
A NOTE ON A YAO’S THEOREM ABOUT
PSEUDORANDOM GENERATORS

STÉPHANE BALLET AND ROBERT ROLLAND

Abstract. The Yao’s theorem gives an equivalence between the
indistinguishability of a pseudorandom generator and the impre-
dictability of the next bit from an asymptotic point of view. We
present in this paper, with detailed proofs, some modified versions
of the Yao’s theorem which can be of interest for the study of prac-
tical systems. We study the case of one pseudorandom generator,
then the case of a family of pseudorandom generators having the
same fixed length and last an asymptotical version of the previous
result. We compute in each case the cost of the reduction between
the two algorithms.

1. Introduction

In [4] A. Yao defines for a family of pseudorandom generators de-
pending on a security parameter the notion of indistinguishability to
be the impossibility in an asymptotical context of building a uniform
(in the sense of uniform Turing machine) probabilistic polynomial time
algorithm able to distinguish between these pseudorandom generators
and a true random generator. Next, he defines the notion of polynomial
statistical test and then defines for a source S and a statistical test M
what is the meaning of the following assertion: “the source S passes the
statistical test M”. It turns out that this meaning is roughly speaking
the impredictability of the next bit knowing the first ones. He states
the asymptotical equivalence by probabilistic polynomial reduction of
the indistinguishability and the impredictability of the next bit.

Let us remark that the study of provable security notions can be
done from different points of view:

(1) the study can be done in a static context, with given parame-
ters. In this case, the sizes of the objects are fixed. Namely, we
deal with a non-asymptotic study;

Date: November 9, 2009.
1

2 STÉPHANE BALLET AND R. ROLLAND

(2) on the contrary the study can be done in a dynamic context,
namely the system depends on a variable parameter (the so-
called security parameter) growing to infinity. It is the case
when we consider the Blum Blum Shub pseudorandom gener-
ator family based on a modulus N of size k bits where k is a
variable parameter (the security parameter). On such an as-
ymptotic study, all the data depend on the security parameter
k.

In the paper [4], the study is done in an asymptotical context. Let
us note that unfortunately, there exist few books of cryptography in-
troducing Yao’s theorem and in our knowing always in asymptotical
formulation. Good reference works on this topic (and on many other
subjects related to complexity theory in cryptography) are the books
by O. Goldreich [1], [2] and the book by D. Stinson [3].

In this paper, we follow the Yao’s result in order to present modified
version expressed in a static context. We give detailed proofs and then
we compute the exact cost of the reductions between the notion of
indistinguishability and the notion of impredicability of the next bit.
We stress that this point of view can be of interest for a practical
study of concrete pseudorandom generators with a fixed length. Last,
we derive from the previous results an asymptotical result for families of
pseudorandom generators having the same security parameter k, when
k is growing to infinity.

In the section 1.1, we give the typographic conventions used in this
paper and the main notations. In the section 2 we define what is a
pseudorandom generator and define some probabilities going with a
pseudorandom generator. Next, in section 3 we introduce the security
notions in particular the notion of indistinguishability, the notion of
impredicability and then we prove a static version of the Yao’s theorem
giving in the same time the costs of the reductions between these two
notions. In section 4 we generalize the results of the section 3 to a
family of pseudorandom generators with fixed parameters. In section
5 we derive from section 4 a detailed proof of a slight improvement of
the asymptotic Yao’s theorem stated in [4], [1], [2] and [3].

1.1. Notations.

1.1.1. Typography. We will denote the integers by the letters k, l, i,
s, n, m. The algorithms will be denoted by A,B,G. The vectors of
{0, 1}m (where m is an integer exponent) will be denoted by X, Y . For
example X = (x1, x2, · · · , xl) denotes a finite bit sequence (xi)i. The
bits will be denoted by xi, yi, b. The subsets of {0, 1}m will be written in

A NOTE ON A YAO’S THEOREM 3

bold type: U,Y,Z. In particular, if Y = (y1, y2, · · · , yl) is an element
of {0, 1}l, then Y will denote the subset {Y } constituted by the unique
element Y .

1.1.2. Algorithms. The arrow ← will denote the following operations
which can be distinguished by the context:

• assignment of a value to a variable, for examples:

X ← (x1, x2, · · · , xl),
b← 1,

b← A(y1, y2, · · · , yl);
• random assignment to a variable according to the uniform

distribution, for examples:

Y ← {0, 1}l

(we draw at random a binary vector according to the uniform
distribution),

b← {0, 1}
(we draw a bit at random);
• weighted random assignment to a variable according to a

probability δ, for example:

f
δ← Γ

(we draw at random according to the probability δ a function
in a finite family Γ).

