
Higher-order Masking and Shuffling for Software
Implementations of Block Ciphers

– Extended Version? –

Matthieu Rivain1,2, Emmanuel Prouff1, and Julien Doget1,3,4

1 Oberthur Technologies, France
2 University of Luxembourg, Luxembourg

3 Université catholique de Louvain, Belgium
4 University of Paris 8, France

{m.rivain,e.prouff,j.doget}@oberthur.com

Abstract. Differential Power Analysis (DPA) is a powerful side channel
key recovery attack that efficiently breaks block ciphers implementations.
In software, two main techniques are usually applied to thwart them:
masking and operations shuffling. To benefit from the advantages of the
two techniques, recent works have proposed to combine them. However,
the schemes which have been designed until now only provide limited
resistance levels and some advanced DPA attacks have turned out to
break them. In this paper, we investigate the combination of masking and
shuffling. We moreover extend the approach with the use of higher-order
masking and we show that it enables to significantly improve the security
level of such a scheme. We first conduct a theoretical analysis in which
the efficiency of advanced DPA attacks targeting masking and shuffling
is quantified. Based on this analysis, we design a generic scheme com-
bining higher-order masking and shuffling. This scheme is scalable and
its security parameters can be chosen according to any desired resistance
level. As an illustration, we apply it to protect a software implementation
of AES for which we give several security/efficiency trade-offs.

1 Introduction

Side Channel Analysis (SCA in short) exploits information that leaks from phys-
ical implementations of cryptographic algorithms. This leakage (e.g. the power
consumption or the electro-magnetic emanations) may indeed reveal information
on the secret data manipulated by the implementation. Among SCA attacks, two
classes may be distinguished. The set of so-called Profiling SCA corresponds to
a powerful adversary who has a copy of the attacked device under control and
who uses it to evaluate the distribution of the leakage according to the processed
values. Once such an evaluation is obtained, a maximum likelihood approach is
followed to recover the secret data manipulated by the attacked device. The sec-
ond set of attacks is the set of so-called Differential Power Analysis (DPA) [12].

? The abridged version of this paper has been published at CHES 2009.

It corresponds to a more realistic (and much weaker) adversary than the one
considered in Profiling SCA, since the adversary is only able to observe the
device behavior and has no a priori knowledge of the implementation details.
This paper only deals with the set of DPA as it includes a great majority of the
attacks encountered e.g. by the smart card industry.

Block ciphers implementations are especially vulnerable to DPA attacks and
research efforts have been stepped up to specify implementation schemes counter-
acting them. For software implementations, one identifies two main approaches:
masking [2, 7] and shuffling [8]. However, some advanced DPA techniques exist
that defeat these countermeasures [3, 16]. A natural approach to improve the
DPA resistance is to mix masking and shuffling [8, 26, 27]. This approach seems
promising since it enables to get the best of the two techniques. However, the
schemes that have been proposed so far [8, 27] only focus on first-order mask-
ing which prevents them from reaching high resistance levels. This is all the
more serious that advanced DPA attacks have turned out to be quite efficient in
breaking them [26,27].

In this paper, we conduct an analysis to quantify the efficiency of an attack
that targets either a masked implementation or a shuffled implementation or a
masked-and-shuffled implementation. Based on this analysis, we design a new
scheme combining higher-order masking and shuffling to protect software imple-
mentations of block ciphers. This scheme is scalable and its parameters can be
specified to achieve any desired resistance level. We apply it to protect a software
implementation of AES and we show how to choose the scheme parameters to
achieve a given security level with the minimum overhead.

2 Preliminaries

2.1 Masking and Shuffling Countermeasures

To protect cryptographic implementations against DPA, one must reduce the
amount of information that leaks on sensitive intermediate variables during the
processing. A variable is said to be sensitive if it is a function of the plaintext
and a guessable part of the secret key (that is not constant with respect to the
latter).

To thwart DPA attacks, countermeasures try to make leakages as independent
as possible of sensitive variables. Nowadays, two main approaches are followed
to achieve such a purpose in software: the masking and the shuffling. We briefly
recall hereafter the two techniques.

The core idea behind masking is to randomly split every sensitive variable X
into d + 1 shares M0,..., Md in such a way that the relation M0 ? ... ? Md = X is
satisfied for a group operation ? (e.g. the x-or or the modular addition). Usually,
M1,..., Md (called the masks) are randomly picked up and M0 (called the masked
variable) is processed to satisfy M0 ? ... ? Md = X. The parameter d is usually
called the masking order. When carefully implemented (namely when all the
shares are processed at different times), dth-order masking perfectly withstands

any DPA exploiting less than d + 1 leakage signals simultaneously. Although
attacks exploiting d + 1 leakages are always theoretically possible, in practical
settings their complexity grows exponentially with d [2]. The design of efficient
higher-order masking schemes for block ciphers is therefore of great interest.
However, even for small d, dealing with the propagation of the masks through
the underlying scheme is an issue. For linear operations, efficient and simple
solutions exist that induce an acceptable overhead irrespective of d. Actually,
the issue is to protect the non-linear S-boxes computations. In the particular
case d = 1, a straightforward solution called the table re-computation exists (see
for instance [1, 15]). Straightforward generalizations of the method to higher
orders d do not provide security versus higher-order DPA. Indeed, whatever
the number of masks, an attack targeting two different masked input/output
is always possible (see for instance [18]). To bypass this flaw, [24] suggests to
re-compute a new table before every S-box computation. This solution is very
costly in terms of timings and [5] shows the feasibility of third-order attacks, so
the scheme is only secure for d < 3. An alternative solution for d = 2 has been
proposed in [23] but the timing overhead is of the same order.

Shuffling consists in spreading the signal containing information about a sen-
sitive variable X over t different signals S1, . . . , St leaking at different times. This
way, if the spread is uniform, then for every i the probability that Si corresponds
to the manipulation of X is 1

t . As a consequence, the signal-to-noise ratio of the
instantaneous leakage on X is reduced by a factor of t (see Sect. 3.2 for details).
Applying shuffling is straightforward and does not relate to the nature (linear
or non-linear) of the layer to protect. Moreover, shuffling is usually significantly
less costly than higher-order masking when applied to non-linear layers.

