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Abstract. The privacy of most GSM phone conversations is currently
protected by the 20+ years old A5/1 and A5/2 stream ciphers, which
were repeatedly shown to be cryptographically weak. They will soon be
replaced in third generation networks by a new A5/3 block cipher called
KASUMI, which is a modified version of the MISTY cryptosystem. In
this paper we describe a new type of attack called a sandwich attack, and
use it to construct a simple distinguisher for 7 of the 8 rounds of KASUMI
with an amazingly high probability of 2−14. By using this distinguisher
and analyzing the single remaining round, we can derive the complete
128 bit key of the full KASUMI by using only 4 related keys, 226 data, 230

bytes of memory, and 232 time. These complexities are so small that we
have actually simulated the attack in less than two hours on a single PC,
and experimentally verified its correctness and complexity. Interestingly,
neither our technique nor any other published attack can break MISTY
in less than the 2128 complexity of exhaustive search, which indicates
that the changes made by the GSM Association in moving from MISTY
to KASUMI resulted in a much weaker cryptosystem.

1 Introduction

The privacy and security of GSM cellular telephony is protected by the A5 family
of cryptosystems. The first two members of this family, A5/1 (developed primar-
ily for European markets) and A5/2 (developed primarily for export markets)
were designed in the late 1980’s in an opaque process and were kept secret until
they were reverse engineered in 1999 from actual handsets [13]. Once published,
it became clear that A5/2 provided almost no security, and A5/1 could be at-
tacked with practical complexity by a variety of techniques (e.g., [2, 11, 15]). The
most recent attack was announced in December 2009, when a team of cryptog-
raphers led by Karsten Nohl [1] published a 2 terabyte rainbow table for A5/1,
which makes it easy to derive the session key of any particular conversation with
minimal hardware support.

In response to these developments, the GSM Association had stated in [23]
that they might speed up their transition to a new algorithm called A5/3, and



they plan to discuss this matter in a meeting that will be held in February 2010.
The A5/3 algorithm was developed for third generation GSM telephony in 2002,
and its specifications were published in 2003 [21]. It is already implemented in
about 40% of the three billion available handsets, but very few of the 800 mobile
carriers in more than 200 countries which currently use GSM cellular telephony
have switched so far to the new standard. Once adopted, A5/3 will become one
of the most widely used cryptosystems in the world, and its security will become
one of the most important practical issues in cryptography.

The A5/3 cryptosystem is based on the MISTY block cipher which was pub-
lished at FSE 1997 by Matsui [20]. It has 64 bit blocks, 128 bit keys, and a
complex recursive Feistel structure with 8 rounds, each one of which consists of
3 rounds, each one of which has 3 rounds of nonlinear SBox operations. MISTY
has provable security properties against various types of attacks, and no attack is
known on its full version. The best published attack can be applied to a 6-round
reduced variant of the 8-round MISTY, and has a completely impractical time
complexity of more than 2123 [14]. However, the designers of A5/3 decided to
make MISTY faster and more hardware-friendly by simplifying its key schedule
and modifying some of its components, calling the new variant KASUMI. In [22],
the designers provide a rational for each one of these changes, and in particular
they analyze the resistance of KASUMI against related key attacks by stating
that “removing all the FI functions in the key scheduling part makes the hard-
ware smaller and/or reduces the key set-up time. We expect that related key
attacks do not work for this structure”. The best attack found by the designers
and external evaluators of KASUMI is described as follows: “There are chosen
plaintext and/or related key attacks against KASUMI reduced to 5 rounds. We
believe that with further analysis it might be possible to extend some attacks to
6 rounds, but not to the full 8 round KASUMI”.

The existence of better related key attacks on the full KASUMI was already
shown in [7, 19]. Their attack had a data complexity of 254.6 and time complexity
of 276.1, which are impractical but better than exhaustive search. In this paper
we develop a new attack, which requires only 4 related keys, 226 data, 230 bytes
of memory, and 232 time. Since these complexities are so low, we could verify
our attack experimentally, and our unoptimized implementation on a single PC
recovered about 96 key bits in a few minutes, and the complete 128 bit key in
less than two hours. Careful analysis of our attack technique indicates that it
can not be applied against the original MISTY, since it exploits a sequence of
coincidences and lucky strikes which were created when MISTY was changed to
KASUMI by the GSM Association. This calls into question both the design of
KASUMI and its security evaluation against related key attacks.

We use a new type of attack which is an improved version of the boomerang
attack introduced in [24]. We call it a “sandwich attack”, since it uses a dis-
tinguisher which is divided into three parts: A thick slice (“bread”) at the top,
a thin slice (“meat”) in the middle, and a thick slice (“bread”) at the bottom.
The top and bottom parts are assumed to have high probability differential
characteristics, which can be combined into consistent quartet structures by the



standard boomerang technique. However, in our case they are separated by the
additional middle slice, which can significantly reduce the probability of the
resulting boomerang structure. Nevertheless, as we show in this paper, careful
analysis of the dependence between the top and bottom differentials allows us in
some cases to combine the two properties above and below the middle slice with
an enhanced probability. In particular, we show that in the case of KASUMI we
can use top and bottom 3-round differential characteristics with an extremely
high probability of 2−2 each, and combine them via a middle 1-round slice in
such a way that the “price in probability” of the combination is 2−6, instead
of the 2−32 we would expect from a naive analysis. This increases the proba-
bility of our 7-round distinguisher from 2−40 to 2−14, and has an even bigger
impact on the amount of data and the time complexity of the attack due to the
quadratic dependence of the number of cases we have to sample on the distin-
guishing probability. Such a three level structure was used in several previous
attacks such as [9, 10] (where it was called the “Feistel switch” or the “middle
round S-box trick”), but to the best of our knowledge it was always used in the
past in simpler situations in which the transition probability through the mid-
dle layer (in at least one direction) was 1 due to the structural properties of a
single Feistel round, or due to the particular construction of a given SBox. Our
sandwich attack is the first nontrivial application of such a structure, and the
delicacy of the required probabilistic analysis is demonstrated by the fact that
a tiny change in the key schedule of KASUMI (which has no effect on the dif-
ferential probabilities of the top and bottom layers) can change the probability
of the combined distinguisher from the surprisingly high value of 2−14 to 0.

