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Abstract

In the paper on the example of the cryptosystem DES, the success-
ful method of a cryptanalysis is presented. As a result, it is offered as
a criterion of the cryptographic security to use a complexity of build-
ing and solving the system of Boolean functions, describing the cipher
construction procedure.
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Introduction

In the modern encryption systems it is assumed that a plaintext M =
(m1, m2, . . . ,mN), a key K = (k1, k2, . . . , kN1) and a ciphertext C = (c1, c2, . . . ,
cN2) are Boolean vectors. Then a map f :

(M ×K1) → C

is called enciphering of the plaintext M with the use of the key K1, and the
backward transformation F :

(C ×K2) → M

is called decryption of the ciphertext C by means of the key K2.
A set of all plaintexts M̃ , a space of the keys K̃, a set of all ciphertexts

C̃, and also maps f and F form together a cryptosystem.
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A cryptosystem is called symmetric if K1 = K2, and asymmetrical if
K1 6= K2. In last case the key K1 is public, and the key K2 is secret.

As all vectors M , K and C are binary then the maps f and F can be in
each special case be presented by the system of the Boolean functions. In
the case of the map f we have the system:

cj = fj(mi1 , mi2 , . . . ,mip , kr1 , kr2 , . . . , krq), (1)

where 1 ≤ p ≤ N , 1 ≤ q ≤ N1 j = 1, 2, . . . , N2.
The use of several keys, obviously, does not change the done conclusion,

because they can be considered as parts of one (hyper) key. Thus, each
ciphertext C is assigned the system of N2 of Boolean functions (1). Such
system of the Boolean functions will be called direct for the given cryptosys-
tem. For example, for the cryptosystem DES, the built system will have
64+56+64=184 variables.

From other side, the map F , obviously, also in each special case is assigned
the system of N of Boolean functions:

mi = Fi(cj1 , cj2 , . . . , cjs , kr1 , kr2 , . . . , krq), (2)

where 1 ≤ s ≤ N2, 1 ≤ q ≤ N1 i = 1, 2, . . . , N
Thus, the vector M of plaintext is assigned the system of N of Boolean

functions. Such system of the Boolean functions will be called inverse for
the given cryptosystem.

At the building of any cryptosystem, a central problem is its crypto-
graphic security. Cryptographic security of a cryptosystem is defined as a
complexity of solution of the problem for finding its secret key K. Suppose
that the cryptosystem is not secure if for finding the key it is required to
execute less 280 operations (see [9]) at enough hard conditions [8]:

(10) algorithms of enciphering and decryption (the maps f and F ) are
known;

(20) there are a specimen of the plaintext and the corresponding ciphertext.

The purpose of this paper is to show on the example of successful crypto-
analysis of the cryptosystem DES that if on basis of algorithms of enciphering
and decryption for the analyzing cryptosystem there is possibility for reason-
able time to build the systems of Boolean functions (1) and (2), at the same
conditions (10) and (20), then such cryptosystem is not secure. Therefore, it
is expedient as one of criterions of cryptographic security to use a complexity
of building and solving of the system of Boolean functions (1) and/or (2).

Note that the solution of the systems (1) and (2), obviously, exists and it is
unique for cryptosystem DES at the given conditions. Also, the cryptosystem
DES was picked exceptionally as a demonstration model.
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1 Features of a logical cryptanalysis

Record of transformations, related to the construction of ciphertext as a
system of Boolean functions, certainly, is not newly. So, the first time C.E.
Shannon [7] was specified that the value of the cryptosystem key can be
found as solving a system of nonlinear equations.

The most fundamentally, such approach was examined, mainly, in works
of N. Courtois and other authors (see, for example, [1], [2], [3]). The offered
approach, named an algebraic attack, generated the series of researches of
constructing of nonlinear Boolean functions (bent-functions) for providing
of safety of a cryptosystem. Unfortunately, this approach did not avoid a
necessity to execute enumeration of possibilities at the search of solution of
the built system of equations.

We offer the new approach to a logical cryptanalysis. If the algebraic
attack tries to use the classic methods of solution of the systems of non-
linear equations, our method uses the tools of discrete mathematics. The
characteristic feature of our approach is simplicity.

In the examined cryptosystem, the input vector is subjected to transfor-
mation in iteration (round). Each transformation, allowing obtaining a new
Boolean vector, makes the stage of the iteration. In accordance with it, we
divide an iteration of data conversions on the stages (see Fig. 1).

- E1
- E2

- - Ep
-

Iteration

Fig. 1: Stages of data conversions on single iteration

The input of each stage be a Boolean vector X, the components of which
we examine as Boolean variables. The output of any stage also be a Boolean
vector Y , the components of which are examined as values of a system of
Boolean functions. Solving such system of Boolean functions, we will find
values components of the vector X, which, in turn, are examined as values
of the system of Boolean functions, describing the previous stage of data
conversion.

