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Abstract

LSBS-RSA denotes an RSA system with modulus primes, p and q, sharing a large
number of least signi�cant bits. In ISC 2007, Zhao and Qi analyzed the security of short
exponent LSBS-RSA. They claimed that short exponent LSBS-RSA is much more vulnera-
ble to the lattice attack than the standard RSA. In this paper, we point out that there exist
some errors in the calculation of Zhao & Qi�s attack. After re-calculating, the result shows
that their attack is unable for attacking RSA with primes sharing bits. Consequently, we
give a revised version to make their attack feasible. We also propose a new method to
further extend the security boundary, compared with the revised version. The proposed
attack also supports the result of analogue Fermat factoring on LSBS-RSA, which claims
that p and q cannot share more than n

4
least signi�cant bits, where n is the bit-length of

pq. In conclusion, it is a trade-o¤ between the number of sharing bits and the security level
in LSBS-RSA. One should be more careful when using LSBS-RSA with short exponents.

Keywords: RSA, least signi�cant bits (LSBs), LSBS-RSA, short exponent attack, lattice
reduction technique, the Boneh-Durfee attack.

1 Introduction

Since 1978, RSA [19] is the most popular cryptosystem in the world. Its security is based on
the hardness of factoring problem. Generally we apply 1024-bit RSA modulus to achieve the
goal of factoring-infeasible, but such large modulus also causes the ine¢ ciency in encryption
and decryption of RSA. Consequently, many practical issues have been considered when imple-
menting RSA such as how to reduce the encryption time (or signature-veri�cation time), how
to reduce the decryption time (or signature-generation time) [16], [17], etc.. One of the most
common methods to reduce the decryption time is using a short private exponent d. However,
in 1990 Wiener [24] showed that choosing too small private exponent is insecure when using
RSA system. Indeed, instances of RSA with d < N0:25 can be e¢ ciently broken by the con-
tinued fraction attack, which is also called the Wiener attack. The boundary of the Wiener
attack had been extended by Boneh and Durfee [3] in 1998. They took advantage of lattice
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reduction technique and showed that instance of RSA with d < N0:292 should be considered
insecure. Although their method is heuristic, the experiments demonstrate the e¤ectiveness of
the attack.
LSBS-RSA denotes an RSA system with modulus primes sharing a large number of least

signi�cant bits. This RSA variant was suggested to improve the computational e¢ ciency of
server-aided signature generation [6], [21]. Steinfeld and Zheng analyzed the security of LSBS-
RSA under the partial key exposure attacks in [20], and [21]. They claimed that LSBS-RSA
with small public exponent is inherently resistant to the partial key exposure attacks. This
gives an advantage of using small exponent LSBS-RSA in applications. However, it does not
imply that LSBS-RSA is secure against all the small exponent attacks. Zhao and Qi [25] showed
that LSBS-RSA is much more vulnerable than the standard RSA against the attack by using
lattice reduction technique. Here we call the Zhao-Qi attack throughout this paper. Let � be
the parameter such that jp� qj = r �2( 12��)n for some odd integer r. The Zhao-Qi attack shows
that LSBS-RSA is insecure under the condition

� < 1
6�+

13
12 �

1
3

q
�2 + (6
 + 1)�+ 12
+1

4 ,

where � and 
 satisfy d = N� and e = N
 , respectively. For example, if p and q share 0:2n
least signi�cant bits and e t N (i.e., 
 = 1, � = 0:3), then LSBS-RSA will be insecure when
d < N0:335.
Unfortunately, we point out there exist some errors in the calculation of the Zhao-Qi attack

and the errors conduct to the incorrect security boundary. After re-calculating, we �nd the
polynomial that Zhao and Qi suggested cannot work for attacking LSBS-RSA exactly. In this
paper, we give a revised version of the Zhao-Qi attack to make it feasible. We also provide a
new method to further extend the security boundary of short exponents in LSBS-RSA. Our
result shows that LSBS-RSA is insecure under the condition

� < 2
3�+

5
6 �

4
3

q
�2 + ( 32
 �

1
2 )��

6
�1
16 .