The other used notations, concerning the algorithm running or the
random experiment running, are classical and can be easily understood.

2. Pseudorandom generators

2.1. Definition of a pseudorandom generator.

Definition 2.1. A pseudorandom generator is a deterministic function
f defined on a subset U ⊆ {0, 1}k into {0, 1}l (where k < l) which maps
a seed X0 ∈ U (a secret seed) to a finite sequence of l bits:

f(X0) = (x1, x2, · · · , xl).

Generally the function f is built using a recursive computation,
which outputs successively the bits xi of f(X0). In a typical case we
have a function u from {0, 1}k into itself which computes recursively a
secret internal state Xn from the initial value X0:

Xn = u(Xn−1),

4 STÉPHANE BALLET AND R. ROLLAND

and a function v which from the input Xn outputs the bit xn (or some-
times a few bits):

xn = v(Xn).

So, we can compute the successive bits of f(X0) = (x1, · · · , xl). If the
functions u and v are well designed, an attacker knowing the first bits
x1, x2, · · · , xt (but not the seed X0) cannot compute in practice the bit
xt+1.

Exemple 2.2 (Blum Blum Shub generator x2 mod n). Let n be a
Blum integer (namely a product of two primes p and q which are equal
to 3 modulo 4) and having k bits (for example k = 2048). From a
seed having 128 bits (here U = {0, 1}128) we define the sequence Xi =
X2
i−1 mod n, and then xi = lsb(Xi) = Xi mod 2. This pseudorandom

generator is the BBS generator (Blum Blum Shub).

2.2. Probabilities related to a pseudorandom generator. Let f
be a pseudorandom generator. We define some probabilities related to
f . Then we give simple formulae involving these probabilities. If A is
a finite set, we will denote by #A its cardinality.

Let us denote by PU the uniform probability on U, Πj the uniform
probability on {0, 1}j and Qf the image probability by the map f of
PU. If Y ⊆ {0, 1}l then:

Πl(Y) =
#Y

2l
Qf (Y) = PU

(
f−1(Y)

)
=

#f−1(Y)

#U
.

Now let us fix an integer s such that 0 ≤ s ≤ l. We want to build at
random an element (y1, · · · yl) ∈ {0, 1}l in the following way:

Construction (Cf,s) :

(1) we draw at random X0 ∈ U according to the uniform distribu-
tion on U;

(2) we compute f(X0) = (x1, · · · , xl) and we keep the s first bits
(y1, · · · , ys) (where y1 = x1, · · · , ys = xs)

(3) we complete these sequence of s bits by l− s bits (ys+1, · · · , yl)
taken at random in {0, 1}l−s according to the uniform distribu-
tion.

We introduce a probability adapted to this construction, namely the
probability to obtain an Y = (y1, y2, · · · , yl) as output of the construc-
tion (Cf,s).

A NOTE ON A YAO’S THEOREM 5

For any integer s such that 0 ≤ s ≤ l we define over {0, 1}l the
following probability pf,s by

pf,s

(
{(y1, y2, · · · , yl)}

)
=

PU

(
f−1

(
{(y1, y2, · · · , ys)} × {0, 1}l−s

))
× Πl−s

(
{(ys+1, · · · , yl)}

)
,

It follows from the definition of PU, Πj et Qf that:

(1) pf,s

(
{(y1, y2, · · · , yl)}

)
=

1

2l−s
Qf

(
{(y1, y2, · · · , ys)} × {0, 1}l−s

)
.

To simplify let us denote by Y the event

Y = {Y } = {(y1, y2, · · · , yl)},
by Ys the event “the s first components are y1 · · · ys”, namely

Ys = {(y1, y2, · · · , ys)} × {0, 1}l−s,
and by Zs+1 the event “the component of index s+ 1 is ys+1”, namely

Zs+1 = {0, 1}s × {ys+1} × {0, 1}l−s−1.

The formula (1), can be written

(2) pf,s(Y) =
1

2l−s
Qf (Ys).

From the definition of a conditionnal probability and from the equal-
ity

Ys ∩ Zs+1 = Ys+1,

it follows
Qf (Ys)×Qf (Zs+1|Ys) = Qf (Ys+1),

and then using the formula (1) (or the formula (2)):

(3) pf,s(Y)×Qf (Zs+1|Ys) =
1

2
pf,s+1(Y),

namely, with the previous notations:

pf,s

(
{(y1, y2, · · · , yl)}

)
×

Qf

(
{0, 1}s × {ys+1} × {0, 1}l−s−1|{(y1, y2, · · · , ys)} × {0, 1}l−s

)
=

1

2
pf,s+1

(
{(y1, y2, · · · , yl)}

)
.