This paper is organized as follows: Section 2 describes the new sandwich
attack, and discusses the transition between the top and bottom parts of the
cipher through the middle slice of the sandwich. Section 3 describes the KASUMI
block cipher. Section 4 describes our new 7-round distinguisher for KASUMI
which has a probability of 2−14, and demonstrates its extreme sensitivity to tiny
structural modifications. In Section 5 we use the new distinguisher to develop a
practical-time key recovery attack on the full A5/3 cryptosystem.

2 Sandwich Attacks

In this section we describe the technique used in our attacks on KASUMI. We
start with a description of the basic (related-key) boomerang attack, and then
we describe a new framework, which we call a (related-key) sandwich attack, that
exploits the dependence between the underlying differentials to obtain a more ac-
curate estimation of the probability of the distinguisher. Finally, we describe the
chosen plaintext variant of the attack, which we call (related-key) rectangle-like

sandwich attack. We note that the idea of using dependence between the differ-
entials in order to improve the boomerang distinguisher was implicitly proposed
by Wagner [24], and was also used in some simple scenarios in [9, 10]. Therefore,
our framework can be considered as a formal treatment and generalization of
the ideas proposed in [9, 10, 24].



2.1 The Basic Related-Key Boomerang Attack

The related-key boomerang attack was introduced by Kim et al. [18, 16], and
independently by Biham et al. [6], as a combination of the boomerang attack [24]
and the related-key differential attack [17]. In this attack, the cipher is treated as
a cascade of two sub-ciphers E = E1 ◦E0, and related-key differentials of E0 and
E1 are combined into an adaptive chosen plaintext and ciphertext distinguisher
for E.

Let us assume that there exists a related-key differential α → β for E0 under
key difference ∆Kab with probability p. (i.e., Pr[E0(K)(P )⊕E0(K⊕Kab)(P ⊕α) =
β] = p, where E0(K) denotes encryption through E0 under the key K). Similarly,
we assume that there exists a related-key differential γ → δ for E1 under key
difference ∆Kac with probability q. The related-key boomerang distinguisher
requires encryption/decryption under the secret key Ka, and under the related-
keys Kb = Ka ⊕ ∆Kab, Kc = Ka ⊕∆Kac, and Kd = Kc ⊕∆Kab = Kb ⊕∆Kac.
The algorithm of the distinguisher is extremely simple:

1. Choose M plaintexts at random, and initialize a counter C to zero. For each
plaintext Pa, perform the following:

(a) Ask for the ciphertexts Ca = EKa
(Pa) and Cb = EKb

(Pb) where Pb =
Pa ⊕ α.

(b) Ask for the plaintexts Pc = E−1
Kc

(Cc) and Pd = E−1
Kd

(Cd) where Cc =
Ca ⊕ δ and Cd = Cb ⊕ δ.

(c) If Pc ⊕ Pd = α, increment the counter C by 1.

2. If C > Threshold, output “E”. Otherwise, output “Random Permutation”.

A quartet constructed by the boomerang attack is depicted on the left side
of Figure 1.

For a random permutation the probability that the last condition is satisfied
is 2−n, where n is the block size. For E, the probability that the pair (Pa, Pb)
is a right pair with respect to the first differential (i.e., the probability that the
intermediate difference after E0 equals β, as predicted by the differential) is p.
Assuming independence, the probability that both pairs (Ca, Cc) and (Cb, Cd)
are right pairs with respect to the second differential is q2. If all these are right
pairs, then E−1

1 (Cc)⊕E−1
1 (Cd) = β = E0(Pc)⊕E0(Pd). Thus, with probability p,

Pc ⊕ Pd = α. Hence, the total probability of this quartet of plaintexts and
ciphertexts to satisfy the condition Pc ⊕ Pd = α is at least (pq)2. Therefore,
if pq ≫ 2−n/2, the algorithm above allows to distinguish E from a random
permutation given O((pq)−2) adaptively chosen plaintexts and ciphertexts.

The distinguisher can be improved by considering multiple differentials of the
form α → β′ and γ′ → δ (for the same α and δ). We omit this improvement here
since it is not used in our attack on KASUMI, and refer the reader to [6]. For a
rigorous treatment of the related-key boomerang attack, including a discussion
of the independence assumptions the attack relies upon, we refer the interested
reader to [19].



The standard way to use the related-key boomerang distinguisher in a key-
recovery attack is to add a round before the distinguisher and retrieve key ma-
terial in the first round. We use the dual technique of adding a round after
the distinguisher, applying the attack in a chosen ciphertext/adaptive chosen
plaintext manner, and retrieving key material in the last round.

2.2 Related-Key Sandwich Attacks

In this framework we consider the cipher as a cascade of three sub-ciphers:
E = E1 ◦ M ◦ E0. Our assumptions are the same as in the basic attack: We
assume that there exists a related-key differential α → β for E0 under key
difference ∆Kab with probability p, and a related-key differential γ → δ for
E1 under key difference ∆Kac with probability q. The attack algorithm is also
exactly the same as in the basic attack (ignoring the middle sub-cipher M).
However, the analysis is more delicate and requires great care in analyzing the
dependence between the various distributions.

