
Communication-Efficient Private Protocols for
Longest Common Subsequence ?

Matthew Franklin, Mark Gondree, and Payman Mohassel

Department of Computer Science
University of California, Davis

{franklin, gondree, mohassel}@cs.ucdavis.edu

Abstract. We design communication efficient two-party and multi-party
protocols for the longest common subsequence (LCS) and related prob-
lems. Our protocols achieve privacy with respect to passive adversaries,
under reasonable cryptographic assumptions. We benefit from the some-
what surprising interplay of an efficient block-retrieval PIR (Gentry-
Ramzan, ICALP 2005) with the classic “four Russians” algorithmic de-
sign. This result is the first improvement to the communication complex-
ity for this application over generic results (such as Yao’s garbled circuit
protocol) and, as such, is interesting as a contribution to the theory of
communication efficiency for secure two-party and multiparty applica-
tions.

1 Introduction

We design communication efficient two-party and multi-party protocols
for two variants of the longest common subsequence (LCS) problem, and
related problems. The first variant returns only the length of the LCS,
while the second outputs the string encoding the subsequence itself. Pre-
vious work on this topic [25, 34, 10] has focused on implementing basic
dynamic programming algorithms privately, using techniques that each
achieve O(n2) communication complexity (where n is the length of each
input string). Jha, Kruger, and Shmatikov [25] demonstrate that some
of these solutions may be practically quite efficient. This previous work,
however, does not improve on the asymptotic communication complex-
ity of generic solutions such as Yao’s garbled circuit protocol [36]. Thus,
our work is both theoretically and practically interesting since it can be
interpreted as a new upper bound on the communication complexity of
this problem.

Traditionally, the method known as the “four Russians” technique
yields only a logarithmic improvement in the running time of the dy-
namic programming solution for LCS. Somewhat surprisingly, we show
? This is the full version of an article [18] to appear in CT-RSA 2009.

how to take advantage of an efficient block-retrieval PIR due to Gentry
and Ramzan [21] and use the “four Russians” technique to obtain a com-
munication efficient private protocol for the LCS problem. Specifically,
we design protocols that achieve O(n2/t) total communication cost, for
any positive t < n.

In our protocol, the computational cost of one party increases (any-
where between linearly and exponentially, depending on the choice of
parameter t), while the remaining parties’ computation costs reduce to
O(n2/t). In the most practical setting, where each party performs only
a polynomial amount of computation, we achieve a new, sub-quadratic
upper bound for the private protocol’s communication complexity.

If some participant can perform more work, our protocol becomes
even more communication efficient. This setting, where an asymmetric
work load yields communication savings for all participants, may be quite
advantageous. This client-server setting may even be realistic, given the
large volume of genomic data held by central entities. We also show how to
outsource the work needed by our protocol to a set of powerful, dedicated
yet untrusted servers.

Motivation: Performing different computational tasks on large bi-
ological databases is becoming a more common practice in both public
and private institutions. The FBI maintains a database of over four mil-
lion DNA profiles of criminal offenders, crime scene evidence, and missing
persons in its CODIS system [2], and uses the data for forensic studies
and DNA-based identification. deCODE Genetics [3], a biopharmaceuti-
cal company which studies genomic data for drug discovery and develop-
ment, has collected the genotypic and medical data of over 50 percent of
the population in Iceland. Similar endeavors seek to make these types of
databases available for scientific study [5].

The genomic data stored in these databases may be extremely sensi-
tive: an individual’s DNA sequence reveals a great deal of information re-
garding that individual’s health, background, and physical appearance [1,
4]. It has been shown that a sequence can be linked to the correspond-
ing individual simply by recognizing the presence of certain markers [27].
Protecting a patient’s privacy when working with genomic data is recog-
nized as a major challenge for the biomedical research community [8, 35].
Furthermore, in the United States, HIPAA’s Privacy Rule [32] mandates
that a patient’s identity must be protected when their data (including
genomic data) is shared; failure to assure this may result in legal action,
fines, revocation of government funding, and imprisonment.

The pioneering work of Jha, Kruger, and Shamtikov [25] and oth-
ers [34, 10] has recognized the need for private and efficient computation
on genomic data in general, and the LCS and edit distance problems in
particular. We hope our results continue to motivate improvements to the
state-of-the-art in this domain.

2 Related Work

It is possible to use generic solutions or pre-existing protocols to solve the
problems considered in this paper. However, we desire protocols that are
efficient in terms of communication complexity (the total number of bits
sent and received by the participants in the protocol).

While the theoretical lower bound1 for the running time of an algo-
rithm that solves the LCS problem for two strings of length n is Ω(|Σ|n)
for a fixed alphabet Σ [6], the theoretically fastest known algorithm solv-
ing this problem is that of Masek and Patterson [28], achieving O(n2/ log n).
The circuit simulating this algorithm, however, is of size O(n2). Thus,
generic compilers like Yao’s garbled circuit protocol [36] would yield com-
munication complexity O(n2). Naor and Nissim’s communication preserv-
ing compiler [30] may yield a protocol with O(n) communication complex-
ity, but the protocol would require on-line work that is exponential in n.