(4)

Remark 2.3. For s = 0 we obtain pf,0 = Πl (all the bits are drawn
according to the uniform distribution). For s = l we obtain pf,l = Qf

(all the bits are computed with the pseudorandom generator).

6 STÉPHANE BALLET AND R. ROLLAND

3. The security of a pseudorandom generator

3.1. Definition of a secure pseudorandom generator. Let us con-
sider the following pseudorandom generator:

f : U ⊂ {0, 1}k → {0, 1}l where k < l.

Let us recall that a probabilistic algorithm can be seen as a non-
deterministic algorithm having for each input a probability on the set
of the runs which can occur when we start from this input.

If A is a probabilistic algorithm which outputs one bit, We will
denote by µA(e) the probability of the output 1 when the input of A
is e.

The following random experiment, retated to the construction (Cf,s)
defined in the paragraph 2.2, involves a probabilistic algorithm A hav-
ing for input a vector Y ∈ {0, 1}l and which output one bit. Roughly
speaking, this algorithm tries to distinguish the given pseudorandom
generator f from a true random one. More precisely, it has for aim to
recognize if an input Y comes from the pseudorandom generator f or
for a true random generator.

Let us fix an integer s such that 0 ≤ s ≤ l.

Exptdist
f ,s (A)

X0 ← U ⊆ {0, 1}k
X ← f(X0)

(notation : X = (x1, · · · , xl))
Y1 ← (x1, x2, · · · , xs)
Y2 ← {0, 1}l−s
Y ← Y1||Y2

b← A(Y)
return b

End.

Let qf,s be the probability that the experiment

Exptdist
f ,s (A)

returns b = 1. With the previous notations we have the following:

(5) qf,s =
∑

Y ∈{0,1}l
pf,s(Y)µA(Y).

In particular, qf,0 is the probability of the following event: we draw
at random an element of {0, 1}l according to the uniform distribution,
we run the algorithm A on this element, and the output is 1. The
probability qf,l is the probability of the following event: we draw at

A NOTE ON A YAO’S THEOREM 7

random a seed X0 in U, we apply f to obtain an element of {0, 1}l
which becomes the input of the algorithm A, and the output is 1.

Let us recall now the notion of advantage which permits to quantify
the ability of A to distinguish f .

Definition 3.1. The advantage of the algorithm A to distinguish f is

Advdistf (A) = |qf,l − qf,0|.

Then we define a (T, ε)-distinguisher:

Definition 3.2. Let f be a pseudorandom generator. Let T and ε
be positive real numbers. A (T, ε)-distinguisher for f is a probabilistic
algorithm A such that

(1) the maximal running time of A is ≤ T ,
(2) the input of A is an element of {0, 1}l,
(3) the output of A is a bit b,
(4) the algorithm A can distinguish the pseudorandom generator

from the uniform distribution, namely

Advdistf (A) > ε.

We can now define the (T, ε)-security of f .

Definition 3.3. The generator f is (T, ε)-secure, if it does not exist
any (T, ε)-distinguisher for f , namely any probabilistic algorithm A
with maximal running time t(A) ≤ T has an advantage satisfying the
inequality

Advdistf (A) ≤ ε.

Remark 3.4. In the advantage definition we can suppose that qf,l ≥
qf,0, if not we can replace A by the complementary algorithm (which
outputs 1 when the other ouputs 0 and vice versa). Using this remark
we can avoid to use absolute value.

3.2. Impredictability of a pseudorandom generator. Let us con-
sider the following pseudorandom generator:

f : U ⊂ {0, 1}k → {0, 1}l.

Let 1 ≤ s < l. The following random experiment involves a proba-
bilistic algorithm B having for input a sequence of s bits and for output
a bit. Roughly speaking, this algorithm tries to predict the next bit
produced by the pseudorandom generator f , namely the bit of index
s+ 1.

Exptpred
f ,s (B)

X0 ← U ⊆ {0, 1}k

8 STÉPHANE BALLET AND R. ROLLAND

X ← f(X0)
(notation : X = (x1, · · · , xl))

Y ← (x1, x2, · · · , xs)
b← B(Y)
if b = xs+1

then return 1
else return 0

fi
End.