Take the case e t N for example, if the modulus primes share the 0:2n least signi�cant bits
(i.e., 
 = 1, � = 0:3), LSBS-RSA will be insecure if d < N0:662 , which is much higher than
Zhao and Qi�s boundary. Moreover, compared with the Boneh-Durfee attack [3], [4] and de
Weger�s attack on RSA with small prime di¤erence [23], our result yields an improvement when
primes sharing a large number of least signi�cant bits.
The remainder of this paper is organized as follows. In Section 2, we brie�y review LSBS-

RSA, lattice reduction technique, and the Zhao-Qi attack. In Section 3, we revisit the Zhao-Qi
attack and point out the error in their calculation. Section 4 shows the proposed method to
analyze the security boundary of short exponent LSBS-RSA. Further discussions are shown in
Section 5. Finally, we conclude this paper and give some open problems in Section 6.

2 Preliminaries

2.1 LSBS-RSA and the Notation: �, �, and 


An RSA system with modulus primes sharing a large number of least signi�cant bits is called
LSBS-RSA. Denote an LSBS-RSA modulus N = pq as the product of two large primes p and
q, with p & q share the ( 12 ��)n least signi�cant bits, where q < p < 2q, and n is the bit-length
of N . We may write jp� qj = r � 2( 12��)n for some integer r of �n bits and it is obvious that
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� � 1
2 . In the following table we de�ne the notation �, �, and 
 used in the paper.

�: � is the parameter such that jp� qj = r � 2( 12��)n for some odd integer r
�: � is the parameter such that d = N� .

: 
 is the parameter such that e = N
 .

In addition, we de�ne the function "LSB(�)". Given an integer x of m bits, whose binary
representation is

(x)2 = (xm; xm�1; :::xj ; :::; xi; :::; x2; x1)2,

where xi = 0 or 1 for i = 1; :::;m. Then, xm should be 1, which is called the most signi�cant
bit of x. x1 could be 0 or 1, which is called the least signi�cant bit of x. Denote "LSBi~j(x)"
as the i-th to j-th least signi�cant bits of (x)2, where i < j. That is,

LSBi~j(x) = (xj ; :::; xi)2.

And denote "LSBi(x)" as the i-th least signi�cant bit of (x)2. That is,

LSBi(x) = xi.

The following lemma shows the exposed portion of the modulus primes if p and q share a
number of least signi�cant bits.

Lemma 1 Let N = pq denote an n-bit modulus in LSBS-RSA, where LSB1~m (p) = LSB1~m (q).
There exists an algorithm to compute the LSB1~2m (p+ q), LSB1~m (p), and LSB1~m (q) in time
polynomial in n.

Proof. Let p = pH � 2m + l and q = qH � 2m + l. Thus, l is a solution to the modular
quadratic congruence x2 � N (mod 2m), and it can be computed at most for 4 candidates in
time polynomial in n (see Lemma 1 in [21] for more detail). Consider the identity

(p+q2 )
2 = (p�q2 )

2 +N .

Replacing p and q by pH � 2m + l and qH � 2m + l, respectively, conducts to

LSB1~2m�2
�
l � (pH + qH) � 2m + l2

�
= LSB1~2m�2 (N) .

Note that l is an odd integer. Thus, l�1 (mod 22m�2) exists and we denote it as l�1 for short.
We have

LSB1~2m�2((pH + qH) � 2m) = LSB1~2m�2
�
l�1 � (N � l2)

�
, (1)

which implies

LSB1~2m�1
�
p+q
2

�
= LSB1~2m�1((pH + qH) 2m�1 + l)

= LSB1~m (pH + qH) jj LSBm
�
(pH + qH) 2

m�1 + l
�
jj LSB1~m�1 (l),

(2)

where "jj" denotes the symbol for concatenation. Combining (1) and (2) we can compute
LSB1~2m�1

�
p+q
2

�
. Thus, we have

LSB1~2m (p+ q) = LSB1~2m�1
�
p+q
2

�
jj 0,

which completes the proof.
The following corollary is the key point we used in the paper to improve the Zhao-Qi attack.
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Corollary 2 Let N = pq denote an n-bit modulus of LSBS-RSA, where p and q share the ( 12 �
�)n least signi�cant bits, i.e., LSB1~( 12��)n (p) = LSB1~( 12��)n (q). Then, LSB1~( 12��)n (p+ q),
LSB1~( 12��)n (p), and LSB1~( 12��)n (q), are known to the attacker.

