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Abstract. Differential Fault Analysis (DFA) attack is a powerful cryptanalytic technique that
could be used to retrieve the secret key by exploiting computational errors in the encryption
(decryption) procedure. In the present paper, we propose a new DFA attack on SMS4 using a
single fault. We show that if a random byte fault is induced into either the second, third, or fourth
word register at the input of the 28-th round, the 128-bit master key could be recovered with an
exhaustive search of 22.11 bits on average. The proposed attack makes use of the characteristic of
the cipher’s structure, the speciality of the diffusion layer, and the differential property of the S-box.
Furthermore, it can be tailored to any block cipher employing a similar structure and an SPN-style
round function as that of SMS4.
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1 Introduction

Fault attacks are where an adversary tries to derive the secret key by accidental or intentional injecting
faults in a cryptographic device during its computation of an algorithm. The idea of fault attack was
introduced by Boneh, DeMillo, and Lipton [3] from Bellcore in 1996. They exploited errors injected
during the encryption process and showed that a single faulty encryption could break a CRT-RSA based
signature cryptosystem. Later on, such kind of attack was extended by Biham and Shamir to DES-like
secret key cryptosystems together with the technique of differential cryptanalysis [5] and referred as
Differential Fault Analysis (DFA) [4]. Since then, DFA attack has been applied to many other block
ciphers, especially on AES (see e.g. [8, 9, 14, 22, 23, 25]).

When applying fault attacks, it is usually assumed that the adversary has physical access to the
tamper-proof device under attack and that he could induce faults by some special equipments. There
are lots of methods for fault injection [1, 2, 6, 7, 27], such as changing the power supply voltage or the
frequency of the external clock, varying the environmental temperature, and exposing the circuits of the
device to intense lights or lasers. Most of these methods could induce faults at byte level, due to the 8-bit
size of a register for most current cryptographic security modules (e.g. smart cards).

Generally speaking, most DFA attacks against block ciphers target the last few rounds, i.e., they
exploit computational errors in the last few rounds to extract the secret key. However, in 2003, Hemme
showed the possibility of breaking DES with injected faults in the early rounds [15]. And recently, Rivain
demonstrates the feasibility of recovering DES key even when faults are injected in the middle rounds
[26]. These significant results again confirm that fault attack is really a terrible threat for many real life
cryptosystems and it may be not sufficient to protect only the last few rounds of a cipher against fault
attacks

SMS4 is the underlying block cipher used in the WAPI standard, which is the Chinese national
standard for securing Wireless LANs. The details of SMS4 were made public in 2006 by the Chinese
government [28] and its English version was translated by Diffie and Ledin [11] at the end of 2008. After
its publication, there are many traditional cryptanalytic works evaluating its security including differential
attack [32, 33], linear attack [12], integral attack [17], algebraic attack [10, 13, 16], rectangle attack [21, 29,



32] and impossible differential attack [21, 29]. Besides traditional cryptanalysis, several authors mounted
DFA attacks on SMS4 (see e.g. [18, 20, 31]).

In the present paper, we propose a new DFA attack on SMS4 using a single fault. We generalize the
attack described by Takahashi et al. in [30] and consider a more realistic fault model. The main idea is
based on the observation of the special characteristic of the cipher’s structure and its round function. We
show that if a random byte fault is induced into either the second, third or fourth word register at the
input of the 28-th round, the 128-bit master key could be derived with an exhaustive search of 22.11 bits
on average. Moreover, by using the concept of differential distribution table of the S-box, the efficiency
of the proposed attack could be greatly improved, which has been verified by our computer simulations.

This paper is organized as follows: a brief description of SMS4 is described in Section 2, some useful
properties of the components of SMS4 related to our fault attack are proved in Section 3. Fault model
and attack procedure are proposed in Section 4. Section 5 includes some simulation results of our fault
attack on SMS4. Finally, Section 6 concludes this paper.

2 Description of SMS4 Algorithm

2.1 Notation

The following notations are used throughout this paper.
– F2 denotes the finite field with elements 0 and 1.
– F8

2 denotes the set of 8-bit bytes.
– F32

2 denotes the set of 32-bit words.
– Given a word U ∈ F32

2 , U ≪ n denotes left rotation of U by n bits.
– Any word U ∈ F32

2 can be divided into four bytes (u0, u1, u2, u3), where ui ∈ F8
2, i = 0, 1, 2, 3.

– #Ω represents the cardinality of the set Ω.

2.2 Encryption and Decryption

SMS4 is a 128-bit block cipher with 128-bit key length. It iterates a simple round function 32 times.
The encryption and decryption of SMS4 share the same procedure except that the round sub-keys for
decryption are used in the reverse order. The overall structure of SMS4 is depicted in Fig.1 and the
encryption procedure is described below.
1. The 128-bit plaintext is divided into four 32-bit words (X0, X1, X2, X3).
2. For i = 0 to 31, the words are updated according to the following rule:

(Xi, Xi+1, Xi+2, Xi+3) 7→ (Xi+1, Xi+2, Xi+3, Xi+4)
Xi+4 = Xi ⊕ F (Xi+1 ⊕Xi+2 ⊕Xi+3, RKi)

where F : F32
2 × F32

2 → F32
2 is the round function and RKi is the round-key.