Since higher-order masking is expensive and since first-order masking can
be defeated with quite reasonable efforts [18], a natural idea is to use shuffling
together with first-order masking. A few schemes have already been proposed
in the literature [8, 27]. In [8], an 8-bit implementation of AES is protected
using first-order masking and shuffling. The work in [27] extends this scheme
to a 32-bit implementation with the possible use of instructions set extension.
Furthermore, [27] proposes some advanced DPA attacks on such schemes whose
practicability is demonstrated in [26]. These works show that combining first-
order masking with shuffling is definitely not enough to provide a strong security
level. A possible improvement is to involve higher-order masking. This raises
two issues. First, a way to combine higher-order masking with shuffling must be
defined (especially for S-boxes computations). Secondly, the security of such a
scheme should be quantifiable. It would indeed be of particular interest to have a
lower bound on the resistance of the overall implementation by choosing a priori
the appropriate trade-off between masking and shuffling orders. In the rest of
the paper, we address those two issues.

2.2 Notations and Leakage Model

We use the calligraphic letters, like X , to denote finite sets (e.g. Fn
2). The corre-

sponding capital letter X is used to denote a random variable over X , while the

lowercase letter x - a particular element from X . The expectation of X is de-
noted by E [X], its variance by Var [X] and its standard deviation by σ [X]. The
correlation coefficient [28] between X and Y is denoted by ρ [X, Y]. It measures
the linear interdependence between X and Y and is defined by:

ρ [X, Y] =
Cov [X, Y]
σ [X]σ [Y]

, (1)

where Cov [X, Y], called covariance of X and Y , equals E [(X − E [X])(Y − E [Y])]
or E [XY]− E [X] E [Y] equivalently.

In the next sections, we investigate the security of the combination of masking
and shuffling towards DPA. Our analysis is conducted in the Hamming weight
leakage model that we formally define hereafter. This model is very common
for the analysis of DPA attacks [9, 22, 27] and it has been practically validated
several times [16,18].

Definition 1 (Hamming weight model). The leakage signal Si produced by
the processing of a variable Di satisfies:

Si = δi + βi ·H(Di) + Ni , (2)

where δi denotes a constant offset, βi is a real value, H(·) denotes the Hamming
weight function and Ni denotes a noise with mean 0 and standard deviation σ.

When several leakage signals Si’s are jointly considered, we shall make three
additional assumptions: (1) the constant βi is the same for the different Si’s
(without loss of generality, we consider βi = 1), (2) noises Ni’s are mutually
independent and (3) the noise standard deviation σ is the same for the different
Ni’s.

3 Analysis of Advanced DPA Attacks Against Masking
and Shuffling

Higher-order DPA attacks aim at recovering information on a sensitive variable
X by considering several non-simultaneous leakage signals. Let us denote by
S the multivariate random variable corresponding to those signals. The attack
starts by converting S into an univariate random variable by applying it a func-
tion g. Then, a prediction function f is defined according to some assumptions
on the device leakage model. Eventually, every guess X̂ on X is checked by esti-
mating the correlation coefficient between the combined leakage signal g(S) and
the so-called prediction f(X̂).

As argued in several works (see for instance [13, 14, 22, 24]), the absolute
value of the correlation coefficient ρ [f(X), g(S)] (corresponding to the correct
key guess) is a sound estimator of the efficiency of a correlation based DPA
characterized by the pair of functions (f, g). In [14, 25], it is even shown that
the number of leakage measurements required for the attack to succeed can be
approximated by c · ρ [f(X), g(S)]−2 where c is a constant depending on the

number of key guesses and the required success rate. In the following, we exhibit
in the Hamming weight model (see Sect. 2.2) explicit formulae of this coefficient
for advanced DPA attacks where the sensitive variable is either (1) protected
by (higher-order) masking, or (2) protected by shuffling or (3) protected with a
combination of the two techniques.

3.1 Defeating Masking: Higher-order DPA

When dth-order masking is used, any sensitive variable X is split into d+1 shares
X⊕M, M1, ..., Md, where M denotes the sum

⊕
i Mi. In the following, we shall

denote X ⊕M by M0. The processing of each share Mi respectively results in a
leakage signal Si. Since the Mi’s are assumed to be mutually independent, every
tuple of d signals or less among the Si’s is independent of X. Thus, to recover
information about X, the joint distribution of all the d + 1 signals must be con-
sidered. Higher-order DPA consists in combining the d+1 leakage signals by the
mean of a so-called combining function C(·, · · · , ·). This enables the construction
of a signal that is correlated to the sensitive variable X.

Several combining functions have been proposed in the literature. Two of
them are commonly used: the product combining [2] which consists in multiplying
the different signals and the absolute difference combining [16] which computes
the absolute value of the difference between two signals. As noted in [5, Sect. 1],
the latter can be extended to higher orders by induction. Other combining func-
tions have been proposed in [9,17]. In a recent paper [22], the different combining
functions are compared for second-order DPA in the Hamming weight model.
An improvement of the product combining called normalized product combining
is proposed and it is shown to be more efficient than the other combining func-
tions5. In this paper, we therefore consider the normalized product combining
generalized to higher orders:

C (S0, S1 · · · , Sd) =
d∏

i=0

(Si − E [Si]) . (3)

We shall denote by Cd(X) the combined leakage signal C (S0, S1 · · · , Sd)
where the Si’s correspond to the processing of the shares X ⊕ M, M1, ..., Md

in the Hamming weight model. The following lemma gives the expectation of
Cd(X) given X = x for every x ∈ Fn

2 . The proof is given in Appendix B.

Lemma 1. Let x ∈ Fn
2 , then the expectation of Cd(x) satisfies:

E [Cd(x)] =
(
−1

2

)d (
H(x)− n

2

)
. (4)

Lemma 1 shows that the expectation of Cd(x) is an affine function of the
Hamming weight of x. According to the analysis in [22], this implies that the
5 This assertion is true while considering a noisy model. In a fully idealized model,

other combining may provide better results (see [22]).

Hamming weight of X maximizes the correlation. For the reasons given in [22],
this function can therefore be considered as an optimal prediction for Cd(X).
Hence, the HO-DPA we focus here consists in estimating the correlation between
the Hamming weight of the target variable H(X) and the combined leakage
Cd(X). The next proposition provides the exact value of this correlation. The
proof is given in Appendix B.

Proposition 1. Let X be a random variable uniformly distributed over Fn
2 . The

correlation between H(X) and Cd(X) satisfies:

ρ [H(X), Cd(X)] = (−1)d

√
n

(n + 4σ2)
d+1
2

. (5)

Notation. The correlation coefficient in (5) shall be referred as ρ(n, d, σ).

