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Abstract

This paper shows that chameleon hash functions and Sigma protocols are equivalent. We provide
a transform of any suitable Sigma protocol to a chameleon hash function, and also show that any
chameleon hash function is the result of applying our transform to some suitable Sigma protocol.
This enables us to unify previous designs of chameleon hash functions, seeing them all as emanating
from a common paradigm, and also obtain new designs that are more efficient than previous ones.
In particular, via a modified version of the Fiat-Shamir protocol, we obtain the fastest known
chameleon hash function with a proof of security based on the standard factoring assumption. The
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1 Introduction

The failure of popular hash functions MD5 and SHA-1 [54, 55] lends an impetus to the search for new
ones. The contention of our paper is that there will be a “niche” market for as-fast-as-possible hash
functions proven secure under standard assumptions. We provide a general paradigm that yields such
functions.

The hash functions we get are chameleon [31] and we extend the treatment to get a characterization
of chameleon hash functions, on the one hand unifying and clarifying previous constructs and on the
other hand yielding new and more efficient ones. Let us now look at all this in more detail.

The need for proven-secure hashing. Suppose an important document has been signed with
a typical hash-then-sign scheme such as PKCS#1 [30]. If collisions are found in the underlying hash
function the public key needs to be revoked and the signature can no longer be accepted. Yet there are
instances in which we want a public key and signatures under it to survive for twenty or more years.
This might be the case for a central and highly disseminated certificate or an important contract.
Revocation of a widely disseminated public key is simply too costly and error-prone. In such a case,
we want to be able to trust that collisions in our hash function will not be found even twenty years
down the line.

Given the failure of MD5 and SHA-1, it would be understandable, from this twenty-year perspec-
tive, to feel uncertain about any hash function designed by “similar” methods. On the other hand,
we may be very willing to pay a (reasonable!) computational price for security because documents
or certificates of the ultra-importance we are considering may not need to be signed often. In this
case, hash functions with proven security are interesting, and the faster they are the better. Our
contribution is a general transform that yields a plurality of such hash functions, not only providing
new ones but “explaining” or improving old ones.

From Σ to hash. We show how to construct a collision-resistant hash function from any (suitable)
Σ-protocol. Recall that Σ-protocols are a class of popular 3-move identification schemes. Canonical
examples are the Schnorr [46], Fiat-Shamir [21] and GQ [24] protocols, but there are many others
as well [36, 39, 10, 25, 45, 38, 40]. Briefly, the protocols achieve a strong form of the usual honest-
verifier zero-knowledge property, and our hash function is defined using the simulator. (We stress
that the computation of the hash is deterministic even though the simulator is randomized.) The
collision-resistance stems from strong special soundness [9], a well-studied property of Σ-protocols.
The advantage of our approach is that there is a rich history in constructing proven-secure Σ-protocols
and we can now leverage this to get collision-resistant hash functions. For future reference let us refer
to a hash function derived from our approach as a Σ-hash function.

Damgard [19] and Cramer, Damgard and Mckenzie [16] have previously shown that it is possible
to design commitment schemes based on Σ-protocols, but prior to our work it has not been observed
that one can design collision-resistant hash functions from Σ-protocols. Note that secure commitment
is not known to imply collision-resistant hashing and in fact is unlikely to do so because the former
can be based on one-way functions [37] and the latter probably not [49]. Perhaps as a consequence,
our construction requires slightly stronger properties from the Σ-protocols than do the constructions
of [19, 16].

Specific designs. The Schnorr [46] and GQ [24] schemes are easily shown to meet our conditions,
yielding collision resistant Σ-hash functions H -Sch and H -GQ based, respectively, on discrete log and
RSA. More interesting is the Fiat-Shamir protocol FS [21]. It doesn’t satisfy strong special soundness
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Pre H -Da H -ST H -SFS

0 1 0.22 2

2048 1 0.33 4

16384 1 2 8

Figure 1: Performance of factoring-based hash functions. The modulus and output size are 1024 bits
and the block size is 512 bits. “Pre” is the amount of pre-computation, in number of group elements
stored. The table entry is the rate, defined as the average number of bits of data hashed per modular
multiplication.

but we modify it to a protocol SFS (strong FS ) that we prove does under the factoring assumption,
thereby obtaining a Σ-hash function H -SFS . From a modified version of the Micali-Shamir protocol
[36] we obtain a Σ-hash function H -SM S with security based on the SRPP (Square Roots of Prime
Products) assumption of [36]. We also obtain a Σ-hash H -Oka from Okamoto’s protocol [39] and
a pairing-based Σ-hash H -HS from an identification protocol of [5] derived from the identity-based
signature scheme of Hess [25].

How fast? One question we consider interesting is, how fast can one hash while maintaining a proof
of security under the standard factoring assumption? Figure 1 compares H -SFS to the fastest known
factoring-based functions and shows that the former emerges as the winner. (VSH, the Very Smooth
Hash function of [14], is faster than all these, but is based on a non-standard assumption related to the
difficulty of extracting modular square roots of products of small primes. We will discuss VSH, and
our improvement to it, in a bit.) In Figure 1, H -Da is the most efficient factoring-based instantiation
known of Damg̊ard’s claw free permutation-based hash function [17, 23, 31]. H -ST is the hash function
of Shamir and Tauman [47]. The table entries are the rate, defined as the average number of bits of
data hashed per modular multiplication in MD mode with a block size of 512 bits and a modulus
and output size of 1024 bits. The figure shows that without pre-computation, H -SFS is twice as fast
as H -Da and 9 times as fast as H -ST . But H -SFS is amenable to pre-computation based speedup
and H -Da is not, so the gap in their rates increases swiftly with storage. H -ST is also amenable to
pre-computation based speedup but H -SFS remains a factor 4 faster for any given amount of storage.
We also remark that additionally H -SFS is amenable to parallelization, unlike the other functions.
We remark that H -SM S is faster than H -SFS but based on a stronger assumption. In Section 6 we
recall H -Da and H -ST and justify the numbers in Figure 1. We also discuss implementation results.

Additional features. Σ-hash functions are keyed. While one can, of course, simply hardwire into
the code a particular key to get an unkeyed function in the style of MD5 or SHA-1, it is advantageous,
as explained in [7], to allow each user to choose their own key. The reason is that damage from a
collision is now limited to the user whose key is involved, and the attacker must re-invest resources to
attack another key. This slows down the rate of attacks and gives users time to get patches in place
or revoke keys.

The reductions underlying the security proofs of Σ-hash functions are tight, so that the proven
security guarantees hold with standard values of the security parameters.

Σ-hash functions are chameleon. Krawczyk and Rabin [31] introduced chameleon hash functions.
The over 150 citations to date to their paper (as per Google Scholar) are an indication of the popularity
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and utility of the primitive.
Krawczyk and Rabin [31] presented two example constructions of chameleon hash functions, and

others were found by [47, 2, 3]. The analyses, however, are ad hoc. We, in contrast, show a general
result, namely, that any Σ-hash is chameleon (cf. Theorem 5.1). As a consequence, we immediately
obtain that H -GQ ,H -SFS ,H -SM S ,H -Oka and H -HS are chameleon. In particular, in H -SFS , we
obtain the fastest known chameleon hash function under the standard factoring assumption.

Shamir and Tauman used chameleon hash functions to build on-line/off-line signature schemes [47].
(The concept is due to [20].) This means that when one uses a Σ-hash one can completely eliminate
the on-line cost of signing. (This cost is shifted entirely to the off-line phase.) Another application
is chameleon signatures [31], which provides a recipient with a non-repudiable signature of a message
without allowing it to prove to a third party that the signer signed this message. As explained in [31]
this is an important tool for privacy-respecting authenticity in the signing of contracts and agreements.
Chameleon hash functions are also used in designated-verifier signatures to achieve privacy [29, 50].
Finally, chameleon hashing can be used to transform a weakly-secure signature scheme into a fully-
secure one. This is used in many places [31, 48, 11, 26] and a full statement and proof were provided by
Hohenberger and Waters [27] whose design of RSA-based signatures made crucial use of this transform.
By adding new and more efficient chameleon hash functions to the pool of existing ones we enable
new and more efficient ways to implement all the different applications.

