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Abstract: The paper discusses the hardware and software security requirements 
in an embedded device that are involved in the transfer of secure digital data. 
The paper gives an overview on the security processes like 
encryption/decryption, key agreement, digital signatures and digital certificates 
that are used to achieve data protection during data transfer. The paper also 
discusses the security requirements in the device to prevent possible physical 
attacks to expose the secure data such as secret keys from the device. The 
paper also briefs on the security enforced in a device by the use of proprietary 
security technology and also discusses the security measures taken during the 
production of the device. 

1. Introduction 
The embedded or handheld devices are getting increasingly connected and are more and 
more involved in network communications. The users of these devices are now able to 
execute almost all the network/internet applications that run in a PC on these devices. 
These devices are also increasingly involved in transfer of secure data through public 
networks that needs protection from unauthorized access and thus the security 
requirements in embedded devices have become critical.  

The secure data falls in different categories requiring different levels of security. 
According to whose interest the protection of the data is, the secure data can be 
classified as two: the users private data and the user restricted data. The users private 
data are those data which when its security is compromised impacts directly on the user. 
A simple example of compromising such security is having access to a user’s internet 
banking password. But in case of user restricted data, it’s not the user but the content 
(data) provider who suffers direct loss on compromising the security of that data. The 
examples of such data are digital multimedia content such as copyrighted digital photos, 
audio and video contents.  

The secure data not only requires protection during data transfer but also while handling 
the data at the end user devices. Vulnerability at the end user device, like easy access to 
the secret keys that are used to encrypt or decrypt the data, can easily turn down the 
entire security measures. The protocol involved for the secure transmission of either of 
the above mentioned contents through a public network uses more or less the same 
techniques but the handling of the user restricted data at the user’s end involves much 
more care as the content is protected from the user itself! 

Thus an embedded device must implement methods or protocol for secure data transfer 
and also should implement security methods to defeat attempts of unauthorized access of 
secure data from the device. The security needs for an embedded device thus can be 
classified into two:  

− Security needs for data transfer and  

− Security needs within the device  

2. Security needs for data transfer 
The data in a public network passes through a number of untrusted intermediate points. 
Therefore the secure data must be scrambled in such a way that the data will be useless 
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or unintelligible for anyone who is having unauthorized access to the secure data. This 
can be achieved with the help of cryptographic methods such as Encryption/Decryption, 
Key Agreement, Digital Signatures and Digital Certificates. The use of these cryptographic 
methods in an embedded system to achieve data security is explained in the following 
sections. 

2.1. Data Encryption 
Encryption is the process of scrambling/encrypting any amount of data using a (secret) 
key so that only the recipient, who is having access to the key, will be able to 
descramble/decrypt the data. The algorithm used for the encryption can be any publicly 
available algorithm like DES [2], 3DES [8] or AES [7] or any algorithm proprietary to the 
device manufacturer. The key is known only between the communicating devices and will 
typically of length 100s of bits. If publicly available algorithms are used, the security of 
the transferred data totally depends on the secrecy of the keys used for the encryption. 
Sharing and maintaining the secret key between the communicating devices without any 
unauthorized entity getting access to the keys is important for foolproof secure data 
communication.  These keys can be embedded in the device prior to the communication, 
exchanged offline in a secure manner or established online using any key agreement 
algorithm as explained in section 2.2.  

The storage of the secret keys within the device is also critical for ensuring the complete 
protection of data. Security requirement for the storage of secret keys in the device is 
discussed in section 3.  

2.2. Public-key Key Agreement Algorithm 
When there are 100’s of devices in a network, sharing and maintaining secret keys 
between all the devices for data encryption seems difficult, even unrealistic. This is where 
the Key Agreement Algorithm is used. Using Key Agreement algorithm, a shared secret 
can be established between communicating parties without the need for exchanging any 
secret keys or secret parameters online or offline. This works as follows. 

