
Improved generic algorithms for 3-collisions

Antoine Joux1 and Stefan Lucks2

1 dga and Université de Versailles Saint-Quentin-en-Yvelines
uvsq prism, 45 avenue des États-Unis, f-78035, Versailles cedex, France

antoine.joux@m4x.org
2 Bauhaus-Universität Weimar, 99423 Weimar, Germany

Stefan.Lucks@uni-weimar.de

Abstract. An r-collision for a function is a set of r distinct inputs with identical outputs.
Actually finding r-collisions for a random map over a finite set of cardinality N requires
at least about N (r−1)/r units of time on a sequential machine. For r=2, memoryless and
well-parallelisable algorithms are known. The current paper describes memory-efficient and
parallelisable algorithms for r ≥ 3. The main results are: (1) A sequential algorithm for 3-
collisions, roughly using memory Nα and time N1−α for α ≤ 1/3. I.e., given N1/3 units of
storage, on can find 3-collisions in time N2/3. Note that there is a time-memory tradeoff
which allows to reduce the memory consumption. (2) A parallelisation of this algorithm using
N1/3 processors running in time N1/3. Each single processor only needs a constant amount
of memory. (3) An generalisation of this second approach to r-collisions for r ≥ 3: given Ns

parallel processors, on can generate r-collisions roughly in time N ((r−1)/r)−s, using memory
N ((r−2)/r)−s on every processor.

Keywords: multicollision, random map, memory-efficient, parallel implementation,
cryptanalysis

1 Introduction

The problem of finding collisions and multi-collisions in random mappings is of sig-
nificant interest for cryptography, and mainly for cryptanalysis. It is well known that
finding an r-collision for a random map over a finite set of cardinality N requires 3

more than N (r−1)/r map evaluations. (1)

Multicollisions for hash functions. If the map under consideration is a hash function,
or has been derived from a hash function, many researchers consider faster multicol-
lisions as a certificational hash function weakness. Accordingly, it was frightening for
the research community, to learn that multicollisions could be found much too fast
for a class of widely used iterated hash functions [7]. For an n-bit Hash function from
this class, one can generate 2k-collisions in time k ·2n/2, rather than in time 2n(k−1)/k,

3 An r-collision is a set of r different inputs x1, . . . , xr which all generate the same output map(x1) = · · · =
map(xr). For an r-collision, one needs to evaluate the map (r!)1/r ·N (r−1)/r times [19]. For small r, we
can approximate this by O(N (r−1)/r).



as one would expect from equation 1. The basic observation is straightforward: These
iterated hash functions allow to concatenate a sequence of k ordinary 2-collisions such
that all the 2k different inputs can be combined and hash to the same output. These
“Joux-style” multicollisions have been generalised later, to more complex types of
iterated hash functions, see, e.g., [4, 11, 5].

Joux-style multicollisions allowed a surprising attack on hash cascades, i.e., Hash
functions H, which are the concatenation of two hash functions G1 and G2. I.e.,
H(X) := (G1(X), G2(X)). If, say, G1 is an iterated hash function and vulnerable to
the multicollion attack, and G2 is any n-bit hash function, the adversary just needs
to generate a 2n/2-multicollision for G1. This multicollision consists of about 2n−1

pairs of colliding messages for G1. Statistically, one such pair can be expected to also
collide for G2 – and thus for H.

Multicollisions for random maps. In contrast to [7], we consider generic attacks, and,
accordingly, we model our functions as random maps. In that case, the number of
N (r−1)/r is a lower bound on the sequential time required for finding a r-collision,
and time-optimal algorithms are well-known. Furthermore one knows how to find
ordinary collisions (aka 2-collisions) with negligible memory (using Floyd or Brent
cycle finding), and one knows how to parallelise these algorithms (using distinguished
points [14–16, 20–24]).

In general, the issue of memory-efficient and parallelisable r-collision-algorithms
appears to be an unsolved question, however. Authors usually assume N (r−1)/r units
of memory (i.e., the maximum an algorithm can actually claim in the given amount
of time) and neglect parallelisation entirely. For recent examples of the application of
multicollisions to cryptography, see, e.g., the cryptanalysis of the SHA-3 candidates
Aurora-512 [1, 18] and JH-512 [10, 26]. We stress that [1, 18, 10, 26] employ generic
multicollisions as a part of their attacks, always assuming maximum memory and
ignoring the issue of parallel implementations.

So the question is, do authors need to be so pessimistic, or are there memory-
efficient and parallelisable algorithms for r-collisions? For small r, and mainly for
r = 3, the current paper provides a clearly positive answer. As an application of our
results, we will observe attacks on the SHA-3 candidate hash function Aurora-512,
which makes heavy use of multicollisions on internal structures. Some attacks on
other SHA-3 candidates don’t benefit from our algorithm for different reasons. See
section A of the appendix.