Proof. The proof is quite easy. We just replace m in Lemma 1 by ( 12 � �)n.
Note that we should set � > 1

4 . In case of � �
1
4 , which means that p and q share the

n
4 least

signi�cant bits at least, the modulus N can be factored in time polynomial in n (see Corollary
1 in [21]). This result is analogue to the result of Fermat�s factoring method, which factors N
immediately if p and q share the n

4 most signi�cant bits at least. We call the factoring attack
when � � 1

4 as "Analogue Fermat factoring" in the paper.

2.2 Lattice Attack

A vector space L is called a lattice if L is spanned by ! linearly independent vectors, denoted
as u1, u2, :::, u! 2 Zn, over Z. That is,

L =

(
!X
i=1

aiui j where ai 2 Z and ui 2 Zn for i = 1, :::, !
)
.

u1, u2, :::, u! are also called the basis of lattice L. We say that L is full rank if ! = n. The
determinant of a full rank lattice L, denoted as det (L), is equal to the determinant of the n by
n matrix whose rows are u1, u2, :::, u!. Next we show the result of the output of the LLL
algorithm, which produces a new basis of lattice L with the following properties.

Lemma 3 [15] Suppose that L is a lattice with basis fu1;u2; :::;u!g. Given the input fu1;u2; :::;u!g,
LLL algorithm can produce a new basis fb1;b2; :::;b!g satisfying:

1. kb�i k
2 � 2



b�i+1

2 for i = 1, :::, ! � 1.
2. If bi = b�i +

i�1P
j=1

�i;jb
�
j , then

���j�� � 1
2 for all j and i = 1, :::, !.

We call fb1;b2; :::;b!g an LLL-reduced basis of L. Here, we just mention one of the
properties of LLL-reduced basis that will be used in the paper.

Theorem 4 Let fb1;b2; :::;b!g be an LLL-reduced basis of L. Then,

kb1k � 2
!
2 det (L)

1
! , and kb2k � 2

!
2 det (L)

1
!�1 .

Coppersmith [7] took the advantage of LLL algorithm to �nd the small roots of a mod-
ular equation. Suppose that the norm of a polynomial h(x; y) =

P
i;j ai;jx

iyj is de�ned as

kh(x; y)k2 =
P

i;j a
2
i;j . Howgrave-Graham [13] followed Coppersmith�s method to show the

following lemma, which is a powerful tool in the cryptanalysis of RSA systems.

Lemma 5 (Howgrave-Graham) Let h(x; y) 2 Z [x; y] be a bivariate polynomial which is a sum
of at most ! monomials. Suppose that

1. h(x0; y0) = 0 (mod em), where m 2 N

2. kh(xX; yY )k < emp
!
, where jx0j < X, jy0j < Y .
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Then h(x0; y0) = 0 holds over the integers.

The proof of Lemma 5 can be found in earlier citations, such as [7], [3], [4], [8], [9].
In the heuristic variant of the lattice attacks (with bivariatentrivariate modular polynomials)

that we consider in this paper, we hope that we get two algebraically independent polynomials
from the lattice. Given a modular polynomial f(x; y) = 0 (mod e) with ! monomials. We may
construct a set of polynomials with the same root as f(x; y) = 0 (mod e), and regard these
polynomials as a basis of the lattice L by representing their coe¢ cients as the vectors with !
components. Then, applying the LLL algorithm to produce the �rst two shortest vectors in
LLL basis, denoted as f1(x; y) and f2(x; y), whose norms are smaller than 2

!
2 det (L)

1
! and

2
!
2 det (L)

1
!�1 , respectively. Thus, according to Lemma 5, if we set 2

!
2 det (L)

1
! < emp

!
, then

the root of f1(x; y) (mod e) and f2(x; y) (mod e) also hold over Z. We then take their resultant
with respect to one of the variables to eliminate it and get a univariate equation and solve for
the root in the other variable. It is a well-known technique called the lattice attack. Zhao and
Qi [25] used this technique to attack short exponent LSBS-RSA. Next, we brie�y describe their
attack.

2.3 The Zhao-Qi Attack

Assume that an LSBS-RSA modulus N = pq satis�es p � q = r � 2( 12��)n, where r is an odd
integer. Then,

p+ q = (p� q) + 2q = r � 2( 12��)n + 2q. (3)

Applying (3) to RSA equation yields

ed = k
h
(N + 1)� 2q � r � 2( 12��)n

i
+ 1.