We can reduce the LCS problem to the shortest path problem, and
then use secure matrix multiplication protocols, e.g. [26], or secure graph
protocols [11] to recover a solution. The reduction, however, increases the
input size of the problem, so that instead of an input of size Θ(n), we
now must consider a graph or matrix of size Θ(n2). Even assuming we
have access to private protocols for matrix multiplication or shortest path
with optimal communication efficiency, using this reduction will yield a
protocol with Ω(n2) communication complexity.

We could also re-use secure protocols implementing the Needleman-
Wunsch algorithm (or a variation of it, the Smith-Waterman algorithm) [10,
34, 25]. These algorithms solve a generalization of the edit distance prob-
lem, where insertions and deletions have variable costs. When all costs are
1, these algorithms can be used to directly solve the problems we consider
here. Szajda, Pohl, Owen, and Lawson [34] provide a heuristic protocol
for Smith-Waterman attaining heuristic security, which fails to meet the
correctness or privacy needs considered here. Atallah, Kerschbaum, and
Du [10] and Jha, Kruger, and Shmatikov [25] provide protocols whose
1 This lower bound becomes Ω(n2) when the alphabet is not fixed, and the basic

operations considered are comparisons.

communication complexities are O(n2), meeting but not improving upon
the asymptotic efficiency of the generic solution, using Yao’s garbled cir-
cuit protocol.

3 Notations and Definitions

Notation Ω(f) denotes that the asymptotic lower bound f is tight; Θ(f),
means that f is both a lower bound and an upperbound, and Õ(f) denotes
the asymptotic upper bound O(f), ignoring polylog(f) factors.

Sharing Values We take advantage of two simple sharing schemes, XOR
sharing and additive sharing, in our protocols. Alice and Bob XOR share
a value c, if Alice holds the value a and Bob holds the value b, such that
a⊕ b = c. Similarly, an integer c is additively shared between the parties
if a + b mod N = c, where N is a properly chosen and publicly known
integer.

Security We prove our protocols secure against a passive adversary (also
referred to as semi-honest) who follows the steps of the protocol but
tries to learn additional information based on the messages he receives
throughout the protocol. The security in this model is defined by requiring
that any adversary in the real protocol, can be simulated by an adversary
in an ideal world where parties send their inputs to a trusted party who
computes and sends back their corresponding outputs. For a more formal
definition, we refer the reader to [22, Volume 2]. Central to our security
claims is the following composition theorem.

Theorem 1 (Composition for Passive Adversaries [22]). Suppose
that g is privately reducible to f and that there exists a protocol for pri-
vately computing f . Then, there exists a protocol for privately computing
g.

Using the above theorem, along with simple hybrid arguments, it is
straight-forward to prove our protocols private against a passive adversary
as long as our subprotocols are private.

4 Longest Common Subsequence

Let A and B be two strings over a fixed alphabet Σ of size σ, with
lengths m = |A| and n = |B| (without loss of generality, let m ≤ n). A
subsequence of A is a string X such that A can be transformed into X

by deleting characters from A. A longest common subsequence (LCS) of
A and B is a subsequence of both A and B such that no other common
subsequence has greater length.

Algorithms that solve the longest common subsequence problem re-
turn one or more of the following outputs:

1. The length of the LCS of A and B.
2. A string which is a LCS of A and B.
3. An embedding α, β of a LCS of A and B

Where an embedding α ∈ {0, 1}m and β ∈ {0, 1}n are bit-strings
which select an LCS from A and B, respectively.

4.1 LCS algorithm using standard dynamic programming
techniques

The following dynamic programming algorithm solving the longest com-
mon subsequence problem was independently discovered by many re-
searchers, in both computer science and biology. For a standard presen-
tation of this type of dynamic programming solution, see [14, §16.3] or
[23, §11.3]. Let L be the (m + 1) × (n + 1) matrix whose entries can be
computed (row-by-row or column-by-column) using the following:

L[i, j] =

0 if i = 0 or j = 0
L[i− 1, j − 1] + 1 if A[i] = B[j]
max(L[i− 1, j], L[i, j − 1]) otherwise

Entry L[m,n] holds the length of the LCS for A and B, and simple de-
terministic backtracking algorithms exist for recovering the value and/or
the embedding of an LCS for A and B.

4.2 LCS algorithm using the “four Russians” technique

Masek and Patterson [28] give a variant on this dynamic programming
solution for the LCS problem, using ideas (colloquially known as the
“four Russians” technique) introduced by Arlazarov, Dinic, Kronod and
Faradzev [9] for boolean matrix multiplication.

Let t be a positive integer. Then, the boundaries of the t × t block
of the dynamic programming table L starting at position (i, j) can be
denoted with the following variables (see Figure 1).

N(i, j) = (L[i, j], L[i, j + 1], . . . , L[i, j + t])

m

0

0 n

i

...

i + t

j · · · j + t

W (i, j) E(i, j)

N(i, j)

S(i, j)

L[i, j]

Fig. 1. The t × t block beginning at position (i, j) in the (m + 1) × (n + 1) matrix L.

