
Various Security Analysis of a pfCM-MD Hash Domain

Extension and Applications based on the Extension

Donghoon Chang1, Seokhie Hong1, Jaechul Sung2, and Sangjin Lee1

1 Center for Information Security Technologies(CIST), Korea University, Korea
pointchang@gmail.com

{hsh,sangjin}@cist.korea.ac.kr
2 Department of Mathematics, University of Seoul, Korea

jcsung@uos.ac.kr

Abstract. We propose a new hash domain extension a prefix-free-Counter-Masking-
MD (pfCM-MD). And, among security notions for the hash function, we focus on the
indifferentiable security notion by which we can check whether the structure of a given
hash function has any weakness or not. Next, we consider the security of HMAC, two
new prf constructions, NIST SP 800-56A key derivation function, and the randomized
hashing in NIST SP 800-106, where all of them are based on the pfCM-MD. Especially,
due to the counter of the pfCM-MD, the pfCM-MD are secure against all of generic
second-preimage attacks such as Kelsey-Schneier attack [20] and Elena et al.’ attck [1].
Our proof technique and most of notations follow those in [6, 3, 4].

1 Introduction

Since a standard hash function may be used in various areas, it is very important to identify
security requirements of the hash function for the implementation of secure cryptosystems in
each area. Based on such information, designers of hash functions do the best so that a developed
hash algorithm may satisfy all of the security requirements. Usually, the security requirements
are concentrated on the underlying compression function because most of hash functions are
designed with a domain extension and an underlying compression function. Therefore, we have
to know what kinds of security requirements are needed for the underlying compression function.

For development of SHA-3, NIST [28] recently announced that HMAC [5], alternative pseu-
dorandom function (in short, prf) constructions (which are not fixed and will be proposed by
designers of SHA-3 candidate), NIST SP 800-56A key derivation function [25], the randomized
hashing in NIST SP 800-106 [27] and pseudorandom-bit generator [26] based on a new hash
function should be secure. In this paper, except for pseudorandom-bit generator [26], we consider
the security requirements of the underlying compression function of our new domain extension
“pfCM-MD” for their securities. In the case of pseudorandom-bit generator [26], there are two
constructions : HMAC DRBG and Hash DRBG. The security of HMAC DRBG depends on
the prf security of HMAC based on a underlying hash function [19]. Since we prove the prf
security of HMAC based on pfCM-MD in Sect. 4, if the compression function of pfCM-MD
satisfies some security requirements described in Sect. 4, the security of HMAC DRBG based
on pfCM-MD are guaranteed. In the case of Hash DRBG, T = H(Z)||H(Z + 1)|| · · · ||H(Z + i)
is used as a pseudorandom bit string where H is a hash function, Z is a secret value, and Z
is newly updated whenever the bit length of T is larger than 219 − 1. When the bit-size of Z
is less than the block size b of the compression function (see Sect. 2), it can be easily shown
that the security of Hash DRBG depends on the rka-prf of the compression function of a hash
function in the related-key attack model.

Addition to above applications, a standard hash function may be used in other applications
so that we may need new security requirements. However, we cannot define any security re-
quirement because new applications are not defined. Fortunately, due to Maurer et al.’s work
[22], where the new security notion Indifferentiability is introduced, we can measure the security
of a given domain extension against any adversary, under the assumption that the underlying
compression function is ideal such as the ideal cipher and the random oracle models. So we give
a simple indifferentiable security analysis on pfCM-MD. Our new domain extension has several
advantages when compared with other domain extensions.

– Use of counter : During the computation of a hash value for a given message, each com-
pression function uses a different counter. So all of generic second-preimage attacks such
as Kelsey-Schneier attack [20] and Elena et al.’ attck [1] cannot be applied to pfCM-MD.
On the other hand, in cases of domain extensions without any counter such as MDP [18],
which was proposed by Hirose, Park and Yun, does not guarantee the full security against
them.

– Characteristic of counter : The pfCM-MD domain extension XORs (where the operation
is ⊕) a counter with the input chaining variables of each compression function during the
computation of a hash value. Since a counter is just XORed with the input chaining variables
of the compression function, we do not need to make the input size of the compression
function large. More precisely, in the case of pfCM-MD, f(c ⊕ i, m) is used where i is the
counter, and f is the underlying compression function. On the other hand, for example, in
the case of HAIFA domain extension [11], which was proposed by Biham and Dunkelman, a
counter should be a part of the input string of the compression function. That is, if the bit-
size of the counter is larger, then the bit-size of an input message block per the compression
function is reduced, because the total input size of the underlying compression function is
already fixed. More precisely, in the case of HAIFA, f(c, m||i) is used where i is the counter,
and f is the underlying compression function.

Organization: The organization of this paper is as follows. In Sect. 2, we introduce notations,
definitions, and known results for security proofs. In Sect. 3, we give the indifferentiable security
proof on the pfCM-MD. In Sect. 4, we provide a prf security of HMAC based on the pfCM-MD.
In Sect. 5, we define two prf constructions based on the pfCM-MD and prove the prf security of
them. In Sect. 6, we provide a prf security of NIST SP 800-56A key derivation function based
on the pfCM-MD. In Sect. 7, we provide eTCR security analysis of pfCM-MD with the message
randomization (in short, mr) in NIST SP 800-106.

2 Notations, Definitions and Known Results

Here we consider the compression function f : {0, 1}n × {0, 1}b → {0, 1}n. We write ||m||b = k
if m ∈ {0, 1}kb. That is, m is a message of k b-bit blocks. We denote the set of all functions
from the domain C to the codomain D by Maps(C,D).

Padding. We say any injective and length-consistent function pad : {0, 1}∗ → ({0, 1}b)∗ as a
padding rule.

MD [24, 16]. The traditional Merkle-Damg̊ard extension (MD) works as follow: for a message

M , pad(M) = m1|| · · · ||mt and MDf
pad(IV, M) = f(· · · f(f(IV, m1), m2) · · · , mt), where f is a

compression function and IV is the initial value.

pfCM-MD. CM-MD (MD with a counter-masking) works similar to MD as follow : for given

a message M , pad(M) = m1|| · · · ||mt and CM-MDf
pad(IV, M)=CM-MDf (IV ,pad(M)) = f(· · ·

f(f(IV ⊕ c0, m1)⊕ c1, m2)⊕ c3, · · · , mt). For any two c = c0|| · · · ||ct−1 and c′ = c′0|| · · · ||c
′
t′−1,

if c is not a prefix of c′, then we say its counter-masking is prefix-free. So, pfCM-MD means
prefix-free-Counter-Masking-MD. One example is a case that for any c = c0|| · · · ||ct−1, where
c0 = 0 and ci+1 = ci + 1 for 0 ≤ i ≤ t− 3 and ct−1 = P , where P is a fixed value bigger than
other counter cj ’s. For example, when the maximum bit-size of an input message is 264 − 1, P
can be any value larger than or equal to 264. When the maximum bit-size of an input message
is 2128 − 1, any value P can be any value larger than or equal to 2128. In this document, in
the case that c0 = d and ci+1 = ci+1 for 0 ≤ i ≤ t−3 and ct−1 = P , we denote it by pfCMd-MD.

chop. For 0 ≤ s ≤ n we define chops(x) = xL where x = xL ‖ xR and |xR| = s.

pfCM-chopMD. pfCM-chopMDf
pad(IV, M) = chops(pfCM-MDf

pad(IV, M)). Note that pfCM-
chopMD with s = 0 is the same as pfCM-MD. That is, pfCM-MD is a special case of pfCM-
chopMD. So, in the Appendix A.2, we focus on providing an indifferentiable security proof of
pfCM-chopMD with any s.

NMAC and HMAC [5]. Let K1 and K2 be n bits. K = K||0b−n. opad is formed by repeating
the byte ‘0x36’ as many times as needed to get a b-bit block, and ipad is defined similarly using
the byte ‘0x5c’. Then, NMAC and HMAC are defined as follows, where H is any hash function.

NMACH(K2||K1, M) = H(K2, H(K1, M))

HMACH
IV (K, M) = H(IV, K ⊕ opad||H(IV, K ⊕ ipad||M))).

In this document, we consider the case that H is pfCM0-MDf
pad(⋆, ⋆). And it is clear that for any

pad, there exists pad1 such that NMACpfCM1−MD
f

pad1 (K2||K1, M)= HMAC
pfCM0−MD

f

pad

IV (K, M),
where K2=f(IV, K⊕opad) and K1=f(IV, K⊕ipad). And we assume that in the case of NMAC,
the outer hash function uses the compression function one time, and in the case of HMAC, the
outer hash function uses the compression function two times.

Two PRF Constructions based on a pfCM-MD. We propose new two prf constructions
as follows.

1. pfCMi −MD
f

pad(K, ⋆), where K
$
← {0, 1}n.

2. pfCMi −MD
f

pad(IV, K||0b−n|| ⋆), where K
$
← {0, 1}n.

It is clear that for any pad, K, and any M , there exists pad1 such that pfCM1 −MD
f

pad1
(K ′, M)

= pfCM0 −MD
f

pad(IV, K||0b−n||M), where K ′ = f(IV, K||0b−n).

Inequality. The following inequality will be used to prove Theorem 2.

Ineq 1. For any 0 ≤ ai ≤ 1,
∏q

i=1(1− ai) ≥ 1−
∑q

i=1 ai. One can prove it by induction on q.