Let rf,s be the probability that the experiment Exptpred
f ,s (B) returns

1. With the previous notations:

rf,s =
∑

Y ∈{0,1}l,ys+1=1

pf,s(Y)µB(Y) +
∑

Y ∈{0,1}l,ys+1=0

pf,s(Y) (1− µB(Y)) .

Definition 3.5. The advantage of the algorithm B to predict the bit of
index (s+ 1) computed by f is:

Advpredf,s (B) =

∣∣∣∣rf,s − 1

2

∣∣∣∣ .
We can now define the notion of (T, s, ε)-prediction algorithm.

Definition 3.6. Let f be a pseudorandom generator. Let T and ε be
positive real numbers and s be an integer such that 1 ≤ s < l. A
(T, s, ε)-prediction algorithm B is a probabilistic algorithm such that:

(1) the maximal running time of B is ≤ T ,
(2) the input of B is an element of {0, 1}s,
(3) the output of B is a bit,
(4) the algorithm B can predict the next bit, namely

Advpredf,s (B) > ε.

We define now the notion of (T, s, ε)-impredictable pseudorandom
generator.

Definition 3.7. Let f be a pseudorandom genrator. Let and s an
integer such that 1 ≤ s < l. The generator f is (T, s, ε)-impredictable,
if there does not exist any (T, s, ε)-prediction algorithm.

3.3. Yao’s theorem, static version. The Yao’s theorem relates the
notion of security to the notion of impredictability of the next bit. We
express it in its non-asymptotic form. In this case, we give two results
which can be considered respectively as a necessary condition and a
sufficient condition to have the security of a generator f .

A NOTE ON A YAO’S THEOREM 9

Theorem 3.8. We consider the following pseudorandom generator:

f : U ⊂ {0, 1}k → {0, 1}l.

If we have a

(T, s, ε)-prediction algorithm

for f , we can build a

(T + c, ε)-distinguisher

where c is the constant time needed to compare two bits.

Proof. Let B be a (T, s, ε)-prediction algorithm. We build a (T, ε)-
distinguisher A in the following way:

A(x1, x2, · · ·xl)
b← B(x1, x2, · · ·xs)
if b = xs+1

the return 1
else return 0

fi
End.

The probability to have A(f(X0)) = 1 is then > 1/2 + ε since B is a
(T, s, ε)-prediction algorithm. But for a random

(y1, y2, · · · , yl) ∈ {0, 1}l,

the probability to have

A(y1, y2, · · · , yl) = 1

is 1/2. Moreover, to obtain the running time of the built distinguisher
we just add to the running time of B the constant time c needed to
compare b to xs+1 (to compare two bits). �

Theorem 3.9. Let f be a pseudorandom generator:

f : U ⊂ {0, 1}k → {0, 1}l.

Let us suppose that for all s such that 1 ≤ s < l, it does not exist any
(T, s, ε)-prediction algorithm. Then f is (T−(c1l+c2), l ε)-secure where
c1 is the constant time needed to draw one bit at random, and c2 is the
constant time needed to test the value of a bit and then depending upon
the value of this bit to return a bit or its complementary.

Proof. Let us suppose that f is not (T1, η)-secure. Then there is a
distinguisher algorithm A which has an running time ≤ T1 and an ad-
vantage > η. Let us consider the construction (Cf,s) defined in the

10 STÉPHANE BALLET AND R. ROLLAND

paragraph 2.2, and let us use the probabilities introduced in the para-
graph 3. Even if it means changing the algorithm A by its complemen-
tary, we can suppose that qf,l − qf,0 > η. Hence:

Advdistf (A) = qf,l − qf,0 =

(qf,l − qf,l−1) + (qf,l−1 − qf,l−2) + · · ·
+(qf,s − qf,s−1) + · · ·+ (qf,1 − qf,0) > η.

Then, there is an integer s such that |qs+1 − qs| > η/l. Now, let us
define the following algorithm B:

B(z1, z2, · · · zs)
(zs+1, · · · , zl)← {0, 1}l−s
b← A(z1, · · · , zl)
if b = 1

then return zs+1

else return zs+1

fi
End.

The running time of this algorithm is less than T1 + c1l + c2, where
c1 is the constant time needed to draw at random 1 bit, and c2 the
constant time needed to return zs or zs according to b. Let us prove
now that the algorithm B is a (T1+c1l+c2, s, η/l)-prediction algorithm.
First, let us compute the probability rf,s such that the result of the

experimentExptpred
f ,s (B) is 1. To do that we nest the definition of B in

the definition of the experiment Exptpred
f ,s (B).