W (i, j) = (L[i, j], L[i + 1, j], . . . , L[i + t, j])
S(i, j) = (L[i + t, j], L[i + t, j + 1], . . . , L[i + t, j + t])
E(i, j) = (L[i, j + t], L[i + 1, j + t], . . . , L[i + t, j + t])

Let the offset vectors I1(i, j), I2(i, j) ∈ {0, 1}t be defined as

I1(i, j)[k] =

{
0 for k = 1
N(i, j)[k]−N(i, j)[k − 1] for 1 < k ≤ t

I2(i, j)[k] =

{
0 for k = 1
W (i, j)[k]−W (i, j)[k − 1] for 1 < k ≤ t

It is simple to check that consecutive values in the L matrix increase
by at most one, so the offsets are indeed bit-vectors.

The basic observation underlying the four Russians technique is that
the values E(i, j) and S(i, j) are completely determined by A[i, . . . , i +
t], B[j, . . . , j + t], I1(i, j), I2(i, j), and L[i, j]. Denote this basic block
functionality as bbf(A[i, . . . , i+t], B[j, . . . , j+t], I1(i, j), I2(i, j), L[i, j]) =
(E(i, j), S(i, j)). Thus, we can compute the entire dynamic programming
table in the following manner:

1. Pre-processing: pre-compute all possible t × t blocks, by consider-
ing all possible t-length strings and offset vectors, but assume the

first value of the block is 0. That is, generate a table summarizing
bbf(·, ·, ·, ·, 0). Note that bbf(·, ·, ·, ·, 0)+C = bbf(·, ·, ·, ·, C); i.e., if the
first value of the block is C and not zero, the pre-computed outputs
differ from the desired outputs in every place by the additive term C.
The number of entries in this table is σ2t22t.

2. Rebuilding the L matrix: Consider the L matrix to be composed
of t × t blocks that overlap in one row and one column with each
other. Retrieve bbf(A[i, . . . , i + t], B[j, . . . , j + t], I1(i, j), I2(i, j), 0) =
(Ẽ(i, j), S̃(i, j)) by looking up the appropriate pre-computed block.
Any L[i′, j′] entry situated on the boundary of this block can be cal-
culated by adding L[i, j] to the appropriate value from the retrieved
Ẽ(i, j) or S̃(i, j) vectors. Iterate in this fashion, using S̃(i, j), Ẽ(i, j)
to determine I1(i + t, j), I2(i, j + t), each time considering the first
value of the block to be 0 during look-up and then compensating by
adding back the appropriate additive term.

Essentially, we have reduced our m×n matrix to an m/t×n/t matrix.
In the unit-cost RAM model, partially filling out the L matrix in this
fashion takes O(mn/t2) time.

5 Communication Efficient Protocols for Private LCS

Here, we build a private protocol for determining the length of the LCS.
Later, we provide a deterministic backtracking algorithm for privately
recovering an actual LCS or LCS embedding.

Definition 1 (Private LCS-length). A protocol is a private LCS-length
protocol between two parties (one holding a private input string A, the
other holding a private input string B) if the protocol outputs the length
of the LCS of A and B, but reveals no information to a passive adversary
other than what she can learn from the output.

Below we provide details describing a private LCS-length protocol.
At a high-level, the protocol executes the algorithm of Masek and Patter-
son described earlier, but each party holds shares of the L matrix. Basic
block function table look-ups are performed using a communication ef-
ficient private block retrieval scheme, while the remaining computations
are designed to be performed by the parties locally.

Private block retrieval (PBR) was first introduced in the original PIR
paper of Chor et al. [13]. A PBR scheme is essentially a private infor-
mation retrieval (PIR) scheme that allows the chooser to retrieve `-bit

database entries, as opposed to bit entries. We call such a scheme a sym-
metric PBR (SPBR) scheme if it also provides privacy for the server
(database).

Any secure two-party PBR schemes can be transformed into an SPBR
scheme that provides this functionality, via the Naor-Pinkas transform [31],
the Aiello-Ishai-Reingold transform [7], or zero-knowledge proofs. We note
that, excluding zero-knowledge based techniques, these transforms incur
no loss of efficiency for the SPBR.

1. Pre-computation: Alice pre-computes the table summarizing the
function bbf(·, ·, ·, ·, 0), in the following way. Let the binary represen-
tation of the inputs A[i, . . . , i + t], B[j, . . . , j + t], I1(i, j), I2(i, j) be
x1, x2, x3, x4. The resulting index x1||x2||x3||x4 is a bit-string of length
2 log(σ)t + 2t. At this index, Alice stores the following:
– Ẽ(i, j), S̃(i, j).
– The offset vectors I1(i+t, j), I2(i, j+t) associated with Ẽ(i, j), S̃(i, j).

Clearly these two vector pairs are redundant because given either
pair we can compute the other, but as each is shared using a different
sharing scheme, holding both will make local computations easier,
later. Because the first entry of the pre-computed block is set to zero,
the values of Ẽ(i, j), S̃(i, j) will always be in the interval [0, t]. This
means each entry of our look-up table will be a bit-string of length
2t + 2t log t.