Key agreement algorithm is a public-key cryptography algorithm. For devices that use 
Key agreement algorithm will have a private-key and an associated public-key. The 
private-key is generally a random number of hundreds or few thousands of bits and the 
public-keys are derived from the private-key using the one-way function specified by the 
key agreement algorithm. One-way functions are mathematical function in which the 
forward operation can be done easily but the reverse operation is too difficult that it is 
practically impossible.  The public-key is derived using private-key on the forward 
operation of the one-way function. The reverse operation of obtaining the private-key 
from the public-key is too difficult that it is practically impossible.  

The devices that need to establish shared secret between them exchanges their public-
keys and other public constants, if any. Both the device on receiving the other devices 
public-key performs key generation operation using its private-key to obtain the shared 
secret. The key agreement works such a way that the shared secret calculated by both 
the devices will be the same.  

For e.g. let P be the private-key of a device and U(P, C) to be the public-key of the 
device, the representation U(P, C) is to show that the public-key of a device is derived 
from the private-key P of that device and some shared constants C known by all the 
device taking part in the communication.  

Consider two devices A and B. Let PA and UA(PA, C) are the private-key and public-key of 
device A and PB and UB(PB, C) are the private-key and public-key of device B respectively. 
Both device exchanges their public-keys.  

Device A, having got the public-key of B, calculates key KA = Generate_Key(PA, UB(PB, C)) 
Device B, having got the public-key of A, calculates key KB = Generate_Key(PB, UA(PA, C)) 
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The key generation algorithm ‘Generate_Key’ will be such that the generated keys at the 
device A and B will be the same, that is shared secret KA=KB=K(PA, PB, C). 

It is impossible for any middleman, who only have access to the public-keys, UA(PA, C) 
and UB(PB, C), to obtain the shared secret K unless he has got the access to the private-
key, PA or PB of any of the communicating device. Examples of key generation algorithms 
are DH [4] and ECDH [5].  

In the key agreement algorithm the private-key used is a secret key and should not be 
shared with any other devices in the network, even to the device to which it is 
communicating. It is only the agreed shared secret key that is known between the 
communicating devices. It must also be ensured that the private-key is not disclosed 
from the device. The safe storage of the private-key of key agreement algorithm on the 
device is thus important. Security requirements for safe storage of secret keys are 
discussed in section 3. 

2.3. Digital Signature  
The device in a network may be communicating with the unknown or less familiar device 
located 100s of kilometers apart. The communication may also require routing through 
many intermediate points. During Key Agreement process, for establishing a secret key, 
any middlemen can substitute a devices public-key to its public-key and thus results in 
establishing a shared secret with the device. Therefore, for establishing shared secret 
using the key agreement algorithm, it is important for device to receive an authenticated 
public-key from the peer. For authenticated exchange of public-key, Digital Signature and 
Digital Certificates are used.  
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Digital signature is a public-key method to verify the authenticity of a received data from 
the peer. In digital signature, like the key agreement algorithm, a device uses a pair of 
keys, ‘sign private-key’ and ‘sign public-key’. Only the device knows its sign private-key 
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whereas the sign public-key is distributed to all the communicating devices. A device 
signs the message using a signatures algorithm with its sign private-key to generate a 
signature and any device that has got the access to the sign public-key of the signed 
device can verify the data with the signature using the signature verification algorithm. If 
any third party modifies the data or signature, the verification fails. Since only the signed 
device knows its sign private-key, it will be impossible for any other device to forge the 
signature. Examples of Digital Signature algorithms are RSA [3], DSA [2] or ECDSA [5]. 

2.4. Digital Certificate 
Even while using the digital signature algorithm, the ‘sign public-key’ from a peer device 
has to be obtained by an authenticated way to ensure the authenticity of a received 
message. For key agreement or digital signature the authenticated transfer of public-key 
in a large network is difficult or even not possible without a centralized trusted authority. 
This centralized authority is trusted by all the devices in the network. This authority is 
generally known as trusted Certificate Authority or CA. The Certificate Authority (CA) 
signs the public-keys of devices along with the device ID using the CA’s private-key to 
generate the signature. These CA signed data of a device (public-key, IDs etc.) along 
with the signature arranged in a standard format is called as a certificate. The certificate 
is issued by CA to all devices taking part in the communication. Any device, having the 
CA’s public-key installed, can verify the authenticity of the received certificate and thus 
the public-key of the peer device. One popular certificate format is X.509 [6].  