All Boolean functions we record in the perfect conjunctive normal form
(CNF), consisting of elementary disjunctions. (We will remind that each ele-
mentary disjunction in the perfect CNF contains all variables of the Boolean

3



function and includes single literals only, i.e. variables with negation (x̄) and
without negation (x)).

Sequence of consideration of the systems of Boolean functions, which
describe data conversion on each stage, is inverted their succession in the
iteration. That is, at first we examine the system of Boolean functions, which
describe the last stage Ep. We find the solution of such system. Then, we
examine a system, which describe the stage Ep−1, and so on. We complete
calculation of the current iteration by consideration and by solving of the
proper system of Boolean functions, which describe the first stage of the
current iteration.

The sequence of iterations is also examined in an order, inverted their
executing.

The accepted approach to the analysis of cryptosystem allows using the
effective method of solution of the system of Boolean functions. It consists
of the following.

The system of Boolean functions is assigned an undirected graph. Then
the maximum independent set of such graph determines a solution of the
examined system. Although, in general case, the problem of finding the
maximum independent set of a graph is NP-complete, the features of the
built graphs in cryptosystem DES allow to use a simple solution algorithm,
which being not faithful theoretically in general case.

Thus, the key moments of the offered method of cryptanalysis consist of
the following.

1. Consider an iteration (round) of data conversion in examined cryp-
tosystem in an order, inverted their succession.

2. Divide an iteration of data conversion on the stages. Each stage deter-
mines a transformation Boolean vector in other one. Such transforma-
tion is elementary in that sense, that the obtaining some intermediate
vectors is not foreseen in it.

3. Consider each stage in an order, inverted their succession in the current
iteration.

4. Record the system of Boolean functions, describing the examined stage.

5. Build the appropriate undirected graph if the system of Boolean func-
tions is not the simple renaming of variables (by permutation of com-
ponents of a Boolean vector).
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6. Find the maximum independent set in the built graph. Record the
obtained solution as the output value of Boolean vector of the previous
stage.

7. Go to examination of the previous stage.

2 Estimation of construction complexity for

the Boolean functions in DES

We will analyze the cryptosystem DES.
DES is the block ciphering system, in which a plaintext (in binary presen-

tation) is broken on 64-bits blocks, each of which is subjected to enciphering.
The following operations are used in the enciphering process of the crypto-
system DES: a permutation of block bits, bit-by-bit addition modulo 2 and
the constructing the system of Boolean functions by S-boxes (within the
Feistel cipher construction). If the permutation of bits determines the list
of variables of the Boolean functions then addition modulo 2 (the Boolean
function of nonequivalence) and S-boxes determine type of the formed system
of functions.

As DES is a symmetric cryptosystem, it is enough for its analysis to
consider the direct system of Boolean functions (1). To have an evident
picture of forming this system in the enciphering process, we will consider as
it can be built for the cryptosystem DES (see [10]).

It is convenient to examine a vector Ci = (ci
1, c

i
2, . . . , c

i
64) as a result of

execution of i-th iteration of the enciphering process. The vector Ci is also
by an input vector for executing (i+1)-th iteration. An output vector of this
iteration is a vector Ci+1 = (ci+1

1 , ci+1
2 , . . . , ci+1

64 ) (i = 0, 1, 2, . . . , 15). Here
C0 = M is a plaintext, and C16 = C is a ciphertext. Then each component
ci+1
q (q = 1, 2, . . . , 64) of the vector Ci+1 be a function of components of the

vector Ci and the vector of the key Ki+1. Therefore

Ci+1 = f(Ci, Ki+1), (i = 0, 1, 2, . . . , 15). (3)

We will examine a system of the Boolean functions is formed by the S1-
box. The S1-box as well as other seven boxes will transform six input bits
in four bits, that is, this box can be presented by a combinational circuit,
having six inputs and four outputs (Fig. 2).

Thus, each output variable yj (j = 1, 2, 3, 4) of this circuit can be pre-
sented as a Boolean function of variables x1, x2, x3, x4, x5, x6.

Each S-box in the cryptosystem DES can be given by (4 × 16)-matrix.
So, the matrix of the S1-box has the following kind:
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S1

-x6

-x5

-x4

-x3

-x2

-x1

- y4

- y3

- y2

- y1

Fig. 2: Circuit of a S-box

No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

The first column of this matrix presents values of variables x1 and x2,
analogously the first row of the matrix presents the values of variables x3,
x4, x5 and x6, are read as a binary notation of the decimal number. Each
element of the matrix is also read as binary notation of values of variables
y1, y2, y3 y4.

The Karnaugh diagrams for the S1-box are presented on Fig. 3.
Notice that the number of unities and zeros in each diagram equally and

equals 32, i.e. each output function of y1, . . . , y4 takes on a unity value
exactly on the half of sets of values of input variables x1, . . . , x6. Therefore
complexity of the perfect conjunctive normal form (PCNF) for a function
and its negation will be equal.