3. The ciphertext is obtained through the following switch transform R,

(Y0, Y1, Y2, Y3) = R(X32, X33, X34, X35) = (X35, X34, X33, X32) .

The round function of SMS4, as depicted in Fig. 2, is composed of three parts: the round-key addition
layer σ, the substitution layer τ and the diffusion layer L, which are described as follows:
– The round-key addition σ : F32

2 × F32
2 → F32

2 is simply XORed the input A with a round-key K, i.e.,

σ(A,K) = σ
K

(A) = A⊕K = (a0 ⊕ k0, a1 ⊕ k1, a2 ⊕ k2, a3 ⊕ k3) .

– The non-linear transformation τ : F32
2 → F32

2 applies four S-boxes in parallel. Let B be the output of
τ , and S : F8

2 → F8
2 be an 8× 8 S-box, then

B = τ(A⊕K) ⇔ (b0, b1, b2, b3) = (S(a0 ⊕ k0), S(a1 ⊕ k1), S(a2 ⊕ k2), S(a3 ⊕ k3)) .

– The linear transformation L : F32
2 → F32

2 is defined as follow

C = L(B) = B ⊕ (B ≪ 2)⊕ (B ≪ 10)⊕ (B ≪ 18)⊕ (B ≪ 24) ,

where C is the output of L, B is the input of L as well as the output of τ .
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Fig. 2. The round function F of SMS4

2.3 Key Schedule

SMS4 only supports 128-bit key and its key schedule is similar to the encryption function. A 128-bit
master key is passed to the key schedule to generate 32 words in total for round-keys.

Firstly, the system and fixed parameters are given as follows: the system parameter FK = (FK0, FK1,
FK2, FK3) ∈

(
F32

2

)4 is defined by FK = (0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc), and the
fixed parameter CKi = (CKi,0, CKi,1, . . . , CKi,31) ∈

(
F32

2

)32 is defined by CKi,j = (4i+j)×7(mod 256),
with i = 0, 1, 2, . . . , 31 and j = 0, 1, 2, 3.

Now let the master key be MK = (MK0,MK1,MK2,MK3), then the generation of the round-key
(RK0, RK1, . . . , RK31) can be described as follows:

1. (K0,K1,K2,K3) = (MK0 ⊕ FK0,MK1 ⊕ FK1,MK2 ⊕ FK2,MK3 ⊕ FK3) .
2. For i = 0, 1, . . . , 31,

RKi = Ki+4 = Ki ⊕ L′ ◦ τ (Ki+1 ⊕Ki+2 ⊕Ki+3 ⊕ CKi) ,

where the non-linear transformation function τ(·) is the same as that of the encryption function and the
linear transformation of L′(·) is defined by L′(B) = B ⊕ (B ≪ 13)⊕ (B ≪ 23).

The procedure of the round-key generation indicates that the master key can be easily retrieved from
any four consecutive round-keys.

3 Some Properties of the Components of SMS4

In this section, several properties of the components of SMS4 are studied, which are related to our fault
attack. Their proofs can be found in Appendix A.

Definition 1. (Differential distribution table) Let S : F8
2 → F8

2 be an 8× 8 S-box. Given α, β ∈ F8
2, let

INS(α, β) = {x ∈ F8
2 : S(x)⊕ S(x⊕ α) = β},

NS(α, β) = #{x ∈ F8
2 : S(x)⊕ S(x⊕ α) = β},

then the differential distribution table of S(·) is defined by the table that is composed of all possible
(α, β,NS(α, β)). The row (column) of the table corresponds to α (β), and its entry is NS(α, β).

Proposition 1. For the S-box of SMS4, given any input difference α 6= 0, there exist 127 possible output
differences, of which 1 output difference satisfies NS(α, β) = 4, and each of the other 126 output differences
satisfies NS(α, β) = 2.
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From Definition 1 and Proposition 1, we can apply differential attack to the S-box of SMS4 in the
following model.

Differential Attack Model of the S-box. Given an 8× 8 S-box S(·), let the encryption function be
y = S(x⊕k), where x is the input, k is the encryption key, and y is the output. Assume an adversary could
get an input pair as (x, x∗), however, he only knows the output difference β = y⊕y∗ = S(x⊕k)⊕S(x∗⊕k).
How can he derive the encryption key k or the key candidates from the triplet (x, x∗, β)?

One can refer Appendix B for the detail of the differential attack on an S-box. The key point is
using the concept of differential distribution table, by which one triplet could greatly decrease the key
candidates from 28 to at most 4 (the case for the S-box of SMS4).