The main idea behind the sandwich attack is the transition in the middle. In
the basic boomerang attack, if the pair (Pa, Pb) is a right pair with respect to
the first differential, and both pairs (Ca, Cc) and (Cb, Cd) are right pairs with
respect to the second differential, then we have

(Xa ⊕ Xb = β) ∧ (Xa ⊕ Xc = γ) ∧ (Xb ⊕ Xd = γ), (1)

where Xi is the intermediate encryption value of Pi, and thus

Xc ⊕ Xd = (Xc ⊕ Xa) ⊕ (Xa ⊕ Xb) ⊕ (Xb ⊕ Xd) = β ⊕ γ ⊕ γ = β, (2)

resulting in Pc ⊕ Pd = α with probability p (see Figure 1).
In the new sandwich framework, instead of condition (1), we get

(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ). (3)

Therefore, the probability of the three-layer related-key boomerang distinguisher
is p2q2r, where

r = Pr
[

(Xc ⊕ Xd = β)
∣

∣

∣
(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)

]

. (4)

Without further assumptions on M , r is expected to be very low (close to 2−n),
and thus the distinguisher is expected to fail. However, as observed in [9, 10,
24], in some cases the differentials in E0 and E1 can be chosen such that the
probability penalty r in going through the middle sub-cipher (in at least one
direction) is 1, which is much higher than expected.

An example of this phenomenon, introduced in [24] and described in [10]
under the name “Feistel switch”, is the following. Let E be a Feistel cipher,
decomposed as E = E1 ◦ M ◦ E0, where M consists of one Feistel round (see
Figure 2). Assume that the differentials α → β (for E0) and γ → δ (for E1) have
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Fig. 2. A Feistel construction. M is the second round.

no key difference (i.e., ∆Kab = ∆Kac = 0), and satisfy βR = γL (i.e., the right
half of β equals the left half of γ). We would like to compute the value of r.

Assume that condition (3) holds. In this case, by the Feistel construction,
XR

i = Y L
i for all i, we have

XR
a ⊕ XR

b = βR = γL = XR
a ⊕ XR

c = XR
b ⊕ XR

d , (5)

and thus,

(XR
a = XR

d ) and (XR
b = XR

c ). (6)



Therefore, the output values of the F-function in the Feistel round represented
by M , denoted by (Oa, Ob, Oc, Od), satisfy

(Oa = Od) and (Ob = Oc).

Since by the Feistel construction, XL
i = Y R

i ⊕Oi and by condition (3), Ya⊕Yb⊕
Yc ⊕ Yd = 0 , it follows that

Xa ⊕ Xb ⊕ Xc ⊕ Xd = 0,

which by condition (3) implies Xc ⊕ Xd = β. Thus, in this case we get

r = Pr
[

(Xc ⊕ Xd = β)
∣

∣

∣
(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)

]

= 1,

independently of the choice of the F-function used.
Other examples of the same phenomenon are considered in [9] (under the

name “middle round S-box trick”), and in [10] (under the names “ladder switch”
and “S-box switch”).

Our attack on KASUMI is the first non-trivial example of this phenomenon
in which a careful analysis shows that r is smaller than 1, but much larger than
its expected value under the standard independence assumptions. In our attack,
the cipher E (7-round KASUMI) is a Feistel construction, M consists of a single
round, and β = γ. However, the argument presented above cannot be applied
directly since there is a non-zero key difference in M , and thus a zero input
difference to the F-function does not imply zero output difference. Instead, we
analyze the F-function thoroughly and show that in this case, r = 2−6 (instead of
2−32, which is the expected value for a random Feistel round in a 64-bit cipher).

Remark 1. We note that our treatment of the sandwich distinguisher allows us to
specify the precise independence assumptions we rely upon. Since r is defined as
a conditional probability, the only independence assumptions we use are between
the differentials of E0 and E1, and thus the formula p2q2r relies on exactly the
same assumptions as the ordinary boomerang attack. Moreover, in our case the
assumptions seem more likely to hold since the insertion of M in the middle
decreases the potential dependencies between the differentials for E0 and the
differentials for E1. In [9, 10, 24], this situation was treated as a “trick” allowing
to increase the probability of the distinguisher, or in other words, as a failure of
the formula p2q2 in favor of the attacker. This approach is problematic since once
we claim that the entire formula does not hold due to dependencies, we cannot
rely on independence assumptions in other places where such dependencies were
not found yet.

2.3 A Rectangle-Like Sandwich Attack

The transformation of the (related-key) boomerang distinguisher into a chosen
plaintext rectangle attack relies on standard birthday-paradox arguments. The
division into sub-ciphers and the assumptions are the same as in the (related-key)



boomerang distinguisher. The key idea behind the transformation is to encrypt
many plaintext pairs with input difference α, and to look for quartets (i.e.,
pairs of pairs) that happen to conform to the requirements of the boomerang
process. In other words, the adversary considers quartets of plaintexts of the
form ((Pa, Pb = Pa ⊕ α), (Pc, Pd = Pc ⊕ α)) encrypted under the related-keys
Ka, Kb, Kc, and Kd, respectively, and a quartet is called a “right quartet” if the
following conditions are satisfied:

1. E0(Ka)(Pa) ⊕ E0(Kb)(Pb) = β = E0(Kc)(Pc) ⊕ E0(Kd)(Pd).

2. E0(Ka)(Pa) ⊕ E0(Ka)(Pc) = γ (which leads to E0(Kb)(Pb) ⊕ E0(Kd)(Pd) = γ
if this condition holds along with the previous one).