Reverse connection. As indicated above, we show that Σ-hash functions are chameleon. To
complement this, we show that the converse is true as well, namely, all chameleon hash functions are
Σ-hash functions (cf. Theorem 5.2). We prove this by associating to any chameleon hash function H
a Σ-protocol SP such that applying our Σ2H (Σ-to-hash) transform to SP returns H . We thereby
have a characterization of chameleon hash functions as Σ-hash functions, which, as we discuss below,
allows us to unify previous work.

We also obtain numerous new Σ-protocols, and thus identification protocols and, via [16, 19],
commitment schemes, from existing chameleon hash functions such as H -Da [17] and H -ST [47].
However, we are not aware of any practical benefit of these constructs over known ones.

Unifying previous work. H -Sch turns out to be exactly the classical hash function of Chaum, Van
Heijst and Pfitzmann [13], which was shown to be chameleon by [31]. H -Oka is an extension thereof
[13]. H -GQ is a special case of a chameleon hash function proposed by Ateniese and de Medeiros
[2, 3]. (Our other hash functions H -SFS , H -SM S and H -HS are new.) The re-derivation of these
hash functions as Σ-hashes sheds new light on the designs and shows how the Σ paradigm explains
and unifies previous constructs.

Finally we make a connection between VSH [14] and H -SM S , the Σ-hash function emanating
from the protocol of Micali and Shamir [36]. The latter is a more efficient version of the Fiat-Shamir
protocol in which the public key, rather than consisting of random quadratic residues, consists of small
primes. Interestingly H -SM S turns out to be the VSH compression function [14] modulo some details.
We suggest that this provides some intuition for the VSH design. It turns out that we can exploit this
connection to get some improvements to VSH.

VSH∗
. In number-theoretic hashing there is (as elsewhere) a trade-off between speed and assump-

tions. We saw above that H -SFS is the fastest known hash function under the standard factoring
assumption. We now turn to non-standard factoring-related assumptions. Here the record-holder is
VSH (Very Smooth Hash), a construct of Contini, Lenstra and Steinfeld [14] which has a proof of
collision-resistance based on the VSSR assumption of the same paper [14]. We provide a modifica-
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tion VSH∗ whose compression function, unlike that of the original, is collision resistant, leading to
better performance for short messages. (Our implementations show that VSH∗ is up to 5 times faster
than VSH on short messages. On long messages they have the same performance.) This is impor-
tant because short messages are an important case in practice. (For example, most Internet packets
are short.) VSH∗ remains provably collision-resistant under the same VSSR assumption as VSH. A
different collision-resistant modification of the compression function of VSH is provided by [51].

We provide analogous improvements for the Fast-VSH variant of VSH provided by [14]. Again
we can provide Fast-VSH∗ whose underlying compression function (unlike that of Fast-VSH) is proven
collision-resistant, leading to speedups in hashing short messages. However, the speed gains are smaller
than in the previous case.

Overall we believe that, even putting performance aside, having a collision resistant compression
function underlying a hash function is a plus since it can be used directly and makes the hash function
more misuse-resistant.

What Σ-hash functions aren’t. Some recent work [15, 6, 1] suggests that general-purpose hash
functions should have extra properties like pseudorandomness. Σ-hash functions are merely collision-
resistant and chameleon; they do not offer these extra attributes. But as indicated above, Σ-hash
functions are not intended to be general purpose. The envisaged applications are chameleon hashing
and proven-secure, reasonable cost (purely) collision-resistant hashing.

2 Related work

Damg̊ard [17] presents a construction of collision-resistant hash functions from claw-free permutation
pairs [23]. As noted above, his factoring-based instantiation, based on [23] and also considered in
[31, 47], is slower than our H -SFS .

Ishai, Kushilevitz and Ostrovsky [28] show how to transform homomorphic encryption (or com-
mitment) schemes into collision-resistant hash functions. This is an interesting theoretical connection
between the primitives. As far as we can tell, however, the approach is not yet practical. Specifically,
their quadratic-residuosity (QR) based instantiation has a rate of 1/40 (that is, 40 modular multi-
plications per bit) with a 1024 bit modulus. (Their matrix needs 80 rows to get the 80-bit security
corresponding to a 1024-bit modulus.) Hence their function is much slower than the constructs of
Figure 1 in addition to being based on a stronger assumption (QR as opposed to factoring). Addi-
tionally it has a 80 · 1024 bit output so in a practical sense is not really hashing. Other instantiations
of their construction that we know (El Gamal under DDH, Paillier [41] under DCRA) are also both
slower than known ones and based on stronger assumptions.

Lyubashevsky, Micciancio, Peikert and Rosen [34] present a fast hash function SWIFFT with an
asymptotic security proof based on assumptions about the hardness of lattice problems [42, 33], but
the proof would not seem to yield guarantees for the parameter sizes proposed in [34]. In contrast, our
reductions are tight and the proofs provide guarantees for standard values of the security parameters.

Bellare and Micciancio’s construction [4] (whose goal was to achieve incrementality) uses random
oracles, but these can be eliminated by using a small block size, such as one bit. In this case their
MuHASH is provably collision-resistant based only on the discrete-log assumption, and runs at 0.33
bits per group operation in MD mode. In comparison, H -Sch (also discrete log based) is faster, at
0.57 bits per group operation in MD mode.

Charles, Goren and Lauter [12] presented a hash function based on the assumed hardness of some
problems related to elliptic curves. However, their construction was shown to not be collision-resistant
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[52] and in fact to not even be pre-image resistant [43]. Tillich and Zémor [53] present a hash function
based on the assumed hardness of some graph problems, whose security properties and efficiency were
improved by Petit, Veyrat-Charvillon, and Quisquater [44]. The hash function of [44] is slower than
Fast-VSH, and thereby slower than Fast-VSH∗, according to the performance results reported in [14]
and [44].

Heng and Kurosawa [32] define reversible Σ-protocols and show that these and trapdoor commit-
ment schemes are equivalent. Reversibility, a property we do not assume, requires that the prover’s
randomness or internal state can be reconstructed from the public key and last two messages in the
protocol given the secret key. The binding property of the commitment scheme is a weak form of
collision resistance which rules out efficiently finding message-randomness pairs where the message
parts are different but the corresponding commitments are the same. They do not claim or provide
(chameleon) collision-resistant hash functions.

Steinfeld, Pieprzyk and Wang [51] suggest a collision-resistant modification of the VSH compression
function based on restricting the domain of the second argument. This makes iterating the compression
function somewhat less convenient but it can be done using the methods we discuss in Appendix A
and would then appear to yield performance benefits similar to those we get via VSH∗. They do not
consider Fast-VSH.

Preliminary version. A preliminary version of this paper appeared as [8].

3 Definitions

Notation and conventions. We denote by a1‖ · · · ‖an a string encoding of a1, . . . , an from which
the constituent objects are uniquely recoverable. We denote the empty string by ε. Unless otherwise
indicated, an algorithm may be randomized. If A is a randomized algorithm then y←$ A(x1, . . .)
denotes the operation of running A with fresh coins on inputs x1, . . . and letting y denote the output.
We denote by [A(x1, . . .)] the set of all y that have positive probability of being output by A on input
x1, . . .. If S is a (finite) set then s←$ S denotes the operation of picking s uniformly at random
from S. If X = x1‖x2‖ . . . ‖xn, then x1‖x2‖ . . . xn ← X denotes the operation of parsing X into its
constituents. Similarly, if X = (x1, x2, . . . , xn) is an n-tuple, then (x1, x2, . . . , xn) ← X denotes the
operation of parsing X into its elements. We denote the security parameter by k, and by 1k its unary
encoding. Vectors are denoted in boldface, for example u. If u is a vector then |u| is the number of
its components and u[i] is its i-th component. “PT” stands for polynomial time.