For obtaining the certificate, a device requests the certificate to the CA. The device sends 
its public-key, unique IDs and other information as required by the CA. The CA usually 
does some background check to ensure the device is not hostile before issuing the 
certificate. The certificate obtained by a device is rarely changed and the process of 
obtaining a digital certificate for an embedded device is usually done offline. 

Once communicating devices obtains its certificate from the CA, the devices exchange 
their respective certificate before establishing a shared secret between them. Any device 
on receiving the peer certificate verifies it using the CA’s public-key. Since the CA public-
key common to all the devices taking part in the communication and is never changed, it 
is pre installed on all the devices in network generally through any offline trusted 
methods. Once a peer authenticates the device certificate, the device can use the public-
key in the certificate to sign any message send by the device to the peer to prove the 
messages authenticity.  

The CA may be different for different networks and for different communication protocol.  

2.5. Certificate Hierarchy 
As the number of devices taking part in the communication increases and the location of 
these devices is distributed over different parts of the world, a single certificate authority 
may not suffice to issue and maintain certificates for all the devices. Certificate Hierarchy 
is the solution here. 

In Certificate Hierarchy there will be a Trusted Root CA who will give permission other CA 
to issue certificate to the communicating devices. The Root CA will issue the certificate for 
the respective intermediate certificate authority. The intermediate CA will issue 
certificates to the device. In addition to issuing certificates to the devices, the 
intermediate CA’s will also give its certificate, issued by root CA, to the devices. There 
can be multiple level of certificate hierarchy in which the intermediate CA’s will give 
permission to other CA to issue certificate to the communicating devices.  

If a device A obtained a certificate from an intermediate CA, then it not only receive its 
device certificate but also the certificate of the intermediate CA, which is issued by the 
root CA. If there is multiple level of intermediate CA above the CA that issued certificate 
to the device, the device will receive certificate of all intermediate CA’s up to the root CA.  
During a secure communication a device may ask all the intermediate certificates from its 
peer for successful verification of the received device certificate. 
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2.6. E.g. of Key Agreement algorithm  
An example of key agreement protocol using digital certificates and digital signatures are 
explained below.  A single certificate hierarchy is assumed in this example.  
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Before connecting the device in the network, the device will acquire the device certificate 
from the CA. The certificate will have a ‘sign public-key’ and the device will have a ‘sign 
private-key’ corresponding to the sign public-key in the certificate stored securely in the 
device to prevent it from disclosure. The sign public-key and sign private-key can be of 
any digital signature algorithms such as RSA or DSA. The sign private-key can be used to 
sign any data sent by the device to prove the authenticity of its data.  

For key agreement, the device uses any key agreement algorithms like DH or ECDH. The 
device generates a public-key and a private-key pair for key agreement algorithm. Let it 
be ‘KeyGen public-key’ and ‘KeyGen private-key’. The device signs the KeyGen public-key 
with the sign private-key that corresponds to the sign public-key in the certificate. Once 
signed, the device sends the KeyGen public-key, its signature and its device certificate to 
the peer device. Similarly the device receives these sets of data from the peer device. On 
receiving the KeyGen public-key, signature and device certificate from the peer device, 
the device verifies the signature of the KeyGen public-key with the sign public-key in the 
peer device’s certificate. The device then verifies the peer device’s certificate using the 
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root CA certificate stored in the device. Once the verification processes are successfully 
completed, the device proceeds with the key generation algorithm to obtain a shared 
secret using the device’s KeyGen private-key and peer device’s KeyGen public-key. The 
same process also takes place at the peer device and the shares secret generated by 
both the devices will be the same. 

The certificate private-key and the generated shared secret are stored inside a device 
persistent memory and needs protection from disclosure. The KeyGen private-key is also 
not disclosed but is valid only till the shared secret generation and is generally disposed 
after the shared secret process is over. The KeyGen private-key is thus never stored.  

