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Abstract. LAKE is a family of cryptographic hash functions presented
at FSE 2008. It is an iterated hash function and defines two main in-
stances with a 256 bit and 512 bit hash value. In this paper, we present
the first security analysis of LAKE. We show how collision attacks, ex-
ploiting the non-bijectiveness of the internal compression function of
LAKE, can be mounted on reduced variants of LAKE. We show an effi-
cient attack on the 256 bit hash function LAKE-256 reduced to 3 rounds
and present an actual colliding message pair. Furthermore, we present a
theoretical attack on LAKE-256 reduced to 4 rounds with a complexity
of 2109. By using more sophisticated message modification techniques
we expect that the attack can be extended to 5 rounds. However, for
the moment our approach does not appear to be applicable to the full
LAKE-256 hash function (with all 8 rounds).
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1 Introduction

A cryptographic hash function H maps a message M of arbitrary length to
a fixed-length hash value h. A cryptographic hash function has to fulfill the
following security requirements:

– Collision resistance: it is infeasible to find two messages M and M∗, with
M∗ 6= M , such that H(M) = H(M∗).

– Second preimage resistance: for a given message M , it is infeasible to find a
second message M∗ 6= M such that H(M) = H(M∗).

– Preimage resistance: for a given hash value h, it is infeasible to find a message
M such that H(M) = h.

The resistance of a hash function to collision and (second) preimage attacks
depends on the length n of the hash value. Based on the birthday paradox the
generic complexity for a collision attack is about 2n/2 hash computations, where
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n is the size of the hash value. For a preimage attack and a second preimage
attack the generic complexity is about 2n hash computations. If collisions and
(second) preimages can be found with a complexity less than 2n/2 and 2n the
hash function is considered to be broken.

Recent cryptanalytic results focus on the collision resistance of hash func-
tions. Collision attacks have been shown for many commonly used hash func-
tions, like MD5 [13] and SHA-1 [4,12]. In the upcoming NIST competition [9] to
find an alternative hash function to SHA-2, many new hash function designs will
be proposed. Therefore, the cryptanalysis of new and alternative hash function
designs like LAKE is of great interest. In this article, we will present a security
analysis with respect to collision resistance for the hash function LAKE, pro-
posed at FSE 2008 [2]. We are not aware of any published security analysis of
this hash function until now.

The hash function LAKE is a new iterated hash function based on the HAIFA
framework [3]. It is a software-oriented design and uses an internal wide-pipe
strategy [7,8]. The two proposed variants of LAKE compute a 256-bit and 512-
bit hash value and use an 8- and 10-round compression function, respectively.
In our analysis we focus on the 256-bit variant LAKE-256 but the same attack
applies to LAKE-512 as well. In the following we omit the bit size in the name if
we refer to LAKE-256. We show collisions for round-reduced variants of LAKE
where we exploit a structural weakness in the internal compression functions.
We construct collisions in the used Boolean functions which are then extended
to an attack on round-reduced variants of LAKE.

The remainder of this article is structured as follows. In the next section, we
give a short description of the hash function LAKE with a focus on the relevant
parts for our attacks. In Section 3, we explain the basic attack strategy and show
a collision for a simplified variant of the full hash function. The results of the
collision attacks on round-reduced variants are presented in Section 4. Finally,
we conclude this paper with a short recommendation on how the LAKE design
could be improved to withstand our attack.

2 Description of LAKE

The LAKE hash function is an iterated hash function based on the HAIFA
framework [3]. It takes a salt and the message as its input. The message is padded
by a specific padding rule and the initial chaining variable H0 is computed form
the initial value (IV) and parameterized by the (variable) output bit length d
of the hash function. The LAKE family defines two main instances LAKE-256
and LAKE-512 which differ only in their used bit sizes, constants and rotation
values. While our attack is not limited to LAKE-256 we focus on this instance
of the LAKE family for the remainder of this paper.

The compression function of LAKE computes the next chaining variable Ht

from the previous Ht−1, the current message block Mt the salt S and the cur-
rent block index t. It consists of three parts which are shown in Figure 1. The
function saltstate mixes the global chaining variable Ht with the salt S, and the
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block index t using 8 calls to the function g. The output of saltstate is written
into the internal chaining variable L(r−1) which is twice as large as Ht−1. The
function processmessage is the main part of the LAKE compression function and
takes the current message block Mt and the current internal chaining variable
L(r−1) as its input. The message block is first expanded by the message permu-
tation σr(i) and then incorporated into the internal chaining variables within r
rounds. Every round of processmessage uses 16 calls to two nonlinear internal
compression functions f and g. The feedforward function compresses the previ-
ous global chaining variable Ht−1, the salt S, the block index t, and the last
internal chaining variable L(r) by 8 calls of the function f and produces the next
chaining variable Ht.

process-
message

(8 rounds)

16 calls to f
16 calls to g

    saltstate 

   8 calls to g

feedforward

       8 calls to f

S0...3

t0,1

m0...15

Ht-1

S0...3

t0,1

Ht

Ht-1

8 calls to g

16 calls to f

16 calls to g

8 calls to f

S0...3

S0...3

t0,1

t0,1

m0...15

Ht-1

Ht

(8
 ro

un
ds

)

L(r-1)

F(r)

L(r)

. .
 .

Fig. 1. The compression function of LAKE-256 consists of the three main parts
saltstate, processmessage and feedforward which call two nonlinear internal com-
pression functions f and g.

In the case of LAKE-256, the compression function uses r = 8 rounds and the
message permutation of Table 1. The nonlinear internal compression functions
f and g are defined by

f(a, b, c, d) = ((a+ (b ∨ C0)) + (c+ (a ∧ C1)) ≫ 7) + ((b+ (c⊕ d)) ≫ 13)
g(a, b, c, d) = ((a+ b) ≫ 1)⊕ (c+ d).

Depending on whether they are used in saltstate, processmessage or feedforward,
these functions are parameterized by some constants C0, . . . , C15, which are ex-
tracted from π:

3



Table 1. The index k = σr(i) of the message permutation of LAKE-256 for the
rounds R1-R8 of processmessage.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R2 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
R3 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
R4 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

R5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R6 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
R7 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
R8 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

C0 = 452821E6 C4 = C0AC29B7 C8 = 9216D5D9 C12 = 2FFD72DB
C1 = 38D01377 C5 = C97C50DD C9 = 8979FB1B C13 = D01ADFB7
C2 = BE5466CF C6 = 3F84D5B5 C10 = D1310BA6 C14 = B8E1AFED
C3 = 34E90C6C C7 = B5470917 C11 = 98DFB5AC C15 = 6A267E96

In case of processmessage, the inputs of f are the previous internal chaining
variables L(r−1), the current internal chaining variables F (r), the constants Ci,
and the expanded message words mk with k = σr(i). The function g takes as
input the current internal chaining variables F (r), the previous internal chaining
variables L(r−1) using feed-forward and the new internal chaining variables L(r):

F
(r)
i = f(a, b, c, d) = f(F (r)

i−1, L
(r−1)
i ,mk, Ci)

L
(r)
i = g(a, b, c, d) = g(L(r)

i−1, F
(r)
i , L

(r−1)
i , F

(r)
i+1)

Note that F (r) gets initialized by L(r−1) and L(r) gets initialized by F (r). We
get for the sequence of chaining variables Ht and internal chaining variables L(r)

and F (r):

Ht−1 → salt→ L(r−1) → f → F (r) → g → L(r)︸ ︷︷ ︸
8 rounds

→ feedforward→ Ht

3 Basic Attack Strategy

The basic observation for the attack on the compression function of LAKE is
that the internal compression function f of processmessage is not bijective (not
injective) regarding the chaining variables and message words. This means, that
at least two message words exist, which result in the same output of f for
fixed internal chaining variables. In fact, it is possible to find many different
message words mk and m∗k which result in the same output of f . Using these
inner collisions of the internal compression function f we can construct collisions
for round-reduced versions of LAKE. Note that the same idea applies to both
variants, LAKE-256 and LAKE-512 because the two variants differ only in the
used word size, constants and rotation values.
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3.1 Collisions for 1 Round of LAKE

In every round, each message word mk is used only once by one of the 16 calls to
the f function. Hence, we can construct a collision for one round of LAKE using
a single inner collision in f (this has been independently observed by Stefan
Lucks). By performing a collision attack on the 32-bit output of f we have been
able to efficiently find many message pairs mk and m∗k for many internal chaining
values F (r)

i−1, L(r−1)
i and all constants Ci such that the output of f collides:

f(F (r)
i−1, L

(r−1)
i ,mk, Ci) = f(F (r)

i−1, L
(r−1)
i ,m∗k, Ci)

Note that the authors of LAKE have proposed to analyze a reduced variant
of the hash function which uses the same constant in every round [1]. In this
case we can simply use the same inner collision in f for every round of LAKE.
Table 2 shows a collision for 8 rounds of LAKE using the same constant C0 in
each round which can be computed instantly on a standard PC.

Table 2. A colliding message pair for LAKE using the same constant C0 in each
round.

H0 243F6A88 85A308D3 13198A2E 03707344 A4093822 299F31D0 082EFA98 EC4E6C89

M0
7901FB66 7120239A 75018D7B 38EFC240 04BA14F4 54B5A198 60842D9A 05CE0AF7
1A31E11B 40B1C10C 55F91C02 559DF366 74D6D973 455E48F2 31072B72 4DB56283

M∗
0

7D11BC59 7120239A 75018D7B 38EFC240 04BA14F4 54B5A198 60842D9A 05CE0AF7
1A31E11B 40B1C10C 55F91C02 559DF366 74D6D973 455E48F2 31072B72 4DB56283

∆M0
0410473F 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H1 289B5613 0295350F CA661380 699C892A 80CC3678 91B6F85B FD0332EB D89C925A

H∗
1 289B5613 0295350F CA661380 699C892A 80CC3678 91B6F85B FD0332EB D89C925A

3.2 Collisions for more than 1 Round of LAKE

The original LAKE specification defines different constants for each round and
we cannot use the same inner collision for every round anymore. However, the
idea of constructing collisions in f can still be extended to attack more rounds
of LAKE. Then, the same message pair mk and m∗k has to result in an inner
collision of f for each of the attacked rounds. Due to the message expansion, the
message word mk is used in a different call of f in each round. However, in each
call i, the f function differs only in the used constant Ci. For instance, if we
want to construct a collision for the first two rounds of LAKE, we need to find
a message pair mk and m∗k such that we have a collision in f in both rounds.

Assume we are using message word m0. In the first round, m0 is used in call
i = 0 of the function f and in the second round, m0 is used in call i = 3 of f (see
Table 1). Hence, we need to find a message pair m0 and m∗0, which results in an
inner collision of f and applies to both constants C0 and C3 simultaneously. One
method to find such a pair is to search for each constant separately and check
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for matching message pairs. This method might work for two constants but is
insufficient for more constants. In the following we show how this can be done
more efficiently.

3.3 Inner Collisions in f using different Constants

A better method is to analyze the differential behaviour of the f function and
choose message differences ∆mk, which are independent of the used constants.
To find a message differences which results in a collision and thus, in a zero
difference of the f function, we simplify the f function to:

f(a, b,mk, Ci) = c1 + ((mk + c2) ≫ 7) + ((c3 + (mk ⊕ Ci)) ≫ 13) (1)

where the values c1, c2 and c3 depend on the internal chaining variables L(r−1)
i

and F
(r)
i−1. Because the majority of the remaining operations are modular addi-

tions and rotations we use signed bit differences in our attack. Note that more
advanced techniques like generalized characteristics as used in the most recent
attacks on SHA-1 are not needed in this case [5]. Signed bit differences have been
introduced by Wang et al. in the analysis of the MD4-family of hash functions
[11]. Using these differences, the carry expansions of the modular additions in
Equation (1) can be controlled by imposing conditions on the absolute values (c1,
c2 and c3) and rotated without imposing further conditions. In the xor-addition
∆mk ⊕ Ci the sign of the signed bit difference ∆mk is flipped at each position
where the constant Ci is one and does not change where Ci is zero. For a detailed
description of signed bit differences, we refer to [6].

Before constructing a zero output difference of the f function, we define the
differential representation of f regarding the message difference ∆mk by

∆f = (∆mk︸ ︷︷ ︸
∆x

≫ 7) + ((∆mk ⊕ Ci)︸ ︷︷ ︸
∆y

≫ 13) = 0 (2)

where the differences ∆x and ∆y need to cancel each other after the rotations.
For a collision over more than one round of LAKE, we need to fulfill equation 2
for different constants Ci but with the same message difference ∆mk. Therefore,
we allow a signed bit difference in the message only at positions, where the values
of the used constants are equal. In this case the difference ∆y is independent of
the used Ci. We define the equal positions of all used constants Ci1 , Ci2 , . . . by:

C(p)
eq =

{
1 if C(p)

i1
= C

(p)
i2

= . . .

0 otherwise
(3)

where C(p) denotes the bit position p of the value C. Note that the difference
∆x is independent of each round. To get a zero difference of f for all rounds,
the differences ∆y has to be the same for each round and every used constant.

The more rounds we attack, the more constants Ci are used and the less
is the Hamming weight of the equal positions Ceq of these constants. Since at
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each position we can choose between a negative, a positive or no difference, the
number of the allowed signed message differences is 3hw(Ceq). If less differences
are allowed in ∆mk the probability of a collision decreases. However, the search
space gets reduced as well and we can check more (or even all) signed message
differences. We have implemented a search tool similar as in [10], which uses
carry expansions for the differences ∆x = ∆mk and ∆y = ∆mk ⊕ Ci. After the
rotations we check whether the resulting differences cancel each other.

Note that two signed bit differences in the MSB always cancel each other
in the addition and are thus considered to be equal. Therefore, we can allow
additional message differences at the MSB of each modular addition. A flip of
the message difference in the MSB because of xoring it with different constants
Ci results in the same difference. Since we can omit the sign of the regarding
MSB in each of the 3 modular additions, we allow additional message differences
at position 32, 13 and 6. A difference at position 13 in ∆mk⊕Ci gets rotated to
the MSB in ∆y and a difference at position 6 in ∆mk ⊕ Ci gets rotated to the
same position as the MSB of ∆mk in ∆x. By including these three cases, the
search space can be increased and even includes all inner collisions of f .

4 Results of the Collision Attack

To attack more than one round of LAKE we have implemented a tool which
checks for collisions in f depending on the used constants Ci. We first compute
Ceq and determine all possible message differences ∆mk. Then, we use signed
carry expansions of the message difference in ∆x and ∆y and check whether the
differences cancel each other after the rotation. Table 3 shows which constant Ci
is used for each message word mk in each round. With our tool we are able to
check all possible message differences if more than three different constants are
used. In this case, the Hamming weight of Ceq and the search space is low enough
to try all possible expanded differences. For all cases where only two constants
are involved, we have limited the search to high probability differentials (with a
short carry expansion) and can therefore find collisions with a high probability
as well.

Table 3. For each message word mk different constants Ci are used in every
round due to the message permutation. The constants for R5-R8 are the same
as for R1-R4.

m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

R1 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

R2 C3 C0 C13 C10 C7 C4 C1 C14 C11 C8 C5 C2 C15 C12 C9 C6

R3 C9 C4 C15 C10 C5 C0 C11 C6 C1 C12 C7 C2 C13 C8 C3 C14

R4 C0 C7 C14 C5 C12 C3 C10 C1 C8 C15 C6 C13 C4 C11 C2 C9
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4.1 2 Rounds

For an attack on two rounds of LAKE, we need a collision in f with two different
values of Ci. When attacking the first two rounds of LAKE we can choose one of
the first two constants of Table 3. We have found the best result for the message
word m3. In the first round this message word is used in call 3 to f and thus,
it is xored with the constant C3. In the second round, m3 is used in call 10 and
xored with the constant C10. Hence, we need to fulfill the following differential
equations for f simultaneously:

∆f3 = (∆m3 ≫ 7) + ((∆m3 ⊕ C3) ≫ 13) = 0 (4)
∆f10 = (∆m3 ≫ 7) + ((∆m3 ⊕ C10) ≫ 13) = 0 (5)

We allow signed differences in ∆m3 at all positions, where the constants C3 and
C10 are equal:

C3 = 34E90C6C

C10 = D1310BA6

Ceq = 1A27F835

∆m3 = 9A27F835

The number of the equal positions in C3 and C10 is 16 and by including the three
MSBs we get a maximum Hamming weight for the allowed message differences
of HW (∆m3) = 17.

Using our tool we have found the following four message differences, where
each of them results in a zero difference of the f function. Note that each inverted
message difference results in a collision as well.

∆m3 = 8207E820 ∆m3 = [±32,−26, 19, 18, 17, 16, 15, 14, 12, 6]
∆m3 = 8207E821 ∆m3 = [±32,−26, 19, 18, 17, 16, 15, 14, 12, 6, 1]
∆m3 = 8207F820 ∆m3 = [±32,−26, 19, 18, 17, 16, 15, 14, 13,−12, 6]
∆m3 = 8207F821 ∆m3 = [±32,−26, 19, 18, 17, 16, 15, 14, 13,−12, 6, 1]

For these message difference we get many expanded differences ∆x and ∆y
which cancel each other. For example, if we consider the message difference
∆m3 = 8207E820, the signed differences ∆x and ∆y with the best probabilities
are:

∆x = [−32, 26,−20, 13, 12,−8, 7, 6]
∆y = [−32, 26,−20, 18, 14, 12, 6]

where the difference ∆x occurs with probability 2−8 and ∆y with probability
2−7. After rotating these difference by 7 and by 13 we get the following two
differences, which cancel each other in the third modular addition:

∆x ≫ 7 = [32, 31,−25, 19,−13, 6, 5,−1]
∆y ≫ 13 = [31, 25,−19, 13,−7, 5, 1]
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Therefore, we get an inner collision in f for both rounds with a probability
of 2−15 each. Usually the expanded differences with the highest probabilities
determine the complexity of the attack. However, if many expanded differences
cancel each other, the actual complexity is determined by the sum of all probabil-
ities. For the message difference ∆m3 = 8207E820 we have found 2600 expanded
signed differences ∆x and 5486 expanded signed differences for ∆y. By adding
all possible combined probabilities of ∆x and ∆y we get an overall probability
of 2−4.38 instead of 2−15.

4.2 3 Rounds

The previous collision in f over two rounds can be easily extended to a collision
over 3 rounds. To extend the attack we use a weakness in the message permu-
tation. The message word m3 is used in call 3 of the first round and in call 10
of the second and third round. Thus, the constant C10 is used twice and we can
use the same collision for f as in the attack on two rounds. Note that we could
do the same for message word m11 which uses the constant C2 twice.

A Colliding Message for 3-round LAKE. By using the message difference
∆m3 = 8207E820 we can construct a collision for LAKE reduced to three rounds
with a complexity of about 23·4.38 ≈ 213.2 round evaluations (less than 1 second
on a standard PC), since we can get a collision for each round with a probability
of 2−4.38. The colliding message pair is given in Table 4. Note that h0 is the
initial value and h1 is the final hash value.

Table 4. A colliding message pair for LAKE reduced to 3 rounds.

H0 243F6A88 85A308D3 13198A2E 03707344 A4093822 299F31D0 082EFA98 EC4E6C89

M0
2ED54018 259E7BED 6A7D12A0 12780007 57979D36 619A5DE1 2F1FA8A0 09D72979
3428C041 1439951D 63537711 144840C4 7C75D35E 70C613E9 23DCA632 52DB6AB9

M∗
0

2ED54018 259E7BED 6A7D12A0 907FE827 57979D36 619A5DE1 2F1FA8A0 09D72979
3428C041 1439951D 63537711 144840C4 7C75D35E 70C613E9 23DCA632 52DB6AB9

∆M0
00000000 00000000 00000000 8207E820 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H1 0969AF41 101EA7CE CBF3F2FE E47832EB 60FFD511 DA156A75 150B3A20 F003BA7E

H∗
1 0969AF41 101EA7CE CBF3F2FE E47832EB 60FFD511 DA156A75 150B3A20 F003BA7E

4.3 More than 3 rounds

To attack more than 3 rounds we have first tried to construct a collision which
uses only 3 different constants. This could be done for the message words m0, m3,
m8 and m11 (see Table 3). However, even by checking all possible message differ-
ences and carry expansions, we did not find a collision in these message words.
Anyway, by trying all message words which use four different constants, we have
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found solutions for m4 and m7. The involved constants are C4, C7, C5, C12 for
m4 and C7, C14, C6, C1 for m7.

For the 4 round collision we have only found a characteristic with low prob-
ability. The possible message differences are ∆m7 = ∆m4 = ±1. Thus, we
allow a difference only in the LSB of the message word. Note that the LSB of
the involved constants is 1 and the xor operation flips the message difference.
Therefore, the differences in ∆x and ∆y have a opposite sign and cancel each
other if the following conditions are fulfilled (i = 4, 7, 5, 12):

F
(r)
i−1 ∧ C1 = 0 (6)

L
(r−1)
i + Ci = FFFFFFFF (7)

Under these conditions, the differences do not get changed by the rotations and
we can get an inner collision in f for every round of LAKE.

Let us consider the case ∆m4 = −1 with m4 = 0. By fulfilling the previous
conditions the resulting values before the rotation are always either 00000000
or FFFFFFFF. These values do not get changed by the rotation and we get for
m4 = 0:

(0 + F
(r)
i−1 ∧ C1︸ ︷︷ ︸

F
(r)
i−1∧C1=0

) ≫ 7 + (L(r−1)
i + (0⊕ Ci)︸ ︷︷ ︸

L
(r−1)
i +Ci=FFFFFFFF

) ≫ 13 = FFFFFFFF (8)

and for m∗4 = m4 − 1 = 0− 1 :

( 0− 1 + F
(r)
i−1 ∧ C1︸ ︷︷ ︸

(F
(r)
i−1∧C1)−1=FFFFFFFF

) ≫ 7 + (L(r−1)
i + ((0− 1)⊕ Ci︸ ︷︷ ︸

L
(r−1)
i +1+Ci=0

) ≫ 13 = FFFFFFFF (9)

The two equations (6) and (7) hold in each round with a probability of
2−32−15 = 2−47, since the Hamming weight of C1 is 15. Hence, we can get a
collision for LAKE reduced to r rounds with a probability of 2−r·47 and for
r = 4 rounds we get a probability of 2−188.

Note that the difference ∆mk = ±1 works for any message word and any
number of rounds, as long as the LSB of all involved constants is 1. However, due
to the low probability we have only attacked 4 rounds of LAKE using message
modification. By more sophisticated message modification techniques, we expect
that an attack up to 5 rounds of the LAKE compression function is possible.

4.4 A Collision Attack for 4 Rounds of LAKE

The attack complexity of 2188 for 4 rounds of LAKE can be improved by using
message modification techniques introduced by Wang et al. in the analysis of
MD5 and SHA-1 [13,12]. In general, the idea of message modification is to use
the degrees of freedom in the message to fulfill conditions on the state variables.
This improves the probability of the attack and in the following we will show
how message modification can be done for the first 2 rounds of LAKE.
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Message Modification. In the first round we use basic message modification
which simply adjusts the message words such that the conditions in the internal
chaining variables are fulfilled. To fulfill the conditions on F (1)

3 ∧C1 = 0 we adjust
F

(1)
3 by modifying m3. Because of the right rotation, we can start by modifying

bit 7 of the message and proceed up to bit 25 without getting any conflict due
to carries. The remaining 6 bits are fulfilled by brute force which results in a
complexity of 26. Since all other modifications change message words after call
3 of f , we perform this modification only once at the beginning. Therefore, this
modification does not increase the overall complexity. Next we need to fulfill the
conditions of L(0)

4 +C4 = FFFFFFFF. Note that L(0)
4 depends on the IV . By using

an arbitrary first message block we can construct the needed value of L(0)
4 . This

has a complexity of 232 but needs do be done only once as well.
For the second round of LAKE we need to use advanced message modifica-

tion techniques (solving a system of equations). The equation F
(2)
6 ∧ C1 = 0 of

the second round can be fulfilled with a probability of 2−15 without message
modification and the equation L(1)

7 +C7 = FFFFFFFF is fulfilled with a probabil-
ity of 2−32. Note that L(1)

7 depends on the output of the first round but can be
changed by advanced message modification. This means that we can change F (1)

8

by modifying message word m8 and correct the changes by adjusting message
word m15.

The Collision Search for 4 Rounds of LAKE. The search for a collision
of LAKE reduced to 4 rounds can be summarized by the following steps. The
sequence of internal chaining variables and calls to f and g are illustrated in the
appendix to comprehend the message modification steps:

1. We fulfill the 32 conditions on L
(0)
4 by choosing an arbitrary first message

block M0. This has a complexity of 232 evaluations of the compression func-
tion and needs to be done only once at the beginning of the search.

2. Next we choose random message words m0, . . . ,m3 to compute the internal
chaining variables F (1)

0 , . . . , F
(1)
3 .

3. The 15 conditions on F
(1)
3 can be fulfilled by adjusting m3 using basic mes-

sage modification. This step has a complexity of about 26 calls to F
(1)
3 =

f(F (1)
2 , L

(0)
3 ,m3, C3). Since we do not change m0, . . . ,m3 later on, this step

needs to be done only once as well.
4. The remaining message words m4, . . . ,m15 are chosen at random to compute

the internal chaining variables F (1)
4 , . . . , F

(1)
15 and L(1)

0 , . . . , L
(1)
7 to check the

conditions on L
(1)
7 .

5. To fulfill the conditions on L
(1)
7 we compute the required value of F (1)

8 by
simply inverting the function L

(1)
7 = g(L(1)

6 , F
(1)
7 , L

(0)
7 , F

(1)
8 ) and get for

F
(1)
8 = (L(1)

7 ⊕ ((L(1)
6 + F

(1)
7 ) ≫ 1))− L(0)

7 .

11



6. We can generate this required value of F (1)
8 by modifying m8 in F

(1)
8 =

f(F (1)
7 , L

(0)
8 ,m8, C8) using basic message modification with a complexity of

about 26 calls to f .
7. The modification of m8 and F

(1)
8 leads to new values in the internal chain-

ing variables starting from F
(1)
9 . Note that L(1)

7 = g(L(1)
6 , F

(1)
7 , L

(0)
7 , F

(1)
8 )

depends only on L
(1)
6 and values prior to F (1)

8 . To guarantee that L(1)
7 does

not get changed again, it is sufficient to require that F (1)
15 does not change.

8. We can ensure this by adjusting the message word m15 such that F (1)
15 has the

same value as prior to the modification of m8. Then, the values L(1)
0 , . . . , L

(1)
7

do not change and the conditions on L(1)
7 stay fulfilled. This modification of

m15 has again a complexity of about 26 calls to f .
9. The conditions on F

(2)
6 and on the internal chaining variable of round 3

and 4 can be fulfill by randomly choosing message words m9, . . . ,m14. We
ensure the conditions on L

(1)
7 by modifying m15 again. Note that we have

enough degrees of freedom in these 6 message words to fulfill these remaining
15 + 47 + 47 = 109 conditions by brute-force.

These message modification techniques improve the attack complexity signifi-
cantly. By performing the collision search as described above we can construct
collisions for LAKE reduced to 4 rounds with an overall complexity of about
2109 compression function evaluations. Note that the complexity can actually
be smaller if early stopping techniques are used. By applying more advanced
message modification techniques we expect to be able to break up to 5 rounds
of LAKE.

5 Conclusion

In this paper we have presented the first cryptanalytic results on the hash func-
tion family LAKE. We have shown how collision attacks, exploiting inner colli-
sions in the nonlinear functions of LAKE, can be mounted on reduced variants
of the hash function. We have presented an efficient attack on LAKE reduced
to 3 (out of 8) rounds. Moreover, we have shown a theoretical attack on LAKE
reduced to 4 rounds with a complexity of 2109. We expect that our attack can
also be extended to LAKE reduced to 5 rounds by using more sophisticated
message modification techniques. Note that the same strategy can be used to
attack LAKE-512 as well. For the moment our approach does not appear to be
applicable to the full hash function.

However, this does not prove that the hash function is secure. Further anal-
ysis is required to get a good view on the security margins of LAKE. In our
analysis we have shown that the security of LAKE strongly depends on the
choice of the constants. Due to a weak combination of constants, attacks on
round-reduced versions of LAKE are possible. Further, we note that the non-
bijectiveness regarding the chaining variables can be used to cancel differences
in the internal chaining variables as well. To prevent our attack we suggest to

12



design internal compression functions which are bijective and thus, invertible
regarding the message words and each chaining variable. Further, the security of
these functions should not depend on the (good) choice of the used constants.
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A Advanced Message Modification

The step update functions for the first two rounds of LAKE. The internal chain-
ing variables on which we impose conditions for the attack on 4 rounds of LAKE
are underlined.
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