Σ-protocols. A Σ-protocol is a three-move interactive protocol conducted by a prover and a verifier.
Formally, it is a tuple SP = (K,P,V,CmSet,ChSet,RpSet), where K,P are PT algorithms and V is a
deterministic boolean algorithm. The key-generation algorithm K takes input 1k and returns a pair
(pk, sk) consisting of a public and secret key for the prover. The latter is initialized with pk, sk while
the verifier is initialized with pk. The parties interact as depicted in Figure 2. The prover begins by
applying P to pk, sk to yield his first move Y ∈ CmSet(pk), called the commitment, together with
state information y, called the ephemeral secret key. The commitment is sent to the verifier, who
responds with a challenge c drawn at random from ChSet(pk). The prover computes its response z

by applying P to pk, sk, the challenge and the ephemeral secret key y. (This computation may use
fresh coins although in the bulk of protocols it is deterministic.) Upon receiving c the verifier applies
V to the public key and transcript Y‖c‖z of the conversation to decide whether to accept or reject.
We require completeness, which means that an interaction between the honest prover and verifier is
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Prover

Input: pk, sk

(Y, y)←$ P(pk, sk)

z←$ P(pk, sk,c, y)

Y
-

c
�

z
-

Verifier

Input: pk

c←$ ChSet(pk)

d← V(pk,Y‖c‖z)

Figure 2: Σ-protocol. Keys pk and sk are produced using key-generation algorithm K.

always accepting. Formally, for all k ∈ N we have d = 1 with probability 1 in the experiment

(pk, sk)←$ K(1k); (Y, y)←$ P(pk, sk); c←$ ChSet(pk);

z←$ P(pk, sk,c, y); d← V(pk,Y‖c‖z).

The verifier given pk,Y‖c‖z should always check that Y ∈ CmSet(Y) and c ∈ ChSet(pk) and
z ∈ RpSet(pk) and reject otherwise. We implicitly assume this is done throughout.

Security notions. We provide formal definitions of strong special soundness (sss) and strong hon-
est verifier zero-knowledge (StHVZK). Strong special soundness of Σ-protocol SP = (K,P,V,CmSet,
ChSet,RpSet) [9] asks that it be computationally infeasible, given only the public key, to produce a pair
of accepting transcripts that are commitment-agreeing but challenge-response-disagreeing. Formally
an sss-adversary, on input pk, returns a tuple (Y,c1, z1,c2, z2) such that Y ∈ CmSet(pk);c1,c2 ∈
ChSet(pk); z1, z2 ∈ RpSet(pk) and (c1, z1) 6= (c2, z2). The advantage Advsss

SP ,A(k) of such an ad-
versary is defined for all k ∈ N as the probability that V(pk,Y‖c1‖z1) = 1 and V(pk,Y‖c2‖z2) = 1
in the experiment where K(1k) is first executed to get (pk, sk) and then A(pk) is executed to get
(Y,c1, z1,c2, z2). We say that SP has strong special soundness if Advsss

SP ,A(·) is negligible for all PT
sss-adversaries A. To define StHVZK, let Tr SP be the algorithm that on input (pk, sk) executes P

and V as per Figure 2 and returns the transcript Y‖c‖z. Recall that a PT algorithm Sim is a HVZK
simulator for SP if the outputs of the processes

(pk, sk)←$ K(1k); Return (pk,Sim(pk))

and

(pk, sk)←$ K(1k); Return (pk, Tr SP (pk, sk))

are identically distributed. (We require perfect, not computational, ZK. This simplifies applications
and there is no particular loss from assuming it since it is provided by the candidate protocols.) We
say that a PT algorithm StSim is a strong HVZK (StHVZK) simulator for SP if StSim is deterministic
and the algorithm Sim defined on input pk by

c←$ ChSet(pk); z←$ RpSet(pk); Y ← StSim(pk,c, z); Return Y||c||z

is a HVZK simulator for SP . We say that SP is StHVZK if it has a PT StHVZK simulator and also
the commitment Y generated via (Y, y)←$ P(pk, sk) is uniformly distributed over CmSet(pk) for all
(pk, sk) ∈ [K(1k)]. We denote by Σ(sss) the set of all Σ-protocols that satisfy strong special soundness
and by Σ(StHVZK) the set of all Σ-protocols that are strong HVZK.

Discussion. While the basic format of Σ-protocols as 3-move protocols of the type above is agreed
upon, when it comes to security properties, there are different choices and variations in the literature.
Our formalization of strong special soundness is from [9]. Strong HVZK seems to be new but the
canonical protocols in this area have this property.
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Collision-resistant hash functions. A family of n-input hash functions (where n ≥ 1 is a
constant) is a tuple H = (KG,H,D1, . . . ,Dn,R). The key-generation algorithm KG takes input 1k

and returns a key K describing a particular function HK : D1(K) × . . .Dn(K) → R(K). As this
indicates, D1, . . . ,Dn,R are functions that given K return sets. A cr-adversary, on input K returns
distinct tuples (x1, . . . , xn), (y1, . . . , yn) such that xi, yi ∈ Di(K) for all 1 ≤ i ≤ n. The advantage
Advcr

H ,B
(k) of such an adversary B is defined for all k ∈ N as the probability that H(K,x1, . . . , xn) =

H(K, y1, . . . , yn) in the experiment where KG(1k) is first executed to get K and then B(K) is executed
to get ((x1, . . . , xn), (y1, . . . , yn)). We say that H is collision resistant if the cr-advantage of any PT
adversary B is negligible.

4 Σ-hash theory

This section covers the theory of Σ-hash functions. We present and justify the Σ2H transform that
turns a Σ-protocol SP ∈ Σ(sss)∩Σ(StHVZK) into a collision-resistant hash function H -SP . Then we
find Σ-protocols which we can prove have the required properties and derive specific Σ-hash functions.
In Section 5 we relate Σ and chameleon hash functions. In Section 6 we discuss the practical and
performance aspects of our Σ-hash functions.

4.1 The transform

We show how to build a collision-resistant hash function from any Σ-protocol SP = (K,P,V,CmSet,
ChSet,RpSet) ∈ Σ(sss) ∩ Σ(StHVZK) that satisfies strong special soundness and strong HVZK.
Let StSim be a strong HVZK simulator for SP . Let K(1) be the algorithm that on input 1k lets
(pk, sk)←$ K(1k) and returns pk. We define the 2-input family of hash functions H = (KG,H,ChSet,
RpSet,CmSet) by KG = K(1) and Hpk(c, z) = StSim(pk,c, z). In other words, the key is the prover’s
public key. (The secret key is discarded.) The inputs to the hash function are regarded as the chal-
lenge and response in the Σ-protocol. The output is the corresponding commitment. The existence
of a StHVZK simulator is exploited to deterministically compute this output. We refer to a family of
functions defined in this way as a Σ-hash. We write H = Σ2H(SP ) to indicate that H has been derived
as above from Σ-protocol SP . The following theorem says that a Σ-hash family is collision-resistant.

Theorem 4.1 Let SP = (K,P,V,CmSet,ChSet,RpSet) ∈ Σ(sss) ∩Σ(StHVZK) be a Σ-protocol. Let
H = (KG,H,ChSet,RpSet,CmSet) = Σ2H(SP ) be the family of hash functions associated to SP as
above. For every cr adversary B against H there exists an sss-adversary A against SP such that for
all k we have Advcr

H,B(k) ≤ Advsss-na
SP ,A (k), and the running time of B is that of A.

The proof of this theorem, given below, is simple, but we note some subtleties, which is the way it
relies on the (strong) HVZK and completeness of the Σ-protocol in addition to the strong special
soundness.

Proof of Theorem 4.1: We define adversary A as follows.

Adversary A(pk)
((c1, z1), (c2, z2))←$ B(pk) ;Y ← Hpk(c1, z1)
Return (Y,c1, z1,c2, z2)

9



Algorithm K(1k)

(〈G〉, p, g)←$ G (1k)
x←$ Zp

X ← g−x; sk ← x
pk ← (〈G〉, p, g,X)
Return (pk, sk)

Prover Verifier

y←$ Zp; Y ← gy Y
-

c
� c←$ Zp

z← y + x · c mod p z
- d← (Xcgz = Y)

Hpk : Zp×Zp → G

Hpk(c, z) = Xcgz

Figure 3: Sch Σ-protocol and the derived Σ-hash family, where G is a prime-order group generator.