3. Ca ⊕ Cc = δ = Cb ⊕ Cd.

The probability of a quartet to be a right quartet is a lower bound on the
probability of the event

Ca ⊕ Cc = δ = Cb ⊕ Cd. (7)

The usual assumption is that each of the above conditions is independent of
the rest, and hence the probability that a given quartet ((P1, P2), (P3, P4)) is a
right quartet is p2 · 2−n · q2. Since for a random permutation, the probability
of condition (7) is 2−2n, the rectangle process can be used to distinguish E
from a random permutation if pq ≫ 2−n/2 (the same value as in the standard
boomerang distinguisher).

However, the data complexity of the distinguisher is O(2n/2(pq)−1), which
is much higher than the complexity of the boomerang distinguisher. The higher
data complexity follows from the fact that the event E0(Ka)(Pa) ⊕ E0(Kc)(Pc) = γ
occurs with a “random” probability of 2−n (in fact, this is the birthday-paradox
argument behind the construction). The identification of right quartets is also
more complicated than in the boomerang case, as instead of checking a condi-
tion on pairs, the adversary has to go over all the possible quartets. At the same
time, the chosen plaintext nature allows using stronger key recovery techniques.
An optimized method of finding the right rectangle quartets is presented in [5].

The transformation of the (related-key) sandwich framework into the (related-
key) rectangle-like sandwich framework is performed similarly. The algorithm of
the distinguisher remains the same, and the probability of a quartet to be a right
quartet is p2 · 2−n · r′ · q2, where

r′ = Pr
[

(Yb ⊕ Yd = γ)
∣

∣

∣
(Xa ⊕ Xb = β) ∧ (Xc ⊕ Xd = β) ∧ (Ya ⊕ Yc = γ)

]

. (8)

It follows from symmetry arguments that in the case where E is a Feistel cipher,
M consists of a single round, and βR = γL, we have r′ = r. Thus, in our
attack on KASUMI we will be able to use the computation of r in the sandwich
framework to find also the probability of the related-key rectangle-like sandwich
distinguisher in the case of a 3-slice sandwich structure.



3 The KASUMI Block Cipher

KASUMI [21] is a 64-bit block cipher with 128-bit keys. It has a recursive Feistel
structure, following its ancestor MISTY. The cipher has eight Feistel rounds,
where each round is composed of two functions: the FO function which is in
itself a 3-round 32-bit Feistel construction, and the FL function that mixes a
32-bit subkey with the data in a linear way. The order of the two functions
depends on the round number: in the even rounds the FO function is applied
first, and in the odd rounds the FL function is applied first.

The FO function also has a recursive structure: its F -function, called FI, is
a four-round Feistel construction. The FI function uses two non-linear S-boxes
S7 and S9 (where S7 is a 7-bit to 7-bit permutation and S9 is a 9-bit to 9-bit
permutation), and accepts an additional 16-bit subkey, which is mixed with the
data. In total, a 96-bit subkey enters FO in each round — 48 subkey bits are
used in the FI functions and 48 subkey bits are used in the key mixing stages.

The FL function accepts a 32-bit input and two 16-bit subkey words. One
subkey word affects the data using the OR operation, while the second one affects
the data using the AND operation. We outline the structure of KASUMI and
its parts in Fig. 3.

The key schedule of KASUMI is much simpler than the original key schedule
of MISTY, and the subkeys are linearly derived from the key. The 128-bit key K
is divided into eight 16-bit words: K1, K2, . . . , K8. Each Ki is used to compute
K ′

i = Ki ⊕Ci, where the Ci’s are fixed constants (we omit these from the paper,
and refer the intrigued reader to [21]). In each round, eight words are used as the
round subkey (up to some in-word rotations). Hence, each 128-bit round subkey
is a linearly modified version of the secret key. We summarize the details of the
key schedule of KASUMI in Table 1.

Round KLi,1 KLi,2 KOi,1 KOi,2 KOi,3 KIi,1 KIi,2 KIi,3

1 K1 ≪ 1 K′

3 K2 ≪ 5 K6 ≪ 8 K7 ≪ 13 K′

5 K′

4 K′

8

2 K2 ≪ 1 K′

4 K3 ≪ 5 K7 ≪ 8 K8 ≪ 13 K′

6 K′

5 K′

1

3 K3 ≪ 1 K′

5 K4 ≪ 5 K8 ≪ 8 K1 ≪ 13 K′

7 K′

6 K′

2

4 K4 ≪ 1 K′

6 K5 ≪ 5 K1 ≪ 8 K2 ≪ 13 K′

8 K′

7 K′

3

5 K5 ≪ 1 K′

7 K6 ≪ 5 K2 ≪ 8 K3 ≪ 13 K′

1 K′

8 K′

4

6 K6 ≪ 1 K′

8 K7 ≪ 5 K3 ≪ 8 K4 ≪ 13 K′

2 K′

1 K′

5

7 K7 ≪ 1 K′

1 K8 ≪ 5 K4 ≪ 8 K5 ≪ 13 K′

3 K′

2 K′

6

8 K8 ≪ 1 K′

2 K1 ≪ 5 K5 ≪ 8 K6 ≪ 13 K′

4 K′

3 K′

7

(X ≪ i) — X rotated to the left by i bits

Table 1. KASUMI’s Key Schedule Algorithm
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4 A Related-Key Sandwich Distinguisher for 7-Round
KASUMI

4.1 The New Distinguisher

In our distinguisher, we treat rounds 1–7 of KASUMI as a cascade E = E1 ◦M ◦
E0, where E0 consists of rounds 1–3, M consists of round 4, and E1 consists of
rounds 5–7. The related-key differential we use for E0 is a slight modification of
the differential characteristic presented in [12], in which

α = (0x, 0010 0000x) → (0x, 0010 0000x) = β.