In fact, the triplet (x, x∗, β) corresponds to the following equation

S(x⊕ k)⊕ S(x∗ ⊕ k) = β, with k the indeterminate,

by using differential distribution table of S(·), the solution of the above equation could be expressed as

x⊕ INS(x⊕ x∗, β) = {x⊕ z : z ∈ INS(x⊕ x∗, β)},
Thus the candidate set for the right key k is x⊕ INS(x⊕ x∗, β).

Remark 1. To obtain the key candidates in the differential attack model of the S-box, it is natural that
one can try each possible value gk ∈ F8

2, then verifies whether or not S(x⊕ gk)⊕ S(x∗ ⊕ gk) = β. This
brute-force attack would lead to 29 table-lookups. However, if the set INS(α, β), with all possible (α, β),
is stored in a table in advance, a more efficient attack could be applied by using only one table-lookup
as described in Appendix B.

Remark 2. Sometimes, when an adversary faces the above differential attack model of the S-box, the two
inputs (x, x∗) as well as their output difference β are not necessary the exact values, since the triplet
(x, x∗, β), or part of it, may be obtained through a key guess on some known or even guessed values, thus
such triplet should be treated as a random one. In other words, if (x, x∗, β) is obtained through the right
key guess, then it always leads to the set x⊕ INS(x⊕x∗, β) containing the right key. However, if (x, x∗, β)
is obtained through a wrong key guess, it would lead to some other candidate key set, which does not
necessarily contain the right key. Even in some special cases, the random triplet (x, x∗, β) results in an
empty candidate key set which indicates a wrong key guess.

As discussed above, the following situation should be considered: given a random triplet (x, x∗, β),
what’s the property of the solution for the equation S(x⊕ k)⊕S(x∗⊕ k) = β? The following proposition
answers such a question and it describes the average cardinality of the candidate key set if the equation
has any solution.

Proposition 2. Let S(·) be the S-box of SMS4, (x, x∗, β) be a random triplet in F8
2, then the following

results hold:

(1) NS(x ⊕ x∗, β) > 0 is satisfied with probability 0.4942, or in other words, the equation S(x ⊕ k) ⊕
S(x∗ ⊕ k) = β has solutions with probability 0.4942.

(2) If NS(x ⊕ x∗, β) > 0, then the expectation of NS(x ⊕ x∗, β) is 2.0236. That is to say, if S(x ⊕ k) ⊕
S(x∗ ⊕ k) = β has any solution, the expectation of the number of solutions is 2.0236.

Next, we present some properties with the linear transformation L in the diffusion layer. We mainly
discuss its differential brunch number and inversion expression.

Definition 2. (Differential branch number) Let L : F32
2 → F32

2 be a linear transformation, W (·) denote
the byte weight function, that is the number of non-zero bytes, then the differential branch number of L
is defined by

B(L) = min
a∈ F322 , a 6=0

(W (a) + W (L(a))) .
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Differential branch number is a good concept for measuring the diffusion effect of a transformation.
By computer program, we know that the differential branch number of L in SMS4 is 5, which ensures that
input difference with one non-zero byte will lead to output difference with four non-zero bytes. Moreover,
if B(L) = 5, by Def. 2, one can easily proof that B(L−1) = 5, where L−1 denotes the inversion of L,
whose expression is deduced by the following proposition.

Proposition 3. The inversion of the linear transformation L(·) of SMS4 has the following expression:

L−1(C) = C ⊕ (C ≪ 2)⊕ (C ≪ 4)⊕ (C ≪ 8)⊕ (C ≪ 12)⊕ (C ≪ 14)
⊕ (C ≪ 16)⊕ (C ≪ 18)⊕ (C ≪ 22)⊕ (C ≪ 24)⊕ (C ≪ 30).

By the expression of L−1, the differential attack on the S-box can be easily extended to the round
function F (A,K) = L◦τ ◦σ

K
(A), since from the output difference of F , one can easily deduce the output

difference of τ , thus he can apply differential attack to each S-box independently.

4 Proposed DFA Attack on SMS4

In this section, we firstly summarize previous fault attacks on SMS4, then propose our fault attack,
including the fault model, main idea, attack procedure and complexity analysis.

4.1 Previous DFA Attacks on SMS4

Several DFA attacks on SMS4 are reported in the literature and we summarize them as follows:
The first fault attack on SMS4 was proposed in [31]. By using the byte-oriented model, the 128-bit

key could be recovered with 32 faults ideally. The deficiency of such attack is that it can only recover the
same round-key when injecting faults in some round. Moreover, at least two faults are needed to deduce
one byte of the round-key in their attack model, thus decreasing the efficiency of fault injections.

An improved fault attack on SMS4 was presented in [18]. By injecting random byte faults into some
word at the input of the 29-th and 27-th round respectively, the authors claimed that the 128-bit key
could be derived efficiently through 2 faults. This improved attack is mainly based on the maximum
diffusion property of the linear transform. However, to uniquely deduce the right key, in fact, at least 4
faults are needed in their attack model [19].