Random Oracle Model : f is said to be a random oracle from X to Y if for each x ∈ X the
value of f(x) is chosen randomly from Y [9]. More precisely, Pr[f(x) = y | f(x1) = y1, f(x2) =
y2, . . . f(xq) = yq] = 1

T
, where x /∈ {x1, . . . , xq}, y, y1, · · · , yq ∈ Y and |Y | = T . In the case

that X = {0, 1}d for a fixed value d, we say f is a FIL (Fixed Input Length) random oracle. In
the case that X = {0, 1}∗, we say f is a VIL (Variable Input Length) random oracle. A VIL

random oracle is usually denoted by R.

The cost of Queries. The security bound of a scheme is usually described using the number q
of queries and the maximum length l of each queries. On the other hand, in [6], the notion cost
is used to describe the security bound of sponge construction. The notion cost denotes the total
block length of q queries. The notion cost is significant because the unit of time complexity
corresponds to the time of an underlying function call and the total time complexity depends
on how many the underlying function is called. The notion cost exactly reflects how many the
underlying function is called. So, we can consider two cases. The first case is that the number
of queries is bounded by q. The second case is that the cost of queries is bounded by q. Without
loss of generality, for describing notions and some results in this section, we assume that the
number of queries is bounded by q.

Computational Distance. Let F = (F1, F2, · · · , Ft) and G = (G1, G2, · · · , Gt) be tuples of
probabilistic oracle algorithms. We define the computational distance of a probabilistic attacker
A distinguishing F from G as

AdvA(F, G) = |Pr[AF = 1]− Pr[AG = 1]|.

Statistical Distance. Let F = (F1, F2, · · · , Ft) and G = (G1, G2, · · · , Gt) be tuples of prob-
abilistic oracle algorithms. We define the statistical distance of a deterministic attacker A
distinguishing F from G as

StatA(F, G) =
1

2

∑

v∈VA

|Pr[F = v]− Pr[G = v]|,

where Pr[O = v] denotes Pr[O(ci, xi) = yi, 1 ≤ i ≤ q, v = ((c1, x1, y1), · · · , (cq, xq, yq))], where
O(ci, xi) = Oci

(xi). And we let the maximum statistical distance of F and G against any de-
terministic algorithm A be Stat(F, G), where the number of queries of A is bounded by q.

Computational Distance vs. Statistical Distance

Lemma 1. Let F = (F1, F2, · · · , Ft) and G = (G1, G2, · · · , Gt) be tuples of probabilistic oracle
algorithms. For any probabilistic algorithm A which can make at most q queries

AdvA(F, G) ≤ Stat(F, G).

Proof. See [14].

Indifferentiability

We give a brief introduction of the indifferentiable security notion.

Definition 1. Indifferentiability. [22] A Turing machine H with oracle access to an ideal prim-
itive f is said to be (tD, tS , q, ε) indifferentiable from an ideal primitive R if there exists a
simulator S such that for any distinguisher D it holds that :

|Pr[DH,f = 1]− Pr[DR,S = 1] < ε

The simulator has oracle access to R and runs in time at most tS. The distinguisher runs in
time at most tD and makes at most q queries. Similarly, Hf is said to be (computationally)
indifferentiable from R if ε is a negligible function of the security parameter k (for polynomially
bounded by tD and tS).

The following Theorem [22] shows the relation between indifferentiable security notion and
the security of a cryptosystem.

Theorem 1. [22] Let P be a cryptosystem with oracle access to an ideal primitive R. Let H
be an algorithm such that Hf is indifferentiable from R. Then cryptosystem P is at least as
secure in the f model with algorithm H as in the R model.

Above theorem says that if a domain extension (with a padding rule) based on a FIL random
oracle f is indifferentiable from a VIL random oracle R, then a cryptosystem, which is proved
in the VIL random oracle model, can use the domain extension (with a padding rule) based on
a FIL random oracle f instead of R with negligible loss of security.

Definition 2 (prf-advantage). The prf-advantage of A on f : {0, 1}n × {0, 1}b → {0, 1}n is
defined by

Adv
prf

f(K,⋆)(A) = |Pr[K
$
← {0, 1}n : Af(K,⋆) = 1]−Pr[g

$
← Maps({0, 1}b, {0, 1}n) : Ag(⋆) = 1]|.

Adv
prf

f(⋆,K||0b−n)
(A) = |Pr[K

$
←{0, 1}n:Af(⋆,K||0b−n)=1]−Pr[g

$
←Maps({0, 1}n,{0, 1}n):Ag(⋆)=1]|,

For any function, its prf-advantage can be similarly defined.

Definition 3 (rka-prf-advantage [7]). Let Φ1 be a set of functions mapping {0, 1}b to {0, 1}b

and let Φ2 be a set of functions mapping {0, 1}n to {0, 1}n. Let A be an adversary whose queries
have the form (X, φ) where X ∈ {0, 1}n and φ ∈ Φ1, or the form (φ, X) where X ∈ {0, 1}b and
φ ∈ Φ2. For i = 1 or 2, the rka-prf-advantage of A in a Φi-restricted related-key attack (RKA)
on f : {0, 1}n × {0, 1}b → {0, 1}n is defined by

Adv
rka-prf

f(⋆,RK(⋆,K||0b−n)),Φ1
(A) = |Pr[K

$
← {0, 1}n : Af(⋆,RK(⋆,K||0b−n)) = 1]

−Pr[g
$
← Maps({0, 1}n+b, {0, 1}n); K

$
← {0, 1}n : Ag(⋆,RK(⋆,K||0b−n)) = 1]|,

Adv
rka-prf

f(RK(⋆,K),⋆),Φ2
(A) = |Pr[K

$
← {0, 1}n : Af(RK(⋆,K),⋆) = 1]

− Pr[g
$
← Maps({0, 1}n+b, {0, 1}n); K

$
← {0, 1}n : Ag(RK(⋆,K),⋆) = 1]|,

where in the first case, on query (X, φ) of A, the oracle O(⋆, RK(⋆, K||0b−n)) returns the
value of O(X, φ(K||0b−n)) to A, and in the second case, on query (φ, X) of A, the oracle
O(RK(⋆, K), ⋆) returns the value of O(φ(K), X) to A.

Definition 4 (multi-rka-prf-advantage). Let A be an adversary whose queries have the
form (i, X, φ) where X ∈ {0, 1}n and φ ∈ Φ1, or the form (i, φ, X) where 1 ≤ i ≤ q and
X ∈ {0, 1}b and φ ∈ Φ2. For i = 1 and 2, the multi-rka-prf-advantage of A in a Φi-restricted
related-key attack (RKA) on f : {0, 1}n × {0, 1}b→ {0, 1}n is defined by

Adv
multi-rka-prf

f(⋆,RK(⋆,K⋆||0b−n)),Φ1
(A) = |Pr[K1, · · · , Kq

$
← {0, 1}n : Af(⋆,RK(⋆,K⋆||0

b−n)) = 1]

−Pr[g1,· · · ,gq
$
← Maps({0, 1}n+b,{0, 1}n);K

$
←{0, 1}n:Ag⋆(⋆,RK(⋆,K||0b−n))=1]|,

Adv
multi-rka-prf

f(RK(⋆,K⋆),⋆),Φ2
(A) = |Pr[K1, · · · , Kq

$
← {0, 1}n : Af(RK(⋆,K⋆),⋆) = 1]

− Pr[g1,· · · ,gq
$
←Maps({0, 1}n+b,{0, 1}n);K

$
←{0, 1}n:Ag⋆(RK(⋆,K),⋆)=1]|,

where in the first case, on query (i, X, φ) of A, f(⋆, RK(⋆, K⋆||0
b−n)) returns f(X, φ(Ki||0

b−n))
to A, and g⋆(⋆, RK(⋆, K||0b−n)) returns gi(X, φ(K||0b−n)) to A. The second case is also simi-
larly defined.

Definition 5 (au-advantage [3]). For any almost universal (au) adversary A, the au-advantage
of A on F (K, ⋆) is defined as follows, where F : {0, 1}n × {0, 1}∗ → {0, 1}n.

Adv
au
F (K,⋆)(A) = Pr[K

$
← {0, 1}n; (M 6= M ′)

$
← A : F (K, M) = F (K, M ′)].

Definition 6 (eTCR-advantage [17]). For any eTCR-adversary A, the eTCR-advantage of
A on a hash family H = {Hr(IV, ⋆)}r∈R is as follows,

Adv
eTCR
H

(A) = Pr[(M, State)
$
← A; r

$
←R; (r′, M ′)

$
← A(r, M, State)

: (r, M) 6= (r′, M ′) and Hr(IV, M) = Hr′(IV, M ′)].

Definition 7 (eSPR†-advantage). Given a hash family H = {Hr(IV, ⋆)}r∈R, for each r
we let Hr(IV, M)[i] be the input value of i-th compression function during the computation of
Hr(IV, M), that is, Hr(IV, M)[i] = (c, m), where c ∈ {0, 1}n, m ∈ {0, 1}b, M ∈ {0, 1}∗, and
Hr : {IV }×{0, 1}∗ → {0, 1}n is based on a compression function f : {0, 1}n×{0, 1}b→ {0, 1}n.
Then, for any eSPR†-adversary A, the eSPR†1-advantage of A on a hash family H is defined
as follows,

Adv
eSPR†

H (A) = Pr[(M, State)
$
← A; r

$
←R; i

$
← [1, l]; (c′, m′)

$
← A(i, r, M, State)

: (c, m) = Hr(IV, M)[i] and (c, m) 6= (c′, m′) and f(c, m) = f(c′, m′)],

where l = Lenf (Hr(IV, M)) is the number of computations of the compression function f when
computing Hr(IV, M) for any r, where M is generated by the adversary A.