We obtain the following experiment:

Exptpred
f ,s (B)

X0 ← U ⊂ {0, 1}k
Y ← f(X0)

(notation : Y = (x1, · · · , xl))
Ys ← (x1, x2, · · · , xs)
(Ys is the input of B,

which only knows these componants)

•begin nesting of B
(zs+1, · · · , zl)← {0, 1}l−s
b1 ← A(x1, · · · , xs, zs+1, · · · , zl)
if b1 = 1

then b← zs+1

else b← zs+1

•end nesting

A NOTE ON A YAO’S THEOREM 11

if b = xs+1

then return 1
else return 0

fi
End.

This experiment will give us a mean to compute the probability rf,s.
We remark that the result of the experiment is 1 when b = xs+1, namely
in the two following cases:

(1) b1 = 1 et zz+1 = xs+1;
(2) b1 = 0 et zs+1 = xs+1.

Let us use the simple notations yet introduced in the paragraph
2.2: Y is the event {(x1, · · · , xl)}, Ys denotes the event “the s first
components are x1, · · ·xs”, Zs+1 is the event “the component s + 1 is
zs+1”. Let us set νA(Y) = 1− µA(Y).

Then, Qf (Zs+1|Ys) is the conditionnal probability, when Y is built
from a random seed using the pseudorandom generator, that the com-
ponent s + 1 of Y (namely xs+1) is zs+1, assuming that the s first
componants are (x1, · · · , xs).

Hence:

rf,s =∑
Y ∈{0,1}l

pf,s(Y)
(
Qf (Zs+1|Ys)µA(Y) +Qf

(
Zs+1|Ys

)
νA(Y)

)
=

∑
Y ∈{0,1}l

pf,s(Y)
(
Qf (Zs+1|Ys)µA(Y) + (1−Qf (Zs+1|Ys)) νA(Y)

)
.

Using the formula (4) we get:

rf,s =

1

2

∑
Y ∈{0,1}l

pf,s+1(Y)
(
µA(Y)− νA(Y)

)
+

∑
Y ∈{0,1}l

pf,s(Y)νA(Y) =

1

2

∑
Y ∈{0,1}l

pf,s+1(Y)
(

2µA(Y)− 1
)

+
∑

Y ∈{0,1}l
pf,s(Y)(1− µA(Y)) =

1

2
+

∑
Y ∈{0,1}l

(
pf,s+1(Y)− pf,s(Y)

)
µA(Y).

This equality and the use of the formula (5) give the following:

12 STÉPHANE BALLET AND R. ROLLAND

rf,s =
1

2
+ qf,s+1 − qf,s,

hence: ∣∣∣∣rf,s − 1

2

∣∣∣∣ > η

l
.

Now we get the result by setting T1 = T − (c1l + c2) and η = lε. �

Remark 3.10. Changing the direction of the prediction algo-
rithm. In the paragraph 3.2 we defined and used right prediction al-
gorithms, namely, given the bits (x1, · · · , xs) the prediction algorithm
computes the bit xs+1 (prediction of the next bit). In fact the same
study, with the same results, can be done for left prediction algorithms,
namely, for an algorithm which, given the bits (xs+1, · · · , xl), computes
the bit xs (prediction of the previous bit). In particular all the versions
of Yao’s theorem remain valid for left prediction algorithms.

Remark 3.11. Let f : {0, 1}k → {0, 1}l be a pseudorandom generator
and s be an integer such that 1 ≤ s < l−1. In many practical examples
we can say that if s′ is an integer such that s ≤ s′ < l then

Advpredf,s′ (B) ≥ Advpredf,s (B).

For example let us consider the typical construction given in Sub-
section 2.1. Let u be a bijective function from {0, 1}k onto itsel. The
function u computes recursively a secret internal state Xn from the
initial value X0:

Xn = u(Xn−1).

Now a function v maps Xn to a bit xn, then

f(X0) =
(
v ◦ u(X0), v ◦ u2(X0), · · · , v ◦ ul(X0)

)
.

Suppose that s′ = s+1 < l and that we know the bits (x′1, x
′
2, · · · , x′s)

of f(X ′0). Then to compute the bit of index s′ + 1, we can forget the
bit x′1 and use an algorithm which knowing s bits, try to find the bit of
index s + 1. More precisely, let X0 = u(X ′0) = X1. Starting from the
seed X0 we can compute the s first terms of the pseudoandom sequence:

x1 = v ◦ u(X0) = x′2, · · · , xs = v ◦ us+1 = x′s′ .