3.2 Defeating Shuffling: Integrated DPA

When shuffling is used, the signal containing information about the sensitive
variable X is randomly spread over t different signals S1, ..., St. As a result,
the correlation between the prediction and one of these signals is reduced by a
factor t compared to the correlation without shuffling. In [3], an integrated DPA
attack (also called windowing attack) is proposed for this issue. The principle is
to add the t signals all together to obtain an integrated signal. The correlation is
then computed between the prediction and the integrated signal. The resulting
correlation is reduced by a factor

√
t instead of t without integration. This is

formalized in the next proposition.

Proposition 2. Let (Si)16i6t be t random variables identically distributed and
mutually independent. Let Y denote a signal Sj’s whose index j is a random
variable uniformly distributed over {1, · · · , t}. Let X be a random variable that
is correlated to Y and that is independent of the remaining Si’s. For every mea-
surable function f , the correlation between f(X) and S1 + · · ·+ St satisfies:

ρ [f(X), S1 + · · ·+ St] =
1√
t
ρ [f(X), Y] . (6)

Proof. On one hand we have Cov [f(X), S1 + · · ·+ St] = Cov [f(X), Y] and on
the other hand we have σ [S1 + · · ·+ St] =

√
t σ [Y]. Relation (6) straightfor-

wardly follows. �

3.3 Defeating Combined Masking and Shuffling: Combined
Higher-order and Integrated DPA

When masking is combined with shuffling, any sensitive variable X is split into
d + 1 shares X ⊕ M, M1, ..., Md whose manipulations are randomly spread
over t different times yielding t different signals Si. The (d + 1)-tuple of sig-
nals indices corresponding to the shares hence ranges over a subset I of the set

of (d + 1)-combinations from {1, · · · , t}. This subset depends on how the shuf-
fling is performed (e.g. the shares may be independently shuffled or shuffled all
together).

To bypass such a countermeasure, an adversary may combine integrated and
higher-order DPA techniques. The most pertinent way to perform such a com-
bined attack is to design a so-called combined-and-integrated signal by summing
all the possible combinations of d + 1 signals among S1, ..., St [26, 27]. That is,
the combined-and-integrated signal, denoted ICd,I(X), is defined by:

ICd,I(X) =
∑
i∈I

C(Si0 , · · · , Sid
) , (7)

where i denotes the vector (i0, ..., id).
By construction of I, the family of signals (Si)i corresponds to a family of pro-

cessed data (Di)i such that there always exists a single (d+1)-tuple (i′0, · · · , i′d) ∈
I for which we have (Di′0

, Di′1
, · · · , Di′d

) = (X⊕
⊕

i Mi,M1, · · · ,Md). Let us now
view (i′0, · · · , i′d) as a random vector uniformly distributed over I and let us as-
sume that the random variables Dj with j 6= i′0, ..., i

′
d are uniformly distributed

and mutually independent. Then, we have the following proposition:

Proposition 3. Let X be a random variable uniformly distributed over Fn
2 . The

correlation between H(X) and ICd,I(X) satisfies:

ρ [H(X), ICd,I(X)] =
1√
#I

ρ(n, d, σ) . (8)

Proof. According to (7) the variance of ICd,I(X) satisfies:

Var [ICd,I(X)] =
∑

(i,j)∈I2

Cov [C(Si0 , · · · , Sid
),C(Sj0 , · · · , Sjd

)] .

Since by definition each monomial C(Sj0 , · · · , Sjd
) is a product of terms with zero

expectation, the covariance between two different monomials equal zero. By con-
struction, the #I monomials C(Si0 , · · · , Sid

) have equal variance and we there-
fore have σ [ICd,I(X)] =

√
#I × σ

[
C(Si′0

, · · · , Si′d
)
]
. Moreover, only the com-

bination C(Si′0
, · · · , Si′d

) is statistically dependent on X. We hence deduce that

Cov [H(X), ICd,I(X)] equals Cov
[
H(X),C(Si′0

, · · · , Si′d
)
]
. Since C(Si′0

, · · · , Si′d
)

and Cd(X) have, by definition, equal distributions, we deduce that the correla-
tion ρ

[
H(X),C(Si′0

, · · · , Si′d
)
]

equals ρ [H(X), Cd(X)] = ρ(n, d, σ) and Relation
(8) straightforwardly follows.

4 A Generic Scheme Combining Higher-order Masking
and Shuffling

In this section, we propose a generic scheme to protect block cipher implemen-
tations by combining higher-order masking and shuffling. First we introduce the

general block cipher model and then we describe the proposed scheme. After-
ward, we investigate the possible attack paths and we deduce a strategy for
choosing the scheme parameters (i.e. the masking and shuffling orders, see Sect.
4.2).

4.1 Block Cipher Model

A block cipher is parameterized by a master key and it transforms a plaintext
block into a ciphertext block through the repetition of key-dependent round
transformations. We denote by p, and we call state, the temporary value taken
by the ciphertext during the algorithm. In practice, the cipher is iterative, which
means that it applies several times the same round transformation ϕ to the state.
This round transformation is parameterized by a round key k that is derived from
the master key.

In our model, ϕ is composed of different operations: a key addition layer (by
xor), a non-linear layer γ and a linear layer λ:

ϕ[k](p) = [λ ◦ γ](p⊕ k) .

We assume that the non-linear layer applies the same non-linear transfor-
mation S, called S-box, on N independent n-bit parts pi of the state: γ(p) =(
S(p1), · · · , S(pN)

)
. For efficiency reasons, the S-box is usually implemented by a

look-up table. The linear layer λ is composed of L linear operations λi that oper-
ate on L independent l-bit parts pi(l) of the state: λ(p) =

(
λ1(p1(l)), · · · , λL(pL(l))

)
.

We also denote by l′ 6 l the minimum number of bits of a variable manipulated
during the processing of λi. For instance, the MixColumns layer of AES applies to
columns of l = 32 bits but it manipulates some elements of l′ = 8 bits. We further
assume that the λi’s are sufficiently similar to be implemented by one atomic
operation that is an operation which has the same execution flow whatever the
index i.

Remark 1. Linear and non-linear layers may involve different state indexing. In
AES for instance, the state is usually represented as a 4× 4 matrix of bytes and
the non-linear layer usually operates on its elements p1,...,p16 vertically (starting
at the top) and from left to right. In this case, the operation λ1 corresponding to
the AES linear layer (that is composed of ShiftRows followed by MixColumns [6])
operates on p1(32) = (p1, p6, p11, p16).