3. Security needs within the device 
Whether it is the private-key of any public-key algorithm as discussed in section 2 or it is 
any previously negotiated shared secret between the devices, the security of data 
transferred depends in the secrecy of these keys. To enforce additional security, some 
cryptographic algorithms may also specify a set of constant values that should not be 
disclosed from the device. These secret keys and secret values stored in the device that 
requires protection from unauthorized exposure are referred as ‘secret keys’ in this 
document.  

The secret keys are stored inside the device, some even for the lifetime of the device. 
Hardware and software security measures implemented in the device must defeat any 
attempts of unauthorized access to retrieve these secret keys. Also, there are data such 
as the Root CA Certificate in the device that can be disclosed but should be prevented 
form unauthorized modification. If Root CA certificate can be modified, then the attacker 
can make the device to accept any certificate by substituting a fake root CA certificate 
and thus defeating the purpose certificate and secured communication. It is therefore 
also important that the security in the device is such that the data such as Root CA 
Certificates in the device is not subjected to unauthorized modification.  

The level of security within the device varies depending on the nature of the protected 
content. The need for device security is more in the case of device handling user 
restricted data like copy-protected* video than in the case of user’s private data like 
personal files or bank transactions. This is mainly because, in the case of user’s private 
data since the user will suffer the direct loss on compromising such data, he/she will be 
responsible for restricting the physical access to the secret keys and other secured 
contents stored in the device. Also, the general implementation of secure data transfer 
protocols recommends a unique secret key for each device. Therefore if the hardware 
security of any of the device is compromised, it doesn’t affect the security of other device 
in the network. But in the case of user restricted data, compromising the secret key of a 
single device results in the compromise of the security of all the copy-protected content 
handled by that device. One vulnerable device can thus results in helping an 
unauthorized device to access the copy protected content, decrypt it and distribute 
countless copy of the copy protected content.  

The following section gives an example of prototype SoC to discuss the hardware and 
software support required to enforce the security within the device and thereby defeating 
the physical attack that compromises the security of the device.  

3.1. Secure SoC 
The Secure SoC provides physical protection to secret keys by keeping the components 
like Secure ROM, which is handling the secret keys, inside the Secure SoC.  

During execution time, the protected secure keys from the Secure ROM has to be loaded 
to the RAM in clear text and during that time the bus from the Secure ROM to the RAM 
can be monitored to access the secret keys. This can be prevented by allocating buffers 
for secret keys or intermediate values of cryptographic operations involving secret keys in 

* Copy protected contents are multimedia content that 
have limited or no copying permission for the user.  
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the Internal RAM of the Secure SoC. This prevents the protected keys being available to 
any bus outside the Secure SoC. 

The Secure Bootloader in the Secure SoC ensures that the device boots up with the 
genuine OS or firmware with right process privileges. The Memory Management Unit 
(MMU) configured by the OS permits the access to the buffers in the Internal RAM that 
involves secret key operations only to the secure processes with special OS privileges.  

In the case where the Secure ROM is limited or pre-programmed by the hardware 
manufacturer, the Secure ROM can be programmed with a master key. This master key 
can be used to encrypt and store the device secret keys in the internal ROM.  

Secure SoC

External ROM

Secure Bootloader
(Write protected)

Processor
Internal
ROM
R/W

Secure ROM Internal RAM

Firmware code Code
Signature

External
RAM

Encryption/
Decryption

Engine

Hardware MMU

 
In ideal case of a Secure SoC  

− The Secure ROM cannot be physically accessed to retrieve the secret keys.  

− The buses inside the Secure SoC cannot be monitored to obtain protected data or 
keys.  

− The removal or replacement of any components in the Secure SoC should be 
impossible or should prevent the SoC from working. 

The level of physical protection varies depending on the value of the protected content. 
The protection can be just tamper detection of SoC to zeroing of all the stored content in 
the SoC when a physical access attempt is made. Tamper detection protection method 
does not prevent a attacker from obtaining the data from the chip but will only makes it 
possible to know whether the chip is tampered or not. The zeroing requires special power 
supply and hardware support that makes the chip costlier. The NIST issued FIPS 140 [9] 
publication specifies different level of hardware and software security requirements for 
device that is involved in store and transfer of sensitive information. 

