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Abstract. In cryptology we commonly face the problem of finding an unknown
key K from the output of an easily computable keyed function F (C,K) where
the attacker has the power to choose the public variable C. In this work we focus
on self-synchronizing stream ciphers. First we show how to model these primi-
tives in the above-mentioned general problem by relating appropriate functions F
to the underlying ciphers. Then we apply the recently proposed framework pre-
sented at AfricaCrypt’08 by Fischer et. al. for dealing with this kind of problems
to the proposed T-function based self-synchronizing stream cipher by Klimov and
Shamir at FSE’05 and show how to deduce some non-trivial information about
the key. We also open a new window for answering a crucial question raised by
Fischer et. al. regarding the problem of finding weak IV bits which is essential
for their attack.

Key words: Self-synchronizing Stream Ciphers, T-functions, Key Recovery.

1 Introduction

The area of stream cipher design and analysis has made a lot of progress recently, mostly
spurred by the eStream [6] project. It is a common belief that designing elegant strong
synchronizing stream ciphers is possible, however, it is harder to come up with suitable
designs for self-synchronizing ones. Despite numerous works on self-synchronizing
stream ciphers in the literature, there is not yet a good understanding of their design
and cryptanalytic methods. Many self-synchronizing stream ciphers have shown not
to withstand cryptanalytic attacks and have been broken shortly after they have been
proposed. In this work we show how to model a self-synchronizing stream cipher by a
family of keyed functions F (C,K). The input parameter C, called the public variable,
can be controlled by the attacker while the input K is an unknown parameter to her
called the extended key; it is a combination of the actual key used in the cipher and
the unknown internal state of the cipher. The goal of the attacker would be to recover
K or to get some information about it. The problem of finding the unknown key K,
when access is given to the output of the function F (C,K) for every C of the attacker’s
choice, is a very common problem encountered in cryptography. In general, when the
keyed function F looks like a random function, the best way to solve the problem is
to exhaust the key space. However, if F is far from being a random function there
might be more efficient methods. Recently, Fischer et. al. [7] developed a method to
recover the key faster than by exhaustive search in case F does not properly mix its



input bits. The idea is to first identify some bits from C referred to as weak public
variable bits and then to consider the coefficient of a monomial involving these weak
bits in the algebraic normal form of F . If this coefficient does not depend on all the
unknown bits of K, or it weakly depends on some of them, it can be exploited in an
attack. Having modeled the self-synchronizing stream ciphers as the above-mentioned
general problem, we consider the T-function based self-synchronizing stream cipher
proposed by Klimov and Shamir [8] and use the framework from [7] to deduce some
information about the key bits through some striking relations. Finding the weak public
variable bits was raised as a crucial open question in [7] which was done mostly by
random search there. In the second part of our work we try to shed some light in this
direction in a more systematic way. The recently proposed cube attack by Dinur and
Shamir [4], which has a strong connection to [7] and the present work, also includes
some systematic procedure to find weak public variable bits.

The rest of the paper is organized as follows. In section 2 we review the method
from [7] and try to make the connection between [4] and [7] clearer. In section 3 we
describe the self-synchronizing stream ciphers and explain how to derive keyed func-
tions F (C,K) which suit the framework from [7]. Section 4 covers the description of
the Klimov-Shamir T-function based self-synchronizing stream cipher along with its
reduced word-size versions which will later be attacked in section 5 and 6. Section 6
also includes our new direction of finding weak bits in a systematic way.

2 An Approach for Key Recovery on a Keyed Function

Notations. We use B = {0, 1} for the binary field with two elements. A general m-
bit vector in Bm is denoted by C = (c1, c2, . . . , cm). By making a partition of C into
U ∈ Bl and W ∈ Bm−l, we mean dividing the variables set {c1, c2, . . . , cm} into
two disjoint subsets {u1, ..., ul} and {w1, ..., wm−l} and setting U = (u1, . . . , ul) and
W = (w1, . . . , wm−l). However, whenever we write (U ;W ) we mean the original
vector C. For example U = (c2, c4) and W = (c1, c3, c5) is a partition for the vector
C = (c1, c3, c4, c5) and (U ;W ) is equal to C and not to (c2, c4, c1, c3, c5). We also use
the notation U = C \W and W = C \ U . A vector of size zero is denoted by ∅.