Relation between a SPR Security of Compression function of H and eSPR† Security
of H. In the definition of eSPR†-advantage, the eSPR† security of H is very similar to the
second preimage resistance (SPR) security of f . In the case of SPR security of f , given a
random input (c, m), it should be difficult for any adversary to find a different (c′, m′) such
that f(c, m) = f(c′, m′). Here, (c, m) has (n + b)-bit entropy. On the other hand, in the case of
eSPR† security of H, given an input (c, m) (which is generated from a random string M and r,
where r has |r|-bit entropy), it should be difficult for any adversary to find a different (c′, m′)
such that f(c, m) = f(c′, m′).

3 Indifferentiable Security Analysis of a pfCM-chopMD Domain

Extension

The security notion Indifferentiability was introduced by Maurer et al. in TCC 2004 [22]. Since
the concept indifferentiability makes it possible to evaluate the security of domain extensions
against all possible generic attackers, under the assumption that the underlying function is a
random oracle or an ideal cipher, it is considered one of the significant notions of provable
security. In Crypto 2005, Coron et al. [15] proved that the classical MD iteration is not indiffer-
entiable with random oracle model even if we assume that the underlying compression function
is a random oracle. But they have shown indifferentiability for prefix-free MD hash functions

1 eSPR† is similar to eSPR defined in [17].

or some other definitions of hash functions like HMAC construction, NMAC construction and
chopMD hash function. Since then, several works [8, 12, 23, 18, 13, 6] have been published.

In this section, we provide an indifferentiable security analysis of pfCM0-chopMD. For any
i, the indifferentiable security analysis of pfCMi-chopMD can be also similarly done. Our proof
follows the proof technique in [6, 14].

Construction of the Simulator Here, we define simulators as follows. the simulator SpfCM

will be used in order to prove the indifferentiable security of pfCM0-chopMD. For defining the
simulator, we follow the style of construction of the simulator in [13], where R : {0, 1}∗ →
{0, 1}n−s is a VIL random oracle.

Definition of Simulator SpfCM

Initialization :

1. A partial function e : {0, 1}n+b→ {0, 1}n initialized as empty,
2. a partial function e∗ = CM-MDe : ({0, 1}b)∗ → {0, 1}n initialized as e∗(null) = IV.
3. a set I = {IV} and a set U = {null}.

On query SR
pfCM (x, m) :

001 if (e(x, m) = x′)
return x′;

002 else if (∃ M ′ and M, e∗(M ′) = x⊕ P, ||M ′||b = i, pad(M) = M ′||m))
y = R(M);
choose w ∈R {0, 1}s;
define e(x, m) = z := y ‖ w;
return z;

003 else if (∃ M ′, e∗(M ′) = x⊕ i, ||M ′||b = i)
choose z ∈R {0, 1}n \ {c⊕ (i + 1) : c ∈ I} ∪ {c⊕ P : c ∈ I} ∪ {a : (ia, a) ∈ U}

∪ {a⊕ P ⊕ (i + 1) : (ia, a) ∈ U} ∪ {a⊕ ia ⊕ (i + 1) : (ia, a) ∈ U}
∪ {a⊕ ia ⊕ P : (ia, a) ∈ U};

define e(x, m) = z;
define U = U ∪ {(i + 1, z)};
define e∗(M ′||m) = z;
return z;

004 else

z ∈R {0, 1}n;
define e(x, m) = z;
define I = I ∪ {x};
return z;

Some Important Observations on the Simulator SpfCM

The bound of the number of queries. In line 003, the number q of queries of S should
be bounded by q < 2n/6 in order to choose z. If q ≥ 2n/6, the simulator may not work. So, we
assume that q < 2n/6.

The bound of the number of possible input message. Firstly, in 002 and 003, there
exists at most one M ′ such that e∗(M ′) = x⊕ i or e∗(M ′) = x⊕ P by the process of selecting
z unrelated to the set U in line 003. This first observation corresponds to Lemma 1 in [6].
Secondly, in line 002 and 003, by the process of selecting z unrelated to the set I in line 003,
the following holds : if e(x, m) is already defined under the assumption that e∗(M ′||m) is not
defined for all M ′ previously defined on e∗, where ||M ′||b = i− 1, then no M(= M ′||m) can be
newly defined such that e∗(M) = x⊕ i or e∗(M) = x⊕P , where where ||M ||b = i. This second
observation corresponds to the second part of proof of Lemma 2 in [6].

Indifferentiable Security Analysis of pfCM0-chopMD Hash Domain Extension

We will describe the indifferentiable security bound of each domain extension using the
notion cost of queries. We let the cost be q. For example, with the cost q of queries, A can
have access to O2 q times and no access to O1, where O1 corresponds to a hash function or a
VIL random oracle, and O2 corresponds to a compression function or a FIL random oracle. By
observations of simulators described above, the following Lemma holds.

Lemma 2. Let q < 2n/6. When the total cost of queries to O1 is t less than or equal to q, the
queries to O1 can be converted to t queries to O2, where O2 gives at least the same amount of
information to an attacker A and has no higher cost than O1.

Proof. The proof is the same as that of Lemma 3 in [6].

The Lemma 2 says that to give all queries to O2 and no query to O1 is the best strategy to
obtain better computational distance. That is, when the cost of queries is bound by q, for any
A there is an attacker B such that the following holds :

AdvA((Hf , f), (R, S)) ≤ AdvB(f, S),

where Hf=pfCM0 − chopMD
f

g , and S=SpfCM . Therefore, we focus on computing the upper
bound of the computational distance between f and S as shown in the following theorems.

Theorem 2. Let q < (2n−1)/6 be the number of queries and 0 ≤ s < n. f : {0, 1}n+b → {0, 1}n

is a FIL random oracle. SpfCM is the simulator defined in the previous section. Then for any
(deterministic or probabilistic) algorithm A

AdvA(f, S) ≤ q(3q−1)
2n .

Proof. Let S be SpfCM . By Lemma 1, we only focus on computing an upper bound of
Stat(f, S). Note that Stat(f, S) is defined over all deterministic algorithms. So when the oracle
is f , the number of possible views is 2nq. And for any deterministic algorithm A, each view
occurs with probability 1/2nq. We let the set of 2nq possible views be VA. On the other hand,
when the oracle is S, the number of possible views is at least (2n − 2)(2n − 8) · · · (2n − 6q + 4).
We let the set of the smallest possible views be TS and the size of TS be rq. Assume that each
of TS views occurs with probability 1/rq. Therefore,

StatA(f, S) = 1
2

∑
v∈VA

|Pr[f = v]− Pr[S = v]|

= 1
2

∑
v∈VA\TS

|Pr[f = v]− Pr[S = v]|+ 1
2

∑
v∈TS

|Pr[f = v]− Pr[S = v]|

≤ 1
2

∑
v∈VA\TS

| 1
2nq − 0|+ 1

2

∑
v∈TS

| 1
2nq −

1
rq
|

= 1
2 ·

2nq−rq

2nq + 1
2 · |

rq

2nq −
rq

rq
|

= 1
2 · (1 −

rq

2nq) + 1
2 · (1−

rq

2nq)

= 1−
rq

2nq

= 1−
∏q

i=1(1−
6i−4
2n)

≤
∑q

i=1(
6i−4
2n) (by Ineq 1.)

= q(3q−1)
2n .

From Lemma 2 and Theorem 2, we can get indifferentiable security bound of pfCM0-chopMD
as the following corollary.

Corollary 1. Let q < (2n − 1)/6 be the cost of queries and 0 ≤ s < n. f : {0, 1}n+b → {0, 1}n

is a FIL random oracle. SpfCM is the simulator defined in the previous section. Then for any
attacker A

AdvA((pfCM0 − chopMD
f

pad, f), (R, SpfCM)) ≤ q(3q−1)
2n .

4 PRF Security Analysis of HMAC based on a pfCM-MD Domain

Extension

In this section, with game-based proof technique, we provide a prf security analysis of HMAC
based on a pfCM0-MD domain extension. Our proof follows the proof technique for HMAC by
Bellare [3]. For any i, HMAC based on a pfCMi-MD domain extension can be also proved in
the similar way.

Lemma 3. For any rka-prf-adversary A with q queries, there exists an adversary BA such that

|Pr[AG7 = 1]− Pr[AG6 = 1]| = Adv
rka-prf

f(⋆,RK(⋆,K||0b−n)),Φ1
(BA),

where G7 and G6 are games defined in Fig. 1, BA is defined in Fig. 2. BA can only make two
(IV, φipad) and (IV, φopad) queries. Φ1 = {φipad, φopad} where φipad(x) = x⊕ ipad and φopad(x) =
x⊕ opad.

Proof. Since Pr[AG7 = 1] = Pr[K
$
← {0, 1}n : B

f(⋆,RK(⋆,K||0b−n))
A = 1] and Pr[AG6 = 1] =

Pr[g
$
← Maps({0, 1}n+b, {0, 1}n); K

$
← {0, 1}n : B

g(⋆,RK(⋆,K||0b−n))
A = 1], this lemma holds.

Lemma 4. For any prf-adversary A, the following equality holds :

Pr[AG6 = 1] = Pr[AG5 = 1],

where G6 and G5 are games defined in Fig. 1.

Proof. We already assumed that in the case of NMAC, the outer hash function uses the
compression function one time, and in the case of HMAC, the outer hash function uses the
compression function two times. So, this lemma is clear.