By definition of a cr-adversary we know that (c1, z1) 6= (c2, z2). Hence A satisfies the definition of an
sss adversary. Let Yi = Hpk(ci, zi) for i = 1, 2. The definition of a cr-adversary also implies that ci ∈
ChSet(pk) and zi ∈ RpSet(pk) for i = 1, 2. Strong HVZK now implies that the transcripts Yi‖ci‖zi
have positive probability of being produced in the protocol, meaning of being output by Tr SP(pk, sk).
The completeness of the protocol now implies that V(pk,Y1‖c1‖z1) = 1 and V(pk,Y2‖c2‖z2) = 1.
Finally, if B succeeds then Y1 = Y2 so A also succeeds.

To construct Σ-hash functions we now seek Σ-protocols which we can show are in Σ(sss)∩Σ(StHVZK).

4.2 Overview of constructions

We begin, as illustrative examples, with the Schnorr [46] and GQ [24] Σ-protocols, which we can easily
show to have the desired properties. The hash functions obtained are known [13, 2, 3] and their re-
derivation as Σ-hashes sheds new light on their design and also shows how the Σ-hash paradigm unifies
and explains existing work. More interesting is the Fiat-Shamir [21] Σ-protocol. It doesn’t satisfy
strong special soundness, but we modify it to a Σ-protocol SFS that we prove is in Σ(sss)∩Σ(StHVZK)
under the standard factoring assumption. With non-standard factoring-related assumptions (that it is
hard to extract modular square roots of products of small primes) we get a faster Σ-hash H -SM S from
a modification of the Micali-Shamir Σ-protocol [36]. We also get another discrete-log based Σ-hash
from Okamoto’s protocol [39] and a pairing based one from the HS protocol [25, 5]. Let us now detail
all this.

4.3 Sch

We fix a prime-order group generator, by which we mean a PT algorithm G that on input 1k returns
the description 〈G〉 of a group G of prime order p ∈ {2k−1, . . . , 2k−1} together with p and a generator
g of G. The key-generation process and protocol underlying the Sch Σ-protocol of [46] are then as
shown in Figure 3. The algorithm that on input pk = (〈G〉, p, g,X) picks c, z←$ Zp and returns
Xcgz‖c‖z is a HVZK simulator for Sch , so Sch ∈ Σ(StHVZK) and the derived Σ-hash H -Sch is as
shown in Figure 3. The key observation for strong special soundness is that if Xc1gz1 = Xc2gz2 and
(c1, z1) 6= (c2, z2) then it must be that c1 6= c2. This leads us to associate to sss-adversary A the
discrete log finder D that on input 〈G〉, p, g,X runs A on the same input to get (Y,c1, z1,c2, z2) and
returns (z2 − z1)(c1 − c2)

−1 mod p. Then for all k we have Advsss
Sch ,A

(k) ≤ Advdl
G ,D(k), where the

latter is defined as the probability that x′ = x in the experiment where we let (〈G〉, p, g)←$ G (1k)
and x←$ Zp and then let x′←$ D(〈G〉, p, g, gx) . This shows that Sch has strong special soundness as
long as the discrete log problem is hard relative to G . By Theorem 4.1 H -Sch is collision-resistant
under the same assumption.
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Algorithm K(1k)

(N, e)←$ G rsa(1
k)

x←$ Z∗
N

X ← x−e mod N
l← L(k); sk ← x
pk ← (N, e, l,X)
Return (sk, pk)

Prover Verifier
y←$ Z∗

N ;

Y ← ye mod N Y
-

c
� c←$ {0, . . . , 2l − 1}

z← xc · y mod N z
- d← (Y = Xc · ze mod N)

Hpk : {0, . . . , 2l − 1} × Z∗
N → Z∗

N

Hpk(c, z) = Xcze mod N

Figure 4: GQ Σ-protocol and the derived Σ-hash family, where G rsa is a prime exponent RSA generator
with associated challenge length L.

4.4 GQ

We fix a prime-exponent RSA generator with associated challenge length L(·), by which we mean
a PT algorithm G rsa that on input 1k returns an RSA modulus N ∈ {2k−1, . . . , 2k − 1} and an
RSA encryption exponent e > 2L(k) that is a prime. The key-generation process and protocol
underlying Σ-protocol GQ of [24] are then as shown in Figure 4. The algorithm that on input
pk = (N, e, l,X) picks c←$ {0, 1}l ; z←$ Z∗

N and returns Y‖c‖z, where Y = Xcze mod N , is a
HVZK simulator for GQ , so GQ ∈ Σ(StHVZK) and the derived Σ-hash H -GQ is as shown in
Figure 4. Again observe that if Xc1ze1 = Xc2ze2 and (c1, z1) 6= (c2, z2) then c1 6= c2. To ad-
versary A attacking the strong special soundness, this leads us to associate the inverter I that
on input N, e,X runs A on input N, e, l,X where l = L(⌊log2(N)⌋ + 1) to get (Y,c1, z1,c2, z2)
and returns (z2z

−1
1 )bXa mod N where a, b satisfy ae + b(c1 − c2) = 1 and are found via the ex-

tended gcd algorithm. (This is where we use the fact that e is prime.) Then for all k we have
Advsss

GQ ,A(k) ≤ Advrsa
G rsa,I

(k), where the latter is defined as the probability that x′ = x in the experi-

ment where we let (N, e)←$ G rsa(1
k) and x←$ Z∗

N and then let x′←$ I (N, e, xe mod N) . This shows
that GQ has strong special soundness if RSA is one-way relative to G rsa. By Theorem 4.1, H -GQ is
collision-resistant under the same assumption.

4.5 FS and SFS

We fix a modulus generator, namely a PT algorithm Gmod that on input 1k returns a modulus N ∈
{2k−1, . . . , 2k − 1} and distinct primes p, q such that N = pq. We also fix a challenge length L(·). If c
is a l-bit string and u ∈ (Z∗

N )l then we let uc =
∏

u[i]c[i] where the product is over 1 ≤ i ≤ l and c[i]
denotes the i-th bit of c. The key-generation algorithm and protocol underlying the FS Σ-protocol are
then as shown in Figure 5. However this protocol does not satisfy strong special soundness because if
Y‖c‖z is an accepting transcript relative to pk = (N, l,u) then so is Y‖c‖z′ where z′ = N − z. We
now show how to modify FS so that it has strong special soundness. First, some notation. For w ∈ ZN

we let [w]N equal w if w ≤ N/2 and N − w otherwise. Let Z+
N = Z∗

N ∩ {1, . . . , N/2}. The modified
protocol SFS (Strong FS ) is shown in Figure 5. Here CmSet((N, l,u)) is the set QRN of quadratic
residues in Z∗

N and ChSet((N, l,u)) is {0, 1}l, just as in FS , but RpSet((N, l,u)) is now equal to
Z+
N rather than Z∗

N as before. For any adversary F we define Advfac
Gmod,F

(k) as the probability that

r ∈ {p, q} in the experiment where we let (N, p, q)←$ Gmod(1
k) and r←$ F (N). The following shows

that SFS has strong special soundness under the standard hardness of factoring assumption.
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Algorithm K(1k)

(N, p, q)←$ Gmod(1
k);

l← L(k);
For i = 1, . . . , l do

s[i]←$ Z∗
N ; u[i]← s[i]−2

sk ← s; pk ← (N, l,u)
Return pk, sk

Prover Verifier
y←$ Z∗

N ;

Y ← y2 Y
-

c
� c←$ {0, 1}l

z← y · sc z
- d← (Y = uc · z2)

Algorithm K(1k)

l ← L(k)
(N, p, q,u)←$ G SP (1

k)
For i = 1, . . . , l do

s[i]←$ SQR(u[i]−1, p, q)
pk ← (N, l,u); sk ← s

Return pk, sk

Prover Verifier
y←$ Z∗

N ;

Y ← y2 Y
-

c
� c←$ {0, 1}l

z← [y · sc]N
z
- d← (Y = uc · z2)

Hpk : {0, 1}l × Z+
N → QRN

Hpk(c, z) = uc · z2

Figure 5: FS , SFS , MS and SM S protocols and the Σ-hash derived from SFS , SM S . The upper left
key-generation algorithm is that of FS and SFS , while the lower left one is that of MS and SM S . The
upper protocol is that of FS and MS while the lower protocol is that of SFS and SM S . Here Gmod

is a modulus generator and GSP is a small prime modulus generator. The computations are in Z∗

N ,
meaning modulo N .