As u is bijective, the probability repartition of X0 is the same as the
probability repartition of X ′0. Then

Advpredf,s+1(B) ≥ Advpredf,s (B).

A NOTE ON A YAO’S THEOREM 13

4. The security of a family of pseudo-random generators
with same given size

We have considered the case of one pseudorandom generator f . But
even in the non-asymptotic case where k and l are fixed, we have to
study not only one, but a family (a finite family because k and l are
fixed) Γ of function f defined on a subset Uf (which can depend on
f) of {0, 1}k with images in {0, 1}l. It is the case for the Blum Blum
Shub algorithms: given the size of the modulus, we can consider all the
possible modulus N having this size. Then we study algorithms which
attack all the generators of the family.

4.1. Revisiting the previous notions in the case of a family of
pseudo-random generators with same size. In a realistic situa-
tion we must, in the random experiment which defines the attacker’s
advantage, draw at random the function f in the family Γ according
to a probability δ.

So, we replace now the algorithms A and B of the previous section
by algorithms whose inputs are a function f ∈ Γ and an a vector. The
random experiments Exptdist

f ,s (A) and Exptpred
f ,s (B) are replaced by the

random experiments Exptdist
Γ,s (A) and Exptpred

Γ,s (B) where we draw at
random not only the seed X0, but also the function f itself.

The experiment Exptdist
Γ,s (A) is given by the following scheme:

Exptdist
Γ,s (A)

f
δ← Γ

X0 ← Uf ⊆ {0, 1}k
X ← f(X0)

(notation : X = (x1, · · · , xl))
Y1 ← (x1, x2, · · · , xs)
Y2 ← {0, 1}l−s
Y ← Y1||Y2

b← A(f, Y)
return b

End.

The probability qs that the result of this experiment is 1 is

qs =
∑
f∈Γ

δ(f)qf,s.

The experiment Exptpred
Γ,s (B) is given by the following scheme:

14 STÉPHANE BALLET AND R. ROLLAND

Exptpred
Γ,s (B)

f
δ← Γ

X0 ← Uf ⊆ {0, 1}k
X ← f(X0)

(notation : X = (x1, · · · , xl))
Y ← (x1, x2, · · · , xs)
b← B(f, Y)
if b = xs+1

then return 1
else return 0

fi
End.

The probability rs that the result of this experiment is 1 is

rs =
∑
f∈Γ

δ(f)rs,f .

All the definitions of the advantages of the previous paragraph can be
extended to this case, and the static Yao’s theorems can be generalized.
More precisely we can modify the definitions 3.1, 3.2, 3.3 and 3.5, 3.6,
3.7 in the following way:

Definition 4.1. Let A be an algorithm having for inputs a pseudoran-
dom generator f ∈ Γ and a vector Y ∈ {0, 1}l and for output a bit b.
The advantage of the algorithm A to distinguish an element of the Γ
family is:

AdvdistΓ (A) = |ql − q0|.

Definition 4.2. Let Γ be a family of pseudorandom generators having
the same size (i.e. the same parameters k and l). Let T and ε be
positive real numbers. A (T, ε)-distinguisher for Γ is a probabilistic
algorithm A such that:

(1) the maximal running time of A is ≤ T ,
(2) the inputs of A are an element f ∈ Γ and an element Y ∈
{0, 1}l,

(3) the output of A is a bit b,
(4) the algorithm A can distinguish the pseudorandom generator in

Γ from the uniform distribution, namely

AdvdistΓ (A) > ε.

Definition 4.3. The family Γ of pseudorandom generators (having the
same size) is (T, ε)-secure, if it does not exist any (T, ε)-distinguisher
for Γ.

A NOTE ON A YAO’S THEOREM 15

Definition 4.4. Let s be an integer such that 1 ≤ s < l. Let B be an
algorithm having for inputs a pseudorandom generator f ∈ Γ and an
element Z ∈ {0, 1}s.

The advantage of the algorithm B to predict the bit of index (s + 1)
computed by a random f ∈ Γ is

AdvpredΓ,s (B) =

∣∣∣∣rs − 1

2

∣∣∣∣ .
Definition 4.5. Let Γ be a family of pseudorandom generators (having
the same size). Let T and ε be positive real numbers and s be an integer
such that 1 ≤ s < l. A (T, s, ε)-prediction algorithm B is a probabilistic
algorithm such that:

(1) the maximal running time of B is ≤ T ,
(2) the inputs of B are an element f ∈ Γ and an element Z ∈
{0, 1}s,

(3) the output of B is a bit,
(4) the algorithm B can predict the next bit, namely

AdvpredΓ,s (B) > ε.