Consider the polynomial
f(x; y; z) = x(A� 2y � az) + 1, (4)

where A = N + 1, and a = 2(
1
2��)n. Then (x0; y0; z0) = (k; q; r) is a root of f(x; y; z) (mod e).

De�ne X = N
+��1, Y = N
1
2 , and Z = N�, then we have jx0j < X, jy0j < Y , and jz0j < Z,

respectively.
Zhao and Qi solved the modular equation (4) by using the lattice reduction technique shown

above. According to their result, the su¢ cient condition to �nd (x0; y0; z0) is

� < 1
6�+

13
12 �

1
3

q
�2 + (6
 + 1)�+ 12
+1

4 . (5)

Unfortunately, we �nd some error in the construction of their coe¢ cient matrix for the lattice.
In the next section we correct this error and reconstruct the coe¢ cient matrix of (4) to apply
the lattice reduction technique to attack LSBS-RSA.

3 Revisiting the Zhao-Qi Attack

3.1 Re-calculating the Coe¢ cient Matrix of the Zhao-Qi Attack

The errors in the calculation of the Zhao-Qi attack take place in the coe¢ cient matrix of
f(x; y; z). Note that in (4), f(x; y; z) is expressed as

f (x; y; z) = Ax� 2xy � axz + 1 (mod e).
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In order to construct the lattice, Zhao and Qi considered the polynomials

gl;i;b (x; y; z) := e
m�lxiybf l (x; y; z) , for l = 0; :::;m� 1; i = 1; :::;m� l; b = 0; 1;

h0j;l (x; y; z) := e
m�l(az)jf l (x; y; z) , for l = 0; :::;m and j = 0; :::; t;

h00j;l (x; y; z) := e
m�lyjf l (x; y; z) , for l = 0; :::;m and j = 1; :::; t;

(6)

where m and t are two parameters in N. It can be observed that (x0; y0; z0) = (k; q; r) is a root
of gl;i;b(x; y; z), h0j;l (x; y; z), and h

00
j;l (x; y; z) modulo e

m.
We take the case m = 3, t = 1 for example. According to (6), the matrix is represented as

M =

�
Mxy 0
- Myz

�
,

where Mxy =

ibl x xy x2 x2y x3 x3y x2z x2y2 x3z x3y2 x3z2 x3y3

100 e3x e3X
110 e3xy e3XY

200 e3x2 e3X2

210 e3x2y e3X2Y

300 e3x3 e3X3

310 e3x3y e3X3Y

101 e2xf - - - e2aX2Z
111 e2xyf - - e2X2Y 2

201 e2x2f - - - e2aX3Z
211 e2x2yf - - - e2X3Y 2

102 exf2 - - - - - - - - ea2X3Z2

112 exyf2 - - - - - - - - - eX3Y 3

and Myz =

tjl 1 y z xz xy2 xz2 x2z2 x2y3 x2z3 x3z3 x3y4 x3z4

100 e3 e3

110 e3y e3Y
110 e3az e3aZ

101 e2f - e2aXZ
111 e2yf - e2XY 2

111 e2azf - - - e2a2XZ2

102 ef2 - - ea2X2Z2

112 eyf2 - - eX2Y 3

112 eazf2 - - - - - ea3X2Z3

103 f3 - - - a3X3Z3

113 yf3 - - - X3Y 4

113 azf3 - - - - - - - - a4X3Z4

Since y2+ ayz = N , all the coe¢ cients with the factor "ayz" in (6) can be replaced by N � y2.
Note that we are just required to calculate the determinant of M . Thus all the non-zero terms
o¤-diagonal are ignored and denoted as the symbol "-". In this case (m = 3, t = 1), we may
observe that the coe¢ cient vectors of the terms e2xf , e2x2f , exf2 in Mxy, and e3az, e2f ,
e2azf , f3, azf3 in Myz are di¤erent from those of the terms in the matrix of Table 1 in [25].
We have to point out that Zhao and Qi ignored the parameter a = 2(

1
2��)n in the coe¢ cient

vector when they constructed the coe¢ cient matrix of (6). Next, we re-calculate the boundary
of their attack from the corrected determinant. The determinants of Mxy, and Myz are

det(Mxy) = e
m(m+1)(2m+1)

3 � a
m(m2�1)

6 �X
m(m+1)(2m+1)

3 � Y
m(m+1)(m+2)

6 � Z
m(m2�1)

6

det(Myz) = e
m(m+1)(2t+1)

2 � a
(m+1)(m+t)(t+1)

2 �X
m(m+1)(2t+1)

2 � Y
t(m+1)(m+t+1)

2 � Z
(m+1)(m+t)(t+1)

2 .