Lemma 5. For any prf-adversary A with q queries, there exists a prf-adversary CA such that

|Pr[AG5 = 1]− Pr[AG4 = 1]| = Adv
prf

f(K,⋆)(CA),

where G5 and G4 are games defined in Fig. 1, and CA is defined in Fig. 2. CA can make at
most q queries.

Game G1 Game G2

100 On query M 100 K1
$
← {0, 1}n; s← 0

101 Z
$
← {0, 1}n 200 Z1, · · · , Zq

$
← {0, 1}n

102 Return Z 300 On query M

301 s← s + 1; Ms ←M

302 Ys ← pfCM1-MDf
pad1

(K1, Ms)

303 If (∃ r < s : Yr = Ys) then
304 bad ← true;
305 Return Zs

Game G3 Game G4

100 K1
$
← {0, 1}n; s← 0 100 K1

$
← {0, 1}n

200 Z1, · · · , Zq
$
← {0, 1}n 200 g

$
← Maps({0, 1}b, {0, 1}n)

300 On query M 300 On query M

301 s← s + 1; Ms ←M 301 Return g(pad1(pfCM1 −MD
f

pad1
(K1, Ms)))

302 Ys ← pfCM1-MDf
pad1

(K1, Ms)

303 If (∃ r < s : Yr = Ys) then
304 bad ← true; Zs ← Zr

305 Return Zs

Game G5

100 K2, K1
$
← {0, 1}n

200 On query M

201 Return f((K2 ⊕ P), pad1(pfCM1 −MD
f

pad1
(K1, Ms)))

Game G6

100 K2, K1
$
← {0, 1}n

200 On query M

201 Return NMAC
pfCM1−MD

f
pad1 (K2||K1, M)

Game G7

100 K
$
← {0, 1}n

200 K ← K||0b−n

300 K1 ← f(IV,K ⊕ ipad)

400 K2 ← f(IV,K ⊕ opad)
500 On query M

501 Return NMAC
pfCM1−MD

f
pad1 (K2||K1, M)

Fig. 1. Game G1 ∼ G7

Adversary B
O(⋆,RK(⋆,K||0b−n))
A , where O is f(⋆, K||0b−n) or g(⋆, K||0b−n).

100 K1 ← O(IV, RK(φipad, K||0
b−n))

200 K2 ← O(IV, RK(φopad, K||0
b−n))

300 Run A as follows:

301 On query M of A, reply NMAC
pfCM1−MD

f
pad1

(⋆,⋆)
(K2||K1, M) to A

302 Let T be the final output of A

400 Return T

Adversary CO
A , where O is f(K, ⋆) or g(⋆).

100 K1
$
← {0, 1}n

200 Run A as follows:
201 On query M of A, reply O(pad1(pfCM1 −MD

f

pad1
(K1, M)))) to A

202 Let T be the final output of A

300 Return T

Adversary DA

100 s← 0 and Z1, · · · , Zq
$
← {0, 1}n

200 Run A as follows:
201 On query M of A, s← s + 1 and Ms ←M and reply Zs to A

300 i, j
$
← [1, q] with i 6= j

400 Return Mi and Mj

Fig. 2. Adversary BA, CA, DA

Adversary E
O(RK(⋆,K),⋆)
A , where O is f(K, ⋆) or g(K, ⋆).

100 Run A, and obtain M , M ′ from A, and let m = ||pad1(M)||b, m′ = ||pad1(M ′)||b
200 Let pad1(M) = M1|| · · · ||Mm and pad1(M ′) = M ′

1|| · · · ||M
′
m′ and r = LCP (pad1(M), pad1(M ′))

/* r is the b-bit block length of the largest common prefix of pad1(M) and pad1(M ′) */
300 Randomly choose (l, l′) from I(pad1(M), pad1(M

′))
/* total number of cases is at most m + m′ − 1.

I(pad1(M), pad1(M
′)) is a sequence of (1, 1)|| · · · ||(r, r)||(r + 1, r + 1)

||(r + 2, r + 1)|| · · · ||(m, r + 1)||(m, r + 2)|| · · · ||(m, m′). */
400 If (l, l′) ∈ I1(pad1(M), pad1(M

′)) ∪ {(r + 1, r + 1)} ∪ I2(pad1(M), pad1(M
′))

/* I1(pad1(M), pad1(M
′)) = {(1, 1), · · · , (r, r)} and I2 = {(r + 2, r + 1), · · · , (m, r + 1)} */

401 then if l = m then al ← O(φP , Ml) else al ← O(φl, Ml)

402 else al
$
← {0, 1}n

500 If (l, l′) ∈ I1(pad1(M), pad1(M
′)) ∪ {(r + 1, r + 1)} ∪ I3(pad1(M), pad1(M

′))
/* I3 = {(m, r + 2), · · · , (m, m′)} */

501 then if l′ = m′ then a′
l′
← O(φP , M ′

l′
) else a′

l′
← O(φl′ , M ′

l′
)

502 else a′
l′

$
← {0, 1}n

600 For i = l + 1 to m do
601 if i < m then ai ← f(ai−1 ⊕ i, Mi)
602 if i = m then ai ← f(ai−1 ⊕ P, Mi)
700 For i = l′ + 1 to m′ do
701 if i < m′ then a′

i ← f(a′
i−1 ⊕ i, M ′

i)

702 if i = m′ then a′
i ← f(a′

i−1 ⊕ P, M ′
i)

800 If am = a′
m′ then return 1 else return 0.

Fig. 3. Adversary EA: P is the last counter value of pfCM1-MD.

Proof. Since Pr[AG5 = 1] = Pr[K
$
← {0, 1}n : C

f(K,⋆)
A = 1] and Pr[AG4 = 1] = Pr[g

$
←

Maps({0, 1}b, {0, 1}n) : C
g(⋆)
A = 1], this lemma holds.

Lemma 6. For any prf-adversary A with q queries, the following equality holds :

Pr[AG4 = 1] = Pr[AG3 = 1],

where G4 and G3 are games defined in Fig. 1.

Proof. By the definitions of G3 and G4, it is clear.

Lemma 7. For any prf-adversary A with q queries, the following inequality holds :

|Pr[AG3 = 1]− Pr[AG2 = 1]| ≤ Pr[AG2 sets bad],

where G3 and G2 are games defined in Fig. 1.

Proof. As described in [10], this lemma follows from the Fundamental Lemma of Game Play-
ing.

Lemma 8. For any prf-adversary A with q queries, the following equality holds :

Pr[AG2 = 1] = Pr[AG1 = 1],

where G2 and G1 are games defined in Fig. 1.

Proof. By the definitions of G1 and G2, it is clear.

Lemma 9. For any prf-adversary A with q queries, there exists an au-adversary DA such that

Pr[AG2 sets bad] ≤
q(q − 1)

2
Adv

au

pfCM1−MDf

pad1
(K,⋆)

(DA),

where G2 is a game defined in Fig. 1, and DA is defined in Fig. 2.

Proof. We let F (K, ⋆) be pfCM1 −MD
f

pad1
(K, ⋆). Without loss of generality, we assume that

A makes q different queries.

Advau
F (K,⋆)(DA)

=
∑

i<j Pr[K
$
←{0, 1}n;M1,· · · ,Mq

$
← AD:F (K, Mi)=F (K, Mj)]Pr[Mi, Mj

$
← DA]

=
∑

i<j Pr[K
$
←{0, 1}n;M1,· · · ,Mq

$
← AG2 :F (K, Mi)=F (K, Mj)]

2
q(q−1)

≥ Pr[K
$
←{0, 1}n;M1,· · · ,Mq

$
← AG2 :∃Mi, Mj s.t. F (K, Mi)=F (K, Mj)]

2
q(q−1)

= Pr[AG2 sets bad] 2
q(q−1) .

Lemma 10. For given M and M ′, where ||pad1(M)||b = m ≤ t and ||pad1(M
′)||b = m′ ≤ t′, if

(α′, β′) is the predecessor of (α, β) in the sequence of I(pad1(M), pad1(M
′)), then the following

holds.

Pr[K
$
← {0, 1}n : E

f(RK(⋆,K),⋆)
A(M,M ′) = 1|(l, l′) = (α, β)← E

f(RK(⋆,K),⋆)
A(M,M ′)]

=Pr[g
$
←Maps({0, 1}n+b,{0, 1}n);K

$
←{0, 1}n:E

g(RK(⋆,K),⋆)
A(M,M ′) =1|(l, l′)=(α′, β′)← E

g(RK(⋆,K),⋆)
A(M,M ′)],

Here, E
O(RK(⋆,K),⋆)
A , I1, I2, I3 and I are defined in Fig. 3. In a sequence ((α1, β1), · · · , (αn, βn)),

(αi, βi) is called the predecessor of (αi+1, βi+1). For example, in the sequence I, the predecessor
of (r + 2, r + 1) is (r + 1, r + 1) and the predecessor of (m, r + 2) is (m, r + 1).

Proof. It follows from the definition of EA in Fig. 3.

Lemma 11. For any au-adversary A, the following holds.

Pr[K
$
← {0, 1}n : E

f(RK(⋆,K),⋆)
A(M,M ′) = 1|(l, l′) = (1, 1)← E

f(RK(⋆,K),⋆)
A(M,M ′)]

= Pr[K
$
← {0, 1}n : F (K, M) = F (K, M ′)],

Pr[g
$
←Maps({0, 1}n+b,{0, 1}n); K

$
←{0, 1}n : E

g(RK(⋆,K),⋆)
A(M,M ′) =1|(l, l′) = (m, m′)← E

g(RK(⋆,K),⋆)
A(M,M ′)]

= 2−n,

where F (K, ⋆) denotes pfCM1 −MD
f

pad1
(K, ⋆).