Notation. To avoid writing cumbersome logarithmic factors, we often express running
times using the soft-Oh-notation. Namely, Õ(g(n)) is used as a shorthand for O(g(n) ·
log(g(n))k) for some fixed k.

2



2 Known algorithm for 3-collisions

While the number of values that needs to be computed before a 3-collision can be
formed is often considered and analyzed, e.g. in [13, Appendix B] or [19], the know al-
gorithmic method to find such a 3-collision is rarely considered in detail and is mostly
folklore. In order to compare the new algorithms which we describe in sections 3 to 6
with existing algorithms, we thus give a precise description of the folklore algorithm,
together with a larger variety of time/memory tradeoffs. Throughout this section, we
fix two parameters α and β and consider 3-collisions for a function F defined on a
set of cardinality N . The parameter α controls the amount of memory, limiting it to
Õ(Nα). Similarly, β controls the running time, at Õ(Nβ). Of course, these parameters
need to satisfy the relation α ≤ β.

We consider algorithm 1. This algorithm is straightforward. First, it computes,
stores and sorts Nα images of random points under F . For bookeeping purposes, it
also keeps track of the corresponding preimages. Second, it computes Nβ additional
images of random points and seek each in the precomputed table. Whenever a hit
occurs, it is stored together with the initial preimage in the sorted table. The al-
gorithm succeeds if one of the Nα original images is found twice more during the
second phase and if the three corresponding preimages are distinct. In the formal
description given as algorithm 1, we added an optional step which packs colliding
values generated during the first step into the same array element. If this optional
step is omitted, then the early collisions are implicitly discarded. Indeed, in the sec-
ond phase, we make sure that the search algorithm always returns the first position
where a given value occurs among the known images F (x). During the complexity
analysis, we ignore the optional packing step since it runs in time Nα and can only
improve the overall running time by making the algorithm stop earlier.

We now perform by an rough heuristic analysis of algorithm 1, where constants
and logarithmic factors are ignored. On average, among the Nβ images of the second
phase, we expect that Nα+β−1 values hit the sorted table of Nα elements. Due to the
birthday paradox, after Nα/2 hits, we expect a double hit to occur. At that point,
the algorithm succeeds if the three known preimages corresponding to the double hit
are distinct, which occurs with constant probability. For the algorithm to succeed,
we need:

α + β − 1 ≥ α/2,

as a consequence, to minize the running time, we enforce the condition:

α + 2β = 2. (2)

For α = β, we find α = β = 2/3 and obtain the classical folklore result with time
and memory Õ(N2/3). Other tradeoffs are also possible. With constant memory, i.e.
α = 0, we find a running time Õ(N). Another tradeoff with α = 1/2 and β = 3/4
will be used as a point of comparison in section 3.

3



Algorithm 1 Folklore 3-collision finding algorithm
Require: Oracle access to F operating on [0, N − 1]
Require: Parameters: α ≤ β satisfying condition 2

Let Nα ←− dNαc
Let Nβ ←−

˚
Nβ
˝

Create arrays Img, Pr1 and Pr2 of Nα elements.

First step:
for i from 1 to Nα do

Let a←−R [0, N − 1]
Let Img[i]←− F (a)
Let Pr1[i]←− a
Let Pr2[i]←− ⊥

end for
Sort Img, applying the same permutation on elements of Pr1 and Pr2

Optional step (packing of existing collisions):
Let i←− 1
while i < Nα do

Let j ←− i+ 1
while Img[i] == Img[j] do

if Pr1[i] 6= Pr1[j] then
if Pr2[i] == ⊥ then

Let Pr2[i]←− Pr1[j]
else

if Pr2[i] 6= Pr1[j] then
Output ‘3-Collision (Pr1[i],Pr2[i],Pr1[j]) under F ’ and Exit

end if
end if

end if
Let j ←− j + 1

end while
Let i←− j

end while

Second step:
for i from 1 to Nβ do

Let a←−R [0, N − 1]
Let b←− F (a)
if b is in Img (first occurrence in position j) then

if Pr1[j] 6= a then
if Pr2[j] == ⊥ then

Let Pr2[j]←− a
else

if Pr2[j] 6= a then
Output ‘3-Collision (Pr1[j],Pr2[j], a) under F ’ and Exit

end if
end if

end if
end if

end for

4



3 A new algorithm for 3-collisions

Now equiped with an analysis of algorithm 1, we are ready to propose a new algorithm
which offers different time-memory tradeoffs, which are better balanced for existing
hardware. The basic idea is extremely simple: Instead of initializing an array with Nα

images, we propose to initialize it with Nα collisions under F . To make this efficient
in terms of memory use, each collision in the array is generated using a cycle finding
algorithm on a (pseudo-)randomly permuted copy of F . Since each collision is found
in time N1/2 the total running time of this new first step is N1/2+α.