Proposition 4.2 Let Gmod be a modulus generator and L(·) a challenge length. Let SFS be the
associated Σ-protocol as per Figure 5. If A is a sss-adversary against SFS then there is a factoring
algorithm F against Gmod such that for all k we have Advsss

SFS ,A(k) ≤ 2 ·Advfac
Gmod,F

(k). The running
time of F is that of A plus the time for at most L(·) multiplications, one inversion modulo N , and the
time for one execution of the gcd algorithm.

Proof: The factoring algorithm F is shown in Figure 6. For the analysis, consider two cases. The first
is that c1 6= c2 and the second is that c1 = c2 and z1 6= z2. In the first case, a simple computation
shows that r21 ≡ r22 (mod N). On the other hand, s[g] is chosen at random in Z∗

N and the only
information A gets about it is u[g] = s[g]−2 mod N so s[g] 6∈ {r1, N − r1} with probability 1/2. So in
this case F succeeds with probability 1/2 times the probability that A succeeds. In the case c1 = c2

but z1 6= z2 we have, modulo N ,

Y ≡ z
2
1 ·

∏l
i=1s[i]

c1[i] ≡ z22 ·
∏l

i=1s[i]
c2[i]

and c1 = c2 implies z21 ≡ z22. But z1 6= z2 and z1, z2 ∈ Z+
N so it must be that z1 6∈ {z2, N − z2}. So F

succeeds with the same probability as A in this case.

Now, the algorithm that on input pk = (N, l,u) lets c←$ {0, 1}l; z←$ Z+
N , and Y ← uc · z2 mod N

and returns Y‖c‖z is a HVZK simulator for SFS . Accordingly SFS ∈ Σ(StHVZK) and we derive
from SFS the Σ-hash family H -SFS shown in Figure 5. Proposition 4.2 and Theorem 4.1 imply that
H -SFS is collision resistant under the standard factoring assumption.
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Algorithm F (N)

For i = 1, . . . , n do
s[i]←$ Z∗

N ; u[i]← s[i]−2 mod N
l← L(k); pk ← (N, l,u); (Y,c1, z1,c2, z2)←$ A(pk)
If c1 6= c2 then

g←$ {1, . . . , l : c1[i] 6= c2[i]}

r1 ←
(

z1

z2
·
∏

i6=gs[i]
c2[i]−c1[i]

)c1[g]−c2[g]

r2 ← s[g]
Else // c1 = c2 and z1 6= z2

r1 ← z1; r2 ← z2

r← gcd(N, r1 − r2)
Return r

Adversary B(N,u)
pk ← (N,u) ; (Y,c1, z1,c2, z2)←$ A(pk)
If c1 6= c2

T ← {j : c1[j] = 1 ∧ c2[j] = 0}
R← {j : c1[j] = 1 ∧ c2[j] = 1}
M ← {j : c1[j] = 0 ∧ c2[j] = 1} ;S ←M ∪ T
x← z1

z2

∏

j∈Tu[j]

Else // c1 = c2 and z1 6= z2

p← gcd(N, z1 − z2) // p is a factor of N
x← SQR(u[1], p,N/p) mod N ;S ← {1}

Return (x, S)

Figure 6: Factoring algorithm F for proof of Proposition 4.2 and spr-adversary B for proof of
Proposition 4.3.

4.6 MS and SMS

The Micali-Shamir protocol [36] is a variant of FS in which verification time is reduced by choosing
the coordinates of u to be small primes. As with FS it does not satisfy sss, but we can modify it
to do so and thereby obtain a collision-resistant hash function H -SM S that is faster than H -SFS at
the cost of a stronger assumption for security. To detail all this, let G SP be a small prime modulus
generator with challenge length L(·), by which we mean a PT algorithm that on input 1k returns a
modulus N ∈ {2k−1, . . . , 2k − 1}, distinct primes p, q such that N = pq, and an L(k)-vector u each of
whose coordinates is a prime in QR(N) = {x2 mod N : x ∈ Z∗

N}. For efficiency we would choose these
primes to be as small as possible. (For example u[i] is the i-th prime in QR(N).) An spr-adversary B
against GSP, L takes input N and u ∈ (Z∗

N )L(k) and returns (x, S) where x ∈ Z∗

N and S is a non-empty
subset of {0, 1}l . Its spr-advantage is defined for all k by

Adv
spr
GSP,L,B

(k) = Pr
[

x2 ≡
∏

i∈S u[i] (mod N) : (N, p, q,u)←$ GSP(1
k) ; (x, S)←$ B(N,u)

]

.

The SRPP (Square Root of Prime Products) assumption [36] says that the spr-advantage of any PT
B is negligible. Now, Figure 5 shows our modified version SM S of the Micali-Shamir protocol. It is in
Σ(StHVZK) for the same reason as SFS and hence the derived hash function is again as shown, where
SQR(·, p, q) takes input w ∈ QR(N) and returns at random one of the four square roots of w modulo
N = pq, computed using the primes p, q. Strong special soundness of SM S is proven in the following
under the SRPP assumption.

Proposition 4.3 Let G SP be a small prime modulus generator with associated challenge length L.
Let SM S be the associated Σ-protocol as per Figure 5. If A is a sss-adversary against SM S then there
is a spr-adversary B such that for all k we have Advsss

G SP ,L,A
(k) ≤ Adv

spr
G SP ,L,B

(k). The running time of

B is that of A plus time t = max{t1, t2}, where t1 is the time it takes to execute one inversion modulo
N and L+ 1 multiplications modulo N and t2 is the time it takes to execute the gcd algorithm and
the SQR algorithm.
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Proof: Let’s explain why the adversary B shown in Figure 6 works. If A succeeds then

z1
2∏n

j=1u[j]
c1[j] ≡ z2

2
∏n

j=1u[j]
c2[j] (mod N) (1)

Now, when c1 6= c2, multiplying both sides of this equation by
∏

j∈Tu[j]/
∏

j∈Ru[j] gives:

z1
2∏

j∈Tu[j]
2 ≡ z2

2
∏

j∈M∪Tu[j] (mod N)

From c1 6= c2 it follows that T ∪M 6= ∅, and therefore by outputting (z1
z2

∏

j∈Tu[j],M ∪ T ) the
adversary B succeeds.

In the other case, when c1 = c2, it has to be z1 6= z2 and the equation Equation (1) becomes
z21 ≡ z22 mod N . By finding the gcd of N and z1 − z2, B can factorize N , and so it can compute the
square root of u[1] modulo N .

Proposition 4.3 and Theorem 4.1 imply that H -SM S is collision-resistant under the SRPP assumption.

4.7 Additional functions

Okamoto’s protocol [39] is StHVZK and can be shown to have special soundness if the discrete loga-
rithm problem is hard relative to the underlying prime-order group generator, and hence we obtain a
collision-resistant Σ-hash family H -Oka . The key has the form (〈G〉, p, g1, g2,X), where g1, g2 ∈ G∗

and X ∈ G, and Hpk : Zp × (Zp × Zp) is defined by Hpk(c, (z1, z2)) = Xcgz11 gz22 . However, this
hash function seems to offer no performance advantage over H -Sch . A pairing based identification
protocol HS , derived from the id-based signature scheme of [25], is noted in [5]. It is shown in [5] to
have special soundness under concurrent attack assuming the hardness of the one more computational
Diffie-Helman problem relative to an underlying prime-order bilinear group generator. The proof can
be easily extended to show strong special soundness while relaxing the assumption to the hardness of
the computational Diffie-Helman problem. HS can also be shown to be StHVZK and hence we obtain
a Σ-hash family H -HS . The key has the form (〈G1〉, 〈G2〉, q, P, 〈e〉, α) where G1 and G2 are groups of
prime order p; e : G1 ×G1 → G2, is non-degenerate bilinear map; P ∈ G∗

1 and α ∈ G2. The function
Hpk : Zp × G1 → G2 is defined by Hpk(c, z) = e(z, P ) · αc. Due to the pairing, however, this hash
function is slower than H -Sch .