We will write down the perfect conjunctive normal form (PCNF) of the
output function y1:
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Fig. 3: Karnaugh diagrams for outputs of the S1-box
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y1 = (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x̄5 ∨ x6)(x1 ∨ x2 ∨ x3 ∨ x̄4 ∨ x̄5 ∨ x6)(x̄1 ∨ x2 ∨ x̄3 ∨ x4 ∨ x5 ∨ x6)&
(x1 ∨ x̄2 ∨ x3 ∨ x4 ∨ x5 ∨ x6)(x1 ∨ x̄2 ∨ x3 ∨ x̄4 ∨ x5 ∨ x6)(x1 ∨ x̄2 ∨ x̄3 ∨ x̄4 ∨ x5 ∨ x6)&
(x1 ∨ x̄2 ∨ x̄3 ∨ x̄4 ∨ x̄5 ∨ x6)(x1 ∨ x̄2 ∨ x̄3 ∨ x4 ∨ x5 ∨ x6)(x1 ∨ x̄2 ∨ x3 ∨ x4 ∨ x̄5 ∨ x̄6)&
(x1 ∨ x̄2 ∨ x̄3 ∨ x̄4 ∨ x5 ∨ x̄6)(x1 ∨ x̄2 ∨ x̄3 ∨ x4 ∨ x̄5 ∨ x̄6)(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x̄6)&
(x1 ∨ x2 ∨ x3 ∨ x̄4 ∨ x̄5 ∨ x̄6)(x1 ∨ x2 ∨ x3 ∨ x̄4 ∨ x5 ∨ x̄6)(x1 ∨ x2 ∨ x̄3 ∨ x̄4 ∨ x̄5 ∨ x̄6)&
(x1 ∨ x2 ∨ x̄3 ∨ x4 ∨ x̄5 ∨ x̄6)(x̄1 ∨ x2 ∨ x3 ∨ x̄4 ∨ x̄5 ∨ x̄6)(x̄1 ∨ x2 ∨ x̄3 ∨ x̄4 ∨ x5 ∨ x̄6)&
(x̄1 ∨ x2 ∨ x̄3 ∨ x̄4 ∨ x̄5 ∨ x̄6)(x̄1 ∨ x2 ∨ x̄3 ∨ x4 ∨ x5 ∨ x̄6)(x̄1 ∨ x̄2 ∨ x3 ∨ x4 ∨ x5 ∨ x̄6)&
(x̄1 ∨ x̄2 ∨ x3 ∨ x̄4 ∨ x5 ∨ x̄6)(x̄1 ∨ x̄2 ∨ x̄3 ∨ x̄4 ∨ x5 ∨ x̄6)(x̄1 ∨ x̄2 ∨ x̄3 ∨ x4 ∨ x̄5 ∨ x̄6)&
(x̄1 ∨ x̄2 ∨ x3 ∨ x̄4 ∨ x̄5 ∨ x6)(x̄1 ∨ x̄2 ∨ x̄3 ∨ x̄4 ∨ x5 ∨ x6)(x̄1 ∨ x̄2 ∨ x̄3 ∨ x̄4 ∨ x̄5 ∨ x6)&
(x̄1 ∨ x̄2 ∨ x̄3 ∨ x4 ∨ x5 ∨ x6)(x̄1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6)(x̄1 ∨ x2 ∨ x3 ∨ x4 ∨ x̄5 ∨ x6)&
(x̄1 ∨ x2 ∨ x̄3 ∨ x̄4 ∨ x5 ∨ x6)(x̄1 ∨ x2 ∨ x̄3 ∨ x4 ∨ x̄5 ∨ x6).

The output functions of the other S-boxes have analogical kind.
Now we will estimate the construction complexity of the system of Boolean

functions (3) in the cryptosystem DES. Such system is built as a result of ex-
ecuting an iteration of ciphertext construction. Flow-chart of such iteration
is presented on Fig. 4 (see also [10]).

Li+1 = Ri Ri+1 = Li ⊕ f(Ri, Ki+1)

h+ lf�

?

XXXXXXXXXX

?

����������

�

Li = Ri−1 Ri = Li−1 ⊕ f(Ri−1, Ki)

?
Ki+1

? s

Fig. 4: An iteration of DES

We will estimate the construction complexity of the Boolean functions as
the number of elementary operations which must be executed to obtain the
result vector Ci+1 of the vector Ci and the key Ki+1. We suppose that any
indivisible operation is elementary. Such operation is a write operation and
any Boolean operation. As we want to obtain estimation we will coarsen it
toward an increase.

8



So, a 64-bit input vector Ci on (i + 1)-th iteration (i = 0, 1, 2, . . . , 15) is
divided on two 32-bit blocks: left Li and right Ri. The right block Ri forms
the left block of a 64-bit output vector Ci+1, i.e. 32 operations are simply
executed in this case ci+1

q = ci
j (q = 1, 2, . . . , 32; j = 33, 34, . . . , 64). And the

following is executed for forming of the right block of the output vector Ci+1.
The construction of such transformation (the Feistel cipher construction) is
represented on Fig. 5 (see also [10]).

f(R,K) (32 )

�
��
P

?

