defines a weak Perfect Forward Secrecy (wPFS) and a strong
Perfect Forward Secrecy (sPFS) [7]. We observe that both definitions are based
on essentially the same assumption: the past sessions were uncorrupted. The
only difference is that the latter requires explicit assurance while in the former
definition the assurance is implicit. As shown in [7], any two-pass PK-AKE
protocol that fulfills wPFS also trivially satisfies sPFS by adding an explicit
key confirmation.

and gbx. Now, we can solve the CDH problem as follows:
given gx and gy where x, y ∈R Zq , we use the attacker as an
oracle to compute gxy = K/(gab · gay · gbx). This, however,
contradicts the CDH assumption.

The above proof shows that the the raw key material K
is incomputable to the attacker. In practice, it may not be
appropriate to directly use the raw K as a session key. A
common approach is to apply a key derivation function such
as a hash function, so the session key is κ = H(K). The use
of the hash function serves to well mix potentially weak and
strong bits in the raw output and produce a session key of the
desired length. This works exactly the same as in the original
Diffie-Hellman protocol [1].

Finally, we study the session key security requirement. As
shown in Figure 7 (3), Mallory does not hold Bob’s private
key but he tries to impersonate Bob. We assume the powerful
Mallory even knows Alice’s private key a. The only power he
does not have is the access to Alice and Bob’s session states.
If Mallory can access Alice’s session state, he can impersonate
anyone to Alice – he just needs to “steal” the session key that
Alice computes in the transient memory. Similarly, if Mallory
can access Bob’s session state, he can impersonate Bob to
anybody by waiting until Bob computes the session key and
then stealing it.

Note in this case, the assumed attacker is less powerful than
the one described in Claim 1. Previously, the attacker was
able to corrupt an arbitrary session of Alice’s or Bob’s. He
however had learned no useful information than what he can
simulate (see Claim 1). On discussing the session key security,
we assume the attacker no longer has access to either user’s
session state. This change is necessary, and is consistent with
the extreme-adversary principle.

Claim 3 (Session Key Security): Under the Computational
Diffie-Hellman (CDH) assumption, an attacker who imperson-
ates Bob but does not have access to Bob’s static private key
can not compute K.
proof. The attacker does not possess Bob’s static private key,
or have access to either Alice or Bob’s session state. To
obtain a contradiction, we assume Mallory is able to compute
K = g(a+x)(b+y). Bob’s public key gb is public information.
Mallory knows Alice’s private key a. The knowledge proof in
the protocol proves that Mallory also knows the value y (see
Figure 7 (3)). Hence, he can compute gab, gay and gxy. Now,
we can solve the CDH problem as follows: given gb and gx

where x, b ∈R Zq , we use Mallory as an oracle to compute
gbx = Z/(gab · gay · gxy). This, however, contradicts the CDH
assumption.

Again, the knowledge proofs are essential in the above
proof. We use an example to illustrate this. Let us assume
there were no knowledge proof required for the ephemeral
public key. Now, Mallory can send Y ′ = g−b to Alice and
successfully force the session key to be κ = H(1). The
removal of the knowledge proof gives the attacker unrestricted
freedom to fabricate a message of any form. Note validating
the order of Y ′ does not prevent the attack, because Y ′ has
the correct prime order. Somehow, this example highlights a
limitation of the prime-order validation: it only checks whether
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the message is within the designated group, but fails to check
whether it is correlated with other elements in the same group.
Using the knowledge proof restricts the attacker’s freedom
much more stringently, and defeats this attack.

V. SELF-COMMUNICATION

The user identity is an important parameter in the pro-
tocol definition. In the past literature, almost all PK-AKE
protocols readily use the Distinguished Name (DN) in the
user’s X.509 certificate as the user identity. This practice also
carries over to the self-communication mode [7]. However,
self-communication is a special case and should be be handled
differently. In this mode, the two parties are still physically
distinct entities and hence, naturally require different identities.