Definition 4.6. Let Γ be a family of pseudorandom generators (having
the same size). Let s an integer such that 1 ≤ s < l. The family Γ
is (T, s, ε)-impredictable, if there does not exist any (T, s, ε)-prediction
algorithm.

4.2. Yao’s theorem.

Theorem 4.7. Let Γ be a family of pseudorandom generators having
the same size where each f ∈ Γ is a function

f : Uf ⊂ {0, 1}k → {0, 1}l.
If we have a

(T, s, ε)-prediction algorithm

for f , we can build a

(T + c, ε)-distinguisher

where c is the constant time needed to compare two bits.

Proof. The proof is similar to the proof of Theorem 3.8. Let B be a
(T, s, ε)-prediction algorithm. We build a (T, ε)-distinguisher A in the
following way:

A(f, x1, x2, · · ·xl)
b← B(f, x1, x2, · · ·xs)
if b = xs+1

16 STÉPHANE BALLET AND R. ROLLAND

the return 1
else return 0

fi
End.

The probability to have A(f, f(X0)) = 1 is then > 1/2 + ε since B
is a (T, s, ε)-prediction algorithm. But for a random

(y1, y2, · · · , yl) ∈ {0, 1}l,
the probability to have

A(f, y1, y2, · · · , yl) = 1

is 1/2. Moreover, to obtain the running time of the built distinguisher
we just add to the running time of B, the constant time c needed to
compare b to xs+1 (to compare two bits). �

Theorem 4.8. Let Γ be a family of pseudorandom generators having
the same size where each f ∈ Γ is a function

f : Uf ⊂ {0, 1}k → {0, 1}l.
Let us suppose that for all s such that 1 ≤ s < l, it does not exist any
(T, s, ε)-prediction algorithm. Then f is (T−(c1l+c2), l ε)-secure where
c1 is the constant time needed to draw one bit at random, and c2 is the
constant time needed to test the value of a bit and then depending upon
the value of this bit to return a bit or its complementary.

Proof. Let us suppose that Γ is not (T1, η)-secure. Then there is a
distinguisher algorithm A which has an running time ≤ T1 and an
advantage > η, namely

ql − q0 =
∑
f∈Γ

δ(f)(qf,l − qf,0) > η.

But

qf,l − qf,0 =
l−1∑
s=0

(qf,s+1 − qf,s),

hence

ql − q0 =
∑
f∈Γ

δ(f)
l−1∑
s=0

(qf,s+1 − qf,s) =
l−1∑
s=0

∑
f∈Γ

δ(f)(qf,s+1 − qf,s) > η.

Then, there is an integer s such that∣∣∣∣∣∑
f∈Γ

δ(f)(qf,s+1 − qf,s)

∣∣∣∣∣ > η/l.

A NOTE ON A YAO’S THEOREM 17

But we have shown in the proof of Theorem 3.9 that

qf,s+1 − qf,s = rf,s −
1

2
,

hence∣∣∣∣∣∑
f∈Γ

δ(f)(qf,s+1 − qf,s)

∣∣∣∣∣ =

∣∣∣∣∣∑
f∈Γ

δ(f)

(
rf,s −

1

2

)∣∣∣∣∣ =

∣∣∣∣rs − 1

2

∣∣∣∣ > η/l.

We can conclude as in the proof of Theorem 3.9. �

5. Asymptotic behaviour

As a consequence of the previous results for fixed k and l, we can
deduce results on the asymptotical theory of the pseudorandom gen-
erators, namely k growing to infinity and l = l(k) > k a polynomial
function of k (cf. [2, Chapter 3]).

Let k be a positive integer (the security parameter) and l(k) a poly-
nomial function of k such that l(k) > k. For any k we have a set Γk of
deterministic functions such that

(1) if f ∈ Γk then f is a function from a subset Uf of {0, 1}k into
{0, 1}l(k);

(2) there exist a polynomial function t(k) such that for any k, any
f ∈ Γk and any X ∈ Uf the computation time of f(X) is
upper-bounded by t(k);

(3) for any k we provide a probability δk on the set Γk.