The second step is left unchanged, we simply create Nβ images of random points
until we hit one of the known collisions. Note that, thanks to the new first phase,
it now suffices to land once on a known point to succeed. As a consequence, we can
replace condition 2 by the weaker condition:

α + β = 1. (3)

Since the running time of the first step is N1/2+α, it would not make sense to have
β < 1/2 + α. Thus, we also enforce the condition α ≤ 1/4. Under this condition, the
new algorithm runs in time Õ(N1−α) using Õ(Nα) bits of memory. In particular, we
can find 3-collisions in time Õ(N3/4) using Õ(N1/4) bits of memory. This is a notable
improvement over algorithm 1 which requires Õ(N1/2) bits of memory to achieve the
same running time.

4 Detailed complexity analysis of algorithms 1 and 2

In this section, we analyze in more details the complexity and success probability of
algorithms 1 and 2, assuming that F is a random mapping. This detailed analysis
particularly focuses on the following problematic issues which were intially neglected:

1. Among the Nα candidates stored in Img and its companion arrays, which fraction
can non-trivially be completed into a 3-collision?

2. In the second step, when a value F (a) hits the array Img, what is the probability
of obtaining a real 3-collision and not simply replaying a known value of a?

3. Which logarithmic factors are hidden in the Õ expression ?
4. In the first step algorithm 2, how do we make sure to never encounter a bad

configuration where the cycle finding algorithm runs for longer than Õ(N1/2)?

To answer the first question, remark that each candidate stored into Img is a
random point that has at least one preimage for algorithm 1 or at least two preimages
for algorithm 2. According to [2], we know that the expected fraction of points with
exactly k distinct preimages is e−1/k!. As a consequence, if we denote by Pk the
fraction of points with at least k preimages, we find:

P1 =
e− 1

e
, P2 =

e− 2

e
and P3 =

e− 5/2

e
.

5



Algorithm 2 Improved 3-collision finding algorithm
Require: Oracle access to F operating on [0, N − 1]
Require: Family of pseudo-random permutation ΠK , indexed by K in K
Require: Parameters: α ≤ β satisfying condition 3

Let Nα ←− dNαc
Let Nβ ←−

˚
Nβ
˝

Create arrays Img, Pr1 and Pr2 of Nα elements.

First step:
for i from 1 to Nα do

Let K ←−R K
Use cycle finding algorithm on F ◦ΠK to produce collision F ◦ΠK(a) = F ◦ΠK(b)
Let Img[i]←− F ◦ΠK(a)
Let Pr1[i]←− ΠK(a)
Let Pr2[i]←− ΠK(b)

end for
Sort Img, applying the same permutation on elements of Pr1 and Pr2

Optional step (packing of existing collisions):
Let i←− 1
while i < Nα do

Let j ←− i+ 1
while Img[i] == Img[j] do

if Pr1[i] 6= Pr1[j] then
if Pr2[i] 6= Pr1[j] then

Output ‘3-Collision (Pr1[i],Pr2[i],Pr1[j]) under F ’ and Exit
end if

end if
Let j ←− j + 1

end while
Let i←− j

end while

Second step:
for i from 1 to Nβ do

Let a←−R [0, N − 1]
Let b←− F (a)
if b is in Img (first occurrence in position j) then

if Pr1[j] 6= a then
if Pr2[j] == ⊥ then

Let Pr2[j]←− a
else

if Pr2[j] 6= a then
Output ‘3-Collision (Pr1[j],Pr2[j], a) under F ’ and Exit

end if
end if

end if
end if

end for

6



The expected fraction of elements from Img which can be correctly completed into a
3-collision is P3/P1 ≈ 0.127 for algorithm 1 and P3/P2 ≈ 0.304 for algorithm 2. To
compensate the loss, the easiest is to make the stored set larger by a factor of 8 in
the first case and 3 in the second.

We now turn to the second question. Of course, at this point, the candidates that
cannot be correctly completed need to be ignored. Among the original set of Nα

candidates, we now focus on the subset of candidates that can correctly be computed
and let N ′α denote the size of this subset. Since in the second phase we are sampling
points uniformly at random, the a posteriori probability of having chosen one of
the two already known preimages is at most 2/k, where k is the number of distinct
preimages for this point. Since k ≥ 3, the a posteriori probability of choosing a new
preimage is, at least, 1/3. Similarly, for algorithm 1, the a posteriori probability of
choosing a preimage distinct from the single originally known one is at least 2/3. To
offset this loss of probability, Nβ should be multiplied by a constant factor of 3.