5 Σ = chameleon

We move from examples of Σ-hash functions to a general property of the class, namely that any Σ-hash
function is chameleon and vice-versa.

5.1 Definitions

A 2-input hash family H = (KG,H,D1,D2,R) is said to be trapdoor if the following are true. First,
there is a PT algorithm K, called the full key-generation algorithm, that on input 1k returns a pair
(K,T ), and algorithm KG is equal to K(1), meaning algorithm KG, on input 1k, runs K(1k) to get (K,T )
and returns K. Second, there is a deterministic, PT algorithm, I , called the inversion algorithm,
such that for all (K,T ) ∈

[

K(1k)
]

and all c1,c2 ∈ D1(K) and all Y ∈ R(K) the map defined by

z → I (K,T,Y,c1, z,c2) is a bijection of SHK,c1
(Y) to SHK,c2

(Y), where SHK,c(Y) = {z ∈ D2(K) :
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HK(c, z) = Y}.1 We say that H has the uniformity property if for all K and all c ∈ D1(K) it
is the case that HK(c, ·) is uniformly distributed over R(K) when regarded as a random variable
over a random choice of its argument z from D2(K). We say that H is chameleon if it is trapdoor,
collision-resistant and has the uniformity property.

The (standard) completeness requirement for a Σ-protocol SP = (K,P,V,CmSet,ChSet,RpSet)
implies that from a secret key sk and challenge c, one can easily (in PT) compute the response z, but
only if one has the ephemeral secret key y underlying the commitment. To obtain chameleon hash
functions from Σ-protocols we need the latter to satisfy a strong form of completeness which says
that a response, distributed identically to the response of the real prover P, can be computed even
without the ephemeral secret key so long as we have access to some accepting conversation. Formally
a strong HVZK Σ-protocol SP = (K,P,V,CmSet,ChSet,RpSet) satisfies strong completeness if there
is a deterministic PT algorithm P ∗ called the strong prover such that for all (pk, sk) ∈

[

K(1k)
]

and
all c1,c2 ∈ ChSet(pk) and all Y ∈ CmSet(pk) the map defined by z → P ∗(pk, sk,Y,c1, z,c2) is a
bijection of SSP

pk,c1
(Y) to SSP

pk,c2
(Y), where SSP

pk,c(Y) = {z ∈ RpSet(pk) : StSim(pk,c, z) = Y} where
StSim is the strong HVZK simulator. We let Σ(sc) be the class of all Σ-protocols that have the strong
completeness property.

5.2 Sigma is chameleon

The following implies that any Σ-hash is chameleon.

Theorem 5.1 Let SP = (K,P,V,CmSet,ChSet,RpSet) ∈ Σ(StHVZK)∩Σ(sss)∩Σ(sc) be a Σ-protocol.
Then the Σ-hash family H -SP = Σ2H(SP ) = (KG,H,ChSet,RpSet,CmSet) is chameleon.

Proof of Theorem 5.1: Theorem 4.1 implies that H -SP = (KG,H,ChSet,RpSet,CmSet) is collision
resistant. We now show that the strong HVZK property of SP implies uniformity of H -SP . Fix
(pk, sk) ∈

[

K(1k)
]

and also fix c ∈ ChSet(pk). We want to show that Hpk(c, ·) = StSim(pk,c, ·)
is uniformly distributed over CmSet(pk) when its argument is drawn at random from RpSet(pk).
Consider the games of Figure 7. Let D be any (computationally unbounded) adversary. Then it
suffices to show that

Pr
[

SD ⇒ 1
]

= Pr
[

TD ⇒ 1
]

where “GD ⇒1” denotes the event thatD outputs 1 on input the output of game G, and the probability
is over the coins of G and D. But this follows because

Pr
[

SD ⇒ 1
]

= Pr
[

RD ⇒ 1
]

(2)

Pr
[

RD ⇒ 1
]

= Pr
[

TD ⇒ 1
]

, (3)

where game T is also in Figure 7. Equation (2) is true by the strong HVZK property. (The real and
simulated conversation transcripts are equally distributed, and hence continue to be so conditioned
on a particular challenge.) Equation (3) is true because our definition of strong HVZK required that
a commitment generated by the prover is uniformly distributed over CmSet(pk).

1 Krawczyk and Rabin [31] only require that HK(c2, I (K,T,HK(c1, z1),c1, z1,c2)) = HK(c1, z1) for all c1,c2 ∈

ChSet(K) and all z ∈ RpSet(K). Shamir and Tauman require a stronger condition that is essentially a computational
version of ours. It seems to us that the non-transferability of chameleon signatures required in [31] requires the hash
function to meet one of these stronger conditions.
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Game R

(Y, y)←$ P(pk, sk)
z←$ P(pk, sk,c, y)
Return Y

Game S

z←$ RpSet(pk)
Y←$ StSim(pk,c, z)
Return Y

Game T

Y←$ CmSet(pk)
Return Y

Figure 7: Games for proof of uniformity of H -SP in proof of Theorem 5.1. Here pk, sk,c are fixed.

P(pk, sk)

c1←$ ChSet(pk)
z1←$ RpSet(pk)
Y← Hpk(c, z)
y← (Y,c1, z1)
Return (Y, y)

P(pk, sk,c2, y)

(Y,c1, z1)← y
z2 ← I (pk, sk,Y,c1, z1,c2)
Return z2

Figure 8: Prover algorithm for the proof of Theorem 5.2. In line 2 of the second column, (Y,c1, z1)← y
means we parse y as shown.

To show that H -SP is trapdoor we need to exhibit the full key-generation algorithm and the inversion
algorithm. The full key-generation algorithm is simply the key-generation algorithm K of SP , so that
the trapdoor is the secret key of the protocol. The inversion algorithm is simply the strong prover
from the strong completeness condition. That the trapdoor condition is met is a tautology, since the
set SHpk,c(Y) is exactly the set SSP

pk,c(Y).

As a consequence, we obtain the following new chameleon hash functions: H -GQ ,H -SFS ,H -SM S ,
H -Oka ,H -HS . (H -Sch was already known to be chameleon [31].) This yields numerous new and more
efficient instantiations of on-line/off-line signatures [47], chameleon signatures [31] and designated-
verifier signatures [29, 50]. It also provides new and more efficient ways to turn weakly-secure signatures
into fully-secure ones that can improve the performance of schemes like [27].

5.3 Chameleon is Sigma

We also prove the converse. The following theorem says that any chameleon hash family is a Σ-hash
family, meaning the result of applying our Σ2H transform to some Σ-protocol.

Theorem 5.2 Let H = (KG,H,ChSet,RpSet,CmSet) be a family of chameleon hash functions. Then
there is a Σ-protocol SP = (K,P,V,CmSet,ChSet,RpSet) ∈ Σ(StHVZK) ∩ Σ(sss) ∩ Σ(sc) such that
H = Σ2H(SP ) is the Σ-hash family corresponding to SP .

Proof of Theorem 5.2: Since H is trapdoor, it has a full key-generation algorithm K and an
inversion algorithm I . Let the former be the key-generation algorithm of SP . Now we define the
prover algorithm as shown in Figure 8. Define the verifier V on input pk,Y‖c‖z to output 1 if
Hpk(c, z) = Y and Y ∈ CmSet(pk) and c ∈ ChSet(pk) and z ∈ RpSet(pk), and 0 otherwise. We now
need to show that SP satisfies strong HVZK, strong special soundness, and strong completeness. (We
need to also show that SP satisfies completeness, but this is implied by strong completeness.)