The role of each component in the Secure SoC to ensure the secure storage of secret 
keys and other protected data are explained below. 

3.2. Secure ROM  
One method for storing the device secret keys securely in the persistent storage of a 
device is to encrypt the secret keys before storing. Thus even if anyone managed to get 
the data out of the persistent storage he/she will never be able to understand the secret 
keys. To encrypt any data generally two things are required, an encryption algorithm and 
a key for encryption. If any well-known algorithm like AES is used for encryption of the 
secret keys, then the strength of the encryption is only as strong as the secrecy of the 
key that used for the encryption. Thus the same problem faced for the storage of the 
secret keys is faced again for the storage of the key that is used for encrypting the secret 
keys. This problem is repeated unless an encryption algorithm is used that is known only 
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to the device manufacturer. If the device proprietary algorithm is used for the encryption 
and storage of the secret keys, the security of the secret keys are only as strong as the 
secrecy of the algorithm. Since the code binary is stored in the clear text in the device 
memory and plenty of tools for reengineering the code like ‘objdump’ are available, the 
chance of exposing the secret keys cannot be neglected.  

Another method to store the secret keys is to store it inside a Secure ROM. The Secure 
ROM resides inside the Secure SoC in the device. The hardware controller of the Secure 
ROM descrambles the data before retrieving it back from the ROM.  This hardware 
support will prevent the unauthorized physical access to retrieve the secret key stored in 
the Secure ROM.  

The buffers that hold the secret keys or the intermediate values of cryptographic 
operations involving the secret keys are allocated in the Internal RAM of Secure SoC. 
Thus the secret keys are prevented from being available to any bus outside the Secure 
SoC. 

In the case where the Secure ROM is limited or pre-programmed by the hardware 
manufacturer, the Secure ROM can be programmed with a device master key. The device 
master key is a key unique to each device hardware or Secure SoC that can be further 
used to encrypt and store the device secret keys in a less Secure ROM.  

The possible vulnerability in the implementation of Secure ROM can be: 

1. The Secure ROM is physically removed from the Secure SoC, place it in another 
device and make it work to retrieve the protected keys. 

2. The bus between Secure ROM and RAM is accessed to retrieve the protected keys. 

3. An unprivileged/unauthorized application running on the device gets access to the 
API for retrieving the secret keys from the Secure ROM.  

In an ideal case of Secure SoC, the first two vulnerability doesn’t exist. The third 
vulnerability can be prevented by use of Secure Bootloader and implementation of right 
process privileges as explained in section 3.3 and 3.4 and thus not allowing an 
unprivileged application to run and access the restricted memory locations of the device.  

3.3. Internal RAM and Secure Processes  
The buffers for secret keys or intermediate values of cryptographic operations involving 
secret keys are allocated in the Internal RAM of the Secure SoC to prevent the secret 
keys being available to any bus outside the Secure SoC. Let this memory area in the 
Internal RAM be called as Secure Memory Area. Not every process should access this 
memory area. Only the processes with special OS privilege, Secure Process, should be 
able to access the Secure Memory Area. This is analogous to process with administrative 
privilege or root privilege in an operating system.  

The OS during boot up configures the memory management unit to permit access to 
Secure Memory Area by only the Secure Processes. It is also important that the MMU 
configuration code in the OS is not modified by an unauthorized user to get access to the 
secure memory area. This can be ensured by the use of Secure Bootloader and code 
signing as discussed in section 3.4. The Secure Processes are configured to start during 
device bootup. The OS should disallow any unauthorized processes to run as Secure 
Process or to start a new Secure Process. This can prevent any downloaded application, if 
supported by the device, to access the Secure Memory Area to read the secret keys. 

The results of an operation performed by a Secure Process on the secret keys are usually 
public data such as encrypted data or a public-key. These output data are requires by 
other less privilege processes to perform operation such as transmitting the output data 
to other device. There can be several ways of calling a Secure Process by a less privileged 
process. An example is explained below. 