2. Accessing the basic block function: From previous database ac-
cesses, Alice and Bob will hold XOR shares of I1(i + t, j) = x3 and
I2(i+t, j) = x4. In all cases, x1 is known only to Alice and x2 is known
only to Bob. Thus, Alice can simply consider her share of x2 to be
0t log σ, and similarly for Bob. This allows Alice and Bob to locally
concatenate their values, producing valid XOR shares of the next in-
dex x1||x2||x3||x4. The database defining the basic block function is
accessed each time in the following way:
(a) Alice picks some random value and locally blinds each of her

database’s entries by this value. Particularly, XORing by a ran-
dom string is used for each offset vector, and adding a random
value is used for each Ẽ(i, j) and S̃(i, j).

(b) Alice locally permutes her database by her share of x1||x2||x3||x4.
(c) Alice and Bob engage in a SPBR protocol using Bob’s index share

as input, allowing Bob to recover the blinded entries. Alice’s shares
are the random values (strings) she added (XORed) in the blind-
ing step. Thus, Alice and Bob hold valid shares of the entries of
interest.

3. Reconstructing L: As in the original Masek and Patterson algo-
rithm, after the appropriate entries of the basic block function are re-
trieved, Alice and Bob can (non-interactively) use the additive shares
of the values to compute shares of entry L[m,n]. They then privately
exchange these shares to recover L[m,n], the length of the LCS of A
and B.

Theorem 2. The above protocol is a private LCS-length protocol for in-
puts of length n and m, assuming we have a secure SPBR scheme for a
database of N entries each of size `.

Proof. (sketch) The above security claim follows from the security of the
share conversion protocols, our black-box use of SPBR, and from general
composition theorems [12, 22]. How to specify the parameters N and `
to attain the efficiency we desire is explained in the complexity analysis,
below.

5.1 Analysis

Theorem 3. Assume we have an SBR scheme such that: (1) for a database
of size N , on query i the scheme returns the i-th `-bit entry of the database
for integer parameter ` with 2` < N , and (2) the scheme has g(N, `) =
O(log N) communication complexity and requires f(N, `) = O(N) work.

Then the described protocol for LCS-length has the following complex-
ities, as a function of the parameter t.

Communication Round Alice’s Bob’s
Complexity Complexity Work Work

O(mn/t) O(m/t + n/t) Õ(t2t) O(mn/t)

Proof. The above protocol fills out the L matrix as in the Masek-Patterson
algorithm after mn/t2 invocations of the SPBR protocol. Naively, the
protocol proceeds (row-by-row or column-by-column) in mn/t2 rounds.
In a straight-forward manner, we can parallelize many of these steps and
improve this to m/t + n/t rounds.

When we set N = `2t, then the query returns the appropriate `-bit
entry of the bbf look-up table of size 2t. When ` = t log t, the computa-
tional complexity of the protocol is O(22t ∗ f(`N, `) ∗ (2t + 2t log t)/`) =
Õ(t2t). The total communication complexity is O(mn/t2 ∗g(`N, `)∗ (2t+
2t log t)/`) = O(mn/t).

Claim. Concretely, the assumptions of Theorems 2 and 3 are satisfied
by the SPBR scheme attained by transforming the Gentry-Ramzan PBR
scheme [21] to an SPBR scheme using either the Aiello-Ishai-Reingold or
Naor-Pinkas transforms. The security of this SPBR scheme is based on the
hardness of the “extended decision subgroup problem” and the assump-
tions required for the transform (e.g., secure homomorphic encryption for
Aiello-Ishai-Reingold).

The proposed protocol establishes a useful framework for many dy-
namic programming algorithms, providing a range of efficiencies based on
trading computational complexity for communication complexity. At one
extreme, when t = 1, the communication and computational complexi-
ties resemble that of Yao’s garbled circuit protocol. At the other extreme,
when t = n, the costs match those of the communication preserving com-
piler of Naor and Nissim [30], achieving O(m) communication complexity
(matching the simple theoretic lower bound) but requiring work exponen-
tial in n. Between these extremes, the protocol yields a smooth trade-off
between work and communication, achieving any sub-quadratic commu-
nication complexity at the expense of computational complexity.

6 Private Backtracking in Our Protocol

We have provided a protocol for determining the length of an LCS of
A and B privately, although a natural remaining question is to ask is if
we can recover the value of an LCS string itself (or the bit-string which
encodes how an LCS is embedded in A and B) privately. We call this a
private LCS-backtracking protocol.

Definition 2 (Private LCS-backtracking). A private LCS-backtracking
protocol between two parties is one in which (1) the parties hold private
input strings A and B, (2) the protocol outputs an LCS (or, embedding
of the LCS) for A and B, (3) there is some deterministic algorithm that
agrees with the protocol’s output for any valid input, (4) the protocol re-
veals no information to a passive adversary other than what she can learn
from the output.

In fact, with some careful planning, we can modify our LCS-length
protocol to build a LCS-backtracking protocol. Our LCS-backtracking
protocol relies on no stronger assumptions than our LCS-length protocol,
and its communication complexity and work are asymptotically no greater
than that of our LCS-length protocol. The full details of this protocol are
provided in Appendix A.