In the sequel, we shall consider that the key addition and the non-linear
layer are merged in a keyed substitution layer that adds each key part ki to the
corresponding state part pi before applying the S-box S.

4.2 Our Scheme

In this section, we describe a generic scheme to protect a round ϕ by combining
higher-order masking and operations shuffling. Our scheme involves a dth-order

masking for an arbitrarily chosen d. Namely, the state p is split into d+1 shares
m0, ..., md satisfying:

m0 ⊕ · · · ⊕md = p . (9)

In practice, m1, ..., md are random masks and m0 is the masked state defined
according to (9). In the sequel, we shall denote by (mj)i (resp. (mj)i(l)) the
ith n-bit part (resp. the ith l-bit part) of a share mj . At the beginning of the
ciphering the masks are initialized to zero. Then, each time a part of a mask is
used during the keyed substitution layer computation, it is refreshed with a new
random value (see below). For the reasons given in Sect. 2.1, our scheme uses
two different approaches to protect the keyed substitution layer and the linear
layer. These are described hereafter.

Protecting the keyed substitution layer. To protect the keyed substitution
layer, we use a single d′th-order masked S-box (for some d′ 6 d) to perform all
the S-box computations. As explained in Sect. 2.1, such a method is vulnerable
to a second-order DPA attack targeting two masked inputs/outputs. To deal
with this issue, we make use of a high level of shuffling in order to render such
an attack difficult and to keep an homogeneous security level (see Sect. 4.4).

The input of S is masked with d′ masks r1, ..., rd′ and its output is masked
with d′ masks s1, ..., sd′ . Namely, a masked S-box S∗ is computed that is defined
for every x ∈ {0, 1}n by:

S∗(x) = S
(
x⊕

d′⊕
j=1

rj

)
⊕

d′⊕
j=1

sj . (10)

This masked S-box is then involved to perform all the S-box computations.
Namely, when the S-box must be applied to a masked variable (m0)i, the d
masks (mj)i of this latter are replaced by the d′ masks rj which enables the
application of S∗. The d′ masks sj of the obtained masked output are then
switched for d new random masks (mj)i.

The high level shuffling is ensured by the addition of dummy operations.
Namely, the S-box computation is performed t times: N times on a relevant part
of the state and t − N times on dummy data. For such a purpose, each share
mj is extended by a dummy part (mj)N+1 that is initialized by a random value
at the beginning of the ciphering. The round key k is also extended by such a
dummy part kN+1. For each of the t S-box computations, the index i of the parts
(mj)i to process is read in a table T . This table of size t contains all the indices
from 1 to N stored at random positions and its t−N other elements equal N +1.
Thanks to this table, the S-box computation is performed once on every of the
N relevant parts and t−N times on the dummy parts. The following algorithm
describes the whole protected keyed substitution layer computation.

Algorithm 1 Protected keyed substitution layer
Input: the shares m0, ..., md s.t.

L
mi = p, the round key k = (k1, · · · , kN+1)

Output: the shares m0, ..., md s.t.
L

mi = γ(p⊕ k)

1. for iT = 1 to t

// Random index pick-up

2. i← T [iT]

// Masks conversion : (m0)i ⇐ pi

L
j rj

3. for j = 1 to d′ do (m0)i ← ((m0)i ⊕ rj)⊕ (mj)i

4. for j = d′ + 1 to d do (m0)i ← (m0)i ⊕ (mj)i

// key addition and S-box computation: (m0)i ⇐ S(pi ⊕ ki)⊕
L

j sj

5. (m0)i ← S∗�(m0)i ⊕ ki

�

// Masks generation and conversion: (m0)i ⇐ S(pi ⊕ ki)⊕
L

j (mj)i

6. for j = 1 to d′

7. (mj)i ← rand()

8. (m0)i ← ((m0)i ⊕ (mj)i)⊕ sj

9. for j = d′ + 1 to d

10. (mj)i ← rand()

11. (m0)i ← (m0)i ⊕ (mj)i

12. return (m0, · · · , md)

Remark 2. In Steps 3 and 8, we used round brackets to underline the order in
which the masks are introduced. A new mask is always introduced before remov-
ing an old mask. Respecting this order is mandatory for the scheme security.

Masked S-box computation. The look-up table for S∗ is computed dynamically
at the beginning of the ciphering by performing d′ table re-computations such
as proposed in [24]. This method has been shown to be insecure for d′ > 2, or
for d′ > 3 depending on the table re-computation algorithm [5, App. A]. We
will therefore consider that one can compute a masked S-box S∗ with d′ 6 3
only. The secure computation of a masked S-box with d′ > 3 is left to further
investigations.

Indices table computation. Several solutions exist in the literature to randomly
generate indices permutation over a finite set [10, 19, 20]. Most of them can be
slightly transformed to design tables T of size t > N containing all the indices 1
to N in a random order and whose remaining cells are filled with N +1. However,
few of those solutions are efficient when implemented in low resources devices. In
our case, since t is likely to be much greater than N , we have a straightforward
algorithm which tends to be very efficient for t � N . This algorithm is given in
Appendix A (Algorithm 3).

Protecting the linear layer. The atomic operations λi are applied on each
part (mj)i(l) of each share mj in a random order. For such a purpose a table
T ′ is constructed at the beginning of the ciphering that is randomly filled with
all the pairs of indices (j, i) ∈ {0, · · · , d} × {1, · · · , L}. The linear layer is then
implemented such as described by the following algorithm.

Algorithm 2 Protected linear layer
Input: the shares m0, ..., md s.t.

L
mi = p

Output: the shares m0, ..., md s.t.
L

mi = λ(p)

1. for iT ′ = 1 to (d + 1) · L
2. (j, i)← T ′[iT ′] // Random index look-up

3. (mj)i(l) ← λi

�
(mj)i(l)

�
// Linear operation

4. return (m0, · · · , md)

Indices table computation. To implement the random generation of a permu-
tation T ′ on {0, · · · , d} × {1, · · · , L}, we followed the outlines of the method
proposed in [4]. However, since this method can only be applied to generate per-
mutations on sets with cardinality a power of 2 (which is not a priori the case
for T ′), we slightly modified it. The new version can be found in Appendix A
(Algorithm 4).

4.3 Time Complexity

In the following we express the time complexity of each step of our scheme
in terms of the parameters (t, d, d′, N, L) and of constants ai that depend on
the implementation and the device architecture. Moreover, we provide practical
values of these constants (in number of clock cycles) for an AES implementation
protected with our scheme and running on a 8051-architecture.