In this section we review the framework from [7] which was inspired by results from [1,
5,11]. Let F : Bm×Bn → B be a keyed Boolean function which maps them-bit public
variable C and the n-bit secret variable K into the output bit z = F (C,K). An oracle
chooses a key K uniformly at random over Bn and returns z = F (C,K) to an adver-
sary for any chosen C ∈ Bm of adversary’s choice. The oracle chooses the key K only
once and keeps it fixed and unknown to the adversary. The goal of the adversary is to
recover K by dealing with the oracle assuming that he has also the power to evaluate
F for all inputs, i.e. all secret and public variables. To this end, the adversary can try
all possble 2n keys and filter the wrong ones by asking enough queries from the or-
acle. Intuitively each oracle query reveals one bit of information about the secret key
if F mixes its input bits well enough to be treated as a random Boolean function with
n + m input bits. Therefore, assuming log2 n � m, then n key bits can be recovered
by sending O(n) queries to the oracle. More precisely if the adversary asks the oracle



n + β queries for some integer β � 0, then the probability that only the unknown
chosen key by the oracle (i.e. the correct candidate) satisfies these queries while all the
remaining 2n− 1 keys fail to satisfy all the queries is (1− 2−(n+β))2

n−1 ≈ 1− e−2−β

(for β = 10 it is about 1−10−3). The required time complexity isO(n2n). However, if
F extremely deviates from being treated as a random function, the secret key bits may
not be determined uniquely. It is easy to argue that F divides Bn into J equivalence
classes K1, K2, . . . ,KJ for some J ≤ 2n, see Lemma 1 from [7]. Two keys K′ and
K′′ belong to the same equivalence class iff F (C,K′) = F (C,K′′) for all C ∈ Bm. Let
ni denotes the number of keys which belong to the equivalence class Ki. Note that we
have

∑J
i=1 ni = 2n. A random key lies in the equivalence class Ki with probability

ni/2n in which case (n − log2 ni) bits of information can be achieved about the key.
The adversary on average can get

∑J
i=1(n − log2 ni)

ni
2n bits of information about the

n key bits by asking enough queries. It is difficult to estimate the minimum number of
needed queries due to the statistical dependency between them. It highly depends on
the structure of F but we guess thatO(n) queries suffice again. However, in case where
F does not properly mix its input bits, there might be faster methods than exhaustive
search for key recovery. We are interested in faster methods of recovering the unknown
secret key in this case.

If one derives a weaker keyed function Γ (W,K) : Bm−l × Bn → B from F
which depends on the same key and a part of the public variables, the adversary-
oracle interaction can still go on through Γ this time. The idea of [7] is to derive
such functions from the algebraic expansion of F by making a partition of the m-
bit public variable C into C = (U ;W ) with l-bit vector U and (m − l)-bit vector
W . Let F (C,K) =

∑
α Γα(W,K)Uα where Uα = uα1

1 uα2
2 . . . uαll for the multi-

index α = (α1, . . . , αl). In other words, Γα(W,K) is the coefficient of Uα in the
algebraic expansion of F . For every α ∈ Bl, the function Γα(W,K) can serve as a
function Γ derived from F . The function corresponding to α = (1, . . . , 1) is the co-
efficient of the maximum degree monomial. Previous works [5, 7] suggest that this
function is usually more useful. We also only focus on the maximum degree monomial
coefficient. Hence we drop the subscript α and write Γ (W,K) instead of Γα(W,K)
for α = (1, . . . , 1). Inspired by the terminology of [4] we refer to U as cube vector
and to Γ (W,K) as superpoly corresponding to cube vector U . Thanks to the relation
Γ (W,K) =

⊕
U∈Bl F ((U ;W ),K), the adversary can still evaluate the superpoly for

any W of his choice and for the same chosen key K by the oracle. This demands that
the adversary sends 2l queries to the oracle for each evaluation of Γ .