Proof. It is clear by the construction of EA in Fig. 3.

Lemma 12. For any au-adversary A, there exists a rka-prf-adversary EA such that

Adv
au

pfCM1−MDf

pad1
(K,⋆)

(A) ≤ (t + t′ − 1)Adv
rka-prf

f(K,⋆),Φ2
(EA) + 2−n,

where EA is defined in Fig. 3.For any output (M, M ′) of A, ||pad1(M)||b ≤ t and ||pad1(M
′)||b ≤

t′. When t∗ = max(t, t′), Φ2 = {φ1, · · · , φt∗ , φP } where φi(x) = x ⊕ i. EA can only make at
most two (Mi, φ) and (M ′

j , φ
′) queries, where Mi and M ′

j are any value of b-bit, and φ, φ′ ∈ Φ2.

Proof. We let F (K, ⋆) be pfCM1 −MD
f

pad1
(K, ⋆).

Advrka-prf

f(RK(⋆,K),⋆),Φ2
(EA)

= |Pr[K
$
← {0, 1}n : E

f(RK(⋆,K),⋆)
A = 1]

− Pr[g
$
← Maps({0, 1}n+b, {0, 1}n); K

$
← {0, 1}n : E

g(RK(⋆,K),⋆)
A = 1]|

= |
∑

M 6=M ′ Pr[K
$
← {0, 1}n : E

f(RK(⋆,K),⋆)
A(M,M ′) = 1]Pr[(M, M ′)← A]

−
∑

M 6=M ′ Pr[g
$
←Maps({0, 1}n+b,{0, 1}n); K

$
←{0, 1}n:E

g(RK(⋆,K),⋆)
A(M,M ′) =1]Pr[(M, M ′)←A]|

≥ |
∑

M 6=M ′
Pr[K

$
←{0,1}n:F (K,M)=F (K,M ′)]−2−n

t+t′−1 Pr[M, M ′ ← A]| by Lemma 10, 11

= | 1
t+t′−1 [(

∑
M 6=M ′ Pr[K

$
← {0, 1}n : F (K, M) = F (K, M ′)]Pr[M, M ′ ← A]) − 2−n]|

= | 1
t+t′−1 (Advau

F (K,⋆)(A) − 2−n)|

≥ 1
t+t′−1 (Advau

F (K,⋆)(A) − 2−n).

Theorem 3. For any prf-adversary A, there exist adversaries BA, CA, DA, EDA
such that

Adv
prf

HMAC
pfCM0−MD

f
pad

IV

(A) ≤ Adv
rka-prf

f(⋆,RK(⋆,K||0b−n)),Φ1
(BA) + Adv

prf

f(K,⋆)(CA)

+ q(q−1)(t+t′−1)
2 Adv

rka-prf

f(RK(⋆,K),⋆),Φ2
(EDA

) + q(q−1)
2n+1 ,

where BA, CA, DA, EDA
, Φ1, and Φ2 are defined as before.

Proof. By the definition of the prf-advantage, Advprf

HMAC
pfCM−MD

f
pad

IV

(A) = |Pr[AG7 = 1] −

Pr[AG1 = 1]|. So, we can get the above theorem with Lemma 3 ∼ Lemma 12.

5 Security Analysis of Two PRF Constructions based on a

pfCM-MD Domain Extension

In this section, we provide prf security analysis of pfCM0-MDf
pad(IV, K||0b−n|| ⋆) and pfCM1-

MDf
pad(K, ⋆), where K

$
← {0, 1}n. Our analysis follows the analysis technique of Bellare et al.’

paper [4]. For any d and d′, pfCMd-MDf
pad(IV, K||0b−n|| ⋆) and pfCMd′

-MDf
pad(K, ⋆) can be

also proved in the similar way.

Lemma 13. For any prf-adversary A with q queries, there exists a prf-adversary FA such that

|Pr[AG′
3 = 1]− Pr[AG′

2 = 1]| = Adv
prf

f(⋆,K||0b−n)
(FA)

where G′3 and G′2 are games defined in Fig. 4, and FA is defined in Fig. 5. FA can only make
the query IV .

Proof. Since Pr[AG′
3 = 1] = Pr[K

$
← {0, 1}n : F

f(⋆,K||0b−n)
A = 1] and Pr[AG′

2 = 1] = Pr[g
$
←

Maps({0, 1}n, {0, 1}n) : F
g(⋆)
A = 1], the lemma holds.

Lemma 14. For any prf-adversary A, the following equality holds :

|Pr[AG′
2 = 1]− Pr[AG′

1 = 1]| = Adv
prf

pfCM1−MDf

pad1
(K,⋆)

(A)

where G′2 and G′1 are games defined in Fig. 4.

Proof. By the definition of the prf-advantage, the lemma holds.

Lemma 15. For any 2 ≤ j ≤ l, the following holds.

Pr[K1, · · · , Kq
$
← {0, 1}n : H

f(RK(⋆,K⋆),⋆)
A,i←j = 1]

=Pr[g1,· · · ,gq
$
←Maps({0, 1}n+b,{0, 1}n);K

$
←{0, 1}n:H

g⋆(RK(⋆,K),⋆)
A,i←j−1 =1],

where HA is defined in Fig. 5, and i ← j is described in line 10000 in Fig. 5. If A makes q
queries, then HA can make at most q queries. We assume that for each query M of A, the
b-bit block length of pad1(M) is at most l. Φ3 = {φ1, · · · , φl, φP } , where φi(X) = X ⊕ i and P

is the last counter of pfCM-MD. When we denote t-th query of HA by (it, φt, Xt), we assume
that {φ1, · · · , φq} ⊂ {φP , φj} for some j. In other words, even though HA can make queries
to any one of {O1, O2, · · · , Oq}, HA can use at most two related-key-deriving (RKD) functions
φ’s from Φ3.

Proof. It follows from the definition of H
O1,··· ,Oq

A in Fig. 5.

Game G′
1 Game G′

2

100 On query M 100 K′ $
← {0, 1}n

101 Z
$
← {0, 1}n 200 On query M

102 Return Z 201 Return pfCM1-MDf
pad1

(K′, M)

Game G′
3

100 K
$
← {0, 1}n

200 K′ ← f(IV, K||0b−n)
300 On query M

301 Return pfCM1-MDf
pad1

(K′, M)

Fig. 4. Game G′
1 ∼ G′

3

Lemma 16. For any prf-adversary A with q queries, the following holds.

Pr[K1, · · · , Kq
$
← {0, 1}n : H

f(RK(⋆,K⋆),⋆)
A,i←1 = 1] = Pr[K

$
← {0, 1}n : AF (K,⋆) = 1],

Pr[K1,· · · ,Kq
$
←{0, 1}n:H

f(RK(⋆,K⋆),⋆)
A,i←l = 1] =Pr[g

$
←Maps({0, 1}∗,{0, 1}n):Ag(⋆)=1],

where F (K, ⋆) denotes pfCM1 −MD
f

pad1
(K, ⋆).

Proof. It is clear by the construction of HA in Fig. 5.

Theorem 4. For any prf-adversary A with q queries, there exists a multi-rka-prf-adversary
HA such that

Adv
prf

pfCM1−MDf

pad1
(K,⋆)

(A) = l ·Adv
multi-rka-prf

f(RK(⋆,K⋆),⋆),Φ3
(HA),

where HA is defined as before.

Proof. We let F (K, ⋆) be pfCM1 −MD
f

pad1
(K, ⋆).

Advmulti-rka-prf

f(RK(⋆,K⋆),⋆),Φ3
(HA)

= |Pr[K1, · · · , Kq
$
← {0, 1}n : H

f(RK(⋆,K⋆),⋆)
A = 1]

− Pr[g1,· · · ,gq
$
←Maps({0, 1}n+b,{0, 1}n);K

$
←{0, 1}n:H

g⋆(RK(⋆,K),⋆)
A =1]|

= |
∑l

j=1 Pr[K1, · · · , Kq
$
← {0, 1}n : H

f(RK(⋆,K⋆),⋆)
A,i=j = 1] · 1

l

Adversary F
O(⋆,K||0b−n)
A , where O is f(⋆, K||0b−n) or g(⋆).

100 K′ ← O(IV)
200 Run A as follows:

201 On query M of A, reply pfCM1 −MD
f

pad1
(K′, M) to A

202 Let T be the final output of A

300 Return T

Adversary H
O1,··· ,Oq

A , where Oi is f(RK(⋆, Ki), ⋆) or gi(RK(⋆, K), ⋆).

10000 Randomly choose j from [1, l] and i← j and s← 0
20000 Run A as follows:
21000 On query t-th query M t of A, // 1 ≤ t ≤ q

21100 m← ||pad1(M
t)||b and let pad1(M

t) = M t
1|| · · · ||M

t
m // ||pad1(M

t)||b ≤ l

21200 if m ≤ i− 1 then pick at random an n-bit string at and return at to A

21300 else (namely m ≥ i),
21310 if (M t

1, · · · , M
t
i−1) 6=(Mr

1 , · · · , Mr
i−1) for all r < t

21320 then s← s + 1 and let ct = s

21330 else if (M t
1,· · · ,M

t
i−1)=(Mr

1 ,· · · ,Mr
i−1) & ||pad1(M

r)||b 6=i− 1 for a r s.t. r < t

21331 then let ct = cr

21332 else s← s + 1 and let ct = s

21340 if m > i then at = Oct(φi, M
t
i) else at = Oct(φP , M t

i)

21350 return pfCMi+1 −MD
f
(at, M t

i+1|| · · · ||M
t
m) to A

30000 Let T be the final output of A

40000 Return T

Fig. 5. Adversary FA and HA: P is the last counter value of pfCM-MD.