7 Related Applications

Our techniques can be viewed as a specialization of Naor-Nissim circuits
with look-up tables [30], for a class of dynamic programming problems
that have the property that their subproblems can be “efficiently en-
coded.” By this, we mean that the problem can be decomposed into
overlapping subproblems of size t, each of which can be encoded using
O(t) bits. For the LCS problem, it was essential that adjacent entries in
L differed by at most 1, so each t × t block could be encoded with O(t)
bits. If, however, adjacent entries differed by, say, an arbitrary value in
[0, n], then any encoding of the subproblem would require O(t log n) bits;
the size of the subproblem’s look-up table would be strictly greater than
O(2t), and the cost of iteratively accessing this table would result in no
savings when compared to Yao’s garbled circuit protocol.

There are natural applications that fall into this general framework of
dynamic programming problems with “efficiently encoded” subproblems.
We list some below, with remarks on how to solve each with our private
protocols for LCS-length and LCS-backtracking, either immediately or
with minor modifications.

7.1 Edit Distance

The private LCS-length protocol automatically yields a private algorithm
recovering the edit distance (Levenshtein distance), because

edit-distance(A,B) = m + n− 2 ∗ LCS-length(A,B)

This relationship holds because transforming A into B via a series of dele-
tions and insertions is equivalent to deleting n − LCS-length characters,
and inserting m− LCS-length characters.

Damerau-Levenshtein distance (where the allowable operations are
insertions, deletions, substitutions, or transpositions) is not automatically
implied by LCS-length, but it is clear that a small modification of our
protocol will suffice. In particular, when pre-computing the t× t block at
position (i, j) in L, in order to consider transposition operations we may
need to refer back to data in row i − 1 and column j − 1. That is, the
input to the basic block function will require 4t offset vectors (instead of
2t vectors), and the t × t blocks will tile the L matrix overlapping with
a previous block in two rows or columns (instead of just one). Such a
modification does not change the asymptotic complexity of the resultant
protocol.

Ulam’s metric is a type of similarity measure or distance metric for
permutations, similar to Kendall’s τ -metric or Spearman’s rank correla-
tion metric. For permutations π, π′ of order n, the Levenshtein distance
of π and π′ is equivalent to the Ulam distance. Thus, our protocol gives
two parties the ability to privately compute the Ulam similarity of their
ordered preference lists of common elements. Note that this is somewhat
different from the setting of Freedman et al. [20], which performed a
privacy-preserving set intersection to measure the similarity between un-
ordered preference lists of different elements.

7.2 Shortest Common Supersequence

The private LCS-length protocol automatically yields a private algorithm
recovering the length of the shortest common supersequence (SCS), be-
cause

SCS-length(A,B) = m + n− LCS-length(A,B)

This relationship holds because the SCS is the shortest string containing
A and B as subsequences, which can always be obtained by adding to
an LCS the extra characters from A and B. However, when the number
of strings is greater than 2, there is no longer a relationship between the
problems [19].

7.3 Other dynamic programming applications

The longest common substring (LCSS) problem and longest increasing
subsequence (LIS) problem both have dynamic programming solutions
with similar structure. Our protocol can be used directly or with slight
modifications to solve these problems. For example, given the string A and
an ordering on Σ, σ1 < σ2 < . . . < σ|Σ|, we have LIS(A) = LCS(A,B)

where B = σ
|A|
1 σ

|A|
2 · · ·σ

|A|
|Σ|. The LCSS problem can be solved by modify-

ing the basic block function to utilize the recurrence

LCSS(i, j) =

{
LCSS(i− 1, j − 1) + 1 if A[i] = B[j]
0 otherwise

Both the LIS and LCSS problems, however, have more efficient non-
dynamic programming solutions: LIS can be solved in O(n log n) time
with arrays and binary search; LCSS can be solved in O(n + m) time
with suffix trees. While the circuits implementing these solutions are of
size O(mn), it is likely that there are more efficient specialized two-party
protocols implementing these solutions.

7.4 Private diff

The Unix command “diff A B” traditionally returns an annotated file
showing the least-costly merge of file A and file B. From the annotations,
both A and B can be recovered. Thus, a private implementation of diff
has little utility, as the output leaks both inputs. It may be natural,
however, to consider an asymmetric version of diff, where Alice does not
learn an annotated file merging A and B but instead learns which parts
of A have been removed, which parts have been preserved, and where
insertions have been made (analogous to an embedding). Modifying LCS-
backtracking to achieve this functionality is straight-forward. Similarly,
it may be natural to consider calculating statistics related to the diff of
two files, and not output the merged file itself. For example, the command

diff A B | wc -1

returns the edit distance of files A and B and, as we have seen, is easily
calculated using our LCS-length protocol.

A private diff protocol may be useful in the situation where Alice and
Bob want to collaborate to determine if either one has “plagiarized” the
other, without leaking their own proprietary data to the other participant
who, necessarily, they suspect may be possible of plagiarism. A realistic
scenario similar to this one is discovering GPL violations [33]; the protocol
may be a useful discovery mechanism, allowing Bob to inspect if Alice
has violated the use restrictions of his software licensed under the GPL
(by including it in her proprietary code without redistributing it under
the GPL) while at the same time respecting the Alice’s potentially non-
infringing, proprietary code.