In order to have an effective attack we need to have a weak superpoly function.
In [7] several conditions were discussed under which the superpoly can be considered
as a weak function and potentially lead to an attack. Refer to [4] for more scenarios and
generalizations. In this paper we look for cube vectors U such that their superpoly does
not depend on a large number of key bits. We refer to those key bits which Γ (W,K)
does not depend on as neutral key bits. This is a special case of the third scenario in [7]
where probabilistic neutral bits were used instead. If the superpoly effectively depends
on tk ≤ n key bits and tw ≤ m − l public key bits, assuming these tk + tw bits are
mixed reasonably well, the involved tk secret bits can be recovered in time tk2l+tk by
sending O(tk2l) queries to the oracle. However, if the superpoly extremely deviates



from being treated as a random function, as we already argued, it may even happen
that the tk key bits can not be determined uniquely. In this case one has to look at
the corresponding equivalence classes to see how much information one can achieve
about the involved tk key bits. In sections 5 and 6 we will provide some examples by
considering Klimov-Shamir’s self-synchronizing stream cipher.

2.1 Connection With Previous Works

The attack is closely related to differential [2, 9] and integral [3, 10] kind of attacks,
and the recent cube attack [4]. For l = 0 we have U = ∅ and W = C and hence
Γ = F , that is we are analyzing the original function. For l = 1 let’s take U = (ci) and
W = C \ (ci) for some 1 ≤ i ≤ m. In this case we are considering a variant of (trun-
cated) differential cryptanalysis, that is we have Γ (W,K) = F (C,K)⊕F (C⊕∆C,K)
where ∆C is an m-bit vector which is zero in all bit positions except the i-th one.
For bigger l, this approach can be seen as an adaptive kind of higher order differential
cryptanalysis. A more precise relation between the framework in [7] and (higher order)
differential cryptanalysis seems to be as follows: The superpoly Γ (W,K), which com-
putes the coefficient of the maximum degree monomial, is computed as the sum of all
outputs F (C,K) where C = (U ;W ) has a fixed part W and U varies over all possible
values. This is what is also done in (higher order) differential cryptanalysis. However,
in applications of the framework in [7], the values for W are often chosen adaptively.
By adaptively we mean that a stronger deviation from randomness is observed for some
specific choices for W (e.g. low weight W ’s) or even a specific value for W (e.g. W =
0). Whereas in most applications of (higher order) differential cryptanalysis, specific in-
put values are of no favour. The recently proposed cube attack by Dinur and Shamir [4]
still lies in the second scenario (condition) proposed in [7], having had been inspired by
the earlier work by Vielhaber [12]. In [7] the public variable C was the Initial Vector
of a stream cipher and the cube variables were called weak IV bits whenever the de-
rived function Γ turned out to be weak enough to mount an attack. This concept can
be adapted according to each context depending on the public variable (weak cipher-
text bits, weak plaintext bits, weak message bits, etc). In general the terminology weak
public variables can be used. On the whole, it is not easy to find week public variables.
While [4] uses a more systematic procedure, [7] uses random search over cube vectors.
In section 6, we will also take kind of systematic method. Another point which is worth
mentioning is that cube attack [4] nicely works with complexity O(n2d−1) if F is a
random function of degree d in its m + n input bits. In this case the superpoly corre-
sponding to any cube vector of size d − 1 is weak, since it is a random linear function
in key bits and remaining public variables.