Another kind of fault attack [20] on SMS4 is based on injecting faults into the key schedule of SMS4.
After carefully studying the property of the round-key generation, the authors proved that 8 or 32 faults
are needed to retrieve the master key according to different fault injection points.

4.2 Fault Model and Main Idea

Our proposed fault attack adopts the byte-oriented model, more precisely, it uses the following realistic
assumptions:

– The adversary can obtain a pair of correct and faulty ciphertexts both corresponding to the same
plaintext and the unknown key.

– The adversary knows the area of the fault injection, e.g. he could inject a random byte fault into the
first, second, third or fourth word at the input of the 28-th round.

– The adversary does not know either the location of the byte in the word or the value of the fault.

All previous fault attacks on SMS4 are based on the differential attack on the S-box as described in
Appendix B, thus by injecting sufficient faults, the last four round-keys could be uniquely retrieved. The
main idea of our proposed attack, however, is only to deduce the candidates for the last four round-keys,
then a brute-force attack is needed to find the right one. The attack procedure is briefly described as
follows:
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– Randomly choose a plaintext, obtain the correct ciphertext.
– For the same plaintext, inject a random byte fault into either the second, third or fourth word at the

input of the 28-th round, and obtain the faulty ciphertext.
– According to the cipher’s structure, apply the basic attack of the round function, as will be described

later, to the 32-nd, 31-st, 30-th, and 29-th round in sequence, obtain the last four round-key candi-
dates.

– Apply brute-force attack on these candidates to retrieve the master key.

4.3 Attack Procedure

In this subsection, we describe the detailed procedure of the proposed fault attack on SMS4. Without
loss of generality, assume a random byte fault occurs at the fourth word of the 28-th round (Faults occur
at the second or third word are similar to analyze). As shown in Fig.3, this new attack applies differential
attack to the last 4 rounds of SMS4, and can reduce the key space from 2128 to 222.11 on average, thus
an exhaustive search is feasible.

Firstly, we introduce the following basic attack of the round function. For convenience, given a word
U = u0‖u1‖u2‖u3 ∈ F32

2 , with each ui ∈ F8
2 and ‖ the concatenation, we will use (U)i to denote the

calculation of the i-th byte from U , i.e., (U)i = ui.

Basic Attack of the Round Function1. Given the round function of SMS4 as F (A,K) = L◦τ ◦σ
K

(A),
assume the adversary obtains a 32-bit triplet (A,A∗,∆C), where (A,A∗) is the input pair for F and ∆C
is the the output difference. Both (A,A∗) and ∆C can be either the known values (exact) or guessed
values (obtained from “other round” key candidate). The following basic attack of the round function
could be applied to retrieve the round-key candidate set 〈K〉 and meanwhile reduce the size of possible
values for the “other round” key candidate, by which this triplet is obtained.

1. Compute ∆B = L−1(∆C).
2. For i = 0, 1, 2, 3, calculate

(a) ai = (A)i, a∗i = (A∗)i, ∆bi = (∆B)i ;
(b) 〈ki〉 = ai ⊕ INS(ai ⊕ a∗i ,∆bi) ;

3. If for each i ∈ {0, 1, 2, 3}, 〈ki〉 6= ∅, then the round-key candidate set must be 〈K〉 = 〈k0〉‖〈k1〉‖〈k2〉‖〈k3〉
, { gk0‖gk1‖gk2‖gk3 : gki ∈ 〈ki〉 }.

4. If there exists some i ∈ {0, 1, 2, 3}, such that 〈ki〉 = ∅, then this triplet (A,A∗,∆C) indicates no key
candidates, i.e., the round-key candidate set 〈K〉 = ∅. Meanwhile, this also implies that the guessed
key (“other round” key candidate), by which this triplet (A,A∗,∆C) is obtained, is incorrect.

According to Proposition 2, given a 32-bit random triplet (A,A∗,∆C) for the round function F , the
following results hold:

– The above attack will output a non-empty round-key candidate set 〈K〉 with probability 0.49424 ≈(
2−1.107

)4 = 2−4.068. This implies that the size of the guessed keys (“other round” key candidates),
by which this triplet is obtained, could be reduced about 2−4.068.

– If there exists any round-key candidate, the expectation value of #〈K〉 is 2.02364 ≈ (
21.017

)4 = 24.068.

To further facilitate the analysis of our fault attack, the following notations are needed: Ai, Bi and
Ci denote the 32-bit input of the round function F in the i-th round, 32-bit output of the non-linear
function τ(·) and 32-bit output of the linear function L(·) in the i-th round, where i = 1, 2, . . . , 32. For
any word of the correct intermediate state, say W , W ∗ denotes the counterpart of the faulty intermediate
state, and ∆W denotes their difference, i.e., ∆W = W ⊕W ∗. Moreover, 〈RKi, RKi−1, . . . , RKj〉 denotes
the candidate set for round-keys RKi, RKi−1, . . ., RKj , where 0 ≤ j ≤ i ≤ 31.