?

S1 S2 S3 S4 S5 S6 S7 S8

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

?

h+�-

R′ (48 ) K (48 )

�
��
E

?

?

R (32 )

Fig. 5: Forming the cipher function f

Foremost, according to the defined in the cryptosystem rule, a new vector
is formed of 32-bit vector Ri by means of permutation and reiteration some
elements of Ri. The new vector will be designated as R′

i = E(Ri). Clear that
for this purpose it is required to execute 48 operations of assignment. A key
vector is exposed to transformations (see [10]) of shift and permutation. We
will estimate it by the number of operations 2 · 28 + 2 · 28 + 56 = 168 (shifts
of each half of the key and its final permutation). Further, the new vector
R′

i is added (bit-by-bit) modulo 2 with the 48-bit key Ki+1. It requires also
48 operations and it is necessary still to add 48 operations of assignation for
a new result vector. We will designate it through Bi+1.

Then, each 6 bits of vector Bi+1 are processed by the appropriate S-box.
There are only 8 (8 · 6 = 48) such boxes. We have 4 bits of a result of
transformations of 6 bits in each of S-box (see of Fig. 2). Clear, that for the
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construction of Boolean functions on each output of a S-box it is necessary
to examine everything 26 = 64 possible sets of values of variables of each
function. As follows from Fig. 3, a half of these sets are unities (i.e. a function
on such sets is equal to unity). For each zero set (on which a function is equal
to the zero) it is necessary to build the appropriate elementary disjunction (as
it is done at construction of CNF). Length of each disjunction is equal 6 and,
we will suppose that a half of variables in it has negations. Consequently, it
needs to expend 8 operations (for a record of 5 disjunctions and 3 negations)
for making one elementary disjunction.

Because it is needed to write 32 (the number of zero sets) elementary
disjunctions, on the construction of one Boolean function, presenting each
one output of the appropriate S-box, it is required to expend 32 · 8 + 64 =
320 operations. As there are 4 outputs the same S-box it is necessary to
execute 320 · 4 = 1280 operations. In the total, for the construction of
Boolean functions for all 8 S-boxes it is necessary to execute 1280 ·8 = 10240
operations. Calculation of function f ends by permutation that requires 32
operations. As a result we have values of intermediate 32-bit vector Hi+1.

Finally, the calculation of right block is completed by the bit-by-bit ad-
dition modulo 2 results of permutation of Hi+1 and 32-bit vector Li that
requires 32 operations plus the operation of assignment

Ri+1 = Li ⊕ f(Ri, Ki+1) = Li ⊕Hi+1.

Theorem 1. For cryptosystem of DES, the number of elementary opera-
tions, which must be expended on the construction of the system of Boolean
functions (3) for describing an iteration, approximately equal 214 = 10648.

Indeed, taking into account the obtained results above, on the construc-
tion of the system of Boolean functions for describing an iteration of cryp-
tosystem DES, it is required to expend 32+48+168+48+48+10240+32+32 =
10648 < 214 operations. Q.E.D.

The Boolean functions, describing transformations of input vector Ci on
(i+1)-th iteration into an output vector Ci+1, convenient to write, reflecting
each stage of data conversion. Then the system (3) can be rewritten in the
following kind:

ci+1
j1

= ci
j2

, (4a)

r′j = E(ci
33, c

i
34, . . . , c

i
64), (4b)

bi+1
j = r′j ⊕ ki+1

j , (4c)

hi+1
j1

= φj1(b
i+1
q1

, bi+1
q2

, bi+1
q3

, bi+1
q4

, bi+1
q5

, bi+1
q6

), (4d)
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ci+1
j2

= ci
j1
⊕ hi+1

j1
, (4e)

where i = 0, 1, 2, . . . , 15, j1 = 1, 2. . . . , 32; j2 = 33, 34, . . . , 64, j = 1, 2, . . . , 48.
Notice that the obtained system will contain the embedded Boolean func-

tions. In this system, except for the operations of disjunction, conjunction
and negations, will be used also operation of nonequivalence (addition mod-
ulo 2).

In principle, executing superposition of functions of (4), it is possible to
obtain the system of Boolean functions in an explicit form (1). However it
makes inexpediently and it is not needed because such system is intricate.

Separately, it is not difficult to write transformations of the key K within
the framework of the key schedule [10].