6



Since det(M) = det (Mxy) � det (Myz), we have

det(M) = (eX)
m(m+1)(4m+6t+5)

6 � (aZ)
m(m2�1)+3(m+1)(m+t)(t+1)

6 � Y
m(m+1)(m+2)+3t(m+1)(m+t+1)

6 .

Applying e = N
 , a = 2(
1
2��)n t N 1

2��, X = N
+��1, Y = N
1
2 , and Z = N� yields

det(M) = N (2
+��1)m(m+1)(4m+6t+5)
6 + 1

2
(m+1)(m2+2m+3mt+3t2+3t)

6 + 1
2
(m+1)(m2+2m+3mt+3t2+3t)

6

= N (2
+��1)m(m+1)(4m+6t+5)
6 +

(m+1)(m2+2m+3mt+3t2+3t)
6 .

Note that the parameter � is eliminated by reducing the term aZ in the calculation. Thus
the determinant of M is dominated by � and 
. This implies that if we set det(M) < em!

(ignore the constant term) to satisfy the requirement in Lemma 5, where ! is the dimension
of the lattice, then it will conduct to the security boundary of using short private and public
exponents. In the other words, the result of the Zhao-Qi attack is independent of the number
of primes sharing bits. It simply yields the result of the Boneh-Durfee attack [3], [4].
As a result, we conjecture that the Zhao-Qi attack is unable for attacking RSA with prime

sharing bits. Next, we try to revise the attack to make it feasible.

3.2 The Zhao-Qi Attack Revised

According to Corollary 2, LSB1~( 12��)n(p) can be computed e¢ ciently in polynomial time in

n. We may denote q = eq � 2( 12��)n + q0 and replace y by y � 2( 12��)n + q0 in (4). Then, (4) is
transformed to

f 0(x; y; z) = x [(A� 2q0)� 2ay � az)] + 1,

where A = N + 1, and a = 2(
1
2��)n. Then (x0; y0; z0) = (k; eq; r) is a root of f 0(x; y; z) (mod e).

Note that the size of the root y0 is reduced when compared with that of f(x; y; z). In fact,
since the sizes of eq and r are about �n bits, we may further simplify f 0(x; y; z) to

f 00(x; y) = x [(A� 2q0)� ay)] + 1 (mod e), (7)

with the root (k; 2eq + r) (mod e). The problem of solving (7) is similar to the Small Inverse
Problem introduced in 1999 by Boneh and Durfee [3], [4]. However, we do not deal with this
polynomial here, instead of considering another polynomial which will yield a better boundary.
We show the detail in the next section.

4 Proposed Attack

According to Corollary 2, LSB1~(1�2�)n(p+ q) is known to attackers in an LSBS-RSA system.
In this seciton we take this advantage to further extend the boundary of the revised Zhao-Qi
attack. Denote

p+ q = � � 2(1�2�)n + �0,

where �0 = LSB1~(1�2�)n(p + q), and � is an unknown number of (2� � 1
2 )n bits. Thus, the

RSA equation can be derived to

ed = k
h
(N + 1� �0)�

�
� � 2(1�2�)n

�i
+ 1.
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Consider the modular equation

f� (x; y) = x (B � by) + 1 (mod e), (8)

where B = N + 1 � �0, b = a2 = 2(1�2�)n, then (x0; y0) = (k; �) is a root of f(x; y) (mod e).
De�ne X = N
+��1, Y = N2�� 1

2 , we have jx0j < X, and jy0j < Y . Note that the form of the
modular equation (8) is the same as the form in (7). In particular, the upper bound Y in (8)
is much smaller than that in (7). This is the reason why we use the polynomial (8) instead of
using (7) to attack short exponent LSBS-RSA, because the boundary derived from (8) will be
better than the boundary derived from (7). However, this is not enough. We further simplify
the equation (8) by multiplying (�b)�1 (mod e) (note that this inverse exists since b is a power
of 2 while e is odd). The advantage is that the coe¢ cient of the leading monomial xy is 1 and
hence we remove the powers of b from the determinant of the lattice and allow larger � while
satisfying the determinant inequality.
Consequently, we get the alternative polynomial having (x0; y0) = (k; �) as a zero root

modulo e, that is
f(x; y) = xy +B0x+ C 0 (mod e), (9)

where B0 = B(�b)�1 (mod e) and C 0 = (�b)�1 (mod e). We construct the lattice by considering
the polynomials

gi;l (x; y) := xif l (x; y) em�l (mod em), for l = 0, :::, m; i = 0, :::, m� l;
hj;l (x; y) := yjf l (x; y) em�l (mod em), for l = 0, :::, m and j = 1, :::, t.