Now the detailed attack procedure is described in the following three steps:
1 The idea of this basic attack of the round function is the same as described in [30]. Note that the concept of

differential distribution table of the S-box is used to significantly reduce the time complexity of the attack.
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Step 1. Obtain the correct and faulty ciphertext. Randomly choose a plaintext X = (X0, X1, X2, X3),
and obtain the correct ciphertext Y = (Y0, Y1, Y2, Y3) under the unknown master key MK. Assume the
round-keys generated by MK is RKi, where i = 0, 1, . . . , 31. For the same plaintext and the unknown
key, inject a random byte fault into the fourth word at the input of the 28-th round (The word is X30),
obtain the fault ciphertext Y ∗ = (Y ∗

0 , Y ∗
1 , Y ∗

2 , Y ∗
3 ).

Step 2. Deduce 〈RK31,RK30,RK29,RK28〉. Due to the switch transformation, (X32, X33, X34, X35) =
(Y3, Y2, Y1, Y0) and (X∗

32, X∗
33, X∗

34, X∗
35)=(Y ∗

3 , Y ∗
2 , Y ∗

1 , Y ∗
0 ), thus both the correct and faulty 4-word

outputs after the 32-nd encryption are known. For this pair, by using the technique of differential attack,
get the round-key candidates for the 32-nd, 31-st, 30-th and 29-th rounds in sequence as shown in the
following way.

Let Ψ = {(δ, 0, 0, 0), (0, δ, 0, 0), (0, 0, δ, 0), (0, 0, 0, δ) : 0 6= δ ∈ F8
2} be the set that contains all possible

values of random byte faults that occurs in ∆X30 at the input of the 28-th round, thus #Ψ = 255× 4 =
1020.

Since a random byte fault is induced into X30 at the input of the 28-th round, we have

∆X27 = ∆X28 = ∆X29 = 0, and ∆X30 ∈ Ψ.

Thus, the input difference of the 28-th round function is

∆A28 = ∆X28 ⊕∆X29 ⊕∆X30 = ∆X30 ∈ Ψ,

after passing through the substitution layer,

∆B28 ∈ Ψ.

By the cipher’s structure,

∆X31 = ∆X27 ⊕∆C28 = ∆C28 = L(∆B28) .

According the above analysis, we have the following results:

– ∆X30 ∈ Ψ, thus there are at most 1020 possible values for ∆X30.
– ∆X31 = L(∆B31), ∆B31 ∈ Ψ, thus there are at most 1020 possible values for ∆X31.

Now we can describe Step 2 in the following four consecutive sub-steps.

Step 2.1 Deduce 〈RK31〉. Consider the 32-nd round, the correct as well as the faulty input of the
round function F can be calculated as:

A32 = X32 ⊕X33 ⊕X34,

and A∗32 = X∗
32 ⊕X∗

33 ⊕X∗
34.

Meanwhile, the output difference of F is

∆C32 = ∆X31 ⊕∆X35.

Use all possible triplets (A32, A
∗
32,∆C32) to apply the basic attack on the 32-nd round function, obtain

the candidate set 〈RK31〉.
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Step 2.2 Deduce 〈RK31, RK30〉. For each gk31 ∈ 〈RK31〉, “decrypt” the ciphertext pair by one round
and obtain:

X31 = X35 ⊕ F (X32 ⊕X33 ⊕X34, gk31), X∗
31 = X∗

35 ⊕ F (X∗
32 ⊕X∗

33 ⊕X∗
34, gk31),

Consider the 31-st round, calculate 2 :

A31 = X31 ⊕X32 ⊕X33,

A∗31 = X∗
31 ⊕X∗

32 ⊕X∗
33,

and ∆C31 = ∆X30 ⊕∆X34.

Use all possible triplets (A31, A
∗
31,∆C31) to apply the basic attack on the 31-st round function, obtain

the candidate set 〈RK31, RK30〉.

Step 2.3 Deduce 〈RK31,RK30,RK29〉. For each (gk31, gk30) ∈ 〈RK31, RK30〉, “decrypt” the cipher-
text pair by two rounds and obtain:

X31 = X35 ⊕ F (X32 ⊕X33 ⊕X34, gk31), X∗
31 = X∗

35 ⊕ F (X∗
32 ⊕X∗

33 ⊕X∗
34, gk31),

X30 = X34 ⊕ F (X31 ⊕X32 ⊕X33, gk30), X∗
30 = X∗

34 ⊕ F (X∗
31 ⊕X∗

32 ⊕X∗
33, gk30),

Consider the 30-th round, calculate :

A30 = X30 ⊕X31 ⊕X32,

A∗30 = X∗
30 ⊕X∗

31 ⊕X∗
32,

and ∆C30 = ∆X29 ⊕∆X33 = ∆X33.

Apply the basic attack on the 30-th round function via (A30, A
∗
30,∆C30), obtain the candidate set

〈RK31, RK30, RK29〉.