3 Construction of the graph problems sequence

Each Boolean function of the system (1) can be written as an equation:

cj ⊕ fj(mi1 , mi2 , . . . ,mip , kr1 , kr2 , . . . , krq) = 0,

or
1⊕ cj ⊕ fj(mi1 , mi2 , . . . ,mip , kr1 , kr2 , . . . , krq) = 1,

and, at last, the transformed system (1) will accept a kind:

cj ⊕ fj(mi1 , mi2 , . . . ,mip , kr1 , kr2 , . . . , krq) = 1, (5)

where 1 ≤ p ≤ N , 1 ≤ q ≤ N1 j = 1, 2, . . . , N2.
Multiplying logically the left and right parts of the obtained system of

equations, we will reduce it to one equation:

N2∧
j=1

cj ⊕ fj(mi1 , mi2 , . . . ,mip , kr1 , kr2 , . . . , krq) = 1. (6)

A famous satisfiability problem (SAT) is obtained [4]. If we will present
the left part of the equation (6) in standard form as a conjunctive normal
form (CNF) then it is possible to apply all known methods being used for
the solution of this problem. The review of these methods for solving of SAT
problem is presented in the paper [5].

However, it is expedient to reduce the obtained problem to the maximum
independent set problem on a graph. Although this problem, as well as the
SAT problem is also NP-complete, there exist ways of its effective solution
in the most of cases. This question will discuss below.
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We will explain on the example how the SAT problem can be reduced to
the maximum independent set problem. Let the SAT problem is presented
the following CNF:

(a ∨ b ∨ c̄)(ā ∨ b ∨ c) = 1. (7)

Each literal of CNF be assigned to a vertex of a graph G. We will join the
vertices of the same elementary disjunction by edges such that these vertices
form a clique of G. Besides, we will join the alternative literals (x and x̄) by
edges. The obtained graph is presented on Fig. 6.

��
��

c̄ ��
��

c

��
��

b ��
��

b

��
��

a ��
��

ā�

�

�

�

Fig. 6: The graph for the CNF (a ∨ b ∨ c̄)(ā ∨ b ∨ c)

It is easy to see that the maximum independent set of vertices (MMIS)
({b, b} = {b}) of the built graph satisfies the equation (7), that is, if values
of literals, the appropriate vertices of MMIS, equal to unity then the value
of the equation equals to unity too.

As mentioned above, a process of the executing of one iteration of the DES
algorithm, and also the integrated results of different iterations, it is described
by the Boolean functions in a parenthesis notation. Within iteration, it
is necessary to insert the functions of one stage of calculations instead of
variables of a Boolean function, which are formed on the subsequent stage of
calculations, i.e. to execute superposition of the Boolean functions. And for
transition from i-th iteration to (i + 1)-th iteration, it needs take the results
of previous iteration as input variables of Ci.

We will define that is the superposition operation of Boolean functions in
the graph presentation.

Comment 1. Because Boolean functions, which substitute of variables, also
can be presented by a subgraph, a meaning of graph edges on Fig. 6 consists
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in the following. If vertices a, b and c (we will call them by hypervertices)
will be transferable by the appropriate subgraphs then each vertex of one sub-
graph must be joined with each vertex of other subgraph by an edge, when the
appropriate hypervertices are joined by an edge.

In the process of superposition of operation of addition modulo 2, we will
use the followings transformations:

x⊕ y = (x ∨ y)(x̄ ∨ ȳ), (8a)

x⊕ y = (x̄ ∨ y)(x ∨ ȳ). (8b)

For example, let a = x1⊕ y1, b = x2⊕ y2, c = x3⊕ y3. Then, substituting
variables a, b and c in relation (7) and taking into account the relations (8),
we will obtain:

((x1 ∨ y1)(x̄1 ∨ ȳ1) ∨ (x2 ∨ y2)(x̄2 ∨ ȳ2) ∨ (x̄3 ∨ y3)(x3 ∨ ȳ3))&

&((x̄1 ∨ y1)(x1 ∨ ȳ1) ∨ (x2 ∨ y2)(x̄2 ∨ ȳ2) ∨ (x3 ∨ y3)(x̄3 ∨ ȳ3)) (9)

A graph, the appropriate obtained Boolean function, is presented on Fig.
7.
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ȳ3

����
x3 ����

x̄3

'

&

$

%
c

����
y2 ����

ȳ2
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ȳ1

����
x1 ����

x̄1

'

&

$

%
a

����
y1 ����

ȳ1
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Fig. 7: Extended graph

Comment 2. Note that in a new graph, obtained as a result of superposition,
except edges, indicated in Comment 1, it is necessary to enter edges, joining
alternative literals.
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Obviously, that the extended graph, obtained after a substitution, is re-
dundant for our aims – for finding of the satisfying set of values of Boolean
variables of the equation (9). It is enough to examine a graph, substituted
in place of vertices of MMIS of the primary graph. This graph is presented
by the vertex b in our example.

Features of execution of each (i+1)-th iteration (i = 0, 1, 2, . . . , 15) of the
cryptosystem DES consist in that for its description it is necessary to form
Boolean functions in three stages. On the first stage the Boolean function
of nonequivalence (addition modulo 2) is formed, and on the second one we
obtain by means of S-boxes some CNF and, finally, on the third stage– again
the Boolean function of nonequivalence is formed. All other functions of the
system (4) execute renaming of Boolean variables.