7.5 Multiparty variants of LCS-length and LCS-backtracing

Instead of running a protocol between two parties, it may be desirable
to outsource the work to some fixed number of parties m, such that no
passive adversary corrupting less than m participants can learn any infor-
mation beyond the output, for privacy reasons. Alternatively, perhaps nei-
ther Alice nor Bob want to play the role of the server (who pre-computes
the basic block function table) but instead want to leverage the resources
of one or more external servers, without having to trust them. We can
generalize our LCS-length and LCS-backtracking protocols to this sce-
nario using a multiparty generalization of indirect indexing [17, 24]. In
particular, the multiparty indirect indexing scheme of Ishai et al. [24]

is a general construction using any 2-round OT protocol. To achieve a
construction with polylogarithmic communication complexity, Ishai et al.
use an OT scheme based on PIR with length-flexible messages (achieved
using a length-flexible homomorphic encryption scheme such as Damg̊ard-
Jurik [15, 16]). To achieve multiparty indirect indexing with a strictly log-
arithmic communication complexity, we can instead use Gentry-Ramzan.
With a database of size N , the m-iterated use of Gentry-Ramzan gen-
erates messages of length O(log Ncm) = O(log N) for a small constant
c < 8 [29]. Thus, we can use the construction of Ishai et al., instantiated
with an appropriate version of Gentry-Ramzan, to perform multiparty
indirect indexing, and generalize our protocols to the multiparty scenario
with no asymptotic increase to the costs.

7.6 Fixed m-string LCS

In the multiparty version of LCS-length and LCS-backtracking proto-
cols, it is natural to consider the situation were each party i holds a
string Ai as her private input, and the m parties wish to compute the
length (or embedding or string) of the LCS of the strings A1, . . . , Am.
The following is a straight-forward generalization of the standard dy-
namic programming solution for this problem, using an m-dimensional L
matrix.
1: for i1 ← 1 . . . |A1|, i2 ← 1 . . . |A2|, . . ., im ← 1 . . . |Am| do
2: if (A1[i1] = A2[i2] = · · · = Am[im]) then
3: L[i1, i2, . . . , im]← L[i1 − 1, i2 − 1, . . . , im − 1] + 1
4: else
5: L[i1, i2, . . . , im]← max{L[i1−b1, i2−b2, . . . , im−bm] : b1b2 . . . bm ∈

{0, 1}m is a bit-string of Hamming weight m− 1}
6: end if
7: end for

As before, adjacent rows and columns never differ by more than 1, so the
offset vectors can be efficiently encoded using bit-strings. Thus, the four
Russians technique can still be used. We can generalize our protocols to
simulate this algorithm in a similarly straight-forward fashion.

8 Conclusion

We have presented a private protocol for the longest common subsequence
problem, a classic problem for both computer scientists and biologists.

While the “four Russians” technique traditionally offers only a logarith-
mic savings in work for the traditional dynamic programming algorithm
for LCS, we use it to achieve a smooth trade-off between communica-
tion complexity and work, filling in the theoretical “terrain” between
polynomial-work compilers (like Yao) and exponential-work compilers
(like Naor-Nissim). Our protocol features an asymmetry in the work re-
quired from each participant, making it appealing in a client-server setting
where it may be reasonable to believe there is an available server able to
perform super-polynomial work to help compute on genomic data. Even
when restricting all participants to polynomial resources, the result is
a private protocol for the LCS problem achieving a sub-quadratic com-
munication complexity: the first private LCS protocol whose efficiency
improves on that of the generic solution using Yao’s garbled circuit pro-
tocol. We have shown that the protocol and techniques extend (trivially,
in some cases) to numerous other string algorithms useful for computing
with genomic data. We anticipate this technique to be useful in achiev-
ing communication-efficient protocols for many other problems that have
similarly-structured dynamic programming algorithms.

References

1. Are guarantees of genome anonymity realistic? http://arep.med.harvard.edu/

PGP/Anon.htm, 2008.

2. CODIS: Combined DNA index system. http://www.fbi.gov/hq/lab/html/

codis1.htm, 2008.

3. deCODE genetics. http://www.decodegenetics.com/, 2008.

4. The genomic privacy project. http://privacy.cs.cmu.edu/dataprivacy/

projects/genetic/, 2008.

5. HapMap: International HapMap project. http://www.hapmap.org/, 2008.

6. Alfred V. Aho, Daniel S. Hirschberg, and Jeffrey D. Ullman. Bounds on the com-
plexity of the longest common subsequence problem. Journal of the ACM, 23(1):1–
12, 1976.

7. Bill Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In Advances in Cryptology – Proceedings of Eurocrypt 2001, pages
119–135, 2001.

8. Russ B. Altman and Teri E. Klein. Challenges for biomedical informatics and
pharmacogenenomics. Annual Review of Pharmacology and Toxicology, 42:113–
133, 2002.

9. V. L. Arlazarov, E. A. Dinic, M. A. Kronod, and I. A. Faradzev. On economic
consruction of the transitive closure of a directed graph. Doklady Akademii Nauk
SSSR, 194:487–488, 1970.