Step 2.4 Deduce 〈RK31,RK30,RK29, RK28〉. For each (gk31, gk30, gk29) ∈ 〈RK31, RK30, RK29〉,
“decrypt” the ciphertext pair by three rounds and obtain:

X31 = X35 ⊕ F (X32 ⊕X33 ⊕X34, gk31), X∗
31 = X∗

35 ⊕ F (X∗
32 ⊕X∗

33 ⊕X∗
34, gk31),

X30 = X34 ⊕ F (X31 ⊕X32 ⊕X33, gk30), X∗
30 = X∗

34 ⊕ F (X∗
31 ⊕X∗

32 ⊕X∗
33, gk30),

X29 = X33 ⊕ F (X30 ⊕X31 ⊕X32, gk29), X∗
29 = X∗

33 ⊕ F (X∗
30 ⊕X∗

31 ⊕X∗
32, gk29),

Consider the 29-th round, calculate :

A29 = X29 ⊕X30 ⊕X31,

A∗29 = X∗
29 ⊕X∗

30 ⊕X∗
31,

and ∆C29 = ∆X28 ⊕∆X32.

Apply the basic attack on the 29-th round function via (A29, A
∗
29,∆C29), obtain the candidate set

〈RK31, RK30, RK29, RK28〉.

Step 3. Retrieve the master key MK. According to the key schedule, we use each possible 4-word
round-key candidate after Step 2 to decrypt the right ciphertext Y , then check whether the plaintext
is X. Through a brute-force attack, there will be only one 4-word round-key candidate surviving the
filtration, in which case, the master key MK can be easily deduced via key schedule (If not the case, try
another plaintext/ciphertext pair to verify).
2 Both X31 and X∗

31 (thus A31 and A∗31) are guessed values and they are not necessary the correct and faulty
words unless the guessed round-key gk31 is RK31, the same case also exists for some other intermediate states
in the following sub-steps.
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4.4 Complexity Analysis

As described in Section 4.3, to recover the master key MK, a brute-force attack is needed, thus we have
to evaluate the expected value of the size of the round-key candidate set 〈RK31, RK30, RK29, RK28〉
derived from Step 2.

Expected value of #〈RK31〉 after step 2.1. Consider the triplet (A32, A∗32, ∆C32) for the 32-nd
round function, since ∆B28 ∈ Ψ, ∆X31 = L(∆B28), and ∆C32 = ∆X31 ⊕∆X35, we have

∆B32 = L−1 (∆C32) = L−1(∆X31)⊕ L−1(∆X35) = ∆B28 ⊕ L−1(∆X35).

Calculate L−1(∆X35) = L−1(X35⊕X∗
35) , (d0, d1, d2, d3), where d0, d1, d2, d3 ∈ F8

2. Let 0 6= γ ∈ F8
2, thus

∆B32 must be one of the following 4 kinds of differences (in total there are 1020 possible values):

(γ ⊕ d0, d1, d2, d3) (1)
( d0, γ ⊕ d1, d2, d3) (2)
( d0, d1, γ ⊕ d2, d3) (3)
( d0, d1, d2, γ ⊕ d3) (4)

Let ∆A32 = ((∆A32)0 , (∆A32)1 , (∆A32)2 , (∆A32)3) , (α0, α1, α2, α3), since for each 0 ≤ i ≤ 3, both αi

and di are known, one can check whether or not NS(αi, di) > 0. Noting that ∆A32 (resp. ∆B32) is the
input (resp. output) difference of the non-linear transformation τ(·) in the 32-nd round, thus there exist
at lest three pairs of (αi, di) satisfying NS(αi, di) > 0. Without loss of generality, assume

NS(α0, d0) > 0,NS(α1, d1) > 0,NS(α2, d2) > 0,

so next, the adversary checks whether or not NS(α3, d3) > 0:

– If NS(α3, d3) = 0, then differences corresponding to (1)(2)(3) should be discarded, which implies that
the number of possible values of ∆B32 is 255 and that the exact position of the fault is the fourth
byte of X30. In this situation, the basic attack of the 32-nd round will return (2.0236)3× 28 = 211.051

round-key candidates on overage.
– If NS(α3, d3) > 0, then the number of possible values of ∆B32 is 1020. Thus the basic attack of the

32-nd round will return (2.0236)3 × (28 − 2.0236)× 4 = 213.039 round-key candidates on overage.

Now by Proposition 2, we can conclude that the expected value of #〈RK31〉 after Step 2.1 is 0.4942 ×
213.039 + (1− 0.4942)× 211.051 ≈ 212.353.

Expected value of #〈RK31, RK30〉 after step 2.2. For each candidate key gk31 ∈ 〈RK31〉, we obtain
the guessed triplet (∆A31,∆A∗31,∆C31) to apply the basic attack of the 31-st round function. This would
decrease the size of the possible round-key candidates for the 32-nd round, the detailed analysis is as
follows:

By ∆C31 = ∆X30 ⊕∆X34, we have

∆B31 = L−1(∆C31) = L−1(∆X30)⊕ L−1(∆X34).