The first stage ends by forming the intermediate vector Bi+1 (see Part
2). This components are functions of the vector R′ and the appropriate key
Ki+1. Clear, that any such function (see (4c)) can put in accordance of the
subgraph G′′′

j as it is done in an example above. Components of the key Ki+1

and components of the vector R′ is assigned the subgraph vertices.
On the second stage the subgraph, induced by Boolean functions, ob-

tained by means of S-boxes, is formed. We will designate it as G′′
j1

. The
components of the intermediate vector Bi+1 are assigned the vertices of this
subgraph (see (4d)).

At last, the calculations on (i+1)-th iteration end by forming the function
(4e), which induces the subgraph G′

j2
. The vertices of this subgraph are

assigned to components of vectors Li and Hi+1.
Let, in obedience to the enciphering process of DES, the space of the keys

is formed K1, K2, . . . , K16.
Then for solving of the system (4) it is necessary to use the following

procedure:

1. Find all function of the current (i + 1)-th iteration in obedience to (4).

2. Construct the graph G′
i+1 as union of subgraphs G′

j2
(j2 = 33, 34,

. . . , 64) and find its MMIS U ′
i+1.

3. Record the vertices of the MMIS U ′
i+1, delete of the subgraph G′

i+1.

4. Build the extended graph G′′
i+1, replacing each vertex of the MMIS U ′

i+1

by the appropriate subgraph G′′
j1

(j1 = 1, 2. . . . , 32), and find its MMIS
U ′′

i+1.

5. Record the vertices of the MMIS U ′′
i+1, delete the graph G′′

i+1.
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6. Build the extended graph G′′′
i+1, replacing each vertex of the MMIS U ′′

i+1

by the appropriate subgraph G′′′
j (j = 1, 2, . . . , 48), and find its MMIS

Ui+1.

7. Record the vertices of the MMIS Ui+1, delete the graph G′′′
i+1.

8. Complete the calculations, connected with solving the system (4).

Remind that at the construction of any extended graph, it is necessary
to join all alternative literals in it by edges.

Theorem 2. The variables, that correspond to the MMIS Ui+1, are the sat-
isfying set for the system (4).

It is a consequence from the way of constructing of graphs for appropriate
Boolean equations. Q.E.D.

Thus, for solving all 16 systems of the Boolean equations, describing the
enciphering process in the cryptosystem DES, it is necessary to construct a
sequence of graphs

G′
16, G

′′
16, G

′′′
16︸ ︷︷ ︸, G′

15, G
′′
15, G

′′′
15︸ ︷︷ ︸, · · · , G′

1, G
′′
1, G

′′′
1︸ ︷︷ ︸. (10)

The described above graphs are being formed first for 16-th iteration,
after, for 15-th iteration, and so on. Calculations are completed after a
construction and solution of Boolean functions on the first iteration. The
graphs, formed on each (i)-th iteration (i = 15, . . . , 0), are always put instead
the vertices of the recorded MMIS of the graph G′′′

i+1. Naturally the existing
ciphertext C = C16 is examined as the first MMIS.

Theorem 3. The sequence (10) solves the system of the Boolean functions
(1) for the cryptosystem DES.

It is a consequence of Theorem 2. Q.E.D.

The described above procedure of constructing of the graph sequence
implies some features of forming the system of Boolean functions (4).

First of all, we will notice that the presentation of the system of Boolean
functions in kind of the equation (5) for superposition is inexpediently. We
will suppose that the system is given by equations (4). In this case a question
appears about how a Boolean function substitutes the literal with a negation.
Already at consideration of function on 16-th iteration, the output vector C16

can contain zero components. This fact we will be to examine as a necessity
of substitution of the function instead the literal with a negation.
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Comment 3. Before to build of one of the Boolean functions (4c) – (4e),
it is necessary to determine the presence of a negation in such literal of a
MMIS, which will be replaced by this function. If the literal of the MMIS does
not have a negation, for presentation of the functions (4e) and (4e), we will
use the equation (8a), and we will write the PCNF for the function (4d) on
its zero sets. If the literal of the MMIS has a negation, for presentation of
the functions (4e) and (4e) we will use the equation (8b), and we will write
CNF for the function (4d) on its unity sets, i.e. the CNF is formed for the
negation of this function.

Lemma 1. The graph vertices of G′
i+1, G′′

i+1 and G′′′
i+1 (i = 0, 1, 2, . . . , 15)

are assigned to only variables (with negation or without negation), which the
appropriate Boolean functions depend on.

It follows from Comment 3. Q.E.D.