The corresponding key difference is ∆Kab = (0, 0, 8000x, 0, 0, 0, 0, 0), i.e., only
the third key word has the single bit difference ∆K3 = 8000x. This related-key
differential is depicted in Figure 4. The related-key differential we use for E1 is
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the same differential shifted by four rounds, in which the data difference is the
same, but the key difference is ∆Kac = (0, 0, 0, 0, 0, 0, 8000x, 0) (to handle the
different subkeys used in these rounds).

As shown in [12], the probability of each one of of these 3-round differential
characteristics is 1/4. In order to find the probability of the related-key sandwich
distinguisher, we have to compute the probability

Pr
[

(Xc ⊕ Xd = β)
∣

∣

∣
(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)

]

, (9)

where (Xa, Xb, Xc, Xd) and (Ya, Yb, Yc, Yd) are the intermediate values before
and after the middle slice of the sandwich during the encryption/decryption of
the quartet (Pa, Pb, Pc, Pd) (see the right side of Figure 1). This computation,
which is a bit complicated, spans the rest of this subsection.

Consider a quartet (Pa, Pb, Pc, Pd) for which the condition

(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ) (10)

is satisfied. As explained in Section 2, since M is a single Feistel round, this
implies that

(XR
a = XR

d ) ∧ (XR
b = XR

c ), (11)

where XR
i denotes the right half of Xi that enters the function FO4. Moreover,

as the right half of the differences β = γ is zero, we have

XRR
a = XRR

b = XRR
c = XRR

d , (12)

where XRR
i denotes the right half (i.e., the 16 right bits) of XR

i .



Consider now the computation depicted in Figure 5. The function FO4 is a
3-round Feistel construction whose 32-bit values after round j are denoted by
(Xj

a, Xj
b , Xj

c , Xj
d), and the function FI is a 4-round Feistel construction whose

16-bit values after round j are denoted by (Ij
a , Ij

b , Ij
c , Ij

d). Note that the key
differences ∆Kab and ∆Kac affect in round 4 the subkeys KI4,3 and KI4,2,
respectively, and in particular, there is no key difference in the first round of
FO4. As a result, Equation (11) implies that

(X1
a = X1

d) ∧ (X1
b = X1

c ). (13)

Furthermore, there is no key difference in the pairs corresponding to (Pa, Pb)
and (Pc, Pd) in the second round of FO4, and thus Equation (12) implies

(I2
a = I2

b ) ∧ (I2
c = I2

d). (14)

Combining equations (13) and (14), we get the following relation in the right
half of the intermediate values after round 3 of FO4:

X3R
a ⊕ X3R

b ⊕ X3R
c ⊕ X3R

d = 0. (15)

In the F-function of round 3 of FO4 we consider the pairs corresponding to
(Pa, Pd) and (Pb, Pc). Since the key difference in these pairs (that equals Kab ⊕
Kac) affects only the subkey KI4,3,1, Equation (13) implies

I3R
a ⊕ I3R

b ⊕ I3R
c ⊕ I3R

d = 0 (16)

in the right hand side of the output. In the left hand side of the output, the XOR
of the four values is not necessarily equal to zero, due to the subkey difference
that affects the inputs to the second S7 in FI4,3. However, if these 7-bit inputs,
denoted by (Ja, Jb, Jc, Jd), satisfy one of the conditions:

((Ja = Jb) ∧ (Jc = Jd)) or ((Ja = Jc) ∧ (Jb = Jd)) , (17)

then Equation (16) implies

I3L
a ⊕ I3L

b ⊕ I3L
c ⊕ I3L

d = 0. (18)

Since we have Ja ⊕ Jd = Jb ⊕ Jc (both are equal to the subkey difference in
KI4,3,1), each one of the two conditions in Equation (17) is expected to hold1

with probability 2−7. Therefore, combining Equations (15), (16), and (18) we
get that the condition

X3
a ⊕ X3

b ⊕ X3
c ⊕ X3

d = 0 (19)

holds with probability 2−6.

1 This estimate is based on a randomness assumption that could be inaccurate in
our case due to dependence between the differential characteristics. However, the
experiments presented below verify that this probability is indeed as expected.



Finally, since the FL function is linear for a given key and there is no key
difference in FL4, we can conclude that whenever Equation (19) holds, the
outputs of the F-function in round 4 (denoted by (O4

a, O4
b , O

4
c , O4

d)) satisfy

O4
a ⊕ O4

b ⊕ O4
c ⊕ O4

d = 0 (20)

with probability 2−6. Since by condition (10),

Y L
a ⊕ Y L

b ⊕ Y L
c ⊕ Y L

d = 0,

it follows that
XL

a ⊕ XL
b ⊕ XL

c ⊕ XL
d = 0 (21)

also holds with probability 2−6. Combining it with Equation (11) yields

Pr
[

(Xc ⊕ Xd = β)
∣

∣

∣
(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)

]

= 2−6.

(22)
Therefore, the overall probability of the related-key sandwich distinguisher is

(1/4)2 · (1/4)2 · 2−6 = 2−14, (23)

which is much higher than the probability of (1/4)2 · (1/4)2 · 2−32 = 2−40 which
is expected by the naive analysis of the sandwich structure.