Since ∆X34 is known, so is L−1(∆X34). Moreover, ∆X30 ∈ Ψ indicates that L−1(∆X30) has four non-zero
bytes. Now according to the value of #〈RK31〉, we can analyze this situation in the following two cases:

– If #〈RK31〉 = 211.051, then the number of possible values of ∆X30 is 255, thus the expected value of
#〈RK31, RK30〉 after this step is 211.051 × 2−4.068 × 24.068 × 255 = 219.045.

– If #〈RK31〉 = 213.039, then the number of possible values of ∆X30 is 1020, thus the expected value
of #〈RK31, RK30〉 after this step is 213.039 × 2−4.068 × 24.068 × 1020 = 223.033.

In total, we conclude that the expected value of #〈RK31, RK30〉 after this step is 0.4942× 223.033 + (1−
0.4942)× 219.045 ≈ 222.11.
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Expected value of #〈RK31, RK30, RK29〉 after step 2.3. As discussed in Step 2.3, the expected
value of #〈RK31, RK30, RK31〉 after this step is 0.4942×223.033×2−4.068×24.068 +(1−0.4942)×219.045×
2−4.068 × 24.068 ≈ 222.11.

Expected value of #〈RK31, RK30, RK29, RK28〉 after step 2.4. As discussed in Step 2.4, the
expected value of #〈RK31, RK30, RK29, RK28〉 after this step is 0.4942 × 223.033 × 2−4.068 × 24.068 ×
2−4.068 × 24.068 + (1− 0.4942)× 219.045 × 2−4.068 × 24.068 × 2−4.068 × 24.068 ≈ 222.11.

5 Simulation Results

We implement our proposed DFA attack on SMS4 in C++ code and execute it on a PC with Intel
Pentium 1.80 GHz processor. Our simulation experiment is based on 1000 samples and the plaintext as
well as the master key in each attack are randomly generated. The distributions of exhaustive search bits
after each sub-steps in Step 2 are depicted in Fig.4.

Our experimental result indicates that the average bit space for brute-force search after each sub-steps
in step 2 is well agreed with the previous theoretical predications.
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6 Conclusion

In this paper, we present a new DFA attack on SMS4 using a single fault. We show that if a random byte
fault is injected into either the second, third or fourth word at the input of the 28-th round, the 128-bit
master key could be retrieved by applying an exhaustive search of 22.11 bits on average. Table 1 lists
our work compared with previous fault attacks on SMS4 and Table 2 is the comparison of detailed fault
injection points with different attack scenarios. These results indicate that SMS4 can be broken easily
using fault based method, thus cryptographic devices supporting SMS4 should be carefully protected.

It should be pointed out that our proposed fault attack can be extended to a more generalized
case. Any block cipher that employs a similar structure and an SPN-style round function as that of
SMS4 could be suffered from our attack. Assume such a block cipher contains n sub-blocks with n ≥ 2
(n = 2 corresponds to Feistel structure), by injecting a random byte fault into either the second, third,
. . . , or n-th word register at the input of the last (n + 1)-th round, the expected number of round-key
candidates for the last n rounds could be significantly reduced. Even if the linear transformation of the
round function is not optimal (i.e., the differential branch number of the linear transformation does not
achieve the maximum), these round-keys could be uniquely determined via a very small quantity of extra
fault injections.

Table 1. Comparison with existing fault attacks

Fault Model Fault Injection No. of Fault No. of Faulty Brute-force Ref.
Region Injection Points Encryptions Attack

Disturb 1 byte Data process 4 32 – [31]
Disturb 1 byte Data process 2 4* – [18, 19]
Disturb 1 byte Key schedule 4 32 – [20]
Disturb 1 byte Key schedule 4 8 – [20]
Disturb 1 byte Data process 1 1 222.11 Sect. 4

* Reference [18] claims that two faults are needed to mount their attack, in fact, at least
4 faults are needed in their attack model [19].

Table 2. Comparison with existing fault attacks by fault locations

32-nd 31-st 30-th 29-th 28-th 27-th Ref.

X32, X33, X34 X31, X32, X33 X30, X31, X32 X29, X30, X31 – – [31]
– – – X28, X29 – X26, X27 [18]

K32, K33, K34 K31, K32, K33 K30, K31, K32 K29, K30, K31 – – [20]
K31 K30 K29 K28 – – [20]
– – – – X28, X29, X30 – Sect. 4
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A Proofs of the Propositions in Sect. 3

A.1 Proof of Proposition 1

According to [17], the S-box of SMS4 is affine equivalent to the patched multiplicative inverse over GF (28),
say I(·), thus the differential property of S(·) is the same as that of I(·).

By Proposition 6 of [24], for any given 0 6= α ∈ GF (28),

NI(α, β) =

{
0 or 2 if β 6= α−1

4 if β = α−1

Moreover, if β 6= α−1, then NS(α, β) = 2 iff Tr
(
(αβ)−1

)
= 0. Here Tr(·) denotes the trace map of F28

over F2. Since the trace map is a balanced function, the number of β such that Tr
(
(αβ)−1

)
= 0 is 128.