10. Mikhail J. Atallah, Florian Kerschbaum, and Wenliang Du. Secure and private
sequence comparisons. In Proceedings of the 2003 ACM Workshop on Privacy in
the electronic society (WPES 2003), pages 39–44, 2003.

11. Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms in the
semi-honest model. In Advances in Cryptology – ASIACRYPT, pages 236–252,
2005.

12. Ran Canetti. Security and composition of multiparty cryptographic protocols. In
Journal of Cryptology, volume 13, pages 143–202, 2000.

13. Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private in-
formation retrieval. Journal of the ACM, 45(6):965–981, 1998. An earlier version
appeared in FOCS 95.

14. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, 2000.

15. Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In Public Key Cryptography,
pages 119–136, 2001.

16. Ivan Damg̊ard and Mads Jurik. A length-flexible threshold cryptosystem with
applications. In Information Security and Privacy, pages 350–364, 2003.

17. Matthew Franklin, Mark Gondree, and Payman Mohassel. Multi-party indirect
indexing and applications. In Advances in Cryptology – ASIACRYPT ’07, pages
283–297, 2007.

18. Matthew Franklin, Mark Gondree, and Payman Mohassel. Communication-
efficient private protocols for longest common subsequence. In The Cryptographer’s
Track at the RSA Conference (CT-RSA), 2009.

19. Campbell Fraser. Subsequences and supersequences of strings. PhD thesis, Univer-
sity of Glasgow, 1995.

20. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Advances in Cryptology – Proceedings of Eurocrypt 2004,
pages 1–19, 2004.

21. Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval
with constant communication rate. In Proceedings of the 32nd International Collo-
quium on Automata, Languages and Programming (ICALP 2005), pages 803–815,
2005.

22. Oded Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.
23. Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, 1997.
24. Yuval Ishai, Tal Malkin, Martin J. Strauss, and Rebecca N. Wright. Private

multiparty sampling and approximation of vector combinations. In Proceedings
of the 34th International Colloquium on Automata, Languages and Programming
(ICALP), pages 243–254, 2007.

25. Somesh Jha, Louis Kruger, and Vitaly Shmatikov. Towards practical privacy for
genomic computation. In Proceedings of the IEEE Symposium on Security and
Privacy, 2008.

26. Eike Kiltz, Payman Mohassel, Enav Weinreb, and Matt Franklin. Secure linear
algebra using linearly recurrent sequences. In Proceedings of the Theory of Cryp-
tography Conference (TCC 2007), pages 291–310, 2007.

27. Bradley Malin and Latanya Sweeney. Re-identification of dna through an auto-
mated linkage process. In Proceedings of the AMIA Annual Symposium, pages
423–427, 2001.

28. William J. Masek and Mike S. Paterson. A faster algorithm for computing string
edit distances. Journal of Computer and System Sciences, 20:18–31, 1980.

29. Carlos Aguilar Melchor and Yves Deswarte. Single-database Private Informa-
tion Retrieval schemes : overview, performance study, and usage with statistical
databases. In Privacy in Statistical Databases, pages 257–265, 2006.

30. Moni Naor and Kobbi Nissim. Communication preserving protocols for secure
function evaluation. In STOC ’01: Proceedings of the 33rd annual ACM Symposium
on Theory of Computing, pages 590–599, 2001.

31. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In
STOC ’99: Proceedings of the 31st annual ACM Symposium on Theory of Com-
puting, pages 245–254, 1999.

32. Department of Health and Human Services. 45 CFR (Code of Federal Regulations),
parts 160–164. Standards for privacy of individually identifiable health information,
final rule. Federal Register: 67 (157): 53182-53273, August 12 2002.

33. The GPL Violations project. http://gpl-violations.org/, 2008.

34. Doug Szajda, Michael Pohl, Jason Owen, and Barry G. Lawson. Toward a practical
data privacy scheme for a distributed implementation of the Smith-Waterman
genome sequence comparison algorithm. In Proceedings of the 2006 ISOC Network
and Distributed System Security Symposium (NDSS 2006), pages 253–265, 2006.

35. Laszlo T. Vaszar, Mildred K. Cho, and Thomas A. Raffin. Privacy issues in per-
sonalized medicine. Pharmacogenomics, 4(2):107–112, 2003.

36. Andrew C. Yao. How to generate and exchange secrets. In Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, pages 162–167, 1986.

A Private Backtracking Protocol

Here, we build a private protocol that emulates the strategy of some
deterministic algorithm which recovers some LCS of A and B (or, with
small modifications, strings which represent how the LCS is embedded
in A or B). The protocol uses the data structures and basic tools of our
LCS-length protocol. We note that the LCS-length protocol itself does
not yield any extra information to the parties, since the output of any
LCS-backtracking protocol will always leak the length of the LCS to the
parties anyway.

The general idea of our LCS-backtracking protocol is to pre-compute
(for each basic block) all possible backtracking paths through the basic
block and the strings associated with these paths. We use “back-pointers”
to later traverse through the L matrix and fetch the appropriate pre-
computed data.