3 Self-Synchronizing Stream Ciphers

A self-synchronizing stream cipher is built on an output filter O : K × S → M and a
self-synchronizing state update function (see Definition 1) U :M×K×S →M, where
S, K andM are the cipher state space, key space and plaintext space. We suppose that
the ciphertext space is the same as that of the plaintext. Let K ∈ K be the secret key,



and {Si}∞i=0, {pi}∞i=0 and {ci}∞i=0 denote the sequences of cipher state, plaintext and
ciphertext respectively. The initial state is computed through the initialization procedure
as S0 = I(K, IV ) from the secret key K and a public initial value IV . The ciphertext
(in an additive stream cipher) is then computed according to the following relations:

ci = pi ⊕O(K,Si), (1)

Si+1 = U(ci,K, Si). (2)

Definition 1. [8] (SSF) Let {ci}∞i=0 and {ĉi}∞i=0 be two input sequences, let S0 and
Ŝ0 be two initial states, and let K be a common key. Assume that the function U is used
to update the state based on the current input and the key: Si+1 = U(ci,K, Si) and
Ŝi+1 = U(ĉi,K, Ŝi). The function U is called a self-synchronizing function (SSF) if
equality of any r consecutive inputs implies the equality of the next state, where r is
some integer, i.e.:

ci = ĉi, . . . , ci+r−1 = ĉi+r−1 ⇒ Si+r = Ŝi+r. (3)

Definition 2. The ”resynchronization memory” of a function U , assuming it is a SSF,
is the least positive value of r such that Eq. 3 holds.

3.1 Attack Models on Self-Synchronizing Stream Ciphers

There are two kinds of attack on synchronizing stream ciphers: distinguishing attacks
and key recovery attacks3. The strongest scenario in which these attacks can be applied
is a known-keystream attack model or a chosen-IV-known-keystream attack if the cipher
uses an IV for initialization. It is not very clear how applying distinguishing attacks
make sense for self-synchronizing stream ciphers. However, in the strongest scenario,
one considers key recovery attacks in a chosen-ciphertext attack model or in a chosen-
IV-chosen-ciphertext attack if the cipher uses an IV for initialization.

In this paper we only focus on chosen-ciphertext attacks. Our goal as an attacker is
to efficiently recover the unknown keyK by sending to the decryption oracle chosen ci-
phertexts of our choice. More precisely, we consider the family of functions {Hi :Mi×
K×S →M|i = 1, 2, . . . r}, where r is the resynchronization memory of the cipher and
Hi(c1, . . . , ci,K, S) = O(K,Gi(c1, . . . , ci,K, S)), where Gi : Mi × K × S → S is
recursively defined as Gi+1(c1, . . . , ci, ci+1,K, S) = U(ci+1,K,Gi(c1, . . . , ci,K, S))
with initial condition G1 = U .

Note that due to the self-synchronizing property of the cipherHr(c1, . . . , cr,K, S)
is actually independent of the last argument S, however, all other r−1 functions depend
on their last input. The internal state of the cipher is unknown at each step of operation
of the cipher but because of the self-synchronizing property of the cipher it only depends
on the last r ciphertext inputs and the key. We take advantage of this property and force
the cipher to get stuck in a fixed but unknown state S? by sending the decryption oracle
ciphertexts with some fixed prefix (c?−r+1, . . . , c

?
−1) of our choice. Having forced the

3 One could also think of state recovery attack in cases in which the synchronizing stream cipher
is built based on a finite state machine and the internal state does not easily reveal the key.



cipher to fall in the unknown fixed state S?, we can evaluate any of the functions Hi,
i = 1, 2, . . . , r, at any point (c1, . . . , ci,K,S?) for any input (c1, . . . , ci) of our choice
by dealing with the decryption oracle. To be clearer let z = Hi(c1, . . . , ci,K,S?). In
order to compute z for an arbitrary (c1, . . . , ci), we choose an arbitrary c?i+1 ∈ M
and ask the decryption oracle for (p−r+1, . . . , p−1, p0, . . . , pi+1)– the decrypted plain-
text corresponding to the ciphertext (c?−r+1, . . . , c

?
0, c1, . . . , ci, c

?
i+1). We then set z =

pi+1 ⊕ c?i+1.
To make notations simpler, we merge the unknown values K and S? in one un-

known variable K = (K,S?) ∈ K × S , called extended unknown key. We then use the
simplified notation Fi(C,K) = Hi(c1, . . . , ci,K,S?) : Mi × (K × S) → M where
C = (c1, . . . , ci).