Let StSim be defined by StSim(pk,c, z) = Hpk(c, z) . We now show this is a strong HVZK simulator.
Fix (pk, sk) ∈ K(1k) and consider the games of Figure 9. Game R generates real protocol transcripts
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Game R

c1←$ ChSet(pk)
z1←$ RpSet(pk)
Y← Hpk(c, z)
c2←$ ChSet(pk)
z2 ← I (pk, sk,Y,c1, z1,c2)
Return (pk,Y‖c2‖z2)

Game S

c←$ ChSet(pk)
z←$ RpSet(pk)
Y← Hpk(c, z)
Return (pk,Y‖c‖z)

Game T

c1←$ ChSet(pk)
Y←$ CmSet(pk)
z1←$ SHpk,c1

(Y)
c2←$ ChSet(pk)
z2 ← I (pk, sk,Y,c1, z1,c2)
Return (pk,Y‖c2‖z2)

Game U

Y←$ CmSet(pk)
c2←$ ChSet(pk)
z2←$ SHpk,c2

(Y)
Return (pk,Y‖c2‖z2)

Figure 9: Games for proof of strong HVZK in proof of Theorem 5.2. Here (pk, sk) are fixed.

based on the prover algorithm of Figure 8 while S generates a simulated transcript based on StSim.
We want to show that

Pr
[

RD ⇒ 1
]

= Pr
[

SD ⇒ 1
]

(4)

for any (computationally unbounded) adversary D. But the uniformity property implies that

Pr
[

RD ⇒ 1
]

= Pr
[

TD ⇒ 1
]

.

On the other hand, by the trapdoor property we have

Pr
[

TD ⇒ 1
]

= Pr
[

UD ⇒ 1
]

Re-applying uniformity we have

Pr
[

UD ⇒ 1
]

= Pr
[

SD ⇒ 1
]

and so we have equation Equation (4).

The collision-resistance of H directly implies strong special soundness of SP . Also, the trapdoor
property of H implies strong completeness of SP by simply letting the strong prover for the strong
completeness condition be the inversion algorithm of the trapdoor condition. Again, the required
conditions are met simply because the sets SHpk,c(Y) and SSPpk,c(Y) are the same.

Applying this to known chameleon-hash functions like H -Da [17, 31] and H -ST [47] yields new
Σ-protocols and hence new identification schemes and, via [19, 16], new commitment schemes.

6 Σ-hash practice and performance

In this section we cover practical issues related to Σ-hash functions, including performance, perfor-
mance comparison with existing constructions and implementation results.

6.1 Extending the domain

A Σ-hash family H as defined above is actually a (keyed) compression function since the domain is
relatively small. In practice however we need to hash messages of long and variable length. This
would not at first appear to be much of a problem since we should be able to do MD iteration
[18, 35]. In fact this is essentially true but one has to be careful about a few things. What one would
naturally like to do is use the second argument to Hpk as the chaining variable. But this requires
that outputs of the compression function can be regarded as chaining values, meaning CmSet(pk)
be a subset of RpSet(pk). Sometimes this is true, as for H -GQ , which in this way lends itself
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Σ-hash w KB/s space

H -SFS 0 30.85 n/a
H -SFS 4 67.41 2048
H -SFS 8 118.1 16384
H -SMS 0 914.3 n/a

Table 1: Implementation results. Here w is the “width” parameter determining pre-computation and
the space is the number of group elements that need to be stored.

easily and naturally to MD iteration. But in the case of SFS and SM S we have CmSet((N, l,u)) =
Z∗

N $ Z+
N = RpSet((N, l,u)). In Appendix A we show how to resolve these problems by appropriate

“embeddings” that effectively allow the second input of the compression function to be used as a
chaining variable at the cost of 1 bit in throughput and in particular allows us to run any of our
Σ-hash functions in MD mode. We won’t detail the general transform here, but it is instructive to
describe the modified compression function. The public key has the form (N, l,u, v) where N, l,u are
as before and v ∈ QR(N), and Hpk : {0, 1}l × Z∗

N → Z∗

N is defined by

Hpk(c, z) = uc · z2 · vfN (z) mod N, (5)

where fN (z) = 0 if z ∈ Z+
N and 1 otherwise. It can be shown that this modified function is also a

Σ-hash, meaning the result of applying Σ2H to a suitably modified version of the original Σ-protocol
that retains the sss, StHVZK and sc properties of the original. But now CmSet((N, l,u, v)) = Z∗

N =
RpSet((N, l,u, v)) so MD-iteration is possible.

6.2 Metrics

We measure performance of a hash function in terms of rate, which we define as the average number
of bits hashed per group operations. (By “average” we mean when the data is random.) In this
measure, an exponentiation a 7→ Aa costs 1.5n group operations and a two-fold multi-exponentiation
a, b 7→ AaBb costs 1.75n group operations where n is the length of a and also of b. We will use these
estimates extensively below. We can consider two modes of operation of a given Σ-hash function
H -SP , namely compression and MD. In the first case the data to be hashed by Hpk is the full input
c, z, while in the second case it is only c. (The second input is the chaining variable which is not
part of the data.) The rate in MD mode is lower than in compression mode for most hash functions.
(SFS is an interesting exception.) Compression mode is relevant when the function is being used as
a chameleon hash, since the data can then be compressed with a standard (merely collision-resistant)
hash function such as SHA-1 before applying the Σ-hash [31, Lemma 1]. MD mode is relevant when
one wants to avoid conventional hash functions and get the full provable guarantees of the Σ-hash by
using it alone. Our performance evaluations will consider MD mode.

6.3 Performance of Σ-hash functions

H -Sch and H -GQ can be computed with one two-fold multi-exponentiation so that they use 1.75
group operations per bit of data (in MD mode). We now turn to H -SFS . Since we are considering
MD mode performance we refer to the MD-compatible version of the function from Equation (5). (But
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in fact performance is hardly affected by the modification.) On the average about half the bits of c
are 1 so H -SFS comes in at about 0.5 modular multiplications per bit. This explains the claim of
Figure 1 in regard to H -SFS without pre-computation. Now we look at how pre-computation speeds
it up, using a block size of l = 512 (the same as MD5 and SHA-1) for illustration. The method is
obvious. Pick a “width” w that divides l and let t = l/w. Letting pk = (N, l,u, v) denote the public
key, pre-compute and store the table T with entries

T [i, x] =
∏w

j=1u[(i − 1)w + j]x mod N (1 ≤ i ≤ t, x ∈ {0, . . . 2w − 1})

The size of the table is t2w = l2w/w group elements. Now computing H -SFS takes t + 2 = 2 + l/w
multiplications since

Hpk(c, z) =
(
∏t

i=1T [i, xi]
)

· z2 · vfN (z) mod N,

where xi is the integer with binary representation c[(i − 1)w + 1] . . . c[iw] (1 ≤ i ≤ t). The number
of group operations per bit is thus [2 + l/w]/l ≈ 1/w, meaning the rate is w. Figure 1 showed the
storage and this rate for w = 4 and w = 8.

Analytical assessment of the performance of H -SM S is difficult, but we have implemented both it
and (for comparison) H -SFS . The implementation used a 1024 bit modulus and (for MD mode) a 512
bit block size. Table 1 shows that H -SM S is about 30 times faster than the basic (no pre-computation)
version of H -SFS . The gap drops to a factor of 15 and 7.5 when compared with the w = 4 and w = 8
pre-computation levels of H -SFS , respectively. Note that H -SM S here is without pre-computation.
(The latter does not seem to help it much.) These implementation results are on a Dual Pentium IV,
3.2GHz machine, running Linux kernel 2.6 and using the gmp library [22].

6.4 Comparisons

We now assess performance of previous schemes, justifying claims in Section 1. Damg̊ard [17] shows
how to construct collision-resistant hash functions from claw-free permutations [23]. Of various
factoring-based instantiations of his construction, the one of [23, 31], which we denote H -Da , seems to
be the most efficient. The key is a modulusN product of two primes, one congruent to 3 mod 8 and the
other to 7 mod 8, and the hash function HN : {0, 1}l×Z∗

N → Z∗

N is defined by HN (m, r) = 4m·rs mod N
where s = 2l. Since multiplying by 4 is cheap, we view it as free and the cost is then one multiplication
per bit, meaning H -SFS is twice as fast. But pre-computation does not help H -Da since r is not
fixed, and the gap in rates increases as we allow pre-computation for H -SFS as shown in Figure 1.