Before, Alice and Bob stored the recovered portions of the L matrix
locally, and performed only local operations on it. Here, they will need
to collaboratively backtrack through this table. Thus, the specific data
structure organizing the shares they recover by querying the basic block
function becomes relevant. Let H be the mn/t2-sized table holding the
data recovered by evaluating the basic block function in the LCS-length
protocol. Specifically, let the data for the block starting at position (i, j)
in the L matrix be stored at index h(i, j) in H. That is, for Alice H[h(i, j)]
holds her shares of x1||x2||x3||x4, Ẽ(i, j), S̃(i, j), I1(i+ t, j), I2(i, j + t). To

backtrack through the H table, we will define an additional table H ′ such
that

H ′[h(i, j)||00] = h(i− 1, j − 1)
H ′[h(i, j)||01] = h(i− 1, j − 1)
H ′[h(i, j)||10] = h(i− 1, j)
H ′[h(i, j)||11] = h(i, j − 1)

So, for the block in the L matrix whose data will be stored at index h(i, j)
in H, H ′ holds pointers to the three adjacent blocks that may be useful
during backtracking. Alice and Bob will pre-compute and XOR share H ′.

When backtracking through any t × t block, we will always start at
one of 2t entry positions in E(i, j), S(i, j), and exit through one of the
2t positions in W (i, j), N(i, j). For each entry position k, we will pre-
compute the exit position k′. Additionally, for each of these pre-computed
paths, we can pre-compute the string (or embedding) corresponding to
following this path.

Let x = x1||x2||x3||x4 be an index into the table defining the basic
block function. Consider entering this basic block at the position rep-
resented by k ∈ [1, 2t]. If the deterministic backtracking strategy exits
through the position represented by k′ ∈ [1, 2t] and produces the t-length
string (or embedding) w (padded with a special ε empty string, as appro-
priate) then we define two additional tables, M,M ′ such that:

– M [x||00||k] = k′;
– M [x||10||k] = u, a log t-length pointer such that M ′[x||u] = w;
– M [x||01||k] = z, where z ∈ {0, 1}2 represents into which adjacent

block backtracking might continue. Specifically,

z =

01 if k′ represents N(i, j)[1] (which is also W (i, j)[1])
10 if k′ represents N(i, j)[λ] for 2 ≤ λ ≤ t
11 if k′ represents W (i, j)[λ] for 2 ≤ λ ≤ t

With these data structures, backtracking will proceed in the following
manner. Alice and Bob run the LCS-length protocol, filling out the H
table. Initially, let k represent the index of the lower-left corner of the
block, i = h(m,n), ans = ∅, and u = 0log t:

1. Let x = x1||x2||x3||x4 be the share of the index stored at H[i]
2. Alice and Bob retrieve the following values (blinding, permuting, en-

gaging in an SPBR protocol, in the appropriate way):
u←M [x||10||k]
w ←M ′[x||u]

z ←M [x||01||k]
k ←M [x||00||k]
i← H ′[i||z]

3. ans← w||ans
4. Return to Step 1

Traditional backtracking ends when we move to position (i, j) in L
and either i = 0 or j = 0, which will happen in at most m + n steps.
To avoid leaking information related to the number of rounds required
for backtracking, we will always iterate the maximum number of times
possible. Using the four Russians technique, this means iterating above
for m/t + n/t rounds.

In doing this, however, we must be a little more careful with our
“pointer arithmetic.” Specifically, we will construct a dummy location in
H at index h(0,−1). Then, we let H ′[h(i, j)||z] = h(0,−1) for z ∈ {0, 1}2
if i = 0 or j = 0. At the dummy location H[h(0,−1)],we will store a
special input into the basic block function. We modify the basic block
function table so that it is defined over this special (otherwise undefined)
input sequence, it acts as a fixed point on this input, and every path
through the block for this input is associated with the string εt during
backtracking.

After m/t + n/t rounds, Alice and Bob use their shares of the m + n
length string ans as input to a small garbed circuit that combines the
shares, strips out the ε symbols, and outputs the final string to each
party.

Claim. The above protocol is a private LCS-backtracking protocol, as-
suming the SPBR scheme is secure.

Proof. (sketch) The above security claim follows from the security of the
share conversion protocols, our black-box use of SPBR, and from general
composition theorems [12, 22]. Again, the Gentry-Ramzan PBR can be
transformed into such a scheme using the appropriate transforms and
computational assumptions.

A.1 Analysis

Our protocol for LCS-backtracking incurs all the costs of the LCS-length
algorithm, with some additional overhead. The overhead is analyzed here.
Above, M,M ′ are tables of size O(2t) with entries of length at most t, and
H,H ′ are tables of size O(mn/t2) with entries of length 2t + 2t log t and
O(log (mn/t2)), respectively. As before, we can recover `-bit entries from

a table of size D at a communication cost of log N by letting the database
be of size N = `D with the appropriate variant of Gentry-Ramzan. Thus,
our per-round communication complexity is O(log (mn/t) + t). The pro-
tocol has total round complexity m/t + n/t. As a result, the total com-
munication complexity is O((m + n) log (mn/t)) = O(n log (n/t)). This
computational, round, and communication overhead is asymptotically less
than the costs of the LCS-length protocol.