Generation of T (see Appendix A). Its complexity CT satisfies:

CT = t× a0 + N × a1 + f(N, t)× a2 ,

where f(N, t) = t
∑N−1

i=0
1

t−i . As argued in Appendix A, f(N, t) can be approx-

imated by t ln
(

t
t−N

)
for t � N .

Example 1. For our AES implementation, we got a0 = 6, a1 = 7 and a2 = 9.

Generation of T ′. Let q denote dlog2((d + 1)L)e. The complexity CT ′ satisfies:

CT ′ =
{

q × a0 + 2q × (a1 + q × a2) if q = log2((d + 1)L),
q × a0 + 2q × (a1 + q × a2) + 2q × a3 otherwise.

Example 2. For our AES implementation, we got a0 = 3, a1 = 15 and a2 = 14,
a3 = 17.

Generation the Masked S-box. Its complexity CMS satisfies:

CMS = d′ × a0 .

Example 3. For our AES implementation, we got a0 = 4352.

Protected keyed Substitution Layer.Its complexity CSL satisfies:

CSL = t× (a0 + d× a1 + d′ × a2) .

Example 4. For our AES implementation, we got a0 = 55, a1 = 37 and a2 = 18.

Protected Linear Layer. Its complexity CLL satisfies:

CLL = (d + 1)L× a0 .

Example 5. For our AES implementation, we got a0 = 169.

4.4 Attack Paths

In this section, we list attacks combining higher-order and integrated DPA that
may be attempted against our scheme. Section 3 is then involved to associate
each attack with a correlation coefficient that depends on the leakage noise
deviation σ, the block cipher parameters (n, N, l′, L) and the security parameters
(d, d′, t). As argued, these coefficients characterize the attacks efficiencies and
hence the overall resistance of the scheme.

Remark 3. In this paper, we only consider known plaintext attack i.e. we assume
the different sensitive variables uniformly distributed. In a chosen plaintext at-
tack, the adversary would be able to fix the value of some sensitive variables
which could yield better attack paths. We do not take such attacks into account
and let them for further investigations.

Every sensitive variable in the scheme is (1) either masked with d unique
masks or (2) masked with d′ masks shared with other sensitive variables (during
the keyed substitution layer).

(1). In the first case, the d + 1 shares appear during the keyed substitu-
tion layer computation and the linear layer computation. In both cases, their
manipulation is shuffled.

(1.1). For the keyed substitution layer (see Algorithm 1), the d + 1 shares
all appear during a single iteration of the loop among t. The attack consists in
combining the d + 1 corresponding signals for each loop iteration and to sum
the t obtained combined signals. Proposition 2 implies that this attack can be
associated with the following correlation coefficient ρ1:

ρ1(t, d) =
1√
t
ρ(n, d, σ) . (11)

(1.2). For the linear layer (see Algorithm 2), the d + 1 shares appear among
(d + 1) · L possible operations. The attack consists in summing all the combi-
nations of d + 1 signals among the (d + 1) · L corresponding signals. According
to Proposition 3, this attack can be associated with the following correlation
coefficient ρ2:

ρ2(L, d) =
1√(

(d+1)·L
d+1

)ρ(l′, d, σ) . (12)

Remark 4. In the analysis above, we chose to not consider attacks combining
shares processed in the linear layers together with shares processed in the keyed
substitution layer. Actually, such an attack would yield to a correlation coeffi-
cient upper bounded by the maximum of the two correlations in (11) and (12).

(2). In the second case, the attack targets a d′th-order masked variable oc-
curring during the keyed substitution layer. Two alternatives are possible.

(2.1). The first one is to simultaneously target the masked variable (that
appears in one loop iteration among t) and the d′ masks that appear at fixed
times (e.g. in every loop iteration of Algorithm 1 or during the masked S-box
computation). The attack hence consists in summing the t possible combined
signals obtained by combining the masked variable signal (t possible times) and
the d′ masks signals (at fixed times). According to Proposition 3, this leads to a
correlation coefficient ρ3 that satisfies:

ρ3(t, d′) =
1√
t
ρ(n, d′, σ) . (13)

(2.2). The second alternative is to target two different variables both masked
with the same sum of d′ masks (for instance two masked S-box inputs or outputs).
These variables are shuffled among t variables. The attack hence consists in sum-
ming all the possible combinations of the two signals among the t corresponding
signals. According to Proposition 3, this leads to a correlation coefficient ρ4 that
satisfies:

ρ4(t) =
1√

t · (t− 1)
ρ(n, 2, σ) . (14)

4.5 Parameters Setting

The security parameters (d, d′, t) can be chosen to satisfy an arbitrary resistance
level characterized by an upper bound ρ∗ on the correlation coefficients corre-
sponding to the different attack paths exhibited in the previous section. That is,
the parameters are chosen to satisfy the following inequality:

max(|ρ1|, |ρ2|, |ρ3|, |ρ4|) 6 ρ∗ . (15)

Among the 3-tuples (d, d′, t) satisfying the relation above, we select one
among those that minimize the timing complexity (see Sect. 4.3).

5 Application to AES

We implemented our scheme for AES on a 8051-architecture. According to Re-
mark 1, the ShiftRows and the MixColumns were merged in a single linear layer
applying four times the same operation (but with different state indexings). The
block cipher parameters hence satisfy: n = 8, N = 16, l = 32, l′ = 8 and L = 4.

Remark 5. In [8], it is claimed that the manipulations of the different bytes in
the MixColumns can be shuffled. However it is not clear how to perform such a
shuffling in practice since the processing differs according to the byte index.

Table 1. Timings for the different steps of the scheme for an AES implementation on
a 8051-architecture.

T Generation CT = 112 + t
�
6 + 9

P15
i=0

1
t−i

�

T ′ Generation CT ′ = 3q + 2q(15 + 14q) [+17× 2q]

Masked S-box Generation CMS = 4352d′

Pre-computations CT + CT ′ + CMS

Substitution Layer CSL = t(55 + 37d + 18d′)

Linear Layer CLL = 676(d + 1)

Protected Round CSL + CLL = 676(d + 1) + t(55 + 37d + 18d′)

Unprotected Round 432

Table 1 summarizes the timings obtained for the different steps of the scheme
for our implementation.