4.2 Experimental Verification

To verify the properties of the new distinguisher, we used the official code avail-
able as an appendix in [21]. The verification experiment was set up as follows: In
each test we randomly chose a key quartet satisfying the required key differences.
We then generated 216 quartets by following the boomerang procedure described
above. We utilized a slight improvement of the first differential suggested in [12]
that increases its probability in the encryption direction by a factor of 2 by fixing
the value of two plaintext bits. Hence, we expect the number of right quartets
in each test to be distributed according to a Poisson distribution with a mean
value of 216 · 2−14 · 2 = 8. We repeated the test 100,000 times, and obtained
a distribution which is extremely close to the expected distribution. The full
results are summarized in Table 2.

4.3 A Counter Example

In this subsection we present an example which demonstrates the extremely
delicate nature of such probability estimations. In this example, we make a tiny
change in the key schedule of KASUMI, which does not seem to have any effect
on the differential probabilities of any one of its three sub-ciphers. However, for
this example, the probability of the distinguisher is zero!

The only change we make in KASUMI is that in the first subkey, the roles
of the key words K ′

5 and K ′
8 are interchanged. The rest of the key schedule is
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Fig. 5. The Development of Differences in FO4 and in FI4,3

modified according to the rule of the original KASUMI, i.e., the key words are
rotated cyclically in each round (e.g., KI2,1 = K ′

1, KI3,3 = K ′
7).

Since our change affects only the subkeys used in KIi,1 and KIi,3 in each
round, the differentials used in our distinguisher on KASUMI remain exactly the
same for the new variant (with the same input/output differences, the same key
differences and the same probabilities). However, we claim that in this case,

r = Pr
[

(Xc ⊕ Xd = β)
∣

∣

∣
(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)

]

= 0,

(24)
and thus the probability of the distinguisher is zero. In all the computations
below, the notations are the same as in the original distinguisher above. The
impossible transition is depicted in Figure 6.

Since the differentials are the same as in the original distinguisher, we have

(XR
a = XR

d ) ∧ (XR
b = XR

c )

and

XRR
a = XRR

b = XRR
c = XRR

d .



Right Quartets 0 1 2 3 4 5 6 7

Theory (Poi(8)) 34 268 1,073 2,863 5,725 9,160 12,214 13,959

Experiment 32 259 1,094 2,861 5,773 9,166 12,407 13,960

Right Quartets 8 9 10 11 12 13 14 15

Theory (Poi(8)) 13,959 12,408 9,926 7,219 4,813 2,962 1,692 903

Experiment 13,956 12,230 9,839 7,218 4,804 3,023 1,672 859

Right Quartets 16 17 18 19 20 21 22 23

Theory (Poi(8)) 451 212 94 40 16 6 2 0.8

Experiment 472 219 89 39 13 12 2 0

Right Quartets 24 25

Theory (Poi(8)) 0.26 0.082

Experiment 0 1

Table 2. The Number of Right Quartets in 100,000 Experiments

Also, since the second round of FO4 is unchanged, we have

(I2
a = I2

b ) ∧ (I2
c = I2

d).

Therefore,

X3R
a ⊕ X3R

b ⊕ X3R
c ⊕ X3R

d = I1
a ⊕ I1

b ⊕ I1
c ⊕ I1

d .

In the first round of FO4 we have a difference between the modified variant and
the original KASUMI, as in the modified variant there is subkey difference in
the pairs corresponding to (Pa, Pb) and to (Pc, Pd) in the MSB of the subkey
KI4,1,1. Let us analyze the function FI4,1.

By the structure of the differential, its inputs are of the form

(XR
a ⊕KO4,1, X

R
b ⊕KO4,1, X

R
c ⊕KO4,1, X

R
d ⊕KO4,1) = (t, t⊕0010x, t⊕0010x, t).

After the first round of FI4,1 the values remain in the form (t′, t′ ⊕ 0010x, t′ ⊕
0010x, t′). After the second round the values are of the form u, v, v, u. We claim
that u ⊕ v 6= MSB. Indeed, if we had u ⊕ v = MSB, then the 7-bit outputs of
the S-box S7 had to be of the form (u′, u′⊕10000002⊕00100002, u

′⊕10000002⊕
00100002, u

′). However, the differential (00100002 → 10100002) is impossible for
S7, and thus this event cannot occur.

We now claim that the four 7-bit intermediate values after the XOR with
the subkey KI4,1,1 are different. Indeed, these values are of the form (u⊕ k, v ⊕
k ⊕ MSB, v ⊕ k, u ⊕ k ⊕ MSB), and these are all different since u 6= v and
u 6= v ⊕ MSB.

Finally, we consider the S-box S7 in the fourth round of FI4,1. Its four inputs
are all different, and can be divided into two pairs (u ⊕ k, v ⊕ k ⊕ MSB) and
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Fig. 6. The Development of Differences in FO4 and in FI4,1 in the Modified KASUMI

(v⊕k, u⊕k⊕MSB) with the same difference. Since S7 is an almost perfect non-

linear permutation, this implies that the two corresponding pairs of outputs have
distinct differences, and thus, the XOR of the four output values is necessarily
non-zero. Since the XOR of the output values in the right half is zero, we have

I1
a ⊕ I1

b ⊕ I1
c ⊕ I1

d 6= 0,

and hence,

X3R
a ⊕ X3R

b ⊕ X3R
c ⊕ X3R

d 6= 0.