To enable self-communication in YAK, we need to ensure
the SignerID in the Schnorr’s signature remains unique. This is
to prevent Bob from replaying Alice’s signature back to Alice
and vice versa. One solution is to simply attach an additional
identifier to the mobile stations using the same certificate. For
example, when Alice (server) is communicating to the nth
copy of herself (mobile station), Alice uses “Alice” as her
SignerID to generate the Schnorr’s signature and the nth copy
uses “Alice-n” as its SignerID. Thus, Alice-n cannot replay
Alice’s signature back to Alice and vice versa. This solution
is also generically applicable to fix the self-communication
problem in past protocols [7], [9], [11], [13], [20].

Though self-communication is considered a useful feature
[7], one should be careful to enable this feature only when
it is really needed. This is because, when enabled, it may
have negative impact on the theoretical security. In Section
IV, we have explained that, under normal operations (using
different certificates), an attacker cannot learn ga·a in any
case. However, if self-communication is enabled in YAK, we
essentially allow a = b, hence the attacker can learn ga·a from
a corrupted session. This implies we would need a stronger
assumption than CDH to prove the “session key security”.
This is undesirable, but to our best knowledge, no PK-AKE
protocol is reducible to the CDH assumption with the self-
communication enabled. In comparison, in NAXOS [13] and
HMQV [7], the attacker can learn ga·a from a corrupted
session regardless whether the self-communication is enabled
(and furthermore he can learn ga3

, ga4
, . . .) .

VI. COMPARISON

Finally, we compare YAK with past work in terms of
security and efficiency. There are many PK-AKE protocols
in the past literature. However, we can only select a few; they
include SIG-DH [11], HMQV [7], MQV [20] and NAXOS
[13]. These techniques are representative for a comparative
analysis. MQV has be widely standardized and applied in
practical applications. The rest are all well-known PK-AKE
schemes with formal proofs under different formal models.
Among them, HMQV is known as the “most efficient” [7] and
NAXOS as the “most secure” [13]. Other PK-AKE schemes
can be seen as variants of these four.

Table I summarizes the comparison results. The cost is
evaluated by counting the number of exponentiations in a

DSA-like group setting or the number of multiplications in an
ECDSA-like group setting. In the former case, it takes a full
exponentiation to validate the prime order of a group element
while in latter, this operation is essentially free. This explains
the one operation difference in Table I. We briefly explain each
technique below.

The SIG-DH protocol was described in [11] and formally
proven secure in the Canetti-Krawczyk (CK) model. However,
the paper does not explicitly specify a signature algorithm.
This makes it difficult to assert the exact cost and security as-
sumptions because they depend on the choice of the signature
algorithm. The attack presented in [13] indicates SIG-DH does
not fulfill the private key security requirement. Consequently,
it does not satisfy the session key security requirement (since
the private key security cannot be assured in the first place).
Another limitation with SIG-DH is that if the user’s digital
signature is captured, his real identity will be revealed.

The HMQV protocol is due to Krawczyk [7]. The pro-
tocol is revised in [8] to address the Menezes-Ustaoglu’s
small subgroup attack by adding a prime-order validation
step (otherwise, the protocol will fail the private key security
requirement). This revision makes the total number of expo-
nentiations be 3.5. The HMQV only requires the CA to check
the submitted public key is not zero. However, as shown in
[15], if the attacker is allowed to register “1” as his public
key, he can launch an unknown key-sharing attack against the
one-pass version of the HMQV protocol. So we add the check
that the public key is not “1” either. We need to caution that
even so, it is still not sufficient to prevent an unknown key-
sharing attack against the HMQV in the post model where
the responder’s identity is not pre-defined [17]. The “invalid
public key” attack shown in Section II indicates HMQV does
not fulfill the session key security requirement.