The logarithmic factors involved in the third question are easy to find, they simply
come from the sort and binary search steps. Note that when Nα · log(Nα) < Nβ the
sort operation costs less than the second step and can be ignored. Moreover, as soon
as α < β, this bound is asymptotically achieved when N tends to infinity. However,
the binary search appears within the second step and a real penalty is paid. If we are
willing to spend some extra memory – blowing up the memory by a constant factor –,
this cost can be eliminated using hashing techniques.

The simplest answer to the fourth question is to fix some upper bound on the
allowed running time of each individual call to the collision through cycle finding
algorithm. If the running time is exceeded, we abort and restart with a fresh per-
mutation ΠK . With a time limit of the form λ

√
N and a large enough value of λ,

we make sure that each individual call to the cycle finding algorithm runs in time
O(N1/2) and the probability of success is a constant close to 1, say larger than 2/3.

5 A second algorithm with more tradeoff options

The algorithm presented in section 3 only works for memory up to N1/4. This limita-
tion is due to the way the collisions are generated during the first step of algorithm 2.
In order to extend the range of possible tradeoffs beyond that point, it suffices to find
a replacement for this first step. Indeed, the second step clearly works with a larger
value of α, as long as we keep the relation α + β = 1. Of course, since 3-collision do
not exist until we have performed N2/3 evaluations of F , the best we can hope for
is an algorithm with running time N2/3. Such an algorithm may succeed if we can
precompute a table containing N1/3 ordinary collisions.

In this section, we consider the problem of generating N1/3 collisions in time
bounded by Õ(N2/3) using at most Õ(N1/3) bits of memory. Surprisingly, a simple

7



Algorithm 3 Alternative method for constructing Nα collisions
Require: Oracle access to F operating on [0, N − 1]
Require: Parameter: α ≤ 1/3

Let γ ←− (1− α)/2
Let Nα ←− dNαc
Let Nγ ←− dNγc
Create arrays Start and End of Nα elements.
Create arrays Img, Pr1 and Pr2 of Nα elements.

Construction of first set:
for i from 1 to Nα do

Let a←−R [0, N − 1]
Let Start[i]←− a
for i from 1 to Nγ do

Let a←− F (a)
end for
Let End[i]←− a

end for
Sort End, applying the same permutation on elements of Start

Construction of second set and collisions:
Let t←− 1
while t < Nα do

Let a←−R [0, N − 1]
Let b←− a
for j from 1 to Nγ do

Let b←− F (b)
if b is in End (first occurrence in position k) then

Let a′ ←− Start[k]
for l from 1 to Nγ − j do

Let a′ ←− F (a′)
end for
if a 6= a′ then
{Checks that a genuine merge between chains exists}

Let b←− F (a)
Let b′ ←− F (a′)
while b 6= b′ do

Let a←− b
Let a′ ←− b′
Let b←− F (a)
Let b′ ←− F (a′)

end while
Let Img[t]←− b
Let Pr1[t]←− a
Let Pr2[t]←− a′
Let t←− t+ 1

end if
Exit Loop on j

end if
end for

end while
Return arrays Img, Pr1 and Pr2 containing Nα collisions.

8



method inspired from Hellman’s time-memory tradeoff [3] is able to solve this prob-
lem. More generally, for α ≤ 1/3, this method allows us to compute Nα collisions
in time less than Õ(N1−α) using at most Õ(Nα) bits of memory. The idea is to first
build Nα chains of length Nγ; each chain starts from a random point and is computed
by repeatedly applying F up to the Nγ-th iteration. The end-point of each chain is
stored together with its corresponding start-point. Once the chains have been built,
we sort them by end-point values. Then, restarting from Nα new random point, we
once again compute chains of length Nγ, the difference is that we now test after each
evaluation of F whether the current value is one of the known end-points. In that
case, we know that the chain we are currently computing has merged with one chain
from the precomputation step. Such merge usually corresponds to a collision, the only
exception occurs when the start-point of the current chain already belongs to a pre-
computed chain (a “Robin Hood” using the terminology of [24]). Then, backtracking
to the beginning of both chains, we can easily construct the corresponding collision.
A pseudo-code description of this alternative first step is given as algorithm 3.

Note that, instead of building two sets of chains, it is also possible to build a
single set and look for previously known end-points. This alternative approach is a
bit trickier to implement but uses fewer evaluations of F . However, the overall cost
of the algorithm remains within the same order.