Therefore, the XOR of the four outputs of FO4 is non-zero with probability 1,
and since FL is linear, this implies that the XOR of the four outputs of FL is
non-zero with probability 1. This proves that

Pr
[

(Xc ⊕ Xd = β)
∣

∣

∣
(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)

]

= 0,

and thus the distinguisher fails in this variant of KASUMI, as asserted.
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Fig. 7. The 7-Round Related-Key Sandwich Distinguisher of KASUMI

For the sake of completeness, we also implemented this variant of KASUMI,
and verified experimentally that the number of right quartets with the desired
sandwich property was always zero.2

5 Related-Key Sandwich Attack on the Full KASUMI

Our attack on the full KASUMI (depicted in Figure 7) applies the distinguisher
presented in Section 4 to rounds 1–7, and retrieves subkey material in round 8.
Let ∆Kab = (0, 0, 8000x, 0, 0, 0, 0, 0) and ∆Kac = (0, 0, 0, 0, 0, 0, 8000x, 0), and
let Ka, Kb = Ka ⊕ ∆Kab, Kc = Ka ⊕ ∆Kac, and Kd = Kc ⊕ ∆Kab be the
unknown related keys we wish to retrieve.

The attack algorithm is as follows:

1. Data Collection Phase:

2 We used 100 keys, and for each of them we generated 224 quartets. We first veri-
fied using the official key schedule that indeed right quartets are encountered, and
then modified the key schedule accordingly. None of the experiments yielded a right
quartet.



(a) Choose a structure of 224 ciphertexts of the form Ca = (Xa, A), where
A is fixed and Xa assumes 224 arbitrary different values. Ask for the
decryption of all the ciphertexts under the key Ka and denote the plain-
text corresponding to Ca by Pa. For each Pa, ask for the encryption of
Pb = Pa ⊕ (0x, 0010 0000x) under the key Kb and denote the resulting
ciphertext by Cb. Store the pairs (Ca, Cb) in a hash table indexed by the
32-bit value CR

b (i.e., the right half of Cb).
(b) Choose a structure of 224 ciphertexts of the form Cc = (Yc, A⊕0010 0000x),

where A is the same constant as before, and Yc assumes 224 arbitrary
different values. Ask for the decryption of the ciphertexts under the key
Kc and denote the plaintext corresponding to Cc by Pc. For each Pc, ask
for the encryption of Pd = Pc ⊕ (0x, 0010 0000x) under the key Kd and
denote the resulting ciphertext by Cd. Then, access the hash table in the
entry corresponding to the value CR

d ⊕(0x, 0010 0000x), and for each pair
(Ca, Cb) found in this entry, apply Step 2 on the quartet (Ca, Cb, Cc, Cd).

In the first step described above, the (224)2 = 248 possible quartets are filtered
according to a condition on the 32 difference bits which are known (due to the
output difference δ of the distinguisher), which leaves about 216 quartets with
the required differences.

In Step 2 we can identify the right quartets instantly using an extremely
lucky property of the KASUMI structure. We note that a pair (Ca, Cc) can be
a right quartet if and only if

CL
a ⊕ FL8(FO8(CR

a )) = CL
c ⊕ FL8(FO8(CR

c )), (25)

since by the Feistel structure, this is the only case of which the difference af-
ter round 7 is the output difference of the sandwich distinguisher (i.e., δ =
(0x, 0010 0000x)). However, the values CR

a and CR
c are fixed for all the consid-

ered ciphertexts, and hence Equation (25) yields

CL
a ⊕ CL

c = FL8(FO8(A)) ⊕ FL8(FO8(A ⊕ (0x, 0010 0000x))) = const. (26)

Thus, the value CL
a ⊕ CL

c is equal for all the right quartets. This allows us to
perform the following simple filtering:

2. Identifying the Right Quartets:

(a) Insert the approximately 216 remaining quartets (Ca, Cb, Cc, Cd) into a
hash table indexed by the 32-bit value CL

a ⊕ CL
c , and apply Step 3 only

to bins which contain at least three quartets.

Since the probability of a 3-collision in a list of 216 random 32-bit values is

lower than
(

216

3

)

·2−64 ≤ 2−18, with very high probability only the right quartets
remain after this filtering.

In the following step, we treat all the remaining quartets as right quartets.
Under this assumption, we know not only the actual inputs to round 8, but also
the differences in the outputs of round 8.



OR — KL8,2 AND — KL8,1

(X ′

bd, Y ′

bd) (X ′

bd, Y ′

bd)
(X ′

ac, Y
′

ac) (0,0) (0,1) (1,0) (1,1) (X ′

ac, Y
′

ac) (0,0) (0,1) (1,0) (1,1)
(0,0) {0,1} — 1 0 (0,0) {0,1} — 0 1
(0,1) — — — — (0,1) — — — —
(1,0) 1 — 1 — (1,0) 0 — 0 —
(1,1) 0 — — 0 (1,1) 1 — — 1

∗ The two bits of the differences are denoted by (input difference, output difference):
(X ′

1, Y
′

1) for one pair and (X ′

2, Y
′

2) for the other pair.
Table 3. Possible Values of KL8,2 and KL8,1

3. Analyzing Right Quartets:

(a) For each remaining quartet (Ca, Cb, Cc, Cd), guess the 32-bit value of
KO8,1 and KI8,1. For the two pairs (Ca, Cc) and (Cb, Cd) use the value
of the guessed key to compute the input and output differences of the
OR operation in the last round of both pairs. For each bit of this 16-
bit OR operation of FL8, the possible values of the corresponding bit
of KL8,2 are given in Table 3. On average (8/16)16 = 2−16 values of
KL8,2 are suggested by each quartet and guess of KO8,1 and KI8,1.

3

Since all the right quartets suggest the same key, all the wrong keys are
discarded with overwhelming probability, and the attacker obtains the
correct value of (KO8,1, KI8,1, KL8,2).

(b) Guess the 32-bit value of KO8,3 and KI8,3, and use this information
to compute the input and output differences of the AND operation in
both pairs of each quartet. For each bit of the 16-bit AND operation of
FL8, the possible values of the corresponding bit of KL8,1 are given in
Table 3. On average (8/16)16 = 2−16 values of KL8,1 are suggested by
each quartet and guess of KO8,3, KI8,3, and thus the attacker obtains
the correct value of (KO8,3, KI8,3, KL8,1).