The key of Shamir and Tauman’s [47] hash function is a modulus N and an a ∈ Z∗

N . With a
1024 bit modulus the chaining variable needs to be 1024 bits as well, so that with a 512 bit block size
the function would take a 512 + 1024 bit input, regard it as an integer s, and return as mod N . The
computation takes 1.5 multiplications per bit of the full input, which is 1.5 · (1024 + 512)/512 = 4.5
per bit of data, meaning the rate is 1/4.5 ≈ 0.22 as claimed in Figure 1. Since a is fixed, one can use
the standard pre-computation methods for exponentiation. For any v dividing 1024+512 = 1536, the
computation takes 1536/v multiplications with a table of 2v · 1536/v group elements. Note that per
data bit the rate is 512/(1536/v) = v/3. To compare to H -SFS we need to choose parameters so that
the storage for the two is about the same, meaning 2w(512/w) ≈ 2v(1536/v). This yields v = 1 for
w = 4 and v = 6 for w = 8. This explains the rates shown in Figure 1.
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7 Improvements to VSH

The performance of a hash function on short inputs is important in practice. (For example, a significant
fraction of Internet traffic consists of short packets.) We present a variant VSH∗ of VSH that is up to
5 times faster in this context while remaining proven-secure under the same assumption as VSH. The
improvement stems from VSH∗, unlike VSH, having a collision-resistant compression function.

Background. The key of Contini, Lenstra and Steinfeld’s VSH function [14] is a modulus N product
of two primes. The VSH compression function vshN : {0, 1}l × Z∗

N → Z∗

N is defined by

vshN (c, z) = z
2 ·

∏l
i=1p

c[i]
i mod N,

where pi is the i-th prime and c[i] is the i-th bit of c. The hash function VSH is obtained by MD-
iteration of vsh with initial vector 1. A curious feature of VSH is that the compression function is not
collision-resistant. Indeed, vshN (c, z) = vshN (c,N − z) for any c ∈ {0, 1}l and z ∈ Z∗

N . Nonetheless, it
is shown in [14] that the hash function VSH is collision-resistant based on the VSSR assumption. The
latter states that given N, l it is hard to find x ∈ Z∗

N and integers e1, . . . , el, not all even, such that
x2 ≡ pe11 · . . . · p

el
l (mod N). The proof makes crucial use of the fact that the initial vector is set to 1.

VSH∗. We alter the compression function of VSH so that it becomes (provably) collision-resistant
and then define VSH∗ by MD iteration with the initial vector being part of the data to be hashed.
The first application of the compression function thus consumes much more (1024 bits more for a
1024 bit modulus, for example) of the input, resulting in significantly improved rate for the important
practical case of hashing short messages. For example, the implementation results of Table 2 show
speed increases of a factor of 5 over VSH when hashing 1024 bit messages. Performance for long
messages is the same as for VSH. VSH∗ and its compression function vsh∗ are provably collision-
resistant under the same VSSR assumption as VSH.

The inspiration comes from H -SM S which we notice is very similar to vsh but, unlike the latter,
is collision-resistant. The difference is that in H -SM S the primes u[1], . . . ,u[l], v —referring to the
MD-compatible version of the function from Equation (5)— are quadratic residues. But this turns
out to be important for the completeness of the Σ-protocol rather than for collision-resistance. This
leads to the compression function vsh∗N : {0, 1}l × Z∗

N → Z∗

N defined by

vsh∗N (c, z) =
(

∏l
i=1 p

c[i]
i

)

· p
fN (z)
l+1 · z2 mod N,

where fN (z) = 0 if z ∈ Z+
N and 1 otherwise, pi is the i-th prime and c[i] is the i-th bit of c. As a

check notice that vsh∗N (c, z) is unlikely to equal vsh∗N (c, N − z) because fN(z) 6= fN (N − z), meaning
the attack showing vsh is not collision-resistant does not apply. Of course this is not the only possible
attack, but the proof of strong special soundness of SM S Proposition 4.3 can be adapted to show that
vsh∗ is collision-resistant under the VSSR assumption. Finally VSH∗ is obtained by MD iteration of
vsh∗ but with the initial vector being the first k − 1 bits of the input. For MD-strengthening, the
standard padding method of SHA-1 is used.

The implementation results given in Table 2 were again obtained on a Pentium IV, 3 GHz machine
using the gmp library [22]. We set the block size to 128 for both functions and considered hashing a
1024 bit input. In this case (even taking into account the increase in length due to MD strengthening)
VSH∗ needs 1 application of its compression function. On the other hand VSH (with their own form
of strengthening) needs 9. The implementation shows that VSH∗ is 5.6 times faster. We need to add
that our implementations (unlike those of [14]) are not optimized, but our goal was more to assess the
comparative than the absolute performance of these hash functions, and this is achieved because both
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Hash Function block size input size Iterations Avg. time

VSH 128 8× 128 9 140µs
VSH∗ 128 8× 128 1 25µs

Table 2: The size of the modulus used here is 1024. The block and the input size are given in bits.

are tested on the same platform.
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A Extending the domain

Since a Σ-hash has two inputs, there is a natural way to regard it as a compression function and
then run it in MD mode to get a full-fledged hash function. Namely, regard the first input of Hpk :
ChSet(pk) × RpSet(pk) → CmSet(pk) as the data and the second as the chaining variable. For
this to work however, one must be able to view the output as a chaining value, meaning we need
CmSet(pk) ⊆ RpSet(pk). Sometimes this is true, as for H -GQ , which in this way lends itself easily
and naturally to MD iteration. But in the case of SFS and SM S we have CmSet((N, l,u)) = Z∗

N $
Z+
N = RpSet((N, l,u)). In the case of H -Sch , we would like to work over on elliptic curve group because

then the group size can be smaller (about 2160) and computational costs are reduced. However, when
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CmSet(〈G〉, p, g,X) = G is an elliptic curve group, a group element is represented as a pair (x, y)
where x ∈ Zp and y is a bit, and this G isn’t a subset of RpSet((〈G〉, p, g,X)) = Zp. However, we
now present a simple and general way to get around these problems and in particular make H -SFS ,
H -SM S and H -Sch amenable to MD iteration. Let H = (KG,H,ChSet,CmSet,RpSet) be a Σ-hash
family. Let d(·) be an integer valued function called the data length. We now find an embedding e.
By this we mean that epk : {0, 1}d(k) ×CmSet(pk) → ChSet(pk)× RpSet(pk) is an injective map for
every pk ∈

[

K(1k)
]

and every k. Now define H d = (K,Hd, {0, 1}d(·),CmSet,CmSet) by

Hd
pk(m,w) = Hpk(e

(1)
pk (m,w), e

(2)
pk (m,w))

where e
(i)
pk
(m,w) is the i-th component of the tuple epk(m,w) for i = 1, 2. Then H d is MD-compatible

because the range of Hd
pk is the domain of its second argument and thus the second argument can be

used as a chaining variable. On the other hand it is easy to see that the injectivity of epk implies that
H d inherits the collision-resistance of H . So MD-iteration of H d yields a full-fledged hash function
which is collision-resistant.

Let us now apply this to H -SFS , H -SM S , and H -Sch by finding suitable embeddings. To maximize
data throughput, we should choose d as large as possible.

Suppose H = (KG,H,ChSet,RpSet,CmSet) is H -SFS or H -SM S , so that ChSet(pk) = {0, 1}l

and RpSet(pk) = Z+
N and CmSet(pk) = Z∗

N where pk = (N, l,u) and l = L(k), with L(·) being the
challenge length. Let d(·) = L(·)−1. For every N the map fN : Z∗

N → {0, 1}×Z+
N defined by fN (w) =

(0, w) if w ≤ N/2 and (1, N −w) otherwise is a bijection. Let epk : {0, 1}l−1 × Z∗

N → {0, 1}
l × Z+

N be

defined by epk(m,w) = (m‖f
(1)
N (w), f

(2)
N (w)) where f

(i)
N (w) is the i-th component of the pair fN (w)

for i = 1, 2. Then e is an embedding, so from the above H d is MD-compatible and collision-resistant
as long as H is collision-resistant. MD iterate H d to get a full-fledged hash function.
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