Excluding β = 0 and β = α−1, we conclude that there are 126 possible β satisfying NS(α, β) = 2. ut

A.2 Proof of Proposition 2

(1) If x = x∗, then the equation has 256 solutions; if x 6= x∗, let α = x⊕x∗, by Proposition 1, the possible
values of ∆ such that NS(α, β) > 0 is 127 and in this case the equation will have solutions. Thus the
equation has solutions with probability

256 + 256× 255× 127
28 × 28 × 28

≈ 0.4942.

(2) From the result of (1) and the differential distribution table of S, when the equation S(x⊕k)⊕S(x∗⊕
k) = β has solutions, the expectation of the number of solutions can be calculated as follow

256× 256 + 256× 255× (126× 2 + 1× 4)
256 + 256× 255× 127

≈ 2.0236.

ut

A.3 Proof of Proposition 3

Let F2[x] denote the polynomial ring over F2. Consider F2[x]/(x32 ⊕ 1) as the residue class of the ring
F2[x] modulo the ideal (x32 ⊕ 1). For each

B = (B31, B30, . . . , B1, B0) ∈ F32
2 ,

there exists a corresponding element

B(x) = B31x
31 ⊕B30x

30 ⊕ . . .⊕B1x⊕B0 ∈ F2[x]/(x32 ⊕ 1),

i.e., a polynomial with degree no more than 32 and vice versa.
Since B ≪ i is equivalent to B(x) · xi (mod x32 ⊕ 1), by the definition of L(·), let l(x) = 1 ⊕ x2 ⊕

x10 ⊕ x18 ⊕ x24, then we can build the following relationship between L(·) and L(·):
L : F32

2 → F32
2 ⇔ L : F2[x]/(x32 ⊕ 1)

l l
B 7→ L(B) ⇔ B(x) 7→ L(B(x)) = B(x) · l(x) (mod x32 ⊕ 1)
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Notice that x = 1 is not the solution of the equation l(x) = 0, which implies that x ⊕ 1 - l(x). Since
x32 ⊕ 1 = (x⊕ 1)32, we have gcd(l(x), x32 ⊕ 1) = 1. Thus there exists l−1(x) ∈ F2[x]/(x32 ⊕ 1), such that

l(x) · l−1(x) ≡ 1 (mod x32 ⊕ 1).

By the extended Euclid algorithm,

l−1(x) = 1⊕ x2 ⊕ x4 ⊕ x8 ⊕ x12 ⊕ x14 ⊕ x16 ⊕ x18 ⊕ x22 ⊕ x24 ⊕ x30.

From the relationship between the L(·) and L(·), the concrete expression of L−1(·) can be easily deduced
as follow

L−1(C) = C ⊕ (C ≪ 2)⊕ (C ≪ 4)⊕ (C ≪ 8)⊕ (C ≪ 12)⊕ (C ≪ 14)
⊕ (C ≪ 16)⊕ (C ≪ 18)⊕ (C ≪ 22)⊕ (C ≪ 24)⊕ (C ≪ 30),

which ends the proof. ut

B Differential Attack on an S-box

In this appendix, we describe how to apply differential attack on an 8 × 8 S-box S(·) from a triplet
(x, x∗, β), where β = S(x ⊕ k) ⊕ S(x∗ ⊕ k) and k is the encryption key. One can also refer [5] for the
detail of differential attack on the S-box of DES.
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Fig. 5. Differential attack on the S-box

Let α = x⊕x∗, β = y⊕y∗, since z⊕z∗ = (x⊕k)⊕ (x∗⊕k) = x⊕x∗ = α, then S(x⊕k)⊕S(x∗⊕k) =
β ⇔ S(z) ⊕ S(z ⊕ α) = β, with z = x ⊕ k, thus if the adversary firstly store the set INS(α, β), with all
possible (α, β), in advance, he could do the following attack procedure:

1. Set Ω = F8
2.

2. According to the differential distribution table of the S-box,

x⊕ k = z ∈ INS(α, β) .

Thus, the right key k must be in

x⊕ INS(α, β) = {x⊕ z : z ∈ INS(α, β)} .

Set Ω = Ω ∩ (x⊕ INS(α, β)), go to step 3.
3. If #Ω = 1, then the right key k is uniquely deduced. Otherwise, obtain another triplet (x, x∗, β), and

go to step 2.

Notice that, the number of triplets (x, x∗, β) that are needed to uniquely determine the encryption
key k is significantly related to the differential distribution table of the S-box. If only one triplet (x, x∗, β)
can be obtained, the adversary only gets the key candidate set x⊕ INS(x⊕x∗, β). If another triplet could
be obtained, however, its input difference is the same as the fore triplet, then these two triplets could not
retrieve the unique key all the same. In other words, in this case, at least two key candidates will be left.
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