Clearly, since each of the two sets of chains we are constructing contains Nα+γ

points, the expected number of collisions is O(N2α+2γ−1). Remembering that we wish
to construct Nα collisions, we need to let γ = (1−α)/2. The running time necessary
to compute these collisions is Nα+γ = N (1+α)/2. Note that, since α ≤ 1/3, we have
(1 + α)/2 ≤ 1− α. As a consequence, the running time of the complete algorithm is
dominated by the running time Nβ = N1−α of the second step.

6 Parallelizable 3-collision search

Since the computation involved during a search for 3-collisions is massive, it is es-
sential to study the possibility of parallelizing such a search. For ordinary collisions,
parallelization is studied in details in [24] using ideas introduced in [14–16, 20–23].

We first remark that the algorithms we have studied up to this point are badly
suited to parallelization. Their main problem is that a large amount of memory needs
to be replicated on every processor which is very impractical, especially when we want
to use a large amount of low-end processors. We now propose an algorithm specifically
suited to parallelization. For simplicity of exposition, we first assume that Np ≈ N1/3

processors are available and aim at a running time Õ(N1/3). Moreover, we would like
each processor to use only a constant amount of memory. However, we assume that
every processor can efficiently communicate with every other processor, as long as the
amount of transmitted data remains small. It would be easy to adapt the approach to

9



Algorithm 4 Parallelizable 3-collisions using distinguished points
Require: Oracle access to F operating on [0, N − 1]
Require: Number of processors Np ≤ N1/3

Require: Identity of current processor: Id ∈ [0, Np − 1]

Let M ←−
l
N2/3

k
{M defines distinguished points}

Let Lmax = 20
l
N1/3

k
Construction of triples:

Let s←−R [0, N − 1]; a←− s; L←− 0
while L < Lmax do

Let a←− F (a); L←− L+ 1
if a < M then

Send triple T ←− (s, a, L) to processor a (mod Np) and Exit Loop
end if

end while

Acquisition of triples:
Store received triples (s, d, L) in local arrays A, D, L numbered from 1 to K
Sort D, applying the same permutation on elements of A and L

Processing of triples:
Let i←− 1
while i ≤ K do

Let j ←− i+ 1
while j ≤ K and D[j] = D[i] do

Let j ←− j + 1
end while
if j ≥ i+ 3 then

Let L←− max(L[i], · · · ,L[j − 1])
for ` from L downto 0 do

for k from i to j − 1 do
if L[k] ≥ ` then

Let D[k]←− A[k]; A[k]←− F (A[k]))
{D[k] overwritten to keep previous value of A[k]}

end if
end for
Check for 3 equal values in A[i · · · j − 1] with differing values of D
If found, Output the 3-collision and Exit

end for
end if
Let i←− j

end while

10



a network of small processors, with each processor connected to a central computer
possessing Õ(N1/3) bits of memory.

As for ordinary collisions, the key idea is to use distinguished points. By definition,
a set of distinguished points is a set of points together with an efficient procedure for
deciding membership. For example, the set of elements in [0,M − 1] can be used as a
set of distinguished points since membership can be tested using a single comparison.
Moreover, with this choice, the fraction of distinguished points among the whole set
is simply M/N . Here, since we wish to have chains of average length N1/3, we choose
for M an integer near N2/3.

The distinguished point algorithm works in two steps. During the first step, each
processor starts from a random start-point s and iteratively applies F until a dis-
tinguished point d is encountered. It then transmits a triple (s, d, L), where L is
the length of the path from s to d, to the processor whose number is d (mod Np).
We abort any processor if it doesn’t find a distinguished point within a reasonable
amout of time, for example, following what [24] does for 2-collisions, we may abort
after 20N/M steps. Once all the paths have been computed, we start the second
step. Each processor looks at the triples it now holds. If a given value of d appears
three or more times, the processor recomputes the corresponding chains, using the
known length information to synchronize the chains. If three of the chains merge at
a common position, a 3-collision is obtained.

Of course, even with less than N1/3 processors, it is possible to do a partial
parallelization. More precisely, given N θ processors with θ ≤ 1/3, it is possible to
find 3-collisions in time Õ(N2/3−θ). In that case, each processor needs a local memory
of size O(N1/3−θ) to store the triples it owns.

7 Extension to r-collisions, for r > 3

For r-collisions, recall that we need to evaluate F on r!N (r−1)/r points before hoping
for a collision. When considering that r is a fixed value, r! is a constant and vanishes
within the Õ notation. With this new context, algorithm 4 is quite easy to generalize.
Here, the important parameter is to create shorter chains and compute more of them.
The reason for shorter chains is that (as in Hellman’s algorithm [3]), we need to make
sure that there are not too many collisions between one chain and all the others.
Otherwise, the algorithm spends too much time recomputing the same evaluations
of the random map, which is clearly a bad idea. To avoid this, we construct chains
which are short enough to make sure that the average number of (initial4) collisions
between an individual chain and all the other chains is a constant. Since the total
numbers of elements in all the other chains is essentially N (r−1)/r, the length of chains
should remain below N1/r.
4 Of course, once a collision occurs, all the values that follow are colliding. However, we do not count these

follow-up collisions.