4 Description of the Klimov-Shamir T-function Based
Self-Synchronizing Stream Cipher

Shamir and Klimov [8] used the so-called multiword T-functions for a general method-
ology to construct a variety of cryptographic primitives. No fully specified schemes
were given, but in the case of self-synchronizing stream ciphers, a concrete example
construction was outlined. This section recalls its design. Let ≪, +, ×, ⊕ and ∨
respectively denote left rotation, addition modulo 264, multiplication modulo 264, bit-
wise XOR and bit-wise OR operations on 64-bit integers. The proposed design works
with 64-bit words and has a 3-word internal state S = (s0, s1, s2)T . A 5-word key
K = (k0, k1, k2, k3, k4) is used to define the output filter and the state update function
as follows:

O(K,S) =
(
(s0 ⊕ s2 ⊕ k3) ≪ 32

)
×
(
((s1 ⊕ k4) ≪ 32) ∨ 1

)
, (4)

and

U
(
c, K, S

)
=


(
((s′1 ⊕ s′2) ∨ 1)⊕ k0

)2(
((s′2 ⊕ s′0) ∨ 1)⊕ k1

)2(
((s′0 ⊕ s′1) ∨ 1)⊕ k2

)2
 , (5)

where

s′0 = s0 ⊕ c
s′1 = s1 − (c ≪ 21)
s′2 = s2 ⊕ (c ≪ 43).

(6)

Generalized Versions: We also consider generalized versions of this cipher which use
ω-bit words (ω even and typically ω = 8, 16, 32 or 64). For ω-bit version the number
of rotations in the output filter, Eq. 4, is ω

2 and those of the state update function, Eq. 6,
are bω3 e and b 2ω3 e, bxe being the closest integer to x.

It can be shown [8] that the update function U is actually a SSF whose resynchronization
memory is limited to ω steps and hence the resulting stream cipher is self-synchronizing



indeed. Our analysis of the cipher for ω = 8, 16, 32 and 64 shows that it resynchro-
nizes after r = ω − 1 steps (using ω(ω − 1) input bits). It is an open question if this
holds in general.

Remark 1. In [8] the notation (k0, k1, k2, kO, k
′
O) is used for the key instead of the

more standard notation (k0, k1, k2, k3, k4). The authors possibly meant to use a 3-word
key (k0, k1, k2) by deriving the other two key words (kO and k′O in their notations
corresponding to k3 and k4 in ours) from first three key words. However, they do not
specify how this must be done if they meant so. Also they did not introduce an ini-
tialization procedure for their cipher. In any case, we attack a more general situation
where the cipher uses a 5-word secret keyK = (k0, k1, k2, k3, k4) in chosen-ciphertext
attack scenario. Moreover, for the 64-bit version the authors mentioned ”the best attack
we are aware of this particular example [64-bit version] requiresO(296) time”, without
mentioning the attack.

5 Analysis of the Klimov-Shamir T-Function Based
Self-Synchronizing Stream Cipher

Let ω (ω = 8, 16, 32 or 64) denote the word size and r = ω−1 be the resynchronization
memory of the ω-bit version of the Klimov-Shamir self-synchronizing stream cipher.
Let B = {0, 1} and Bω denote the binary field and the set of ω-bit words respectively.
Following the general model of analysis of self-synchronizing stream ciphers in sec-
tion 3.1, we focus on the family of functionsFi(C,K) : Biω×B8