−
∑l

j=1 Pr[g1,· · · ,gq
$
←Maps({0, 1}n+b,{0, 1}n);K

$
←{0, 1}n:H

g⋆(RK(⋆,K),⋆)
A,i=j =1] · 1

l
|

= 1
l
|Pr[K

$
← {0, 1}n : AF (K,⋆) = 1]− Pr[g

$
← Maps({0, 1}∗, {0, 1}n) : Ag(⋆) = 1]|

= 1
l
Advprf

F (K,⋆)(A).

The second equality follows from the definition of HA in Fig. 5 and the third equality follows
from Lemma 15 and Lemma 19.

Theorem 5. For any prf-adversary A with q queries, there exists a prf-adversary FA such that

Adv
prf

pfCM0−MDf

pad
(IV,K||⋆)

(A) ≤ Adv
prf

pfCM1−MDf

pad1
(K,⋆)

(A) + Adv
prf

f(⋆,K||0b−n)
(FA),

where FA can only make the query IV and is defined in Fig. 5.

Proof. By the definition of the prf-advantage, Advprf

pfCM0−MDf

pad
(IV,K||⋆)

(A) = |Pr[AG′
3 =

1]− Pr[AG′
1 = 1]|. So, we can get above theorem with Lemma 13 ∼ Lemma 14.

Corollary 2. For any prf-adversary A with q queries, there exist adversaries FA and HA such
that

Adv
prf

pfCM0−MDf

pad
(IV,K||⋆)

(A) ≤ l ·Adv
multi-rka-prf

f(RK(⋆,K⋆),⋆),Φ3
(HA) + Adv

prf

f(⋆,K||0b−n)
(FA),

where FA, HA and Φ3 are defined as before.

Proof. This holds by Theorem 4 and 5.

6 PRF Security Analysis of NIST SP 800-56A Key Derivation

Function based on a pfCM-MD Domain Extension

NIST special publication 800-56A [25] describes key derivation functions (KDF) based on a
hash function. Any key derivation function is used to derive secret keying material from a
shared secret. Secret keying material means a symmetric key, a secret initialization vector, or
a master key which is used to generate other keys. The process of KDF in the document is as
follows: (See the page 49 of NIST SP 800-56A for details.)

1. reps = ⌈keydatalen/hashlen⌉.
2. If reps > (232 − 1), then ABORT : output an error indicator and stop.
3. Initialize a 32-bit, big-endian bit string counter as 0000000116.
4. If counter||Z||OtherInfo is more than max hash inputlen bits long, then ABORT : output

an error indicator and stop.
5. For i = 1 to reps by 1, do the followings:

(a) Compute Hashi=H(counter||Z||OtherInfo).
(b) Increment counter (modulo 232), treating it as an unsigned 32-bit integer.

6. Let Hhash be set to Hashreps if (keydatalen/hashlen) is an integer, otherwise, let Hhash
be set to the (keydatalen mod hashlen) leftmost bits of Hashreps.

7. Set DerivedKeyingMaterial = Hash1||Hash2|| · · · ||Hashreps−1||Hhash.

In the above process, H is a hash function, Z is a shared secret, and OtherInfo is known
fixed value. Counter is a changeable input variable. Then, the concatenation of hash outputs is
used as secret keying material. In this section, it is shown that the pseudorandomness of KDF-
pfCM-MD is reduced to the RKA-pseudorandomness and pseudorandomness of the compression
function f . More precisely, we provide prf security analysis of pfCM0-MDf

pad(IV, ⋆32 ||K|| ⋆),

where ⋆32 is any 32-bit string, and K
$
← {0, 1}n. pfCM0-MDf

pad(IV, ⋆32 ||K|| ⋆) corresponds to

NIST SP 800-56A key derivation function based on pfCM0-MD. Our analysis follows the analysis
technique of Bellare et al.’ paper [4]. For any i, the prf security of pfCMi-MDf

pad(IV, ⋆32 ||K|| ⋆)
can be also proved in the similar way.

Lemma 17. For any prf-adversary A with q queries, there exists a prf-adversary QA such that

|Pr[AG′′
3 = 1]− Pr[AG′′

2 = 1]| = Adv
prf

f(⋆,⋆32||K||⋆b−n−32)
(QA)

where G′′3 and G′′2 are games defined in Fig. 6, and QA is defined in Fig. 7. And QA can make
q queries of the form (IV || ⋆32 ||⋆b−n−32), and ⋆i means any i-bit string.

Proof. Since Pr[AG′′
3 = 1] = Pr[K

$
← {0, 1}n : Q

f(⋆n,⋆32||K||⋆b−n−32)
A = 1] and Pr[AG′

2 = 1] =

Pr[g
$
← Maps({0, 1}n, {0, 1}n) : Q

g(⋆n||⋆32||⋆b−n−32)
A = 1], the lemma holds.

Lemma 18. For any prf-adversary A, the following equality holds :

|Pr[AG′′
2 = 1]− Pr[AG′′

1 = 1]| = Adv
prf

pfCM1−MDf

pad1
(g(IV,⋆32||K||⋆b−n−32), ⋆)

(A)

where G′′2 and G′′1 are games defined in Fig. 6, and g
$
← Maps({0, 1}b, {0, 1}n).

Proof. By the definition of the prf-advantage, the lemma holds.

Lemma 19. For any 2 ≤ j ≤ l − 1, the following holds.

Pr[K1, · · · , Kq
$
← {0, 1}n : V

f(RK(⋆,K⋆),⋆)
A,i=j = 1]

=Pr[g1,· · · ,gq
$
←Maps({0, 1}n+b,{0, 1}n);K

$
←{0, 1}n:V

g⋆(RK(⋆,K),⋆)
A,i=j−1 =1],

where VA is defined in Fig. 7.

Proof. It is clear by the definition of VA.

Lemma 20. For any prf-adversary A of q queries, the following holds.

Pr[K1, · · · , Kq
$
← {0, 1}n : V

f(RK(⋆,K⋆),⋆)
A,i=1 = 1] = Pr[K

$
← {0, 1}n : AF (K,⋆) = 1],

Pr[K1,· · · ,Kq
$
←{0, 1}n:V

f(RK(⋆,K⋆),⋆)
A,i=l−1 = 1] =Pr[g

$
←Maps({0, 1}∗,{0, 1}n):Ag(⋆)=1],

where F (K, ⋆) denotes pfCM1 −MD
f

pad1
(g(IV, ⋆32||K||⋆b−n−32), ⋆).

Proof. It is clear by the construction of VA in Fig. 7.

Game G′′
1

100 On query M

101 Z
$
← {0, 1}n

102 Return Z

Game G′′
2

100 g
$
← Maps({0, 1}b, {0, 1}n)

300 On query M = M1||M2 // |M1| = 32 and |M2| = t where t is any value.
200 K′ ← g(IV,M1||M2[1, b− n− 32]) // M2[1, x] denotes the first x-bit of M2

301 Return pfCM1-MDf
pad1

(K′, M [b− n− 31, t])

Game G′′
3

100 K
$
← {0, 1}n

300 On query M = M1||M2 // |M1| = 32 and |M2| = t where t is any value.
200 K′ ← f(IV, M1||K||M2[1, b− n− 32]) // M2[1, x] denotes the first x-bit of M2

301 Return pfCM1-MDf
pad1

(K′, M [b− n− 31, t])

Fig. 6. Game G′′
1 ∼ G′′

3

Adversary Q
O(⋆n,⋆32||⋆b−n−32)

A
, where O is f(⋆n, ⋆32||K||⋆b−n−32) or g(⋆n|| ⋆32 ||⋆b−n−32).

100 Run A as follows:
200 On query M of A, K′ ← O(IV, M [1, b− n]) // |M| = t

201 Reply pfCM1 −MD
f

pad1
(K′, M [b− n, t]) to A

202 Let T be the final output of A
300 Return T

Adversary V
O1,··· ,Oq

A , where Oi is f(RK(⋆, Ki)||⋆) or gi(RK(⋆, K)||⋆).

100000 Randomly choose j from [1, l− 1] and i← j and s← 0
200000 Run A as follows:
210000 On query t-th query Mt of A, // 1 ≤ t ≤ q

211000 Let pad(Mt) = Mt
1|| · · · ||M

t
mt

where |Mt
1| = b− n, |Mt

j | = b for 2 ≤ j ≤ mt // mt ≤ l

212000 if mt ≤ i− 1 then at $
← {0, 1}n and return at to A

213000 else (namely mt ≥ i),
213100 if (Mt

1, · · · , Mt
i) 6=(Mr

1 , · · · , Mr
i) for all r < t

213200 then s← s + 1 and let ct = s and at $
← {0, 1}n

213300 else if (Mt
1 ,· · · ,Mt

i)=(Mr
1 ,· · · ,Mr

i) & ((mt = i & mr = i) or (mt 6= i & mr 6= i)) for some r with r < t

213310 then let ct ← cr and at ← ar

213320 else if (Mt
1 ,· · · ,Mt

i)=(Mr
1 ,· · · ,Mr

i) & (mt = i or mr = i) for some r with r < t

213321 then s← s + 1 and let ct = s and at $
← {0, 1}n

213400 if mt > i + 1 then at ← Oct (φi, Mt
i+1)

213500 if mt = i + 1 then at ← Oct (φP , Mt
i+1)

213600 return pfCMi+1 −MD
f
(at, Mt

i+2|| · · · ||M
t
mt

) to A // pfCMi+1 −MD
f
(at, null) = at

300000 Let T be the final output of A

400000 Return T

Fig. 7. Adversary QA and VA: P is the last counter value of pfCM-MD.