11



To achieve maximal parallelization when searching for a r-collision, Np ≈ N (r−2)/r

processors are required. The integer M that defines distinguished points should be
near N (r−1)/r. Each processor first build a chain of average length N1/r (as before we
abort after 20N/M steps), described by a triple (s, d, L). Each chain is sent to the
processor whose number is d (mod Np). During the second step, any processor that
holds a value of d that appears in r or more triples recomputes the corresponding
chains. If r chains merge at the same position, a r-collision is obtained.

Given N θ processors with θ ≤ (r − 2)/r, it is possible to find r-collisions in time
Õ(N (r−1)/r−θ). In that case, each processor needs a local memory of sizeO(N (r−2)/r−θ).

8 Conclusion

In this paper, we revisited the problem of constructing multicollisions on random
mappings and showed that it can be done using less memory than required by the
folklore algorithm. For r-collisions, the sequential running remains at Õ(N2/3) but
the amount of memory can be reduced from O(N2/3) to O(N1/3).

Futhermore, finding r-collisions can be very efficiently parallelised. Given N1/3

parallel processors, each equipped with constant memory, the problem can be solved
in time Õ(N1/3). More generally for r ≥ 3, we show how to generate r-collisons
on N θ processors, each with local memory O(N (r−2)/r−θ), in time Õ(N (r−1)/r−θ). It
is interesting to note that the cost of the parallelizable approach in the full-cost
model [25] decreases as θ grows.

References

1. Niels Ferguson and Stefan Lucks. Attacks on AURORA-512 and the double-mix Merkle-Damg̊ard
transform. Cryptology ePrint Archive, Report 2009/113, 2009.

2. Philippe Flajolet and Andrew M. Odlyzko. Random mapping statistics. In Jean-Jacques Quisquater and
Joos Vandewalle, editors, EUROCRYPT’89, volume 434 of LNCS, pages 329–354, Houthalen, Belgium,
April 10–13, 1990. Springer-Verlag, Berlin, Germany.

3. Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information Theory,
26(4):401–406, 1980.

4. Jonathan J. Hoch and Adi Shamir. Breaking the ICE - finding multicollisions in iterated concatenated
and expanded (ICE) hash functions. In Matthew J. B. Robshaw, editor, FSE 2006, volume 4047 of
LNCS, pages 179–194, Graz, Austria, March 15–17, 2006. Springer-Verlag, Berlin, Germany.

5. Jonathan J. Hoch and Adi Shamir. On the strength of the concatenated hash combiner when all the
hash functions are weak. In ICALP (2), volume 5126 of LNCS, pages 616–630. Springer, 2008.

6. Tetsu Iwata, Kyoji Shibutani, Taizo Shirai, Shiho Moriai, and Toru Akishita. AURORA: a cryptographic
hash algorithm family. Submission to NIST’s SHA-3 competition, 2008.

7. Antoine Joux. Multicollisions in iterated hash functions. application to cascaded constructions. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 306–316, Santa Barbara, CA,
USA, August 15–19, 2004. Springer-Verlag, Berlin, Germany.

8. Florian Mendel. Preimage attack on Blender. Available from http://ehash.iaik.tugraz.at/

wiki/Blender.
9. Florian Mendel, Christian Rechberger, and Martin Schläffer. Cryptanalysis of twister. In Proceedings

of ACNS, Springer, To appear, Available from http://ehash.iaik.tugraz.at/wiki/Twister.

12



10. Florian Mendel and Sœren S. Thomsen. An observation on JH-512. Available from
http://ehash.iaik.tugraz.at/wiki/JH.

11. Mridul Nandi and Douglas R. Stinson. Multicollision attacks on some generalized sequential hash
functions. IEEE Transactions on Information Theory, 53(2):759–767, 2007.

12. Craig Newbold. Observations and attacks on the SHA-3 candidate Blender. Available from
http://ehash.iaik.tugraz.at/wiki/Blender.

13. Bart Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis, KU Leuven, 1993.
14. Jean-Jacques Quisquater and Jean-Paul Delescaille. Other cycling tests for DES (abstract). In Carl

Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 255–256, Santa Barbara, CA, USA, Au-
gust 16–20, 1988. Springer-Verlag, Berlin, Germany.

15. Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search? application to DES
(extended summary). In Jean-Jacques Quisquater and Joos Vandewalle, editors, EUROCRYPT’89,
volume 434 of LNCS, pages 429–434, Houthalen, Belgium, April 10–13, 1990. Springer-Verlag, Berlin,
Germany.

16. Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search. New results and
applications to DES. In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 408–413,
Santa Barbara, CA, USA, August 20–24, 1990. Springer-Verlag, Berlin, Germany.

17. Ronald L. Rivest and Adi Shamir. Payword and micromint: Two simple micropayment schemes. In
T. Mark A. Lomas, editor, Security Protocols Workshop, volume 1189 of LNCS, pages 69–87. Springer,
1997.

18. Yu Sasaki. A collision attack on AURORA-512. Cryptology ePrint Archive, Report 2009/106, 2009.
19. Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday paradox for multi-

collisions. In Min Surp Rhee and Byoungcheon Lee, editors, ICISC 06, volume 4296 of LNCS, pages
29–40, Busan, Korea, November 30 – December 1, 2006. Springer-Verlag, Berlin, Germany.

20. Paul C. van Oorschot and Michael J. Wiener. A known plaintext attack on two-key triple encryption.
In Ivan Damg̊ard, editor, EUROCRYPT’90, volume 473 of LNCS, pages 318–325, Aarhus, Denmark,
May 21–24, 1990. Springer-Verlag, Berlin, Germany.

21. Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with application to hash functions
and discrete logarithms. In ACM CCS 94, pages 210–218, Fairfax, Virginia, USA, 1994. ACM Press.

22. Paul C. van Oorschot and Michael J. Wiener. Improving implementable meet-in-the-middle attacks by
orders of magnitude. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 229–236, Santa
Barbara, CA, USA, August 18–22, 1996. Springer-Verlag, Berlin, Germany.

23. Paul C. van Oorschot and Michael J. Wiener. On Diffie-Hellman key agreement with short exponents.
In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 332–343, Saragossa, Spain,
May 12–16, 1996. Springer-Verlag, Berlin, Germany.

24. Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic applications.
Journal of Cryptology, 12(1):1–28, 1999.

25. Michael J. Wiener. The full cost of cryptanalytic attacks. Journal of Cryptology, 17(2):105–124, March
2004.

26. Hongjun Wu. The complexity of Mendel and Thomsen’s preimage attack on JH-512. Available from
http://ehash.iaik.tugraz.at/wiki/JH.

A Applications

A.1 Micromint

In [17], Rivest and Shamir introduced a micro-payment scheme called Micromint,
where coins are represented by multicollisions on a hash function. The proposed
parameters are coins consisting of 4-collisions on a hash with a31-bit output. For
the broker, constructing coins is done by sending hash values in a large array until
4-collisions are found. After 233 evaluations of the hash function, a large number of

13



4-collisions found. As a consequence, [17] argues that, due to a good scaling effect,
coins are reasonably cheap for a broker. On the contrary, with the folklore algorithm
for 4-collision, trying to forge coins on a smaller scale is not an efficient process.

However, with the parallelisable algorithm presented in section 6, the scaling ar-
gument no longer applies. Indeed, it is now possible to set up a pirate broker using
distributing computation on a large scale.

A.2 Collisions for the Hashfunction AURORA-512

AURORA is a family of cryptographic hash functions submitted to the NIST SHA-
3 hash function competition [6]. Like the other members of the AURORA family,
AURORA-512 employs different internal compression functions, each mapping a 256-
bit chaining value and a 512-bit message block to generate a new 256-bit chaining
value. AURORA-512 is the high-end member of that family, maintaining an internal
state of 512 bit. As required by the NIST, the authors of AURORA-512 explicitely
claim “collision resistance of approximately 512/2 bits” for AURORA-512. I.e., col-
lision attacks must not significantly improve over the generic birthday attack, which
takes roughly the time of 2256 hash operations.

Internally, AURORA-512 works almost like the cascade of two iterated hash func-
tions, except for one important extra operation:

MF : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n.

See algorithm 5 for a simplified description of AURORA-512.

Algorithm 5 AURORA-512: Hashing 8 message blocks.
Require: Input Chaining Values (Left, Right) ∈ ({0, 1}256)2

for i from 0 to 7 do
Left ←− Compress(Left, Message Block(i))
Right ←− Compress(Right, Message Block(i))

end for
(Left, Right) ←− MF(Left, Right)

Every eight iterations, MF is called to mix the two half-states. This seems do
defend against the cascade-attack from [7]: Between two MF-operations, one can
generate local collisions in each iteration in one of either the left string, or the right
string. Thus, the adversary can get a local 28-collision. But to apply the attack from
[7], one would rather need a 2128-collision, so the attack fails.