Remark 6. The unprotected round implementation has been optimized, in par-
ticular by only using variables stored in DATA memory. Because of memory
constraints and due to the scalability of the code corresponding to the protected
round, many variables have been in stored in XDATA memory which made the
implementation more complex. This explains that, even for d = d′ = 0 and t = 16
(i.e. when there is no security), the protected round is more time consuming than
the unprotected round.

We give hereafter the optimal security parameters (t, d, d′) for our AES im-
plementation according to some illustrative values of the device noise deviation
σ and of correlation bound ρ∗. We consider three noise deviation values: 0,

√
2

and 4
√

2. In the Hamming weight model, these values respectively correspond
to a signal-to-noise ratio (SNR) to +∞, 1 and 1

4 . We consider four correlation
bounds: 10−1, 10−2, 10−3, and 10−4. The security parameters and the corre-
sponding timings for the protected AES implementation are given in Table 5.
Note that all the rounds have been protected.

When SNR = +∞, the bound d′ 6 3 implies an intensive use of shuffling
in the keyed substitution layer. The resulting parameters for correlation bounds

Table 2. Optimal parameters and timings according to SNR and ρ∗.

SNR = +∞ SNR = 1 SNR = 1
4

ρ∗ t d d′ timings t d d′ timings t d d′ timings

10−1 16 1 1 3.66× 104 16 1 1 3.66× 104 16 1 0 2.94× 104

10−2 20 3 3 8.57× 104 20 2 2 6.39× 104 16 1 1 3.66× 104

10−3 1954 4 3 5.08× 106 123 3 3 3.13× 105 16 2 2 5.75× 104

10−4 195313 5 3 5.75× 108 12208 4 3 3.15× 107 19 3 3 8.35× 104

10−3 and 10−4 imply timings that quickly become prohibitive. A solution to
overcome this drawback would be to design secure table re-computation algo-
rithms for d′ > 3. Besides, these timings underline the difficulty of securing block
ciphers implementations with pure software countermeasures. When the leakage
signals are not very noisy (SNR = 1), timings clearly decrease (by a factor from
10 to 20). This illustrates, once again, the soundness of combining masking with
noise addition. This is even clearer when the noise is stronger (SNR = 1

4), where
it can be noticed that the addition of dummy operations is almost not required
to achieve the desired security level.

6 Conclusion

In this paper, we have conducted an analysis that quantifies the efficiency of ad-
vanced DPA attacks targeting masking and shuffling. Based on this analysis, we
have designed a generic scheme combining higher-order masking and shuffling.
This scheme generalizes to higher orders the solutions previously proposed in the
literature. It is moreover scalable and its security parameters can be chosen ac-
cording to any desired resistance level. As an illustration, we applied it to protect
a software implementation of AES for which we gave several security/efficiency
trade-offs.

References

1. M.-L. Akkar and C. Giraud. An Implementation of DES and AES, Secure against
Some Attacks. In Ç. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hard-
ware and Embedded Systems – CHES 2001, volume 2162 of Lecture Notes in Com-
puter Science, pages 309–318. Springer, 2001.

2. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In Wiener [29], pages 398–412.

3. C. Clavier, J.-S. Coron, and N. Dabbous. Differential Power Analysis in the Pres-
ence of Hardware Countermeasures. In Koç and Paar [11], pages 252–263.

4. J.-S. Coron. A new DPA countermeasure based on permutation tables. In R. Os-
trovsky, R. D. Prisco, and I. Visconti, editors, Security and Cryptography for Net-
works, 6th International Conference, SCN 2008, volume 5229 of Lecture Notes in
Computer Science, pages 278–292. Springer, 2008.

5. J.-S. Coron, E. Prouff, and M. Rivain. Side Channel Cryptanalysis of a Higher
Order Masking Scheme. In P. Paillier and I. Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems – CHES 2007, volume 4727 of Lecture Notes in
Computer Science, pages 28–44. Springer, 2007.

6. FIPS PUB 197. Advanced Encryption Standard. National Institute of Standards
and Technology, Nov. 2001.

7. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication
Method. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES ’99, volume 1717 of Lecture Notes in Computer Science, pages
158–172. Springer, 1999.

8. P. Herbst, E. Oswald, and S. Mangard. An AES Smart Card Implementation
Resistant to Power Analysis Attacks. In J. Zhou, M. Yung, and F. Bao, editors,
Applied Cryptography and Network Security – ANCS 2006, volume 3989 of Lecture
Notes in Computer Science, pages 239–252. Springer, 2006.

9. M. Joye, P. Paillier, and B. Schoenmakers. On Second-order Differential Power
Analysis. In J. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2005, volume 3659 of Lecture Notes in Computer Science, pages
293–308. Springer, 2005.

10. D. Knuth. The Art of Computer Programming, volume 2. Addison Wesley, third
edition, 1988.

11. Ç. Koç and C. Paar, editors. Cryptographic Hardware and Embedded Systems –
CHES 2000, volume 1965 of Lecture Notes in Computer Science. Springer, 2000.

12. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Wiener [29], pages
388–397.

13. S. Mangard. Hardware Countermeasures against DPA – A Statistical Analysis of
Their Effectiveness. In T. Okamoto, editor, Topics in Cryptology – CT-RSA 2004,
volume 2964 of Lecture Notes in Computer Science, pages 222–235. Springer, 2004.

14. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks – Revealing the
Secrets of Smartcards. Springer, 2007.

15. T. Messerges. Securing the AES Finalists against Power Analysis Attacks. In
B. Schneier, editor, Fast Software Encryption – FSE 2000, volume 1978 of Lecture
Notes in Computer Science, pages 150–164. Springer, 2000.

16. T. Messerges. Using Second-order Power Analysis to Attack DPA Resistant soft-
ware. In Koç and Paar [11], pages 238–251.

17. E. Oswald and S. Mangard. Template Attacks on Masking—Resistance is Futile.
In M. Abe, editor, Topics in Cryptology – CT-RSA 2007, volume 4377 of Lecture
Notes in Computer Science, pages 243–256. Springer, 2007.

18. E. Oswald, S. Mangard, C. Herbst, and S. Tillich. Practical Second-order DPA
Attacks for Masked Smart Card Implementations of Block Ciphers. In Pointcheval
[21], pages 192–207.

19. J. Patarin. How to construct pseudorandom and super pseudorandom permutation
from one single pseudorandom function. In R. Rueppel, editor, Advances in Cryp-
tology – EUROCRYPT ’92, volume 658 of Lecture Notes in Computer Science,
pages 256–266. Springer, 1992.