The MQV protocol was first designed by Menezes, Qu and
Vanstone [20]. The original MQV design includes the user
identities only in the explicit key confirmation stage. Thus,
the key confirmation not only serves to confirm the equality
of the session key, but also to confirm the identities of the
users who are engaged in the key agreement. This arrangement
has the drawback that a secure MQV would require 3 passes.
As shown by Kaliski, without key confirmation, the 2-pass
MQV is subject to an unknown key sharing attack [26]. In
[14], Menezes revised the MQV protocol by including the user
identities into the key derivation function (similar to HMQV).
This change prevents the Kaliski’s attack and improves the
round efficiency as the 2-pass MQV can now provide implicit
authentication.

The NAXOS protocol is formally proven secure in the
extended Canetti-Krawczyk model (eCK) model [13]. The
eCK claims to be the “strongest” formal model, but this claim
is disputed in [15]. In Section II, we also pointed out a subtle
flaw in the definition of the “session specific transient secrets”
in the NAXOS security proofs. The NAXOS protocol requires
5 exponentiations (see Figure 2). Same as in HMQV, the
protocol allows the CA to certify any non-zero binary strings
as public keys. However, NAXOS requires users to verify the
other party’s certified public key must lie in the correct prime-
order group before key agreement. This cost is however not
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Exp Mul assum- CA Pri-key Ses-key FFS Self Allow
DL EC ptions chk sec sec com anonym

SIG-DH – – – PoP × × X × ×
HMQV 3.5 2.5 GDH, RO not 0, 1 X × X × X
MQV 3.5 2.5 N/A PoP X X X × X

NAXOS 5 4 GDH, RO not 0 X X X × X
YAK 5 4 CDH, RO PoP X X X X X

Table I
COMPARISON BETWEEN PK-AKE SCHEMES.

counted in the NAXOS paper nor reflected in our table.
On the security side, which is our primary concern, the YAK

protocol has clear advantages. The security of the protocol
(using two different certificates) rests on the Computational
Diffie-Hellman (CDH) assumption in random oracle model. In
comparison, the original Diffie-Hellman protocol depends on
the same CDH assumption. The random oracle is needed since
our protocol depends on the Schnorr’s signature. The formal
proofs of NAXOS and HMQV depend on a less common
Gap Diffie-Hellman (GDH) assumption. The GDH assumes
the attacker has access to a Decision Diffie Hellman oracle but
is still unable to solve the CDH problem [7], [13]. Clearly, it
is a stronger assumption than CDH.

Finally, we study the efficiency of the protocol. In YAK,
Alice needs to perform the following exponentiations: one to
compute an ephemeral public key (i.e., gx), one to compute
the knowledge proof for x (i.e., gvx ), two to verify the
knowledge proof for y (i.e., Y q and gryY hy ) and finally one
to compute the session key (Y · B)x+a. Thus, that is five in
total: {gx, gvx , Y q, gryY hy , (Y ·B)x+a}.

Among these operations, some are merely repetitions. To
explain this, let the bit length of the exponent be L =
log2 q. Then, computing gx alone would require roughly 1.5L
multiplications which include L square operations and 0.5L
multiplications of the square terms. However, the same square
operations need not be repeated for other items with the com-
mon base. If we factor this in, it will take (1+0.5×3)L = 2.5L
to compute {gx, gvx , gry }, and another (1+0.5×2)L = 2L to
compute {Y q, Y hy } and finally 1.5L to compute (Y ·B)x+a.
Hence, that is in total 6L, which is equivalent to 6L/1.5L = 4
usual exponentiations. This is quite comparable to the 3.5
exponentiations in MQV (which cannot reuse the square terms
since the bases are all different).

VII. CONCLUSION

In this paper, we report several new attacks on the existing
public-key authenticated key agreement protocols. In addition,
we present a new authenticated key agreement protocol, called
YAK. Our design approach is to follow time-honored engi-
neering rules and depend on well-established cryptographic
primitives such as Schnorr signature. The robustness of the
protocol is analyzed under an extremely adverse condition,
in which the only powers that an attacker does not have
are those that would allow him to trivially break any other
protocol. Overall, YAK demonstrates robust security under
the Computational Diffie-Hellman assumption in the random
oracle model, while achieving comparable efficiency to the
“most efficient” in the past work.
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