Theorem 6. For any prf-adversary A with q queries, there exist adversaries VA such that

Adv
prf

pfCM1−MDf

pad1
(g(IV,⋆32||K||⋆b−n−32), ⋆)

(A) = (l − 1) ·Adv
multi-rka-prf

f(RK(⋆,K⋆),⋆),Φ4
(VA),

where VA is defined in Fig. 7 and VA can make at most q queries. g
$
← Maps({0, 1}b, {0, 1}n).

We assume that for each query M of A, the b-bit block length of pad1(M) is at most l. Φ4 =
{φ1, · · · , φl, φP } , where φi(X) = X ⊕ i and P is the last counter of pfCM-MD. We assume
that {φ1, · · · , φq} ⊂ {φP , φj} for some j, where (it, φt, Xt) is t-th query of VA. In other words,
even though VA can make queries to any one of {O1, O2, · · · , Oq}, VA can use at most two
related-key-deriving (RKD) functions φ’s from Φ4.

Proof. We let F (K, ⋆) be pfCM1 −MD
f

pad1
(g(IV, ⋆32||K||⋆b−n−32), ⋆).

Advmulti-rka-prf

f(RK(⋆,K⋆),⋆),Φ4
(VA)

= |Pr[K1, · · · , Kq
$
← {0, 1}n : V

f(RK(⋆,K⋆),⋆)
A = 1]

− Pr[g1,· · · ,gq
$
←Maps({0, 1}n+b,{0, 1}n);K

$
←{0, 1}n:V

g⋆(RK(⋆,K),⋆)
A =1]|

= |
∑l−1

j=1 Pr[K1, · · · , Kq
$
← {0, 1}n : V

f(RK(⋆,K⋆),⋆)
A,i=j = 1] · 1

l−1

−
∑l−1

j=1 Pr[g1,· · · ,gq
$
←Maps({0, 1}n+b,{0, 1}n);K

$
←{0, 1}n:V

g⋆(RK(⋆,K),⋆)
A,i=j =1] · 1

l−1 |

= 1
l−1 |Pr[K

$
← {0, 1}n : V F (K,⋆) = 1]− Pr[g

$
← Maps({0, 1}∗, {0, 1}n) : V g(⋆) = 1]|

= 1
l−1Advprf

F (K,⋆)(A).

The second equality follows from the definition of VA in Fig. 7 and the third equality follows
from Lemma 19 and Lemma 20.

Theorem 7. For any prf-adversary A with q queries, there exist a prf-adversary QA such that

Adv
prf

pfCM0−MDf

pad
(IV, ⋆32||K|| ⋆)

(A) ≤ Adv
prf

pfCM1−MDf

pad1
(g(IV,⋆32||K||⋆b−n−32), ⋆)

(A)

+ Adv
prf

f(⋆,⋆32||K||⋆b−n−32)
(QA),

where QA can make q queries of the form (IV ||⋆32 ||⋆b−n−32) and is defined in Fig. 7, ⋆i means

any i-bit string, and g
$
← Maps({0, 1}b, {0, 1}n).

Proof. By the definition of the prf-advantage, Advprf

pfCM0−MDf

pad
(IV, ⋆32||K|| ⋆)

(A) = |Pr[AG′′
3 =

1]− Pr[AG′′
1 = 1]|. So, we can get above theorem with Lemma 17 ∼ Lemma 18.

Corollary 3. For any adversary A with q queries, there exist adversaries QA and VA such that

Adv
prf

pfCM0−MDf

pad
(IV, ⋆32||K|| ⋆)

(A) ≤ (l−1)·Adv
multi-rka-prf

f(RK(⋆,K⋆),⋆),Φ4
(VA)+Adv

prf

f(⋆,⋆32||K||⋆b−n−32)
(QA),

where QA, VA and Φ4 are defined as before.

Proof. This holds by Theorem 6 and 7.

7 eTCR Security Analysis of a pfCM-MD Domain Extension with

the message randomization in NIST SP 800-106

Draft NIST SP 800-106 [27] describes a randomizing hashing for digital signatures [17]. More
precisely, Draft NIST SP 800-106 defines a randomization method for randomizing messages
prior to hashing. That is, the randomized method works independently from a hash function.
There is only a restriction on the hash function, which should process messages in the usual
left-to-right order. pfCM-MD is such an example. When H = {Hr(IV, ⋆)}r∈R is a hash family,
the security of the randomized hashing is measured by the following game : an adversary A
chooses M in advance, then a random string r is given to A, and A tries to find (r′, M ′) such
that Hr(IV, M) = Hr′(IV, M ′) and (r, M) 6= (r′, M ′). The measurement of this game is for-
mally defined by the definition of eTCR (which is described in the section 2). In this Section,
we show that pfCM-MD with the randomizing hashing in the Draft NIST SP 800-106 is secure
if the compression function meets a security assumption. More precisely, we provide eTCR
security analysis of pfCM0-MD with the message randomization (in short, mr) in NIST SP

800-106. And we define a hash family H = {pfCM0 −MD
f

pad(IV, mr(r, M))}r∈∪80≤i≤1024{0,1}i ,
where mr is the message randomization in NIST SP 800-106, and M ∈ {0, 1}∗. And we let
pad(M) = M ||10t||bind(|M |), where bind(|M |) is the d-bit representation of the bit-length of
M and t is the smallest non-negative integer such that pad(M) is a multiple of b-bit block.

Message Randomization (mr) in NIST SP 800-106

mr(r, M) = M ′ :

1 If (|M | ≥ |r| − 1) then padding = 1 else padding = 1||0|r|−|M|−1

2 m = M ||padding

3 Let n = |r|

4 If (n > 1024) then stop and output an error indicator

5 counter = ⌊|m|/n⌋

6 remainder = (|m| mod n)

7 Concatenate counter copies of the r to the remainder left-most bits of the r to get R such
that |R| = |m|

R = r||r|| · · · ||r||r[0 . . . (remainder − 1)]

8 r length indicator = r length indicator generation(n)

9 M ′ = r||(m⊕R)||r length indicator

10 Return M ′;

r length indicator generation(n) : // 80≤ n ≤1024 and the output is 16-bit.

1 A = n and B = A mod 2

2 If B = 0 then b15 = 0 else b15 = 1

3 For i = 14 to 0

3.1 A = ⌊A/2⌋ and B = A mod 2

3.2 If B = 0 then bi = 0 else bi = 1

4 r length indicator = b0||b1|| · · · ||b15

5 Return r length indicator;

eTCR Security Analysis of pfCM0-MD with mr in NIST SP 800-106

Lemma 21. For any (r, M) 6= (r′, M ′), mr(r, M) 6= mr(r′, M ′),

where mr is the message randomization in NIST SP 800-106.

Proof. If mr(r, M) = mr(r′, M ′), then by the definition of mr the following equality hold.

r||(m⊕R)||r length indicator = r′||(m′ ⊕R′)||r′ length indicator. (1)

Since |r length indicator| = |r′ length indicator| = 16 by the definition of mr, r length indicator
should be equal to r′ length indicator, which means that |r| = |r′|. And since r and r′ are lo-
cated in the first some bits in the equality (1), we know that r = r′, which means also that
m = m′ and R = R′, where R and R′ are generated from the identical r (=r′). Finally, by the
padding method defined in line 1 and 2 of mr, m = m′ means that M = M ′. Therefore, the
lemma holds.

In the following theorem, it is shown that the eTCR-advantage of A on the pfCM0-MD with
mr is bounded by the eSPR†-advantage of A on the pfCM0-MD with mr.

Theorem 8. For any eTCR-adversary A, there exists a SPR†-adversary BA such that

Adv
eTCR
H (A) ≤ l ·Adv

eSPR†

H (BA),

where H = {pfCM0 −MD
f

pad(IV, mr(r, ⋆))}r∈∪80≤i≤1024{0,1}i , and mr is the message randomiza-
tion in NIST SP 800-106. BA is defined in Fig. 8. l is defined in Fig. 8.

Proof. Let Hr(IV, ⋆) be pfCM0 −MD
f

pad(IV, mr(r, ⋆)). ∆ is the statement that “(M, State)
$
←

A; r
$
← R; (r′, M ′)

$
← A(r, M, State) : (r, M) 6= (r′, M ′) and Hr(IV, M) = Hr′(IV, M ′)”.

Υ is the statement that “(M, State)
$
← BA; r

$
← ∪80≤j≤1024{0, 1}j; i

$
← [1, l]; (c′, m′)

$
←

BA(i, r, M, State) : (c, m) = Hr(IV, M)[i] and (c, m) 6= (c′, m′) and f(c, m) = f(c′, m′)”.

AdveTCR
H (A) = Pr[∆] = Pr[∆∧(|mr(r, M)| = |mr(r′, M ′)|)]+Pr[∆∧(|mr(r, M)| 6= |mr(r′, M ′)|)]

≤ l · Pr[Υ ∧ (|mr(r, M)| = |mr(r′, M ′)|)] + l · Pr[Υ ∧ (|mr(r, M)| 6= |mr(r′, M ′)|)]

= l · Pr[Υ] = l ·AdveSPR†

H (BA).