Assume, for a moment, that the adversary has generated a 27-collision on Left
in the first 7 iterations of the loop. For the right string, we have 27 different values
Right1, Right2, . . . , Right128. If two of them collide, a collision for AURORA-512 has
been found. For a fixed Message Block(7), the chance of a collision, i.e. of j 6= k with

14



Compress(Rightj, Message Block(7))
=

Compress(Rightk, Message Block(7))

is about 27 · (27 − 1) · 2−1/2256. By trying out 2256−(6+7) different values for Mes-
sage Block(7), we expect to find a collision. Note that this means to make 27 calls to
the function Compress. Hence, this attack takes the time of about 2256−(6+7)+7 = 2250

compression function calls, plus the time to generate the 27-collision at the begin-
ning. This is essentially the memoryless variant of the attack from [1], except that
the authors of [1] actually generate a 28-collision on Left, by exploiting the a previous
eight-tuple of message blocks. The attack is memoryless, since the adversary only
needs to generate 2-collisions on Left, and the claimed time is 2249.

In [1], Ferguson and Lucks further propose an attack which uses local r-collision,
instead of local 2-collisions. A similar attack has been proposed independently [18].
Using eight local r-collisions allows to speed-up the attack to roughly 2256/r7 com-
pression function calls (plus the time to generate the required r-collisions). [1] suggest
r = 9 (beyond that, computing the r-collisions becomes too costly) and claim time
2234.5, including the time to generate ten local 9-collisions. The price for the speed-up
is utiliing a huge amount of memory, however.

Our memory-efficient 3-collision allows a different time-memory tradeoff. The time
is 2256/37 ≈ 2245. Recall N = 2256, and set α := 1/16, β := 15/16 in algorithm 2.
In that case one local 3-collision requires time 2240, which we neglect. The memory
requirements are down to 216, i.e., almost negligible.

It is also possible to use more general r-collisions to further improve this attack.
For example, we can use 4-collisions obtained using the algorithm of section 7. To
simplify the comparison with previous attacks, we assume a single processor, i.e. set
θ = 0, however, with more processors, we would obtain an even better attack. With
this choice, a 4-collision on 256-bits is obtained in time 2192 using a memory of size
2128. The corresponding speedup is 47. Similarly, 8-collisions on 256 bits are obtained
in time 2224 each, using 2192 units of memory. The speed-up is 87. Other trade-offs
are possible.

The results on collision attacks for AURORA-512 can be summarised as follows:

r time memory reference
(arity) [compr. fn. calls]

9 2234.5 2229.6 [1]
8 2236 2236 [18]
2 2249 — [1]
3 2245 216 (this paper)
4 2242 2128 (this paper)
8 2235 2192 (this paper)

15



A.3 Attacks on other Hash Functions

Several attacks on several other SHA-3 candidates make heavy use of multicollisions,
and it appears a natural idea to plug in our algorithms for reducing the memory
consumption of these attacks. We actually tried to do so, but only succeeded for
Aurora-512. In the current section, we will explain why we failed for other obvious
candidates.

Several attacks, such as the attacks on Blender [12, 8] and on Twister [9], employ
multicollisions, but it turns out that these can actually generated by Joux-style it-
erated 2-collisions, which is very memory-efficient – and also faster than our general
multicollision algorithms, anyway.

An obvious candidate to employ our algorithms to improve given cryptanalytic
attacks is a preimage attack on JH-512 [10] Like Aurora, JH is a family of hash func-
tions submitted to the SHA-3 competition. The high-end 512-bit variant is denoted
as JH-512. Internally, JH-512 is a wide-pipe hash function with an internal state of
1024 bit, and it employs an invertible compression function. [10] propose a meet-
in-the-middle attack which requires “2510.3 compression function evaluations and a
similar amount of memory” (our emphasis). The authors of [10] stress: “We do not
claim that our attack breaks JH-512 (due to the high memory requirements).” The
author of JH-512 provides a more detailed analysis of this attack, claiming “2510.6

[units of] memory”. A main phase of the attack is generating several 51-collisions on
one half of the chaining values (i.e., on 512 bits). By applying our algorithms to this
task, it is possible to reduce the memomory required for this phase to 2(512/49)·51 units
of memory.

But another phase of the attack from [10] is to apply the inverse of the compression
function to generate 2509 internal target values. The attack successfully generates a
message which hashes to a given preimage, if the first part of the message hashes to
any of these 2509 target values. And the overall amount of storage for the attack is
dominated by storing these 2509 values, regardless of improving memory-efficiency of
the multicollision phase.

16