20. J. Pieprzyk. How to construct pseudorandom permutations from single pseudo-
random functions advances. In I. Damg̊ard, editor, Advances in Cryptology – EU-
ROCRYPT ’90, volume 473 of Lecture Notes in Computer Science, pages 140–150.
Springer, 1990.

21. D. Pointcheval, editor. Topics in Cryptology – CT-RSA 2006, volume 3860 of
Lecture Notes in Computer Science. Springer, 2006.

22. E. Prouff, M. Rivain, and R. Bévan. Statistical Analysis of Second Order Differ-
ential Power Analysis. To appear in IEEE-TC.

23. M. Rivain, E. Dottax, and E. Prouff. Block Ciphers Implementations Provably
Secure Against Second Order Side Channel Analysis. In T. Baignères and S. Vau-
denay, editors, Fast Software Encryption – FSE 2008, Lecture Notes in Computer
Science. Springer, 2008. To appear.

24. K. Schramm and C. Paar. Higher Order Masking of the AES. In Pointcheval [21],
pages 208–225.

25. F.-X. Standaert, E. Peeters, G. Rouvroy, and J.-J. Quisquater. An overview of
power analysis attacks against field programmable gate arrays. IEEE, 94(2):383–
394, 2006.

26. S. Tillich and C. Herbst. Attacking state-of-the-art software countermeasures-a
case study for aes. In E. Oswald and P. Rohatgi, editors, CHES, volume 5154 of
Lecture Notes in Computer Science, pages 228–243. Springer, 2008.

27. S. Tillich, C. Herbst, and S. Mangard. Protecting aes software implementations on
32-bit processors against power analysis. In J. Katz and M. Yung, editors, ACNS,
volume 4521 of Lecture Notes in Computer Science, pages 141–157. Springer, 2007.

28. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer
Texts in Statistics, 2005.

29. M. Wiener, editor. Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture
Notes in Computer Science. Springer, 1999.

A Algorithms for Index Tables Generations

Generation of T . To generate T , we start by initializing all the cells of T to
the value N + 1. Then, for every j 6 N , we randomly generate an index i < t
until T [i] = N + 1 and we move j into T [i]. The process is detailed hereafter.

Algorithm 3 Generation of T
Input: state’s length N and shuffling order t
Output: indices permutation table T

1. for i← 0 to t− 1

2. do T [i]← N + 1 // Initialization of T

3. j ← 1

4. for j ← 1 to N

5. do i← rand(t) while T [i] = N +1 // Generate random index i < t

6. T [i] = j and j ← j + 1

7. return T

Complexity Anlysis of loop 4-to-6. The expected number f(N, t) of itera-
tions of the loop 4-to-7 in Algorithm 3 satisfies:

f(N, t) = t · (Ht −Ht−N) , (16)

where for every r, Hr denotes the rth Harmonic number defined by Hr =
r∑

i=1

1
i .

Let us argue about (16). For every j 6 N , the probability that the loop do-
while ends up after i iterations is

(
t−j

t

)
·
(

j
t

)i−1
: at the jth iteration of the for

loop, the test T [i] = N+1 succeeds with probability pj =
(

j
t

)
and fails with prob-

ability 1− pj =
(

t−j
t

)
. One deduces that for every j 6 N , the expected number

of iterations of the loop do-while is
∑

i∈N i·pi−1
j ·(1−pj). We eventually get that

the number of iterations f(N, t) satisfies f(N, t) =
∑N−1

j=0

∑
i∈N i ·

(
pj

i−1 − pj
i
)
,

that is f(N, t) =
∑N−1

j=0

∑
i∈N i·pj

i−1−
∑N−1

j=0

∑
i∈N (i + 1)·pj

i+
∑N−1

j=0

∑
i∈N pj

i.
As the two first sums in the right-hand side of the previous equation are equal,
one deduces that f(N, t) equals

∑N−1
j=0

∑
i∈N pj

i that is
∑N−1

j=0
1

1−pj
. Eventually,

since pj equals j
t , we get f(N, t) =

∑N−1
j=0

t
t−j which is equivalent with (16).

Since Hr tends towards ln(r) + γ, where γ is the Euler-Mascheroni constant,
we can approximate Ht − Ht−N by ln(t) − ln(t − N). We eventually get the
following relation for t � N :

f(N, t) ≈ t · ln
(

t

t−N

)
.

Generation of T ′. In view of the previous complexity, generating a permuta-
tion with the same implementation as for T is not pertinent (in this case t = N).
To generate the permutation T ′, we follow the outlines of the method proposed
in [4]. However, since this method can only be applied to generate permutations
on sets with cardinality a power of 2 (which is not a priori the case for T ′),
we slightly modified it. Let 2q be the smallest power of 2 which is greater than
(d + 1)L. Our algorithm essentially consists in designing a q-bit random permu-
tation T ′ from a fixed q-bit permutation π and a family of q random values in Fq

2

(Steps 1 to 6 in Algorithm 4). Then, if (d + 1)L is not a power of 2, the table T ′

is transformed into a permutation over {0, · · · , d} × {1, · · · , L} by deleting the
elements which are strictly greater than (d +1)L− 1. The process is detailled in
pseudo-code hereafter.

Algorithm 4 Generation of T ′

Input: parameters (d, L) and a n′-bit permutation π with q = dlog2((d + 1)L)e
Output: indices permutation table T ′

1. for i← 0 to q − 1

2. do aleai ← rand(q) // Initialization of aleas

3. for j ← 0 to 2q − 1

4. do T ′[j]← π[j]

5. for i← 0 to q − 1

6. do T ′[j]← π[T ′[j]⊕ aleai] // Process the ith index

7. if q 6= (d + 1)L

8. then for j ← 0 to (d + 1)L− 1

9. do i← j

10. while T ′[i] ≥ (d + 1)L

11. do i← i + 1

12. T ′[j]← T ′[i]

13. return T ′

With Algorithm 4, it is not possible to generate all the permutations over
{0, · · · , d} × {1, · · · , L}. In our context, we assume that this does not introduce
any weakness in the scheme.

Complexity Anlysis of loop 8-to-12 The number of iterations of loop 8-to-12
in Algorithm 4 in the worst case is 2q.