The equality of the second line is guaranteed by Claim 1 and Claim 2.

Claim 1. Pr[∆ ∧ (|mr(r, M)| = |mr(r′, M ′)|)] ≤ l · Pr[Υ ∧ (|mr(r, M)| = |mr(r′, M ′)|)].

Proof. Since pfCM0 −MD
f

pad(IV, ⋆) preserves the collision-resistance of f and |mr(r, M)| =

|mr(r′, M ′)|, if (mr(r, M), mr(r′, M ′)) is a collision pair of pfCM0 −MD
f

pad(IV, ⋆), there exists

a i such that f(c, x) = f(c′, x′), where (c, x) = pfCM0 −MD
f

pad(IV, mr(r, M))[i], (c′, x′) =

pfCM0 −MD
f

pad(IV, mr(r′, M ′))[i], and (c, x) 6= (c′, x′). In the definition of BA in Fig. 8, the
probability that i is correctly guessed is 1/l. So, the Claim 1 holds.

Claim 2. Pr[∆ ∧ (|mr(r, M)| 6= |mr(r′, M ′)|)] = l · Pr[Υ ∧ (|mr(r, M)| 6= |mr(r′, M ′)|)].

Proof. Since pad(M) = M ||10t||bind(|M |), if |mr(r, M)| 6= |mr(r′, M ′)|, and (mr(r, M), mr(r′, M ′))

is a collision pair of pfCM0 −MD
f

pad(IV, ⋆), then f(c, x) = f(c′, x′), where (c, x) = pfCM0 −MD
f

pad

(IV, mr(r, M))[l], (c′, x′) = pfCM0 −MD
f

pad (IV, mr(r′, M ′))[l′], and (c, x) 6= (c′, x′). In the def-
inition of BA in Fig. 8, the probability that i = l is 1/l. So, the Claim 2 holds.

Adversary BA.

000 Run A and obtain M from A and Choose M as a target message.

100 Given r
$
← ∪80≤i≤1024{0, 1}i

200 Given i
$
← [1, l] // l = Lenf (pfCM0 −MD

f

pad(IV,mr(r, M)))
300 Forward r to A.

400 Obtain (r′, M ′) from A and let l′ = Lenf (pfCM0 −MD
f

pad(IV,mr(r′, M ′))).

500 if |mr(r,M)|=|mr(r′, M ′)| then (c′, m′)← pfCM0 −MD
f

pad(IV,mr(r′, M ′))[i]

600 if |mr(r,M)| 6= |mr(r′, M ′)| then (c′, m′)← pfCM0 −MD
f

pad(IV,mr(r′, M ′))[l′]
700 Return (c′, m′)

Fig. 8. Adversary BA: l′ = Lenf (pfCM0 −MD
f

pad(IV,mr(r′, M ′))) is the number of computations of

the compression function f when computing pfCM0 −MD
f

pad(IV,mr(r′, M ′)) for any r, where M is
generated by the adversary A. mr is the message randomization in NIST SP 800-106.

8 Conclusion

In this paper, we have provided the security requirements of the compression function of pfCM-
MD, so that several schemes based on pfCM-MD become secure. That is, if a designer want
to develop new hash function based on pfCM-MD, out results can be the guideline for the
measurement of the security of the underlying compression function. And we also give a simple
indifferentiable security analysis on pfCM-chopMD. Till now, there are many domain extensions
which are required to be evaluated as shown in this paper. These kinds of research may be future
works.

References

1. E. Andreeva, C. Bouillaguet, P. Fouque, J. J. Hoch, J. Kelsey, A. Shamir and S. Zimmer, Second
Preimage Attacks on Dithered Hash Functions, Advances in Cryptology – EUROCRYPT’08, LNCS
4965, Springer-Verlag, pp. 270–288, 2008.

2. G. Bertoni, J. Daemen, M. Peeters and G. V. Assche, On the Indifferentiability of the Sponge
Construction, Advances in Cryptology – EUROCRYPT’08, LNCS 4965, Springer-Verlag, pp. 181–
197, 2008.

3. M. Bellare, N ew Proofs for NMAC and HMAC: Security without Collision-Resistance, Advances
in Cryptology – CRYPTO’06, LNCS 4117, Springer-Verlag, pp. 602–619, 2006.

4. M. Bellare, R. Canetti and H. Krawczyk, Pseudorandom Functions Revisited: The Cascade Con-
struction and its Concrete Security, In the preceedings of the 37th Symposium on Foundations of
Computer Science, IEEE, 1996.

5. M. Bellare, R. Canetti and H. Krawczyk, Keying Hash Functions for Message Authentication,
Advances in Cryptology – CRYPTO’96, LNCS 1109, Springer-Verlag, pp. 1–15, 1996.

6. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, On the Indifferentiability of the Sponge
Construction, Advances in Cryptology – EUROCRYPT’08, LNCS 4965, Springer-Verlag, pp. 181–
197, 2008.

7. M. Bellare and T. Kohno, A Theoretical Treatment of Related-Key Attacks: RKA-PRPs, RKA-
PRFs, and Applications, Advances in Cryptology – EUROCRYPT’2003, LNCS 2656, Springer-
Verlag, pp. 491–506, 2003.

8. M. Bellare and T. Ristenpart, Multi-Property-Preserving Hash Domain Extension and the EMD
Transform, Asiacrypt’2006, LNCS 4284, pp. 299–314, 2006.

9. M. Bellare and P. Rogaway, Random Oracles Are Practical : A Paradigm for Designing Efficient
Protocols, In 1st Conference on Computing and Communications Security, ACM, pages 62–73,
1993.

10. M. Bellare and P. Rogaway, The game-playing technique and its application to triple encryption,
Cryptology ePrint Archive: Report 2004/331, 2004.

11. E. Biham and O. Dunkelman, A Framework for Iterative Hash Functions: HAIFA, In the second
NIST Hash Workshop, 2006.

12. D. Chang, S. Lee, M. Nandi and M. Yung, Indifferentiable Security Analysis of Popular Hash
Functions with Prefix-Free Padding. Advances in Cryptology – ASIACRYPT’06, LNCS 4284, pp.
283–298, 2006.

13. D. Chang and M. Nandi, Improved Indifferentiability Security Proof of chopMD Hash Function,
FSE’2008, LNCS 5086, Springer-Verlag, pp. 429–443, 2008.

14. D. Chang, J. Sung, S. Hong and S. Lee, Indifferentiable Security Analysis of choppfMD, chopMD, a
chopMDP, chopWPH, chopNI, chopEMD, chopCS, chopESh Hash Domain Extensions, Cryptology
ePrint Archive: Report 2008/407, 2008.

15. J. S. Coron, Y. Dodis, C. Malinaud and P. Puniya, Merkle-Damg̊ard Revisited: How to Construct a
Hash Function, Advances in Cryptology – CRYPTO’05, LNCS 3621, Springer-Verlag, pp. 430–448,
2005.

16. I. B. Damgard, A design principle for hash functions, Advances in Cryptology – CRYPTO’89,
LNCS 435, Springer-Verlag, pp. 416–427, 1990.

17. S. Halevi and H. Krawczyk, Strengthening Digital Signatures via Randomized Hashing, Advances
in Cryptology – CRYPTO’06, LNCS 4117, Springer-Verlag, pp. 41–59, 1996.

18. S. Hirose, J. H. Park and A. Yun, A Simple Variant of the Merkle-Damg̊ard Scheme with a Per-
mutation, Advances in Cryptology – ASIACRYPT’07, LNCS 4833, Springer-Verlag, pp. 113–129,
2007.

19. S. Hirose, Security Analysis of DRBG Using HMAC in NIST SP 800-90, WISA’08, to appear.

20. J. Kelsey and B. Schneier, Second preimages on n-bit hash functions for much less than 2n work,
Advances in Cryptology – EUROCRYPT’05, LNCS 3494, Springer-Verlag, pp. 474–490, 2005.

21. X. Lai and J. L. Massey, Hash Function Based on Block Ciphers, Advances in Cryptology – EU-
ROCRYPT’92, LNCS 658, Springer-Verlag, pp. 55–70, 1993.

22. U. Maurer, R. Renner and C. Holenstein, Indifferentiability, Impossibility Results on Reductions,
and Applications to the Random Oracle Methodology, TCC’04, LNCS 2951, Springer-Verlag, pp.
21–39, 2004.

23. Ueli Maurer and Stefano Tessaro, Domain Extension of Public Random Functions: Beyond the
Birthday Barrier, CRYPTO’2007, LNCS 4622, pp. 187–204, 2007.

24. R. C. Merkle, One way hash functions and DES, Advances in Cryptology – CRYPTO’89, LNCS
435, Springer-Verlag, pp. 428–446, 1990.

25. NIST SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography, http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-
56A Revision1 Mar08-2007.pdf.

26. NIST SP 800-90, Recommendation for Random Number Generation Using Determin-
istic Random Bit Generators, http://csrc.nist.gov/publications/nistpubs/800-90/SP800-
90revised March2007.pdf.

27. NIST SP 800-106, DRAFT Randomized Hashing Digital Signatures (2nd draft),
http://csrc.nist.gov/publications/drafts/800-106/2nd-Draft SP800-106 July2008.pdf.

28. NIST Hash Project, Announcing Request for Candidate Algorithm Nominations for a New Crypto-
graphic Hash Algorithm (SHA-3) Family, http://csrc.nist.gov/groups/ST/hash/documents/SHA-
3 FR Notice Nov02 2007%20-%20more%20readable%20version.pdf.