The asymptotic notions of indistinguishability and impredictability
are derived respectively from the definitions 4.3 and 4.6. We define now
a distinguisher A to be a probabilistic polynomial algorithm having
for inputs the security parameter k, a function f ∈ Γk and a vector
Y ∈ {0, 1}l(k), and which outputs a bit. Let k be an integer, we will
denote by Ak the probabilistic algorithm obtained from A by fixing the
first entry to the value k.

Definition 5.1. The family Γ = (Γk)k>0 of sets of pseudorandom gen-
erators is said asymptotically secure if for any polynomial S(k), any
integer u and any distinghuisher A with running time ≤ S(k), the ad-
vantage of the algorithm Ak (cf. Definition 4.1) is a negligible function
of 1

ku , namely

lim
k→+∞

kuAdvdistΓk
(Ak) = 0.

Let s = (sk)k≥1 a sequence of integers such that 1 ≤ sk < l(k). We
define now a s-prediction algorithm to be a probabilistic polynomial
algorithm B having for inputs the security parameter k, a function

18 STÉPHANE BALLET AND R. ROLLAND

f ∈ Γk and a vector Z ∈ {0, 1}sk , and which outputs a bit. Let k be
an integer, we will denote by Bk the probabilistic algorithm obtained
from B by fixing the first entry to the value k.

Definition 5.2. The family Γ = (Γk)k>0 of sets of pseudorandom gen-
erators is said asymptotically impredictable if for any polynomial S(k),
any sequence s and any s-prediction algorithm B with running time
≤ S(k), the advantage of the sk-prediction algorithm Bk (cf. Defini-
tion 4.4) is a negligible function of 1

ku , namely

lim
k→+∞

kuAdvpredΓk,sk
(Ak) = 0.

The two notions are related by the following theorem:

Theorem 5.3. Let l(k) be a polynomial function of one integer variable
k such that l(l) > k. Let Γ = (Γk)k>0 a family of sets, where any set Γk
is a probabilized set of random generators mapping a subset of {0, 1}k
into {0, 1}l(k) (more precisely, each f ∈ Γk has its own definition subset
Uf ⊆ {0, 1}k). The family Γ is asymptotically secure if and only if it
is asymptotically impredictable.

Proof. Let Γ be an asymptotically secure family. Suppose that Γ
is not asymptotically impredictable, then there exist a polynomial
function S(k), an integer u and a s-prediction algorithm B such that

kuAdvpredΓk,sk
(Bk) doest not tend to 0. Then one can find ε > 0, a se-

quence (kn)n of integers and a sequence (skn)n of integers such that

kun Adv
pred
Γkn ,skn

(Bkn) > ε.

Let Akn be the distinguisher algorithm built in the proof of Theorem
4.7. The running time of Akn is ≤ S(k) + c (where c is a constant) and

kun Adv
dist
Γkn

(Akn) > ε.

So we obtain a contradiction.

Now suppose that Γ is an asymptotically impredictable family. Sup-
pose that Γ is not asymptotically secure, then there exist a polyno-
mial S(k), an integer u and a distinguisher algorithm A such that
kuAdvdistΓk

(Ak) doest not tend to 0. Then one can find ε > 0 and a
sequence (kn)n of integer such that

kun Adv
dist
Γkn

(Akn) > ε.

Let Bkn be the skn-prediction algorithm built in the proof of Theorem
4.8. The running time of Bkn is ≤ S(k) + c1l(k) + c2 (where c1 and c2

A NOTE ON A YAO’S THEOREM 19

are two constants) and

kun Adv
pred
Γkn ,skn

(Bkn) >
ε

l(k)
,

and as l(k) is a polynomial function, there is an integer v such that

kvnAdv
pred
Γkn ,skn

(Bkn) > ε.

So we obtain a contradiction. �

References

[1] Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudo-
randomness. Number 17 in Algorithms and Combinatorics. Springer, 1999.

[2] Oded Goldreich. The Foundations of Cryptography, Volume I. Cambridge Uni-
versity Press, 2001.

[3] Douglas Stinson. Cryptography: Theory and Practice, Third Edition. CRC
Press, 2005.

[4] Andrew C. Yao. Theory and Applications of Trapdoor Functions. In Proceedings
of the 23rd IEEE Symposium on Foundations of Computer Science, pages 80–
91. IEEE Computer Society, 1982.

Institut de Mathématiques de Luminy, case 930, F13288 Marseille
cedex 9, France

E-mail address: ballet@iml.univ-mrs.fr

Institut de Mathématiques de Luminy, Campus de Luminy, Case 907,
13288 MARSEILLE Cedex 9

E-mail address: robert.rolland@acrypta.fr