The Secure Processes waits, for e.g. on a semaphore, to get the input data and start 
executing. The input data buffer will be a non-secure memory area. Any less privilege can 
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fill the input buffer and signal a Secure Process, by releasing the semaphore, to start 
execution. The Secure Process, on receiving the signal, does the corresponding 
cryptographic operation on the input data with the secret keys. The output of the 
operation is placed in the non-secure memory area from where the less privilege process 
can read the output. 

3.4. Secure Boot-Loader and Code Signing 
The secret keys, though protected by hardware security measure, have to be exposed for 
through some API’s for use. It is necessary to ensure that the firmware of the device 
cannot be modified so that an unauthorized user can use these API’s to extracts the 
secret keys from the device. The firmware also contains secure critical code such as code 
that handles security critical hardware configuration like Internal RAM configuration to 
specify access permissions. Any attempt on overriding the firmware components of the 
device thus must be turned down. The presence of Secure Bootloader can ensure this.  

On startup before loading the firmware code, the Secure Bootloader checks whether the 
firmware is genuine or not and prevents the device from booting up if the device 
firmware is modified or replaced. An example of a Secure Bootloader implementation is 
discussed below. 

Device Manufacturer DEVICE

Secure Boot Loader

Boot Init
Code sign
verification

module
Public key*

ROM

Public key*

Private key*

Signature
Algorithm

Code Signature
Code + Data

files (E.g.
Root CA cert)

* The public key and the private key are generated by device manufacturer and is used
for the the signing and verification of the device firmware code.The private key has to be
kept secret by the device manufacturer

Dev specific
Data files -
Notsigned

 
Secure Bootloader resides on a write protected ROM inside the Secure SoC. Keeping 
Secure Bootloader in a write protected ROM ensures that the Secure Bootloader itself is 
never modified. In addition to the general boot initialization code, the Secure Bootloader 
contains a signature verification module of the firmware code and the code verification 
public-key to verify the firmware code.  

The firmware code is signed using the device manufacturer’s code verification private-
key. The Secure Bootloader, on boot up checks the validity of the code by verifying the 
signature using the code verification public-key.  

Though the private-key that used to sign the firmware code is never shipped along with 
the device, it has to be kept secret by the device manufacturer. The compromise in the 
secrecy of the private-key that used to sign the firmware code enables anyone, who is 
having access to the private-key, to write and sign a code that is acceptable by the 
Secure Bootloader.  

If the firmware of the device is non-upgradeable then the level of security in boot loader 
can be enforced in much simpler method without the presence of a Secure Bootloader. In 
such case, writing the entire firmware in a read-only memory and configuring the boot 
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loader to boot only from the given read-only memory area can prevent any unauthorized 
firmware component to run on the device. But in many case, non-upgradeable firmware 
brings too much limitations on a product. 

There are files, like root CA certificate, which when modified can result in the compromise 
of the device security. Such files also need to be signed along with the firmware code of 
the device.  

There are also file specific to each device, like encrypted secret keys or device 
certificates, which when modified prevents the device from secure data transfer but does 
not compromise the security of the device. The signing of these device specific files will 
cause overhead during the production of the device or during the upgrade of the device 
firmware where the device manufacturer needs to sign the firmware code for each 
device. Since the device security is not compromised by the modification of these files, 
these files can be kept in the device without being signed. 

3.5. Encryption and decryption engine 
In many secure protocol implementations, the shared secret generated by the Key 
Agreement algorithm as discussed in section 2.2 is used as a master key and the sub-
keys are generated that are used for the process of encryption and decryption. When 
used as the master key, the shared secret is stored in the device till expiry time as 
specified as the protocol and the lifetime will be in the order of days or even months 
depending on the protocol of data transfer. But the lifetime of sub-keys will be generally 
small in the order of seconds. In this case the security requirement of the shared secret 
is higher and hence stored securely in the device. But the security requirement of the 
sub-keys is not that critical as that of the secret keys like shared secret or certificate 
private-keys. The sub-keys generation protocol also will be such that it will be impossible 
to derive the master key from the sub keys. In such cases where the security of keys 
(sub-keys) used for encryption and decryption is not so critical, the encryption and 
decryption engine (module) can reside outside the secure SoC. The sub-keys are 
generated inside the Secure SoC and are passed to the encryption/decryption engine 
outside the Secure SoC. In some other protocols the shared secret or secret keys itself 
for encryption/decryption. In such case, the encryption/decryption engine should reside 
inside the SoC to prevent the key from being available the bus outside Secure SoC.  