4 Complexity of solution of the graph prob-

lems sequence

First of all, we will estimate the size of graphs in the sequence (10).
In accordance with the procedure of construction of the graph sequence

(10), on 16-th iteration of the algorithm DES, first the graph G′
16 is formed as

a union of 32 subgraphs G′
j2

(j2 = 33, 34, . . . , 64). These subgraphs present
the Boolean functions of type (8), depending on 64 variables c15

j1
and hj1

(j1 = 1, 2. . . . , 32). Hence, the graph G′
16 will contain 32 · 4 = 128 vertices

and its MMIS U ′
16 cannot contain more than 64 vertices, since any MMIS

cannot contain alternative literals simultaneously.
Further, the graph G′′

16 is formed also as an union subgraphs G′′
j1

(j1 =
1, 2. . . . , 32), presenting the Boolean functions of type (4d). These Boolean
functions depend on 6 vertices each and the appropriate PCNF of any Boolean
function contains 32 elementary disjunctions with 6 literals. Therefore, each
subgraph will contain 32·6 = 192 vertices, which replace one of vertices of the
earlier found MMIS U ′

16. Hence, the graph G′′
16 will contain 64 ·32 ·6 = 12288

vertices. However, its MMIS U ′′
16 cannot contain more than 48 variables that

is the number of component of the vector B16.
At last, 16-th iteration is being completed by building the graph G′′′

16

and by substitution subgraphs G′′′
j (j = 1, 2, . . . , 48) into the MMIS U ′′

16. As
each such subgraph contains 4 vertices then the total number of vertices of
the graph G′′′

16 equal to 48 · 4 = 192. However, the MMIS U16 of the graph
G′′′

16 cannot contain more than 32 + 48 = 80 vertices (they correspond to 32
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components of left part of the input vector L15 and 48 components of the
key vector K16).

So, 80 vertices of the MMIS U16 of the graph G′′′
16 and 32 vertices of the

vector C16 develop the input vector for calculation on 15-th iteration. Thus,
this input vector contains at the most 80 + 32 = 112 vertices.

It is easy to see that starting with 15-th iteration down to 1-st iteration
of (10), the appropriate MMIS Ui (i = 15, 14, . . . , 1) has the same size, i.e.
112 vertices. It increases only the number of graph vertices in G′

i but, in
accordance with Lemma 1, this does not change the size of the following
graphs in (10).

Hence, the following assertion is true.

Theorem 4. In the sequence (10), the most large graph contains not more
than 214 vertices.

The most large graph in (10) is the graph G′′
i+1 (i = 0, 1, . . . , 15). It

contains not more 12288 < 214 vertices. Q.E.D.

5 Complexity of solving graph problems

The question arises about the complexity of finding the MMIS for graphs of
the sequence (10).

As specified, this problem is NP-complete. Therefore there are not the
proved effective (polynomial-time) solving algorithms for finding a MMIS in
any graph. However there are effective heuristic algorithms, which show good
results in practice. The algorithm MIN for finding the maximum independent
set of graph vertices can serve by the example of such algorithm.

The algorithm MIN is simple. In the initial graph G, the local degrees
of vertices are being found, and a vertex, having the minimum local degree,
is being picked. After picking, the found vertex is being recorded and all
adjacent vertices are deleted from the graph G. Further all begins at first.
It is continued until the empty graph will be obtained. Suppose that the
selected vertices form the MMIS of the graph G.

The different researchers, including author of this article, repeatedly re-
opened this algorithm. Theoretical estimation of complexity of this algorithm
equal O(n2), where n is the number of graph vertices. However, an error in
the solution (on the specially built examples) can be arbitrary large.

The existing situation with the solution of the MMIS problem to some
extent is analogical to the earlier existed situation with the solution of the
linear programming problem. It was proved that simplex-algorithm has an
exponential-time estimation. However, in practice, it shows good results,
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that is, theoretically bad algorithm successfully solves many practical prob-
lems. Therefore there is a hope that the algorithm MIN correctly cans solu-
tion the MMIS problem in the simple graphs of the sequence (10).

There is a question: can the algorithm MIN solve graph problems cor-
rectly, which formed in the process of analysis of the cryptosystem DES?

Now, we consider what type of graphs was obtained in the process of
analysis of the stages on any iteration.

In the system (4), two functions (4c) and (4e) present addition modulo 2.
It means that in accordance with Comment 3 each of such functions will be
presented simple subgraph, the vertices of which form 4-vertex cycle (see the
example in Section 3). Clear, that in MMIS of the graph, presenting the join
of 4-vertex cycles, exactly two vertices can enter from every subgraph, be-
cause different subgraphs do not contain vertices, proper alternative literals.
Therefore these subgraphs are not joined by an edge between itself.

It was conducted also a calculating experiment in solving the systems of
functions, generated by S-boxes. In the process of experiment there were
found the maximum independent sets in subgraphs, generated every func-
tion yi (i = 1, 2, 3, 4), and also by their joins. The number of vertices in
MMIS always was exactly equal to the number of elementary disjunctions
in each function yi or in joins of functions. Certainly, the vertices of MMIS
corresponded to literals, the number of which is not exceeded 6.