4. Finding the Right Key: For each value of the 96 bits of (KO8,1, KI8,1,
KO8,3, KI8,3, KL8,1 ,KL8,2) suggested in Step 3, guess the remaining 32
bits of the key, and perform a trial encryption.

The data complexity of the attack is 225 chosen ciphertexts and 225 adap-
tively chosen plaintexts encrypted/decrypted under one of four keys. The time
complexity is dominated by the trial encryptions performed in step 4 to find the
last 32 bits of the key, and thus it is approximately equal to 232 encryptions. The
probability of success is approximately 76% (this is the probability of having at
least three right pairs in the data pool).

The memory complexity of the attack is also very moderate. We just need to
store 226 plaintext/ciphertext pairs, where each pair takes 16 bytes. Hence, the
total amount of memory used in the attack is 230 bytes, i.e., 1 GByte of memory.

3 The simple proof of this claim is given in Section 4.3 of [7].



5.1 Experimental Verification

We performed two types of experiments to verify our attack. In the first experi-
ment, we just generated the required data, and located the right quartets (thus
verifying the correctness of our randomness assumptions). The second experi-
ment was the application of the full attack (both with and without the final
exhaustive search over the remaining 32 key bits). All our experiments were car-
ried out on an Intel Core Duo 2 machine with a T7200 CPU (2 GHz, 4 MB L2
Cache, 2 GB RAM, Linux-2.6.27 kernel, with gcc 4.3.2 and standard optimiza-
tion flags (-O3, -fomit-frame-pointers, -funroll-loops), single core, single
thread).

The first experiment was conducted 1,000 times. In each test, we generated
the data and found candidate quartets according to Steps 1 and 2 of the at-
tack algorithm. Once these were found, we partially decrypted the quartets, and
checked how many quartets were right ones. Table 4 details the outcome of these
experiments, which follow the expected distribution.

Right Quartets 0/1/2 3 4 5 6 7 8 9 10 11 12

Theory (Poi(4)) 238 195 195 156 104 60 30 13 5 2 0.6

Experiment 247 197 180 167 112 52 30 7 4 3 1

Table 4. The Number of Identified Right Quartets in 1,000 tests

The second experiment simulated the full attack. We repeated it 100 times,
and counted in each case how many times the final exhaustive search over 232

possible keys would have been evoked. In 78 out of these 100 experiments, the
key was found when 3 or more quartets were identified to be right ones (the
expected number was 76.1).

About 50% of the tests were able to identify the right key by invoking either 2
or 4 exhaustive searches. As the first part of the attack (which identifies candidate
quartets) takes about 8 minutes, and each exhaustive search (using the official
KASUMI source code) takes about 26 minutes, we could find the full 128 bit
key in about 50% of our tests in less than 112 minutes (using a single core). It
is important to note that by increasing the running time, one can increase the
success rate of the attack without increasing its data requirements.

5.2 Related-Key Rectangle-Like Sandwich Attack on the Full

KASUMI

The related-key sandwich distinguisher of 7-round KASUMI presented in Sec-
tion 4 can be transformed in a standard way to a related-key rectangle-like
sandwich distinguisher in which the probability of a quartet to be a right quar-
tet is (1/4)2 · (1/4)2 · 2−64 · 2−6 = 2−78. It is worth noting that in a chosen



plaintext manner, one can ensure that the first round of the differential char-
acteristic for E0 is followed with probability 1 rather than 1/2, and hence the
actual probability is 2−76. This distinguisher can be used to mount a related-key
rectangle-like sandwich attack on the full KASUMI. The attack is very similar
to the attack presented in detail in [7], and hence we omit the full description
here, and just mention the changes.

Instead of starting with 251 plaintexts in each structure, the attacker can
take 239 plaintexts. These plaintexts contain 278 possible quartets, and after the
first filtering step only 214 quartets remain. Then in Step 2(a) of the attack the
attacker gets 230 suggestions for 48 key bits (instead of 254 as in [7]), and thus
all the wrong suggestions can be discarded (since the right pairs suggest the
same value). As a result, the time complexity of the following steps becomes
negligible, and the overall time complexity is dominated by the time required to
encrypt the 241 chosen plaintexts. This is worse than the 232 time complexity of
our sandwich attack but still practical, and has the important advantage that
it only requires chosen plaintexts rather than the chosen ciphertexts/adaptive
chosen plaintexts of the sandwich attack.

As in the ordinary sandwich attack, the memory used during the rectangle-
like sandwich attack is dominated by the storage of the plaintexts and the ci-
phertexts. By first encrypting the data under keys Ka and Kb, storing it in a
sorted table, and then encrypting the data under Kc and Kd in a pair-by-pair
manner, we have to store only 240 plaintext/ciphertext pairs. Hence, the total
memory complexity of the attack is about 16 terabytes (244 bytes). Fortunately,
this memory is accessed sequentially and can be relatively slow, so we only need
a few hard disks to keep this data.

6 Summary

In this paper we develop a new sandwich attack on iterated block ciphers, and use
it to reduce the time complexity of the best known attack on the full KASUMI
from an impractical 276 to the very practical 232. However, the new attack uses
both related keys and chosen messages, and thus it might not be applicable to
the specific way in which KASUMI is used as the A5/3 encryption algorithm
in third generation GSM telephony. Our main point was to show that contrary
to the assurances of its designers, the transition from MISTY to KASUMI led
to a much weaker cryptosystem, which should be avoided in any application in
which related key attacks can be mounted.
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