ω → Bω , i = 1, 2, . . . , r
where C = (c1, . . . , ci) and K = (K, S?) = (k0, k1, k2, k3, k4, s

?
0, s

?
1, s

?
2). We also look

at a word b as an ω-bit vector b = (b0, . . . , bω−1), b0 being its LSB and bω−1 its MSB.
Therefore any vector A = (a0, a1, ..., ap−1) ∈ Bpω could be also treated as a vec-
tor in Bp×ω where the (iω + j)-th bit of A is ai,j , the j-th LSB of the word ai, for
i = 0, 1, . . . , p−1 and j = 0, 1, . . . , ω−1 (we start numbering the bits of vectors from
zero).

Now, for any i = 1, . . . , r and j = 0, . . . , ω − 1 we consider the family of Boolean
functionsFi,j : Biω×B8ω → B which maps the iω-bit inputC and the 8ω-bit extended
key K into the j-th LSB of the word Fi(C,K). Any of these keyed functions can be
put into the framework from [7] explained in section 2. The next step is to consider a
partitioning C = (U ;W ) with l-bit segment U and (iω − l)-bit segment W to derive
the (hopefully weaker) functions ΓUi,j : Biω−l × B8ω → B where ΓUi,j is the superpoly
in Fi,j corresponding to the cube vector U . Whenever there is no ambiguity we drop
the superscript or the subscripts. We may also use ΓUi,j [ω] in some cases to emphasize
the word-size. We are now ready to give our simulation results.

Note: Instead of giving giving the variables of cube vector U we give the bit num-
bers. For example for ω = 16, the set {0, 18, 31, 32} stands for the cube vector U =
(c1,0, c2,2, c2,15, c3,0).

Example 1. For all possible common word sizes (ω = 8, 16, 32 or 64) we have been
able to find some i, j and U such that Γ is independent ofW and only depends on three



key bits k0,0, k1,0 and k2,0. Table 1 shows some of these quite striking relations. We
also found relations Γ {3}1,0 [8] = 1+ k2,0 and Γ {6,7,8,9,10}1,0 [16] = 1+ k0,0 involving only
one key bit. For ω = 64, the three relations in Table 1 give 1.75 bits of information
about (k0,0, k1,0, k2,0).

ω i j U ΓU
i,j [ω]

8 2 0 {2} 1 + k0,0k1,0 + k0,0k2,0 + k1,0k2,0

16 3 0 {5} 1 + k0,0k1,0 + k2,0 + k0,0k1,0k2,0

16 3 0 {10} 1 + k0,0 + k1,0k2,0 + k0,0k1,0k2,0

32 5 0 {11} 1 + k0,0k1,0 + k2,0 + k0,0k1,0k2,0

32 16 0 {96, 97, 98} 1 + k0,0 + k2,0 + k0,0k2,0

64 11 0 {21} 1 + k0,0k1,0 + k2,0 + k0,0k1,0k2,0

64 11 0 {42} 1 + k0,0 + k1,0k2,0 + k0,0k1,0k2,0

64 12 0 {20} 1 + k0,0k1,0 + k0,0k2,0 + k1,0k2,0

Table 1. Simple relations on three key bits (k0,0, k1,0, k2,0)

A more detailed analysis of the functions ΓUi,j [ω](W,K) for different values of i, j and
U reveals that many of these functions depend on only few bits of their (iω − l)-bit
and 8ω-bit arguments. Let tw and tk respectively denote the number of bits of W and
K which Γ effectively depends on. In addition let t′k out of tk bits come from K and
the remaining ts = tk − t′k bits from S? (remember K = (K,S?)). Table 2 shows these
values for some of these functions.

Having in mind what we mentioned in section 2 and being too optimistic, we give
the following proposition.

Proposition 1. If a function ΓUi,j is random-looking enough, recovering the tk unknown
bits of the extended key takes expected time i× tk × 2l+tk .

The unity of time is processing one ciphertext word of the underlined self-synchronizing
stream cipher. The factors 2l and i come from the following facts: computing Γ from
Fi needs 2l evaluations of Fi (remember ΓUi,j(W,K) =

⊕
U∈Bl Fi,j((U ;W ),K)) and

computing Fi needs i iterations of the cipher.
Even if the ideal condition of Proposition 1 is not satisfied, the only thing which is

not guaranteed is that the tk involved unknown bits are uniquely determined. Yet some
information about them can be achieved. Refer to the note in section 2 regarding the
equivalence classes.

Example 2. Take the relation Γ {18}3,0 [8](W,K) from Table 2. This particular function
depends on tk = 5 bits (k0,0, k0,1, k1,0, k2,0, k2,1) of the key and on tw = 7 bits



ω i j U tk tw t′k ts comment
8 1 0 ∅ 20 8 9 11
16 1 0 ∅ 40 16 17 23
32 1 0 ∅ 80 32 33 47
64 1 0 ∅ 160 64 65 95

8 1 0 {1} 9 5 3 6
16 1 0 {u} 18 11 6 12 8 ≤ u ≤ 10
32 1 0 {u} 42 23 14 28 16 ≤ u ≤ 20
64 1 0 {u} 90 51 30 60 32 ≤ u ≤ 42

8 3 0 {8} 4 6 4 0
8 3 0 {18} 5 7 5 0
16 7 0 {16} 17 58 17 0
16 7 0 {34} 16 52 16 0
16 7 0 {33, 34} 12 33 12 0
16 7 0 {38, 39} 12 30 12 0
32 15 0 {32} 41 293 41 0
32 15 0 {66} 40 279 40 0
32 15 0 {76, 77} 36 231 36 0
64 31 0 {64} 89 1274 89 0
64 31 0 {130} 88 1243 88 0
64 31 0 {129, 130} 84 1158 84 0
64 31 0 {150, 151} 84 1155 84 0

Table 2. Effective number of bits of each argument which Γ depends on. Note that the functions
having the same number of effective bits do not necessarily have the same involved variables.

(c1,4, c1,5, c1,6, c2,0, c2,1, c2,5, c2,6) of the ciphertext. The ANF of this function is:

Γ
{18}
3,0 [8] = 1 + k0,0k0,1 + k0,0k0,1k2,0 + k2,0k2,1 + k0,0c1,4+

k0,0k2,0c1,4 + k0,0k1,0c1,5 + k0,0k1,0k2,0c1,5+
k0,0c1,6 + k0,0k2,0c1,6 + k2,0c2,0 + k0,0k2,0c2,0+
k2,0c2,1 + c2,0c2,1 + k0,0c2,0c2,1 + k2,0c2,0c2,1+
k0,0k2,0c2,0c2,1 + k1,0k2,0c2,5 + k2,0c2,6.

(7)

This equation can be seen as a system of 2tw = 128 equations versus tk = 5 unknowns.
Our analysis of this function shows that only 48 of the equations are independent which
on average can give 3.5 bits of information about the five unknown bits (2 bits of infor-
mation for 25% of the keys and 4 bits for the remaining 75% of the keys).

Example 3. Take the relation Γ {33,34}7,0 [16](W,K) from Table 2. This particular function
depends on tk = 12 key bits and on tw = 33 ciphertext bits. Our analysis of this
function shows that on average about 2.41 bits of information about the 12 key bits can
be achieved (10 bits of information for 12.5% of the keys, 3 bits for 25% of the keys
and 0.67 bits about the remaining 62.5% of the keys).

Example 4. Take the relation Γ {38,39}7,0 [16](W,K) from Table 2. This particular function
depends on tk = 12 key bits and on tw = 30 ciphertext bits. Our analysis of this



function shows that on average about 1.94 bits of information about the 12 key bits can
be achieved (10 bits of information for 12.5% of the keys, 3 bits for another 12.5% of
the keys and 0.42 bits for the remaining 75% of the keys).

Example 5. Take the relation Γ {34}7,0 [16](W,K) from Table 2. This particular function
depends on tk = 16 key bits and on tw = 52 ciphertext bits. Our analysis of this
function shows that on average about 5.625 bits of information about the 16 key bits
can be achieved (13 bits of information for 25% of the keys, 11 bits for 12.5% of the
keys, 4 bits for another 12.5% of the keys, and 1 bit for the remaining 50% of the keys).

For larger values of iwe expect Γ to fit better the ideal situation of Proposition 1. There-
fore, we give the following claim about the security of the 64-bit version of Klimov-
Shamir’s proposal.

Proposition 2. We expect each of the functions Γ {129,130}31,0 [64] and Γ {150,151}31,0 [64] to
reveal a large amount of information about the corresponding tk = 84 involved key
bits for a non-negligible fraction of the keys. The required computational time is 31 ×
84× 22+84 ≈ 292.8.

In [7] the bits of the set U were called weak IV bits. With the same terminology, here
we call them weak ciphertext bits. How to find these weak bits was raised as an open
question in [7]. In the next section we present a systematic procedure to find weak
ciphertext bits, with the consequence of improving Proposition 2.

6 Towards a Systematic Approach to Find Weak Ciphertext Bits

The idea is to start with a set U and extend it gradually. At each step we examine all the
ciphertext bits which ΓU depends on, to choose an extended U for the next step which
results in a Γ which depends on the least number of key bits. Table 3 shows our simula-
tion results by starting from function Γ {41}1,0 [64] from Table 2 which effectively depends
on tk = 90 extended key bits and tw = 51 ciphertext bits. Similar to Proposition 2, one
expects each of the functions ΓU1,0[64] in Table 3 to reveal a large amount of information
about the corresponding tk involved extended key bits (including t′k effective key bits)
for a non-negligible fraction of the keys in time tk2l+tk , as indicated in the last col-
umn. In particular by starting from the function in the bottom of Table 3, (the promised
large amount of information about) the involved t′k = 12 key bits and ts = 33 internal
state bits can be gained in time 269.5 (for a non-negligible fraction of the keys). Notice,
that once we have the correct value for the unknown extended key for some function in
Table 3, those of the previous function can be recovered by little effort. Therefore we
present the following proposition.

Proposition 3. We expect that by starting from Γ
{1−9,32−41}
1,0 [64] and going backwards

to Γ {41}1,0 [64] as indicated in Table 3, a large amount of information about the involved
tk = 90 unknown bits (including t′k = 30 effective key bits) is revealed for a non-
negligible fraction of the keys in time 269.5 .



Remark 2. By combining the results of different functions Γ one can get better results.
Finding an optimal combination demands patience and detailed examination of different
Γ ’s. We make this statement clearer by an example as follows. Detailed analysis of
Γ
{129,130}
31,0 [64] and Γ {150,151}31,0 [64] shows that the key bits which they depend on are
{0−27, 64−90, 128−156} and {0−28, 64−90, 128−155}, respectively. These two
functions have respectively 27 and 28 bits in common with the 30 key bits {0−19, 21−
30} involved in Γ {41}1,0 [64]. They also include the key bits {0, 32, 64} for which 1.75
information can be easily gained according to Ex. 1. Taking it altogether it can be said
that a large amount of information about the 88 key bits {0−30, 32, 64−90, 128−156}
can be achieved in time 269.5 with a non-negligible probability.

7 Conclusion

In this work we proposed a new analysis method for self-synchronizing stream ciphers
which was applied to Klimov-Shamir’s example of a construction of a T-function based
self-synchronizing stream cipher. We did not fully break this proposal but the strong key
leakage demonstrated by our results makes us believe a total break is not out of reach.
In future design of self-synchronizing stream ciphers one has to take into account and
counter potential key leakage.

Acknowledgement: We would like to thank Martijn Stam for his helpful editorial
comments.
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