The encryption and decryption engine thus have the choice to reside inside or outside the 
Secure SoC depending on the security need of the keys used for encryption/decryption.   

3.6. System Time 
The digital certificate of a device generally comes with validity period. The validity periods 
varies across different protocol implementation. Some protocols like SSL specify a fixed 
validity period of few years or decades whereas other protocols like DTCP specifies 
infinite validly for a certificate.   

The system time in an embedded device will generally have interfaces to user to set or 
modify the system time. For certificate verification process the device should maintain a 
system time that is different from the system time modified by the user so that the users 
are not able to modify the system time and make the device accept an expired 
certificate. It is also important that the timer keeps counting even after when the device 
is in the switched off state.  

Unauthorized modification of system time is not so critical in many cases where the 
device handles certificates having validity period of decades, i.e. 20-30 yrs or more. This 
timeframe is sufficiently larger than the lifetime of many devices. Also, the chance for 
root CA to update the root certificate within this time frame is also high. If the CA 
changes a root CA certificate, the devices must update the root and the intermediate CA 
certificates and should acquire a new device certificate from the CA. 
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4. Proprietary Technologies for secure data transfer 
Proprietary security modules are implemented on some devices for the secure data 
transfer between the compliant devices. The modules can be some or all the modules 
mentioned in section 2 like Encryption/Decryption, Key Agreement, Digital Certificate or 
Digital Signature modules.  

The proprietary technologies implemented in device are usually kept secret to enforce 
additional security for data transferred between the devices. It is therefore ensured by 
the device manufacturer to not to disclose the technology, from or outside the device, 
and thereby compromising the security enforced by these technologies. The device 
manufacturer should find a method to store the software module in the device so that the 
secrecy of the technology is not compromised from the device. Code (binary) of these 
proprietary technology software modules usually will be in clear text inside the device. 
Thus if someone can get access to the code in the device it may be easy to extract and 
understand the implementation of the software module with the help of code 
reengineering tools like 'objdump'. Thus the device must prevent access to retrieve the 
code by placing it inside Secure SoC or encrypting and storing the code using a secret 
key knowing only to the device manufacturer. If the code is stored encrypted, the boot 
loader of the device must support the decryption and loading of the code during 
execution and the secret key used for encryption and decryption of the code can be 
stored in the device by the methods specified in section 3. 

A proprietary technology can be either a device specific or a standard specific. In the case 
of a device specific technology, the secure data transfer can happen only between the 
devices of same manufacturer. An e.g. can be Apple’s iPod music player. Apple can use 
their proprietary technology for secured transfer of files between their compliant devices 
or applications like iPod, iTunes and iTunes store.  Since the devices are from a single 
manufacturer, keeping it secret, other than any user retrieves and understands the code 
through any weak links from the device, seems to be practically possible.  

If the proprietary technology is specified by a standard body, it can be used to enforce 
additional security between the devices of different manufacturer. In this case the 
standard body will disclose the technology to the device manufacturer on an agreement, 
usually legal, to not to disclose the technology. Few e.g. of such technologies are M6 
encryption technology used in DTCP [11] and DFAST scrambling algorithm used in 
OpenCable’s CableCARD-Host interface protocol [10]. Maintaining the secrecy of the 
technology becomes more and more difficult as the number of manufacturer to whom the 
technology is circulated increases. As the number of manufactures increases, the security 
provided by these technologies becomes minimal or even negligible. In this case It is 
therefore important that the security of data transfer of such device does not rely only on 
the secrecy of these proprietary technologies.  

5. Revocation List 
Though the security measures as explained in section 3 are used for secure storage of 
secret keys in the device, the chances of retrieving it cannot be ruled out completely. In 
devices with only 'tamper evident' security measures it is possible to retrieve the secret 
keys from the device's NVM but with some physical tampering of the device.  