The experiment allows to assert that the algorithm MIN solves the sys-
tems of Boolean equation, generated the algorithm of DES correctly.

Theorem 5. If the algorithm MIN correctly solves the MMIS problem in
each of graphs of the sequence (10), then the time of determination of the
used key in cryptosystem DES equals at the most 232.

The most number of vertices is in the graph sequence (10) equal 214

approximately. Hence, the algorithm MIN will require 228 unities of the time
for the solution of the system of Boolean functions, describing one iteration
of ciphering data. Then all 16 iterations will demand at the most 232 unities
of the time Q.E.D.

Corollary 1. The cryptosystem DES is not secure.

The attempts were done to solve this problem exactly (as well as other
NP-complete problems). Some of developed (polynomial-time) algorithms
allow finding the exact solution for many graphs. To test these algorithms,
the numerous graph instances, having thousands of vertices, are developed
(see http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-benchmarks.htm).

Unfortunately, while it is not proved the theoretical correctness of the
constructed algorithms.
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One of such polynomial-time algorithms is developed in the work [6] for
the solution of the MMIS problem. The algorithm uses the search procedure
of the maximum antichain in a finite partially ordered set. For this purpose,
the edges of the initial graph are oriented such that its vertices correspond the
elements of a partially ordered set. If it is necessary, fictitious arcs are entered
in the constructed digraph. The solution algorithm is based on the hypothesis
of author about properties of the special constructed digraph. Theoretical
estimation of complexity of the solution algorithm equal to O(n8), where n
is the number of graph vertices.

In accordance with the developed algorithm, Thomas Karbe from Berlin
technical university wrote the Java-program

(see http://www.vinnica.ua/∼aplot/solver.html ).
The numerous tests of this program did not find errors in solutions of the

developed algorithm.

6 Conclusions

On basis of the executed cryptanalysis of the cryptosystem DES it is possible
to do the following conclusions.

Firstly, the successful cryptanalysis on the example of the cryptosystem
DES shows its low cryptographic security. This is consequence of simplicity
and possibility to construct the system of Boolean functions, describing an
iteration of the cipher algorithm. Consequently, for the increase of crypto-
graphic security of any ciphering system it is desirable that it was impossible
to make the system of the Boolean functions, describing an enciphering iter-
ation that can be achieved in some ways. Simple complication of the systems
of the Boolean functions will influence only complication process of encipher-
ing and expenses of time on this process.

In the second, it is necessary in the block ciphering system that a length
of the key must exceed a length of ciphering block substantially such that the
afore-mentioned system of Boolean functions, when it can be written, had
not unique solution, but it must have a set of solutions even at conditions
when a plaintext and the appropriate ciphertext are known. A size of this
set of solution must be such that the direct enumeration of possible system
solutions would be unacceptable.

At last, a few words about the presented method of logical cryptanalysis.
Classic approach to solving the system of Boolean equations as the system
of nonlinear algebraic equations, obviously, did not justify hopes of cryptan-
alysts. In our view, tools of discrete mathematics are more suitable in this
case. In particular, the advantage of the offered method consists in reduction
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of solving the system of Boolean equations as the graph problem in which
non-linearity of Boolean equations does not play an important role.

References

[1] N. T. Courtois and W. Meier. Algebraic Attacks on Stream Ciphers with
Linear Feedback. Proceedings of EUROCRYPT 2003, Lecture Notes in
Computer Science 2656, pp. 346-359, 2002.

[2] N. T. Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear
Feedback. Proceedings of CRYPTO 2003, Lecture Notes in Computer
Science 2729, pp. 177-194, 2003.

[3] J.-C. Faugere and G. Ars. An Algebraic Cryptanalysis of Nonlinear
Filter Generators using Grobner bases. Rapport de Recherche INRIA
4739, 2003.

[4] M. R. Garey and D. S. Johnson Computers and Intractability.
W.H.Freeman and Company, San Francisco, 1979.

[5] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah Algorithms for the
Satisfiability (SAT) Problem: A Survey. DIMACS. Series in Discrete
Mathematics and Theoretical Computer Science.

[6] A. D. Plotnikov Experimental Algorithm for the Maximum Independent
Set Problem.. http://lanl.arxiv.org/abs/0706.3565

[7] C. E. Shannon. Communication theory of secrecy systems. Bell system
technical journal, 28, pp. 656-715, 1949.

[8] B. Schneier Applied Cryptography: Protocols, Algorithms, and Source
Code in C Paperback, John Wiley & Sons, 1996.

[9] N. P. Smart Cryptography. A McCraw-Hili Publication McGraw-Hill,
2003.

[10] U.S. Department of Commerce/National Institute of Standards and
Technology Data Encryption Standard (DES) Federal Information, Pro-
cessing Standards Publication 46-3, 1999 October 25.

20