Take the case m = 3, t = 1, for example. The coe¢ cient matrix for this case is M =

ijl 1 x xy x2 x2y x2y2 x3 x3y x3y2 x3y3 y xy2 x2y3 x3y4

000 e3 e3

100 xe3 e3X
001 fe2 - - e2XY

200 x2e3 e3X2

101 xfe2 - - e2X2Y
002 f2e - - - - - eX2Y 2

300 x3e3 e3X3

201 x2fe2 - - e2X3Y
102 xf2e - - - - - eX3Y 2

003 f3 - - - - - - - - - X3Y 3

010 ye3 e3Y
011 yfe2 - - e2XY 2

012 yf2e - - - - - eX2Y 3

013 yf3 - - - - - - - - - X3Y 4

Let Mx and My denote the matrices with the coe¢ cient vectors of gi;l (x; y) and hj;l (x; y),
respectively. We have

det(Mx) = e
m(m+1)(m+2)

3 �X
m(m+1)(m+2)

3 � Y
m(m+1)(m+2)

6

det(My) = e
tm(m+1)

2 �X
tm(m+1)

2 � Y
t(m+1)(m+t+1)

2 .

(10)
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Applying X = e

+��1


 , and Y = e
2��1=2


 to (10) yields

det(Mx) = e
m(m+1)(m+2)

3 +( 
+��1
 �m(m+1)(m+2)
3 )+( 2��1=2
 �m(m+1)(m+2)

6 )

= e
m(m+1)(m+2)

3 �(2+�+��5=4

 )

det(My) = e
tm(m+1)

2 +( 
+��1
 � tm(m+1)
2 )+( 2��1=2
 � t(m+1)(m+t+1)

2 )

= e
tm(m+1)

2 �(2+ ��1

 )+(

2��1=2

 � t(m+1)(m+t+1)

2 ).

Note that if we only consider the x-shift, i.e., gi;l (x; y), to satisfy the requirement in Lemma
5 we have to set det(Mx) < e

m!x , where !x =
(m+1)(m+2)

2 is the dimension of Mx. Thus, we
have

m(m+1)(m+2)
3 �

�
2 + �+��5=4




�
< m � (m+1)(m+2)2 . (11)

Simplifying (11) yields
�+ � < 5

4 �


2 . (12)

Note that for the usual case (� = 1
2 , 
 = 1), we may attack RSA when � <

1
4 , which achieves

the same boundary as the Wiener attack [24].
Moreover, we further include the y-shift, i.e., hj;l (x; y), to our attack. By setting det (M) =

det(Mx) � det(My) < e
m!, where ! = (m+1)(m+2)

2 + t (m+ 1) is the dimension of M , we have

m(m+1)(m+2)
3 �

�
2 + �+��5=4




�
+ tm(m+1)

2 �
�
2 + ��1




�
+
�
2��1=2


 � t(m+1)(m+t+1)2

�
< m(m+1)(m+2)

2 + tm (m+ 1),

which leads to
m(m+2)

3 �
�
1
2 +

�+��5=4



�
+ tm

2 �
��1

 +

�
2��1=2


 � t(m+t+1)2

�
< 0, (13)

After simplifying the left hand side of (13) as a quadratic polynomial with variable t we geth
2��1=2




i
� t2 +

h
m��1


 + (m+ 1) 2��1=2


i
� t+

h
2m(m+2)

3 ( 12 +
�+��5=4


 )
i
< 0. (14)

Note that the left hand side of (14) would be minimized at

t =
�
�
m
��1

 +(m+1)

2��1=2



�
2

�
2��1=2




� = �[m(��1)+(m+1)(2��1=2)]
4��1 =

( 32�2���)m�2�+
1
2

4��1 . (15)

Plugging (15) in (14) yieldsh
2��1=2
2


i
�
�
( 32�2���)m�2�+

1
2

4��1

�2
+
h
m��1

2
 + (m+ 1) 2��1=22


i
� (

3
2�2���)m�2�+

1
2

4��1

+
h
2m(m+2)

3 ( 12 +
�+��5=4


 )
i
< 0.

(16)

Multiplying (16) by 2
 yields�
2�� 1

2

�
�
�
( 32�2���)m�2�+

1
2

4��1

�2
+
�
m (� � 1) + (m+ 1)

�
2�� 1

2

��
� (

3
2�2���)m�2�+

1
2

4��1

+ 2m(m+2)
3 (
2 + �+ � �

5
4 ) < 0.
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After simplifying the �rst term and the second term we have

1
2(4��1) �

�
( 32 � 2�� �)m� 2�+

1
2

�2 � 1
4��1 �

�
( 32 � 2�� �)m� 2�+

1
2

�2
+

h
2m(m+2)

3 (
2 + �+ � �
5
4 )
i
< 0.

Combining the �rst term and the second term we get

�1
2(4��1) �

�
( 32 � 2�� �)m� 2�+

1
2

�2
+
h
2m(m+2)

3 (
2 + �+ � �
5
4 )
i
< 0

which is simpli�ed to

2m(m+2)
3 (
2 + �+ � �

5
4 ) � 2 (4�� 1)) <

�
( 32 � 2�� �)m� 2�+

1
2

�2
.

Thus, we get the inequality

(2
 + 4�+ 4� � 5) (4�� 1) <
3
�
(
3
2�2���)m�2�+

1
2

�2
m(m+2) =

3
�
(
3
2�2���)�

2�
m +

1
2m

�2
1+ 2

m

. (17)

As m goes to in�nity, (17) becomes

(2
 + 4�+ 4� � 5) (4�� 1) < 3
�
3
2 � 2�� �

�2
. (18)

We give more discussions in the next section.

5 Further Discussions

5.1 The Summary of Our Attack

In conclusion, the boundary that our attack can succeed is

� < 2
3�+

5
6 �

4
3

q
�2 + ( 32
 �

1
2 )��

6
�1
16 ,

where 1
4 � � �

1
2 . For the case 
 = 1, we have the boundary

� < 2
3�+

5
6 �

4
3

q
�2 + �� 5

16 . (19)

The curve of (19) is shown in Fig 1. We also show the other attacks, which includes the Wiener
attack, Boneh-Durfee attack, and the Analogue Fermat factoring. As can be seen in Fig 1, if p
and q share the n

4 least signi�cant bits at least, i.e., � � 0:25, the Analogue Fermat factoring
can factor N e¢ ciently. The Wiener attack and the Boneh-Durfee attack (short for B-D attack)
work in the case � < 1

4 and � < 0:284, respectively. We should point out in B-D attack [3],
[4], Boneh and Durfee use the geometrically progressive matrices to eliminate the larger terms
in the coe¢ cient matrix, and thus the upper bound is further extended from d < N0:284 to
d < N0:292. This technique can also be applied to our method but we do not discuss it here.
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Figure 1: Insecure Region of � and � for which LSBS-RSA with 
 = 1 .

5.2 Experiments

We have performed the experiments on a server containing Intel processors of 2:4 GHz Core
2 Quad, with 2 GB Memory. The lattice basis reductions are done using Shoup�s NTL [14].
We have to mention that, like the Boneh-Durfee attack, our attack is also heuristic since the
resultant computations may fail even with low probability. Also, we just experimented for
the samples on LSBS-RSA with short private exponent, and e t N (i.e., 
 t 1). Note that
the size of 1024 bits, or 2048 bits for the modulus are often used in the current computational
environment. However, we just experimented for the size of 128 bits for the reason of simplicity.
The experimental results are shown in the following.

n � d � m t
Rank of
Lattice

Running
Time

Advantage over
Z-Q Attack

128 bits 0:275 90 bits 0:704 5 12 93 36 sec 43 bits
128 bits 0:300 77 bits 0:607 5 7 63 9:5 sec 31 bits
128 bits 0:350 61 bits 0:478 5 3 39 3:0 sec 17 bits
128 bits 0:425 45 bits 0:350 5 2 33 0:7 sec 5 bits

The entries for � in the table are the tested values for which the attacks succeeded. As can be
seen in the last column of the table, our attacks achieved the higher bounday than the one of
the Zhao & Qi�s attack. In addition, we have to point out that considering LSBS-RSA with

 < 1 (i.e., e << N) and � < 1 (i.e., d << N) is not practical. Up to now there is no research
about designing LSBS-RSA with short private and public exponents simultaneously. The most
related work for designing short private and public exponents RSA was proposed by Sun et.
al.[16], [17], but the modulus primes in their key-generation schemes cannot be determined as
desired. Hence, it seems meaningless to cryptanalyze the security of short exponent LSBS-RSA
with 
 < 1. Even so, in Table 1 we still summarize the largest � for which the proposed attack
can succeed.
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 = logN (e) 
 = 1:0 
 = 0:9 
 = 0:86 
 = 0:8 
 = 0:7 
 = 0:6 
 = 0:55

� = 0:5 0:284 0:323 0:339 0:364 0:407 0:452 0:476
� = 0:4 0:437 0:468 0:480 0:500 0:534 0:571 0:590
� = 0:3 0:662 0:681 0:688 0:700 0:721 0:743 0:754
� = 0:25 1 1 1 1 1 1 1

Table 1: The upper bound or lower bound of � for which our attack can succeed in LSBS-RSA.

5.3 Further Improvement

To further extend the boundary of our attack, we may focus on the approximation to p + q.
Generally, p + q is estimated as 2d

p
Ne. Sun, Wu, & Chen [18] proposed a method, called

EPF, to estimate the most signi�cant bits of p + q. With this technique, we may reduce the
quantity of Y in (8) and this may conduct to a better boundary of LSBS-RSA for security.
More precisely, suppsoe that p + q is estimated as �E , with the error j(p+ q)� �E j < 2m,
where m < n

2 , then the RSA equation can be represented as

ed = x [(N + 1)� (�E + y)] + 1,

where x0 = k, and y0 < 2m are two unknown numbers. The above equation gives us a
motivation to combine de Weger�s result [23] with our attack. Next, we brie�y describe it.

5.4 LSBS-RSA with Small Prime Di¤erence

Recall that p� q = r � 2( 12��)n, for some integer r. In general, the quantity of r is about 2�n.
Here we consider the case that bit-length of r is much smaller than �n. This means p and q
share a number of the most signi�cant bits. The cryptanalysis of this RSA modulus had been
analyzed by de Weger [23]. We suppose that p and q share the �M most signi�cant bits, which
implies p� q < 2n2��M , and share the �L least signi�cant bits, which implies p� q = rL � 2�L
for some integer rL. Thus, p� q can be represented as

p� q = rL � 2�L , where rL < 2
n
2�(�M+�L).

And then, p+ q can be computed from the identity:

(p+ q)
2
= (p� q)2 + 4N = r2L � 22�L + 4N .

Using the representation of p + q above may yield a better boundary for the lattice attack on
this kind of RSA variant. However, we do not show the detail here but leave it in the full
version.

6 Conclusion and Future Work

In this paper, we point out the error in the coe¢ cient matrix of the Zhao-Qi attack. To
repair their method, we re-calculate the determinant of the coe¢ cient matrix that Zhao and
Qi suggested in [25]. However, the result shows that the Zhao-Qi attack is unable for attacking
RSA with prime sharing bits. We give a revised version for their attack to make it feasible. In
addition, we also propose a method to further extend the security boundary of short exponents
in LSBS-RSA. Our result shows that LSBS-RSA is getting more vulnerable as smaller exponents
or more number of primes sharing bits.
An interesting question is how to design an LSBS-RSA with short public and private expo-

nents simultaneously. Note that in Sun et. al.�s schemes [16], [17], we cannot choose modulus
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primes randomly in order to produce desired public and private exponents. Up to now it is still
an open problem to design such scheme to achieve balanced short exponents RSA with prime
sharing a large number of least (or most) signi�cant bits. Conversely, the cryptanalysis of such
RSA variant, if it exists, is worth to research as well.
Although LSBS-RSA is bene�cial to the computational e¢ ciency in several applications,

such as server-aided signature generation [6], we have to indicate using LSBS-RSA also raises
the risk in the security [20], [21], [23], [25]. We believe it is a trade-o¤ between the e¢ ciency
and the security level, and thus one should be more careful in using such RSA variants.
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