B Proofs

B.1 Proof of Lemma 1

In the following, the notation x[j] stands for the jth bit of a value x ∈ Fn
2 . To

prove Lemma 1, we first need the following lemma:

Lemma 2. Let (Mi)16i6d be d random variables uniformly distributed over Fn
2

and mutually independent and let M =
⊕

i Mi. For every x ∈ Fn
2 , the expectation

of the product H (x⊕M)
∏

i H(Mi) satisfies:

E

[
H (x⊕M)

d∏
i=1

H(Mi)

]
=
(
−1

2

)d (
H(x)− n

2

)
+
(n

2

)d+1

. (17)

Proof. We have H(x⊕M) = H(x) + H(M)− 2 H(x ∧M) giving:

E

[
H (x⊕M)

d∏
i=1

H(Mi)

]
= H(x) E

[
d∏

i=1

H(Mi)

]
+ E

[
H(M)

d∏
i=1

H(Mi)

]

− 2 E

[
H(x ∧M)

d∏
i=1

H(Mi)

]
. (18)

Since the Mi’s are uniformly distributed and mutually independent, we have:

E

[
d∏

i=1

H(Mi)

]
=
(n

2

)d

, (19)

and

E

[
H(x ∧M)

d∏
i=1

H(Mi)

]
=

H(x)
n

E

[
H(M)

d∏
i=1

H(Mi)

]
. (20)

Relations (19) and (20) imply that (18) can be rewritten as:

E

[
H (x⊕M)

d∏
i=1

H(Mi)

]
= H(x)

(n

2

)d

+
(

1− 2
H(x)

n

)
E

[
H(M)

d∏
i=1

H(Mi)

]
.

(21)

The uniformity and mutual independence of the Mi’s further imply:

E

[
H(M)

d∏
i=1

H(Mi)

]
= n E

[
M[1]

d∏
i=1

H(Mi)

]
,

which can be rewritten as:

E

[
H(M)

d∏
i=1

H(Mi)

]
= n E

[
M[1]M1[1]

d∏
i=2

H(Mi)

]

+ n E

M[1]

 n∑
j=2

M1[j]

 d∏
i=2

H(Mi)

 ,

and by induction on d:

E

[
H(M)

d∏
i=1

H(Mi)

]
= n E

[
M[1]

d∏
i=1

Mi[1]

]

+ n

d∑
k=1

E

(M[1]
k−1∏
i=1

Mi[1]

) n∑
j=2

Mk[j]

(d∏
i=k+1

H(Mi)

) . (22)

Then, on the first hand, we have:

E

[
M[1]

∏
i

Mi[1]

]
= 2−d(d mod 2) , (23)

and on the other hand, the mutual independence between M[1], (Mi[1])16i6k−1,∑n
j=2 Mk[j] and (H(Mi))k+16i6d implies:

E

(M[1]
k−1∏
i=1

Mi[1]

) n∑
j=2

Mk[j]

(d∏
i=k+1

H(Mi)

)
=

(
E [M[1]]

k−1∏
i=1

E [Mi[1]]

)
E

 n∑
j=2

Mk[j]

(d∏
i=k+1

E [H(Mi)]

)

=
(

1
2

)k
n− 1

2

(n

2

)d−k

(24)

From (23) and (24), (22) can be rewritten as:

E

[
H(M)

d∏
i=1

H(Mi)

]
=

n(d mod 2)
2d

+
n(n− 1)

2

d∑
k=1

(
1
2

)k (n

2

)d−k

(25)

=
n(d mod 2)

2d
+

n(n− 1)
2d+1

d∑
k=1

nk (26)

=
n(d mod 2)

2d
+

n(nd − 1)
2d+1

(27)

Finally, (21) and (27) yields (17) which conclude the proof. �

Proof. (Lemma 1) From the expression of the Si’s, we have E [Si] = δi+ n
2 giving:

Cd(X) =
(
H(x⊕M)− n

2
+ N0

) d∏
i=1

(
H(Mi)−

n

2
+ Ni

)
. (28)

Since the Ni’s have zero means, one deduces:

E [Cd(x)] = E

[(
H(x⊕M)− n

2

) d∏
i

(
H(Mi)−

n

2

)]

= E

[
H(x⊕M)

d∏
i

(
H(Mi)−

n

2

)]
− n

2
E

[
d∏
i

(
H(Mi)−

n

2

)]

The uniformity and the mutual independence between the Mi’s imply:

E [Cd(x)] = E

[
H(x⊕M)

d∏
i

(
H(Mi)−

n

2

)]

= E

[
H(x⊕M)H(M1)

∏
i>1

(
H(Mi)−

n

2

)]

and by induction on d:

E [Cd(x)] = E
[
H(x⊕M)H(M1) · · ·H(Md−1)

(
H(Md)−

n

2

)]
. (29)

Finally, the uniformity and the mutual independence between the Mi’s lead to:

E [Cd(x)] = E

[
H(x⊕M)

d∏
i

H(Mi)

]
−
(n

2

)d+1

, (30)

which together with Lemma 2 imply (4). �

B.2 Proof of Proposition 1

Proof. For any measurable function f and for any pair of random variables
(X, C), the expectation E [f(X)C] is equal to E [f(X)E [C|X]]. This implies
that the covariance between H(X) and Cd(X) satisfies:

Cov [H(X), Cd(X)] = Cov [H(X),E [Cd(X)|X]] .

By Lemma 1, we get:

Cov [H(X), Cd(X)] =
(
−1

2

)d

Var [H(X)] ,

which leads to:

ρ [H(X), Cd(X)] =
(
−1

2

)d
σ [H(X)]
σ [Cd(X)]

=
(
−1

2

)d √
n

2 σ [Cd(X)]
. (31)

Since X and the Mi’s are uniformly distributed and mutually independent,
then so do X ⊕M and the Mi’s. Moreover since the Ni’s are mutually indepen-
dent then we get:

Var [Cd(X)] = E
[(

H(X ⊕M)− n

2
+ N0

)2
] d∏

i=1

E
[(

H(Mi)−
n

2
+ Ni

)2
]

= E
[(

H(M)− n

2
+ N

)2
]d+1

,

where M is a uniform random variable over Fn
2 and N is a random variable with

mean 0 and variance σ2. Since E [H(M)] = n/2 and E
[
H(M)2

]
= (n2 + n)/4,

one deduces:

E
[(

H(M)− n

2
+ N

)2
]

= E
[(

H(M)− n

2

)2
]

+ E
[
N2
]

=
n

4
+ σ2 ,

which implies:

Var [Cd(X)] =
(n

4
+ σ2

)d+1

. (32)

Finally, (31) and (32) leads to (5). �

