
Distinguisher and Related-Key Attack on the Full AES-256
(Extended Version)

Alex Biryukov, Dmitry Khovratovich, Ivica Nikolić

University of Luxembourg

{alex.biryukov, dmitry.khovratovich, ivica.nikolic@uni.lu}

10 August 2009

Abstract. In this paper we construct a chosen-key distinguisher and a related-key attack
on the full 256-bit key AES. We define a notion of differential q-multicollision and show that
for AES-256 q-multicollisions can be constructed in time q ·267 and with negligible memory,
while we prove that the same task for an ideal cipher of the same block size would require at

least O(q · 2
q−1
q+1 128

) time. Using similar approach and with the same complexity we can also
construct q-pseudo collisions for AES-256 in Davies-Meyer hashing mode, a scheme which is
provably secure in the ideal-cipher model. We have also computed partial q-multicollisions
in time q ·237 on a PC to verify our results. These results show that AES-256 can not model
an ideal cipher in theoretical constructions. Finally we extend our results to find the first
publicly known attack on the full 14-round AES-256: a related-key distinguisher which works
for one out of every 235 keys with 2120 data and time complexity and negligible memory.
This distinguisher is translated into a key-recovery attack with total complexity of 2131 time
and 265 memory.

Keywords: AES, related-key attack, chosen key distinguisher, Davies-Meyer, ideal cipher.

1 Introduction

The Advanced Encryption Standard (AES) is a block cipher which was chosen by NIST from a
set of 15 candidate designs in a thorough evaluation process that lasted from September 1997
till October 2000. On November 26, 2001 Rijndael [7], a 128-bit block, 128/192/256-bit key block
cipher has become a standard as U.S. FIPS 197 [18]. In June 2003 the US government has approved
the use of 128, 192, 256 bit key AES for SECRET and 192, 256-bit key AES for TOP SECRET
information [19]. In the last ten years AES has been subject to very intensive cryptanalytic effort,
with best currently known attacks breaking 7, 10, 10 rounds for respective keysizes (128, 192, 256),
with very high complexities.

In this paper we show for the first time in the open literature distinguishers and related-key
attacks on the full 14-round 256-bit key AES. Research presented in this paper follows the logic
described in Fig. 1. First we identified slow diffusion and other differential weaknesses in the key
schedule of AES-256 which match nicely with the differential properties of the round function.
This allows us to construct local collisions for AES, i.e. two round difference propagation patterns
which result in low weight difference in the subkeys and zero difference in the 128-bit block. We
concatenate four such local collisions together and add another 6-round trail on top in order to
cover full 14 rounds of AES-256. The trail1 has 41 active S-boxes (36 in the block and 5 in the
key schedule), so we apply a special tool, a triangulation algorithm (designed for the purpose of
finding collisions in hash functions), in order to find keys and plaintexts that conform to the trail.

From this point we go in two directions. First we show that for AES-256 one can construct a
chosen-key distinguisher based on the new notion of a differential q-multicollision in time q · 267

1 We use colors in the diagrams of the trails, so please refer also to the tables in the appendix if you print
this paper on a black and white printer.

2

Weak
key schedule

Multicollision
trail

Related-key
attack

Multicollision

Davies-Meyer
trail

Related-key
trail

Pseudo-collisions

Multicollision
lower bound

distinguisher

TA
tool

Fig. 1. Outline of the research presented in this paper.

and with negligible memory. We prove that the same task for an ideal cipher of the same block
size would require at least q · 2

q−1
q+1 128 time for q ≤ 57 and at least q · 2

q−2
q+2 128 for q > 57. I.e. for

q > 3 the differential multicollision for AES-256 can be constructed significantly faster than for
an ideal cipher. Previously a known-key distinguisher for seven rounds of AES with 256 texts was
found in [14]. To verify our results we found partial q-multicolisions in several hours on a PC using
the publicly available implementation of AES-256.

As a direct application of this differential q-multicollision distinguisher we show that AES-256
when used in the Davies-Meyer mode allows to construct q pseudo-collisions with fixed differences
∆IV , ∆M in the IV and the message with complexity q · 267. Again, such a result would require
at least q · 2

q−2
q+2 128 time for the ideal cipher in the Davies-Meyer mode. Results of this type try

to enchance our definitions of block cipher security and to fill the gap between theoretical models
like random oracle and ideal cipher and the real world of ciphers which have fixed description
and are efficiently computable [2,5]. However a proper security definition which would capture the
intuition behind chosen/known key attacks is still an open problem.

The second direction that we studied was application of the trails that we have found to more
standard attacks on a block cipher, for example related-key attacks. In particular we show that
by changing the top two rounds of the trail that we used previously one obtains a differential trail
with only 24 active S-boxes (19 in the round function and 5 in the key schedule). From this trail we
can construct a differential distinguisher for AES-256 which works for one key out of 235 and has
complexity 2120 data and time, and negligible memory. This distinguisher can be used to mount
a key-recovery attack on AES-256 with total complexity of 235+96 = 2131 time and 265 memory.
We summarize our findings in Table 1.

This paper is organized as follows: in Section 2 we prove a lower bound on the complexity of
finding differential q-multicollisions in the case of an ideal cipher and construct a distinguisher for
the full AES-256. In Section 3 we show an application of these results to finding pseudo-collisions
for the Davies-Meyer hashing mode instantiated with AES-256. In Section 4 we show a related-key
attack on the full AES-256. In Sections 5 and 6 we discuss the relevance of our attack and new
design criteria for block cipher key schedule as a consequence of our attack. Section 7 concludes the
paper. In Appendix we provide technical details about our differential trails and the triangulation
algorithm.

Discussion. It is clear that the open key (chosen or known) security model is new and is still
lacking a proper security definition. However we think that if we can support an open-key attack
with a proof of security against such attack for the ideal cipher, this gives us additional confidence
that such property (in our case ”differential multicollisions”) should not be present in a good
cipher. There are also many constructions provably secure [3,10] in the ideal cipher model. This
model assumes that both the key and the plaintext are accessible to the attacker. If a block cipher

3

Attack # rounds # keys Data Time Memory Source

Known-key integral 7 1 256 256 256 [14]

Partial sums 9 256 285 2226 232 [8]

Related-key rectangle 10 64 2114 2173 ? [1,13]

q-multicollisions 14 2q 2q q · 267 - Sec. 2

Partial q-multicollisions 14 2q 2q q · 237 - Sec. 2.3

Related-key distinguisher 14 235 2119 ∗ 2119 ∗ - Sec. 4.1

Related-key key recovery 14 235 296 ∗ 296 ∗ 265 Sec. 4.2

∗ — for each key.

Table 1. Best attacks on AES-256

(e.g., AES) exhibits a property that should not appear in the ideal cipher then instantiation of
a provably secure construction with this cipher could undesirably weaken the construction. Our
Davies-Meyer example is exactly to show that a construction provably secure in the ICM can
break down if instantiated with AES-256 (such a hash function was never proposed for another
reason — 128-bit state is too short for a modern hash). The fact that this property does not
automatically carry on to Davies-Meyer instantiated with all the other block-ciphers (hopefully),
shows a non-trivial weakness of AES-256.

2 Multicollision distinguisher

In this section we provide a chosen-key distinguisher for AES-256 which has practical complexity.

Definition 1. A set of two differences and q pairs

{∆K , ∆P ; (P1,K1), (P2,K2), . . . , (Pq,Kq))}

is called a differential q-multicollision for a cipher EK(·) if

EK1(P1)⊕ EK1⊕∆K
(P1 ⊕∆P) = EK2(P2)⊕ EK2⊕∆K

(P2 ⊕∆P) =
= · · · = EKq

(Pq)⊕ EKq⊕∆K
(Pq ⊕∆P). (1)

A differential q-multicollision can be also viewed as a set of q right pairs with respect to the related-
key differential, where the key is not fixed.

We compare the task of constructing a differential q-multicollision for an ideal cipher with that
for AES-256. This task for an ideal cipher, i.e. a set of 2k randomly chosen permutations, would
require treating it as a black-box and making only encryption/decryption queries. We expect that
for a good cipher with no (yet discovered) structural flaws, the task of constructing a differential
q-multicollision would have the same complexity as for an ideal cipher.

Let us compute this complexity measured in the number of queries. Since the cipher is ideal,
an adversary is only given an access to the encryption and decryption oracles, both having two
inputs (a key and a plaintext/ciphertext) and one output. This is the same model of an adversary
as in [2,3, p. 329].

In the beginning no triplet 〈plaintext, key, ciphertext〉 is defined. Then, for each query of the
adversary ”EK(P) =?” the encryption oracle takes a random value C from a possible range (where
EK(·) is yet undefined) and thus defines EK(P) = C. Also E−1

K (C) becomes defined. The same
rule holds for a decryption query.

4

Lemma 1. To construct a differential q-multicollision for an ideal cipher with an n-bit block an
adversary needs at least O(q · 2

q−2
q+2n) queries on the average.

Proof. See Sec. 2.1.

Remark 1. For small q, when the lower bound does not exceed 2n−1, a better estimate is obtained
(see the proof of the lemma). In our case, for n = 128, an adversary needs at least q · 2

q−1
q+1 128

queries if q ≤ 57.

Surprisingly, differential multicollisions for AES-256 can be constructed substantially faster.
Furthermore, we can set ∆P = 0 in a multicollision, so a stronger statement holds.

Theorem 1. A differential q-multicollision with ∆P = 0 for AES-256 can be found with time
complexity q · 267 AES encryptions.

Proof. See Sec. 2.2.

Thus for q > 3 a differential q-multicollision for AES-256 can be constructed significantly faster
than for an ideal cipher.2 Therefore, AES-256 is a weak instantiation of an ideal cipher.

2.1 Proof of Lemma 1

Proof. Let A be an adversary attacking the cipher, and assume that A asks its oracles a total
of L queries, where L < 2n−1. Assume that a multicollision of the form (1) is found. Let us
compute the probability of this event. First, we rewrite (1) as U1 = U2 = · · · = Uq. With each
term Uj = EKj

(Pj) ⊕ EKj⊕∆K
(Pj ⊕∆P) we associate an integer tj such that tj-th oracle query

determines the value of Uj , i.e., computes the last (chronologically) element of the sum. Without
loss of generality, assume that t1 < t2 < · · · < tq. Finally, define t′1 as the index of the query that
determines the first element of the sum U1.

U1︷ ︸︸ ︷
EK1(P1)︸ ︷︷ ︸

queried at t′1

⊕EK1⊕∆K
(P1 ⊕∆P)︸ ︷︷ ︸

queried at t1

=

U2︷ ︸︸ ︷
EK2(P2)︸ ︷︷ ︸

queried before t2

⊕EK2⊕∆K
(P2 ⊕∆P)︸ ︷︷ ︸

queried at t2

=

= · · · =

Uq︷ ︸︸ ︷
EKq (Pq)︸ ︷︷ ︸

queried before tq

⊕EKq⊕∆K
(Pq ⊕∆P)︸ ︷︷ ︸

queried at tq

. (2)

Now compute for every (t′1, t1, t2, t3, . . . , tq) the probability that this set defines a differential
q-multicollision. Before submitting ti-th query, i > 1, the following equation holds:

U1 = U2 = · · · = Ui−1,

where terms of U1, U2, . . . , Ui−1 are completely determined by a tuple (t′1, t1, t2, t3, . . ., ti−1).
Indeed, from t′1 and t1 we define K1, ∆K , P1, ∆P ; from tj we define Kj and Pj .

Just before the moment ti only one term of Ui is computed — w.l.o.g. let it be EKi
(Pi). Thus

the equality Ui−1 = Ui should hold, i.e.

Ui−1 = EKi
(Pi)⊕ EKi⊕∆K

(Pi ⊕∆P)︸ ︷︷ ︸
queried at ti

By our definition, ti is the first moment when EKi⊕∆K
(Pi ⊕ ∆P) is queried. Then either the

decryption or the encryption oracle is called. In the first case the decryption oracle is called with
a ciphertext C and a key K, which for some i should be equal to Ki ⊕ ∆K . By the definition

2 Moreover, even for q = 3 we are not aware of any algorithm faster than 22n/3.

5

of ti, the value C is chosen from the set where EKi⊕∆K
(·) is undefined. To become a part of a

multicollision, there should exist Pi such that C = EKi
(Pi)⊕ Ui−1. On the other hand, after the

decryption oracle is called, the following equation should hold:

E−1
Ki⊕∆K

(C) = Pi ⊕∆P . (3)

Since L < 2n−1, not more than 2n−1 texts were encrypted or decrypted with the key Ki ⊕∆K .
So the probability that (3) holds does not exceed 1/2n−1.

In the second case, let the encryption oracle be queried with a plaintext P and a key K, which
for some i should be equal to Ki ⊕∆K . For an answer C, a similar equation should hold:

C = Ui−1 ⊕ EKi
(Pi). (4)

The same probability argument holds for this equation. Therefore, for every i ≥ 2 we get a multi-
plier 21−n to the probability that a tuple (t′1, t1, t2, t3, . . . , tq) defines a differential q-multicollision.
There are

(
L
q+1

)
such tuples, each defining a differential q-multicollision with probability at max

2(q−1)(1−n). We get the following equation for the number of queries required to get a q-multicollision
with probability 1/2: (

L

q + 1

)
≥ 2(q−1)(n−1)−1. (5)

Let us simplify the left part:(
L

q + 1

)
=

L!
(L− q − 1)!(q + 1)!

=
L(L− 1) · · · (L− q)

(q + 1)!
≤

≤ Lq+1

(q + 1)!
≤ Lq+1

(q+1)q+1

eq+1

=
(

eL

q + 1

)q+1

. (6)

Substitute the result to (5):(
eL

q + 1

)q+1

≥ 2(q−1)(n−1)−1 ⇒ L ≥ q + 1
e

2
q−1
q+1 (n−1)−1 = O(q · 2

q−1
q+1n). (7)

This is the bound for the number of queries needed to construct a multicollision with probability
1/2. By Markov’s inequality, the average number of queries exceeds this bound divided by two, so
the right part of (7) is still a correct lower bound.

Now consider the case when L ≥ 2n−1. Let K be the set of keys such that there were more
than 2n−1 encryption or decryption queries on each of these keys. Define l = |K|. If l > q− 2 then
L exceeds q · 2n−2, which implies the statement of the lemma. If l ≤ q − 2 then there are at least
q− l sums Ui in (2) that do not involve keys from K. So if a q-multicollision has been found, then
a (q− l)-multicollision has too been found such that it does not involve keys from K. Then all the
arguments on the probability of this event can be carried out from the first part of the proof.

Therefore, we gets the following inequality on L:

L ≥ q − l + 1
e

2
q−l−1
q−l+1 (n−1)−1 + l · 2n−1.

For l < q/2 we get the following:

L ≥ q

2e
2

q−2
q+2 (n−1)−1 = O(q · 2

q−2
q+2n). (8)

For l ≥ q/2 we get
L ≥ q · 2n−2 = O(q · 2n). (9)

Equations (7), (8), and (9) complete the proof. �

6

Remark 2. The function F∆K ,∆P
(K,P) = EK(P)⊕EK⊕∆K

(P⊕∆P) is a xor of two permutations.
Patarin in [20] has shown that the xor of two random permutations can not be distinguished from
a pseudo-random function with less than 2n queries. In [22] it was proven that q-multicollision
search for a random function requires at least (q!)

1
q 2

q−1
q n effort. In our case we can not use this

result since it assumes that ∆K and ∆P are fixed in advance while we allow an attacker to choose
them during the attack.

2.2 Proof of Theorem 1

Here we construct a differential q-multicollision (1) with ∆P = 0 in q · 267 time. This is done in 5
steps:

1. Build a differential trail, which is efficient for the multicollision search.
2. Derive ∆K from the trail.
3. Choose the active S-boxes, whose inputs will be fixed in the triangulation algorithm. Denote

this set by S.
4. Run the triangulation algorithm and derive a set of free variables.
5. Produce q pairs (P,K) for (1) as follows:

(a) Assign inputs to S-boxes from S with admissible values.
(b) Assign free variables randomly.
(c) Produce (P,K).
(d) Check if (P,K) and (P,K ⊕∆K) fit (1).

We expect that most of our readers are familiar with the description of AES and thus point
out only main features of AES-256 that are crucial for our proof.

Differential trail

Notations. Differential trail (also called differential characteristic) is a sequence of differences in
all the internal states of the cipher and all the subkeys. If we distinguish only between zero and
non-zero (byte) differences, we call such a trail a trail with truncated differences.

We denote the subkey of round i by Ki, i.e. the first (whitening) subkey is K0, the subkey of
round 1 is K1, etc., the last subkey is K14. The difference in Ki is denoted by ∆Ki. Bytes of a
subkey are denoted by Kl

i,j , where i stands for the row index, and j stands for the column index in
the standard matrix representation of AES. Bytes of the plaintext are denoted by Pi,j , and bytes
of the internal state after the SubBytes transformation in round r are denoted by Ari,j . Let also
Bri,j denote a byte in position (i, j) after the r-th application of MixColumns.

Features of AES-256. AES-256 has 14 rounds and a 256-bit key, which is two times larger than the
internal state. Thus the key schedule consists of only 7 rounds. One key schedule round consists
of the following transformations:

Ki,0 ← S(Ki+1,7)⊕Ki,0 ⊕ Cr, 0 ≤ i ≤ 3;
Ki,j ← Ki,j−1 ⊕Ki,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 3;
Ki,4 ← S(Ki,3)⊕Ki,4, 0 ≤ i ≤ 3;
Ki,j ← Ki,j−1 ⊕Ki,j , 0 ≤ i ≤ 3, 5 ≤ j ≤ 7,

(10)

where S() stands for S-box, and Cr — for the round-dependant constant. Therefore, every round
has 8 S-boxes.

7

SubBytes

ShiftRows
MixColumns

Key schedule round

Key schedule round

Fig. 2. A local collision.

Weakness in the key schedule. Two features of the key
schedule help us to build a good differential trail. First,
the key schedule has a slow diffusion in backward direc-
tion. It means that a difference in a single byte K0,0 will
propagate to only two bytes, K0,0 and K0,1, if we apply
the inversion of the key schedule round. The next inverted
round will affect only one more byte, etc. Thus we can
build a trail with a low-weight difference in key schedule if
we start with a low-weight difference in the last round and
then step backwards.

The second feature is unique to AES-256 due to its ”key
size”/”state size” ratio, Nk/Nb = 2. We can inject ”good”
values with the first part of the key and then cancel them,
after they pass the round, with the second part of the key.
We call this a local collision (Fig. 2).

Constructing a trail. Step by step, we construct a differen-
tial trail from the last rounds to the first ones. The trail is described in details in Appendix A,
both in a truncated form and with the actual differences given. The trail has 41 active S-boxes,
and 5 of them are in the key schedule.

Search for a solution. After the trail has been defined, we produce a pair (P,K) which with pair
(P,K +∆K) fits the trail and thus is a part of a differential multicollision (1) since all such pairs
have the same difference in the ciphertext. Now note that the trail explicitly states all the non-zero
input δI and output δO differences of the S-boxes. According to the S-box properties, there are at
most 4 solutions of the equation S(x ⊕ δI) ⊕ S(x) = δO. This set of solutions we call admissible
inputs. Therefore, (P,K) and (P,K + ∆K) fit the trail if and only if in the execution EK(P) all
active S-boxes get admissible inputs. In the next paragraphs we explain how to construct such
executions efficiently.

Triangulation algorithm

Search for free variables. The triangulation algorithm was proposed in [12] as a tool for solving
systems of non-linear equations, which appear in differential attacks. Given the constraints on
the internal variables, the algorithm outputs a special set of variables, called free variables. These
free variables can be assigned randomly; and this assignment together with pre-fixed variables
completely and efficiently determines the whole execution. The fewer variables are fixed the better
the algorithm works.

Our goal is to efficiently produce the cipher executions in which active S-boxes get admissible
values. However, the algorithm can not process all the active S-boxes of our trail since they are
positioned too far from one another.

We found that we can fix inputs to 30 out of 41 S-boxes: all the active S-boxes in the internal
states of rounds 1–4 and all the 5 active S-boxes in the key scheduling. The triangulation algorithm
outputs 18 free variables, out of these 11 are in the key and provide freedom in the choice of the
key for the distinguisher. These free variables are listed below.

Key Internal state
K1

2,0, K
1
3,0, K

1
3,1, K

2
0,1, K

3
0,1 A2

0,1, B
2
1,1, B

2
1,2

K3
2,0, K

3
3,0, K

3
2,1, K

4
0,1, K

5
0,1, K

5
3,3 B2

2,3, B
2
3,3, A

3
1,1, A

3
1,2

8

Constructing a pair. Having assigned 18 free variables randomly and 30 S-box inputs with an
admissible value, we substitute these values to the equations, which have been ordered by the
triangulation algorithm. One by one, all the variables are determined and thus a pair (P,K) is
defined. It fits the trail if and only if the 11 S-boxes not covered by the triangulation algorithm get
admissible values as inputs. For the S-box in round 6 only 2 values are admissible so the probability
is 2−7 while for the other 10 S-boxes 4 values are admissible. This results in the overall probability
2−(7+10·6) = 2−67. Thus out of 267 pairs one fits the trail on average. We wrote a program and
checked that the distribution of the pairs is random enough so the probability estimates are likely
to be correct. We also checked experimentally that bottom 7 rounds of AES produce expected
difference after 230 pairs on the average, exactly as predicted by the trail.

The complexity of the attack. Recall the scheme of the attack, which was given in the beginning
of the proof. The first four steps are precomputations and actually have negligible cost. The
triangulation algorithm works in less than a second. The last step requires only to substitute the
values into the equations one by one, which is computationally equivalent to a single encryption.
Thus to get a right pair we need about 267 operations each equivalent to one encryption. The
attack needs negligible memory and is fully parallelizable.

2.3 Practical distinguisher

The definition of differential q-multicollision can be further relaxed if we allow arbitrary difference
at some byte positions of ∆P , ∆K or ∆C . Although an attacker gets more freedom, finding such
a construction for an ideal cipher becomes easier as well. To get a lower bound, only a slight
modification of Lemma 1 is required.

For the 13 rounds of AES-256 the complexity of finding this type of differential 5-multicollision,
with fixed difference in 14 bytes of the plaintext and fixed ciphertext difference can be lower
bounded by 2

4·112
6 = 274.6 computations. For the full AES-256 a differential 10-multicollision

with half of the plaintext difference fixed, and the fixed ciphertext difference the lower bound is
2

9·64
11 = 252.3 computations. Note that these lower bounds are far from being tight. In practice we

expect an efforts of 2112 and 264 for finding each extra collision for 13 and 14 rounds of AES-256
respectively, since the differences are structured and fixed.

At the same time we can do it much faster, in just q · 237 in both cases, which allowed us to
compute these distinguishers in several hours on a PC. The actual values are provided in Appendix.
The core of a practical distinguisher is a multicollision trail (Figure 5), where the behavior of S-
boxes in the first two rounds is not restricted. Computing from the middle, we get 14 bytes with
fixed difference before the second round, and 8 bytes with fixed difference before the first round.
The triangulation algorithm covers all but six active S-boxes in rounds 3–14 so that we find a
(partial) q-multicollision with complexity q · 237.

3 Pseudo-collisions for AES-based hashing

The Davies-Meyer mode of blockcipher-based hashing has been proven collision-resistant if instan-
tiated by an ideal cipher [3]. In this section we show a similar proof in the ideal-cipher model for
the q pseudo-collision resistance, when differences in the IV and the message (∆I , ∆M) are fixed.
We then show that it is relatively easy to find q pseudo-collisions for AES-256 in the Davies-Meyer
mode. We also point out that we construct one-block pseudo-collisions and thus the technique of
Joux [11] does not apply here.

Our goal is for fixed differences ∆I , ∆M to find many pseudo-collisions for the HE(I,M) def=
EM (I)⊕I which is the Davies-Meyer compression function with AES-256 as the underlying cipher.
Here I is the 128-bit IV, and M is a 256-bit message block. A pseudo-collision satisfies the following
equality:

HE(I,M) = HE(I ⊕∆I ,M ⊕∆M)

9

Let us rewrite it:

EM (I)⊕ I = EM⊕∆M
(I ⊕∆I)⊕ I ⊕∆I ⇔ EM (I)⊕ EM⊕∆M

(I ⊕∆I) = ∆I .

While finding many pseudo-collisions with different ∆I , ∆M can be done using the birthday
paradox, the same task for fixed ∆I , ∆M is hard. This problem can be expressed as finding a
solution of

EM1(P1)⊕ EM1⊕∆M
(P1 ⊕∆I) = EM2(P2)⊕ EM2⊕∆M

(P2 ⊕∆I) = · · · =
= EMq

(Pq)⊕ EMq⊕∆M
(Pq ⊕∆I) = ∆I , (11)

which is harder than finding a differential q-multicollision for EK(·), because the ciphertext differ-
ence is unrestricted in (1). Therefore, Lemma 1 gives us a lower bound on the complexity of this
attack.

Corollary 1. To construct q pseudo-collisions (11) with fixed ∆I , ∆M for an ideal cipher with an
n-bit block an adversary needs at least O(q · 2

q−2
q+2n) queries on average.

Theorem 2. For AES-256 in the Davies-Meyer mode q pseudo-collisions (11) can be found in
time q · 267.

Proof. Pseudo-collision attack on the Davies-Meyer mode requires the difference in the plaintext
P to be equal to the difference in the ciphertext C. The Davies-Meyer feed-forward would then
cancel this difference. Our differential trail needs only to be slightly modified for this purpose. The
first round of the new trail is shown in Fig. 3 (the actual values are given in Appendix A); the
other rounds are the same.

SubBytes

ShiftRows
MixColumns

Fig. 3. The first round of the differential trail for the attack on AES-256 in the Davies-Meyer
mode.

The resulting trail has 41 active S-boxes. The triangulation algorithm covers the same active
S-boxes as in the proof of Theorem 1 and outputs 18 free variables. The complexity is thus the
same.

Corollary 2. AES-256 in the Davies-Meyer hashing mode leads to an insecure hash function.

Security in other hash modes

We expect that similar results can be shown for similar blockcipher-based constructions which are
provably secure in the ideal-cipher model [3].

10

However, those schemes are of less practical interest due to a short output (128 bits) if be-
ing instantiated with AES. The double block length (DBL) hash functions [3] are more practical
constructions. The famous examples are MDC-2, MDC-4, Abreast-DM, Tandem-DM [17,6,15], for
which the security proof has been a separate challenging task [21,9,16]. So far we do not know
how our results can be carried on to these modes instantiated with AES-256, and expect it to be
a separate non-trivial task.

4 Related-key attack on AES-256

In this section we demonstrate two results: a related-key distinguisher and a key-recovery attack
based on this distinguisher for the full AES-256.

4.1 Distinguisher

The first two rounds of the multicollision trail can easily be modified to build a related-key dis-
tinguisher with relatively few active S-boxes — see Appendix A for the details of the trail. The
resulting trail has 19 active S-boxes in the internal states. The difference propagates through 14
S-boxes with probability 2−6·14, and through the remaining five with prob. 2−7·5. Therefore, we get
a distinguisher with probability 2−(14·6+5·7) = 2−119. However, the trail has five additional active
S-boxes (each with probability 2−7) in the key schedule. As a result, the distinguisher works for 1
out of 235 related-key pairs on the average.

4.2 Key recovery

There are several ways how our trail can be used for the full 256-bit key recovery. Here we present
one possibility. Steps of the attack are illustrated in Fig. 4 and are described below.

First step. We change the trail (see Fig. 4 or Appendix) to get more active S-boxes in the first two
rounds which allows us to recover the key bytes at the entrance to these S-boxes. A new trail has
eight active S-boxes in the first round in a ”checkerboard pattern” and two in the second round.
Our goal is to find ten key bytes K0

0,0, K0
0,2, K0

1,1, K0
1,3, K0

2,0, K0
2,2, K0

3,1, K0
3,3, K1

0,0, K1
0,2 so we

execute the following procedure for each of the 235 related-key pairs:

1. Repeat 231 times:
(a) Compose two structures of 264 plaintexts as specified below.
(b) Encrypt the 1st structure with K and the 2nd with K ⊕∆K .
(c) Sort the ciphertexts and check for a pair with the difference ∆C .
(d) Save a good pair if it is found.

2. For each candidate pair derive 216 variants for the ten key bytes (see details below).
3. Pick the key candidate with the maximal number of votes.

The overall complexity of this procedure is 231+65 = 296 data and time, and 264 memory, and it
finds 80 bits of the key.

Each structure has all the possible values in bytes {Pi,j , (i+ j) mod 2 = 0} (these bytes line
up in columns 0 and 2 after the ShiftRows of the 1st round). The other bytes are random constants
with the constraint that the two structures are related by ∆P as in the distinguisher. For a fixed
key, each structure contains 264 pairs with the proper differences after the S-boxes of the 2nd round
(yellow differences in two bytes). The remaining active S-boxes in rounds 3–14 require probability
2−93 for the trail to be fulfilled. Each structure produces a right pair of ciphertexts with probability
264−93 = 2−29. Thus 231 structures produce on average 4 right pairs and 231+128−128 = 231 wrong
pairs.

Due to the uniform differential properties of AES S-boxes each active S-box for which we know
input and output differences would suggest to us two candidates for the key byte of this S-box.
For a candidate pair we guess two byte differences3 at B1

0,0 and B1
0,2. We know the difference

3 For each byte difference there are only 8 possibilities that would not contradict with the five known
differences in the 1st and 2nd rounds.

11

in the remaining three bytes of each column, since they should cancel out with the differences
coming from the key. Thus we can undo the MixColumns for each column which allows us to know
the output differences of eight S-boxes of the 1st round. We know the input differences for these
S-boxes from the plaintext. In addition the two guessed difference bytes serve as inputs to the
two active S-boxes of the 2nd round. The output differences for these S-boxes are known from the
trail. Thus we have 10 S-boxes for which we know input and output differences which gives us
210 · 8 · 8 = 216 possibilities for 80-bits of the key per candidate pair. The 231 wrong pairs would
suggest 216 · 231 = 247 random keys, while the four good ones would all vote for the correct 80-bit
key and some random keys. No wrong key guesses survive this step and we get 80 key bits as a
result.

Second step. We proceed with changing top rounds of the trail to derive other key bytes. We
remove the 2−6 condition on the input to the active S-box (0,0) of the 3rd round. Then we get
five active S-boxes in the second round and 16 active S-boxes in the first round. We prepare 290

pairs with the ciphertext difference as in the trail and decrypt them. We will try to detect pairs
(290−87 = 8 on the average) that pass the conditions in rounds 3–14. We partially encrypt all
the resulting plaintext pairs using the known 80-bits and check whether the columns ∆B1

∗,0 and
∆B1
∗,2 follow the trail. This is a 48-bit filter on the pairs and thus we are left with 242 candidate

pairs. Then we guess the differences in bytes B1
1,1 and B1

3,3 (eight possibilities due to impossible
input/output constraints in five corresponding S-boxes of the 1st and 2nd rounds), and undo the
MixColumns.4. As a result, we have 242+6 = 248 key candidates from all pairs counting on a 64+16
= 80 bit key (64 from K0 and 16 from bytes K1

1,1,K
1
3,3). No wrong key guesses survive this step.

We find the remaining 12 bytes of K1 by exhaustive search in 296 steps. The total complexity of
the attack is thus dominated by the 296+35 = 2131 complexity of the first step.

Second step with TA. If we want to avoid the chosen-ciphertext framework, there is a way to
combine the knowledge of 80 key bits on top and 35 key bits in the middle with a bit higher
complexity. The problem is that the fixed bits are positioned far from one another (3 key schedule
rounds apart), so it seems hard to make an efficient exhaustive search on the remaining part of
the key.

We solve this problem by running the triangulation algorithm on the key schedule only, where
15 bytes are marked as fixed. The algorithm outputs 17 bytes in different subkeys as free variables.
Then we assign these variables randomly, choose admissible values for the remaining ones, and
thus define the key guess. There are 217·8+5 = 2141 possible assignments, which would determine
the complexity of the key recovery.

4.3 Enlarging the key class

The attack can be actually applied to a wider key class under modified key relations. The reason
is additional degrees of freedom in the differential trail, whose actual values are fully determined
by blue and orange differences.

Indeed, each of these differences define a column difference (of grey and lightblue color, respec-
tively). On the other hand, the input differences to S-boxes are also determined, because for every
δO there exists only one δI such that P (δO = S(∆I)) = 2−6. As a result, all the trail differences
are determined. However, not all combinations are valid because of the five active S-boxes in the
key schedule. Each active S-box reduces the number of valid trails by a factor of two. Therefore,
overall 216−5 = 211 key differences can be used in the related-key attack. Each key difference works
for 1 of 235 keys.

4 We use the knowledge of the key byte K1
0,0 to find the differences in the green diagonal at the 2nd

round.

12

SubBytes

ShiftRows

MixColumns

2−93

SubBytes

Determine 80 bits

I II with TA

— fixed variables

— free variables

Key

0

1

2

3

4

5

6

7

Determine 141 bits

SubBytes

ShiftRows

MixColumns

2−87

SubBytes

Determine 64 bits

II

A1

B1

A2

B2

Fig. 4. Key recovery steps.

5 Discussion and future directions

It may be intuitively clear that a cipher is not as secure as expected if some pattern (or property,
or distinguisher) for it can be found much faster than for an ideal cipher even if the attacker has
full access to the key (i.e. knows the key or can even choose the key). However, finding a proper
definition that captures this intuition has been a challenging task for the last ten years and still is
an open problem. In [2,5] it has been shown that one can construct primitives secure in random
oracle model (ROM) or ideal-cipher model (ICM) but insecure when instantiated with any real-life
function. However such counterexamples use the description of the fixed primitive, work for any
such primitive and are thus in some sense trivial.

For instance, an adversary can randomly choose the key K, precompute c = EK(0), and then
claim to have ”found” a key for a pair (0, c). Such ”attacks” may be called trivial since they can
be trivially carried out on any block cipher. Situation is trickier than in this simple example, since
if the key is known or chosen by the attacker he can peel of a few rounds of the cipher and attack
the remaining rounds with some non-trivial distinguisher. If we push it to the extreme and allow
the attacker to peel of all the rounds we are back to our first example, which is obviously trivial.
However if the attacker removes just a few rounds is such attack trivial?

Intuitively we need a challenge in the chosen or known key scenario in which even the con-
structor of the challenge could participate. This is similar to Blaze’s challenge for the DES [4]:
Find a DES key such that some ciphertext block of the form < XXXXXXXX > decrypts to a
plaintext block of the form < Y Y Y Y Y Y Y Y >. This challenge, then, has the desirable property
that a result “speaks for itself” in demonstrating the weakness of DES, without the need for an
“honest broker” who must safeguard the solution. The solution keys could not be known to any
people who have not themselves searched the keyspace or found some other weakness.”

The distinguisher is non-trivial if it demonstrates some rare relation between ciphertext and
plaintext which has the property that the designer of the challenge could not ”cook” (i.e. simulate)

13

it in advance without doing the hard work of either breaking the cipher of finding a serious weakness
in it.

6 New design criteria for block ciphers

Our results imply new design criteria for the key schedules of the block ciphers. First of all, local
collisions should be prevented. Although it is usually easy to arrange a local collision in one round,
there should be no good patterns for several rounds. A slow diffusion in the AES-256 key schedule
helped us to concatenate many local collisions into a differential trail for the whole cipher. This
should not be possible in a good cipher.

The key schedule should be also desynchronized with respect to the internal state. The active
injection bytes in our AES trails are always located in the first row, which is not rotated. Therefore,
the differences to be cancelled in a local collision should be located in the same column, or exactly
4 columns to the right in the subkey. This shift is preserved by the key schedule round, which
should be certainly avoided.

Slow diffusion in the key schedule makes it also vulnerable to the triangulation algorithm or
similar tools. Our preliminary analysis shows that the triangulation algorithm can cover up to two
times the number of rounds needed for the full diffusion. If the key schedule in AES was ideal,
we would be able to solve systems of equations on at most three-four rounds, while now we can
attack five.

Finally if one considers known or chosen key attacks as a threat he needs to add two extra full
diffusions on top of the number of rounds secure against standard statistical attacks.

7 Conclusions

In this paper we show a chosen key distinguisher for the 256-bit key AES with almost practical
complexity of q · 267 queries and negligible memory. It was verified by computing partial q mul-
ticollisions in time q · 237 which takes several hours on a PC. We also show the first related-key
attack on the full AES-256 with 296 data and time complexity and 265 memory which works for 1
out of every 235 keys on average.

Acknowledgements. The authors wish to thank Jean-Philippe Aumasson and anonymous re-
viewers for their valuable comments. We also wish to thank Christian Rechberger for useful dis-
cussions. Dmitry Khovratovich is supported by PRP ”Security & Trust” grant of the University
of Luxembourg. Ivica Nikolić is supported by the Fonds National de la Recherche Luxembourg
grant TR-PHD-BFR07-031.

References

1. Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and rectangle attacks. In
EUROCRYPT’05, volume 3494 of LNCS, pages 507–525. Springer, 2005.

2. John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash function. In
FSE’06, volume 4047 of LNCS, pages 328–340. Springer, 2006.

3. John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In CRYPTO’02, volume 2442 of LNCS, pages 320–335.
Springer, 2002.

4. Matt Blaze. Better DES challenge, 1998, available at http://www.five-ten-sg.com/risks/

risks-19.87.txt.
5. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J. ACM,

51(4):557–594, 2004.
6. D. Coppersmith, S. Pilpel, C. H. Meyer, S. M. Matyas, M. M. Hyden, J. Oseas, B. Brachtl, , and

M. Schilling. Data authentication using modification dectection codes based on a public one way
encryption function. u.s. patent no. 4,908,861.

http://www.five-ten-sg.com/risks/risks-19.87.txt
http://www.five-ten-sg.com/risks/risks-19.87.txt

14

7. Joan Daemen and Vincent Rijmen. The Design of Rijndael. AES — the Advanced Encryption Stan-
dard. Springer, 2002.

8. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David Wagner, and Doug
Whiting. Improved cryptanalysis of Rijndael. In FSE’00, volume 1978 of LNCS, pages 213–230.
Springer, 2000.

9. Ewan Fleischmann1, Michael Gorski, and Stefan Lucks. On the security of tandem-dm. In FSE’09,
volume 5665 of LNCS, pages 84–103. Springer, 2009.

10. Éliane Jaulmes, Antoine Joux, and Frédéric Valette. On the security of randomized CBC-MAC beyond
the birthday paradox limit: A new construction. In FSE, volume 2365 of LNCS, pages 237–251.
Springer, 2002.

11. Antoine Joux. Multicollisions in iterated hash functions. Application to cascaded constructions. In
CRYPTO’04, volume 3152 of LNCS, pages 306–316. Springer, 2004.

12. Dmitry Khovratiovich, Alex Biryukov, and Ivica Nikolić. Speeding up collision search for byte-oriented
hash functions. In CT-RSA’09, volume 5473 of LNCS, pages 164–181. Springer, 2009.

13. Jongsung Kim, Seokhie Hong, and Bart Preneel. Related-key rectangle attacks on reduced AES-192
and AES-256. In FSE’07, volume 4593 of LNCS, pages 225–241. Springer, 2007.

14. Lars R. Knudsen and Vincent Rijmen. Known-key distinguishers for some block ciphers. In ASI-
ACRYPT’07, volume 4833 of LNCS, pages 315–324. Springer, 2007.

15. Xuejia Lai and James L. Massey. Hash function based on block ciphers. In EUROCRYPT, volume
658 of LNCS, pages 55–70. Springer, 1992.

16. Jooyoung Lee and Daesung Kwon. The security of abreast-dm in the ideal cipher model.
17. C. Meyer and S. Matyas. Secure program load with manipulation detection code.
18. National Institute of Standards and Technology (NIST). FIPS-197: Advanced Encryption Standard,

November 2001, available at http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.
19. National Security Agency (NSA). National Policy on the Use of the Advanced Encryption Standard

(AES) to Protect National Security Systems and National Security Information, June 2003, available
at http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf.

20. Jacques Patarin. A proof of security in O(2n) for the xor of two random permutations. In ICITS,
volume 5155 of LNCS, pages 232–248. Springer, 2008.

21. John P. Steinberger. The collision intractability of mdc-2 in the ideal-cipher model. In EUROCRYPT,
volume 4515 of LNCS, pages 34–51. Springer, 2007.

22. Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday paradox for multi-
collisions. IEICE Transactions, 91-A(1):39–45, 2008.

A Details on the triangulation algorithm.

The idea of the triangulation algorithm is to express all internal transformations as a set of
equations. In a cipher the variables are either bytes of internal states or subkeys.

Evidently, the plaintext bytes and the key bytes completely determine all the variables. Fol-
lowing the framework of the Gaussian elimination process, such variables are called free variables
since they can be assigned randomly and independently. While it is trivial to find a set of free
variables when there are no constraints, it becomes harder if some variables are pre-fixed and are
positioned far from one another. The fixed inputs to the active S-boxes in different rounds are an
example of such case.

The algorithm iteratively searches for a variable which is involved in only one equation and
can be expressed as a function of the other variables involved in that equation. If such a variable
is found this implies it can be determined in the last step when all the other variables are known.
Then the equation and the variable are removed from the consideration (in Gaussian elimination
terminology, they are put on the diagonal), and the process goes on. An algorithm formally works
as follows.

1. Build a system of equations based on the cipher description and the pre-fixed variables.
2. Mark all the variables and all the equations as non-processed.
3. Find the variable involved in only one non-processed equation. Mark the variable and the

equation as processed.
4. If there exist non-processed equations go to Step 3.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf

15

5. Mark all non-processed variables as free.

If the algorithm fails then the assignment of free variables may lead to a contradiction. Evi-
dently, the more variables are fixed a priori, the less likely the algorithm succeeds. On the other
hand, the fewer variables we fix, the more active S-boxes would contribute to the search com-
plexity. For AES-256, the number of free (byte) variables should be always equal to 48 minus the
number of pre-fixed variables.

B Details on Trails

Davies-Meyer trail (the first two rounds):

i Plaintext Subkey Ciphertext

0

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

0f 0e 0f 0e
07 07 07 07
07 07 07 07
09 09 09 09

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

i After SB After MC Subkey i After SB After MC Subkey

1

30 0f 44 b0
7c b5 93 08
78 d6 c2 57
e7 c3 29 03

65 00 2b 00
1f 2c 1f 00
1f 00 e2 00
21 00 21 33

37 00 37 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

2

1b 00 07 00
00 12 00 00
00 00 1a 00
00 00 00 16

0c 00 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

0f 01 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

Related-key distinguisher (the first two rounds):

i Plaintext Subkey Ciphertext

0

0e 0e 0e 0e
07 07 07 07
07 07 07 07
09 09 09 09

0f 0e 0f 0e
07 07 07 07
07 07 07 07
09 09 09 09

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

i After SB After MC Subkey i After SB After MC Subkey

1

1f 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 00 3e 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

37 00 37 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

2

07 00 07 00
00 00 00 00
00 00 00 00
00 00 00 00

0e 00 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

0f 01 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

B.1 Constructing a trail

In this section we describe construction of the trail for the multicollision distinguisher. Except for
the first two rounds it coincides with our related-key and Davies-Meyer distinguishers.

We use the slow diffusion in the backwards direction in the AES key schedule to get a differential
trail with relatively few active S-boxes, see Fig. 5. We start with a local collision in one round:
∆Ki injects a one-byte difference to Ai0,0, then it is expanded by MixColumns to a four-byte
difference in column 0. Those 4 bytes are cancelled by the addition of ∆Ki+1. This local collision
requires that 5 of 32 bytes of ∆Ki||∆Ki+1 are non-zero. See also Fig. 2. We note that column 0
in ∆Ki+1 should be of special form: it is produced by multiplying a column (a, 0, 0, 0)T by the
MixColumns matrix. We call resulting vectors the MC-columns.

We construct a trail bottom-up and start with the local collision described above. We can
cover six bottom rounds with three local collisions as shown in Fig. 5. By the dark blue color we
denote five active S-boxes in these six rounds. Rounds 8, 10, and 12 do not have active S-boxes.
The MC-columns are grey.

The next inverted KeySchedule step produces differences in all columns of K7. This implies
that four S-boxes in this KeySchedule step are active and produce differences in column 0 of K6.
Additionally, differences in bytes K6

1,0, K6
2,0, and K6

3,0 are non-zero. Since positions of differences
in the subkey are not suitable for a local collision, we assume that a 4-byte difference comes from
round 6 in column 0. This column cancels 3 active differences in K6

1,0, K6
2,0, and K6

3,0 so that only

16

4 S-boxes (row 0) are active in round 7. A difference in row 0 is expanded to the MC-difference
in all 4 columns in the block and is cancelled by the injection of K7. This step has four active
S-boxes both in the key and in the block.

Since we want to reduce the number of active S-boxes, the 4-byte difference that comes from
round 6 is preferred to be an MC-column. Since three bytes of it are to be cancelled by the subkey
addition, column 0 of ∆K6 must coincide with some MC-column in 3 bytes. Such a column we
call a spoiled MC-column. Note that there is an active S-box in the key schedule in round 6.

Then we proceed with building a trail and perform 3 inverted KeySchedule steps. Those
steps produce subkeys K0–K5. The difference in those subkeys are MC-columns and spoiled MC-
columns. Now we define the difference in the internal states of round 1–6.

Since the plaintext has zero difference, and subkey K0 has difference in all bytes, then all the
S-boxes of the first round are active. In the second round we want to have as few active S-boxes as
possible so we require that a 16-byte difference in the internal state collapses to a 5-byte difference
after the addition of K1: four active S-boxes are situated on the diagonal and one is in A1

0,2.
After the second MixColumns transformation the difference in the internal state consists of

one spoiled and one usual MC-column: columns 0 and 2. Rounds 3, 4, 5, and 6 have the same
difference in the internal state (in the truncated form) as rounds 9, 11, 13 and 13, respectively.

At the end, we add the final AES round. It does not contain the MixColumns transformation
so it is not possible to arrange a local collision here. The subkey K14 has equal differences in
all the bytes of row 0. Since round 14 has no active S-boxes, those differences will appear in the
ciphertext. The resulting trail has 41 active S-boxes, of these 21 are in the two first rounds.

The actual differences. The actual difference values should satisfy conditions imposed by
the S-box properties, the presence of MC-columns in the subkeys, etc. We also require that dif-
ferences in rounds 5 and 7–13 propagate through S-boxes with maximal probability — 2−6. We
programmed the search for the actual values and validated that those conditions do not lead to
contradictions. The search has a negligible cost. We thus have defined the differences ∆K (de-
termined by subkeys K0 and K1) and ∆C (determined by the subkey K14). In the following
subsections we list the actual differences in the trails.

Note on the colors. Differential trails are given in our figures in a truncated form. However,
we marked distinct difference values with different colors. Thus the reader does not need to care
about the actual values in order to understand how the trail is constructed.

The white cell stands for zero difference in a byte, the non-white cells stand for the non-zero
differences. The same colors mean the same values except for the green, which denotes arbitrary
differences. The exact relation between the colors and the values can be derived from the list of
the actual differences. Grey and blue columns stand for MC-columns. In a spoiled MC-column one
byte is marked with another color.

17

Differential trail for finding multicollisions:

i Plaintext Subkey Ciphertext

0

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

0f 0e 0f 0e
07 07 07 07
07 07 07 07
09 09 09 09

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

i After SB After MC Subkey i After SB After MC Subkey

1

30 5c e1 b0
7c b5 ed 72
a6 d6 c2 16
82 eb 29 03

65 00 02 00
1f 25 1f 00
1f 00 e2 00
21 00 21 33

37 00 37 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

2

1b 00 07 00
00 12 00 00
00 00 1a 00
00 00 00 16

0c 00 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

0f 01 0e 00
07 00 07 00
07 00 07 00
09 00 09 00

3

1f 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 3e 00 00
1f 1f 00 00
1f 1f 00 00
21 21 00 00

37 37 00 00
1f 1f 00 00
1f 1f 00 00
21 21 00 00

4

07 07 00 00
00 00 00 00
00 00 00 00
00 00 00 00

0e 0e 00 00
07 07 00 00
07 07 00 00
09 09 00 00

0f 0e 00 00
07 07 00 00
07 07 00 00
09 09 00 00

5

1f 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 00 00 00
1f 00 00 00
1f 00 00 00
21 00 00 00

37 00 00 00
1f 00 00 00
1f 00 00 00
21 00 00 00

6

07 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

0e 00 00 00
07 00 00 00
07 00 00 00
09 00 00 00

0f 01 01 01
07 00 00 00
07 00 00 00
09 00 00 00

7

1f 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

3e 3e 3e 3e
1f 1f 1f 1f
1f 1f 1f 1f
21 21 21 21

3e 3e 3e 3e
1f 1f 1f 1f
1f 1f 1f 1f
21 21 21 21

8

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

01 00 01 00
00 00 00 00
00 00 00 00
00 00 00 00

9

1f 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 00 3e 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

3e 00 3e 00
1f 00 1f 00
1f 00 1f 00
21 00 21 00

10

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

01 01 00 00
00 00 00 00
00 00 00 00
00 00 00 00

11

1f 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 3e 00 00
1f 1f 00 00
1f 1f 00 00
21 21 00 00

3e 3e 00 00
1f 1f 00 00
1f 1f 00 00
21 21 00 00

12

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

01 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

13

1f 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3e 00 00 00
1f 00 00 00
1f 00 00 00
21 00 00 00

3e 00 00 00
1f 00 00 00
1f 00 00 00
21 00 00 00

14

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

01 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

18

SubBytes

RCSBAC

ShiftRows
MixColumnsSB

SubBytes

RCSBAC

ShiftRows
MixColumnsSB

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

ShiftRows
MixColumns

7

8

9

10

11

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumns

SB
5

6

4

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumns

SB

3

2

1

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

ShiftRows
MixColumns

12

13

SubBytes

SubBytes

ShiftRows
MixColumns

SubBytes

ShiftRowsRCSBAC

0

1

2

3

4

5

6

7

9

10

11

12

13

14

14

8

SubBytes

SubBytes

SubBytes

SubBytes

SubBytes

Fig. 5. Multicollision trail.

	Distinguisher and Related-Key Attack on the Full AES-256(Extended Version)
	Alex Biryukov, Dmitry Khovratovich, Ivica Nikolic