Generally each device will have a separate set of secret key so that compromising one 
devices secret key doesn’t compromise the security others. But in the case of devices 
handling the copy-protected digital multimedia content through network, compromising 
the secret key of a single device results in the compromise of the security of all the copy-
protected content handled by that device. One vulnerable device can thus results in 
helping an unauthorized device to access the copy protected content, decrypt it and 
distribute countless copy of the copy protected content. If came to notice, a broadcaster 
can prevent such device to communicate with other devices in the network to get the 
copy protected content by adding the device ID in a list called as the revocation list. All 
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trusted devices would have the access to revocation list from the broadcaster will stop 
communicating with the device whose security is compromised. 

6. Keys and certificate handling during device manufacture 
In many cases, the different hardware and software components in an embedded device 
are supplied by different vendors. The hardware vendors provide the hardware 
component and the associated drivers for the device whereas the software vendor 
provides the software components. The device manufacturer or the deice vendor 
assembles these hardware and software components to make the product, which is 
marketed with an aim of attaining revenue. The secret key for each device has to be 
loaded in to the device during manufacture. It is usually is the interest of the device 
vendors to protect the secret keys of the devices and thus the device vendors may refrain 
from sharing the secret keys to different hardware and software vendors. But atleast 
some part of the software has to use the shared secret and also as explained in section 3, 
the device need hardware support to store the secret key securely in the device. With the 
support of hardware and software vendors, the device manufacturer can store secret 
keys securely in the device, also not disclosing it to the hardware and software vendor. 
Two methods are explained here to handle the secret keys during production of the 
device. 

1. The hardware vendor supplies hardware with write-protected Secure ROM, pre-
programmed with unique random number for each device or for a set of devices. 
This random number can be used as a hardware master key to encrypt device 
secret keys.  

2. The hardware vendor supplies hardware with programmable Secure ROM that can 
be programmed by the device manufacturer with device secret keys 
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In Case 1 where the hardware comes with a pre-programmed random number inside the 
Secure ROM, the random number acts as a hardware key or a master key that can be 
used to encrypt the secret keys of the device. The software vendor provides software 
methods/code to encrypt/decrypt secret keys using the hardware key. The device 
manufacturer can use the encryption method to encrypt and store the secret keys inside 
the device using the hardware key. The decryption method will be the part of device 
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firmware that goes along with device to decrypt and use the stored secret keys using the 
hardware key.  

In case 2 where the hardware comes with programmable Secure ROM, the hardware 
vendor also supplies the software module or drivers to program/write the Secure ROM 
with the keys. The software vendor or the device vendor now will have the flexibility to 
decide whether to store the secret keys or a master key to encrypt the secret keys to be 
stored in the Secure ROM. 

Usually the device certificates of each device will be different. Since the device certificate 
and the encrypted secret keys are different for each device, these will not be the code-
signed along with the firmware as discussed in section 3.4. Otherwise the device 
manufacturer needs to sign (using any software provided by the software manufacturer) 
the firmware code for each device. The device manufacturer will load the device 
certificate or encrypted keys for each device on the ROM location as specified by the 
software vendor. The certificate handling software component loads the certificate for 
processing from the specified location.  

The root CA certificate is unique for all the devices communicating using the same 
protocol and its unauthorized modification or substitution results in compromise of device 
security, the root CA certificate is code-signed along with the firmware code. 

7. Conclusion 
The available security measures for secure transfer of data between two devices are 
matures enough to defeat any third party to decrypt and get access to the protected 
content. But the security measures available to protect the stored secure data, like secret 
keys, within the device are not yet foolproof. A tamper resistant protection mechanism in 
a device may require hardware circuit to zeroise the secret keys when a physical attack is 
made to the Secure SoC. The more the hardware security measures implemented in a 
device to protect its secret keys and other secure data, the more costly the device will 
be. Thus the hardware security measures implemented in the device are a trade of 
between the cost of implementation and the cost of the data protected. Achieving a cost 
effective yet foolproof method to protect the secret keys and secure data within the 
device will be a boon to the owner of the contents that needs security, especially to the 
content provider of copy-protected digital contents. 
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