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Abstract: In this paper, we investigate the application of an algorithm to find the best 
linear approximation of a basic Substitution-Permutation Network block cipher. The 

results imply that, while it is well known that the S-box used for the Advanced 
Encryption Standard has good nonlinear properties, it is straightforward to randomly 

select other S-boxes which are able to provide a similar level of security, as indicated by 
the exact bias of the best linear approximation found by the algorithm, rather than a 

simple upper bound on the maximum bias.  
 

Introduction 

A classical approach to the design of symmetric-key block ciphers is based on a 

structure referred to as a Substitution-Permutation Network (SPN) [1][2]. Block ciphers 
typically encrypt a block of plaintext data by iteratively executing a number of rounds of 

basic operations on the block of data. In an SPN, a round consists of 3 layers of 
operations: substitution, permutation, and key mixing. The substitution layer maps the 

inputs of small sub-blocks to the outputs in a nonlinear manner, using a fixed mapping 
referred to as an S-box, thereby creating a mathematical complexity to the relationship of 

plaintext bits and ciphertext bits. In this paper, we assume that the same S-box is used for 
all substitutions in the cipher. The permutation layer transposes the positions of bits 

within the data block, resulting in a mixing of plaintext bits across the full ciphertext 
block. The key mixing is typically achieved by exclusive-or'ing subkey bits derived from 

the master cipher key. The widely deployed Advanced Encryption Standard (AES) [3] is 
structured similarly to an SPN, except that the permutation layer is replaced by the more 

general concept of a linear transformation layer. 
S-boxes are typically studied for their cryptographic properties independently of the 

cipher structure. In this paper, we investigate S-boxes directly within the context of an 

SPN structure based on a 64-bit data block, with 8×8 S-boxes and a permutation layer 
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which maps the output bit i of S-box j in a round to the input bit j of S-box i in the next 
round. Such a permutation provides an effective diffusion of bits throughout the data 

block.  
The applicability of linear cryptanalysis [4] to the 64-bit SPN is studied by considering 

the effect of using different S-boxes for the network. Linear cryptanalysis is an important 
fundamental attack applied to block ciphers which exploits the likelihood of a linear 

relationship (using modulo-2 mathematics) between a set of plaintext bits and ciphertext 
bits. Using this relationship, it is possible to extract information about the cipher key bits. 

In order to approximate a linear relationship, the properties of the cipher S-box must be 
analyzed and exploited. For this purpose, a bias distribution table is determined. For an 

8×8 S-box, the bias table consists of 256 rows and 256 columns. Each row corresponds to 

an S-box 8-bit input mask, α, and each column to an S-box 8-bit output mask, β. Each 

element in the table corresponds to the value |(δα,β−128)|, where δα,β is the number of 

times, out of all possible 256 input values, the subset of input bits (indicated by the ones 

in α) exclusive-or'ed together are equal to the subset of output bits (indicated by the ones 

in β) exclusive-or'ed together. The bias of an S-box (for a given α and β) can be 

determined from εα,β=|(δα,β−128)|/256. In cases where there are strong linear 

relationships, δα,β << 128 or δα,β >> 128, so that εα,β → 1/2. 

Using appropriate assumptions [2], an attacker can concatenate linear approximations 
of S-boxes to derive an overall linear approximation for the cipher and, consequently, 

estimate the bias of the cipher approximation from the biases of the S-boxes actively 
involved in the approximation using the piling-up lemma [4]. The resulting complexity of 

the linear attack, in terms of the number of required known plaintext/ciphertext pairs, is 
inversely proportional to the square of the bias of the linear approximation. 

 

Two-Round Iterative Search Algorithm 

In order to make use of linear weaknesses within the S-boxes, an attacker must 
concatenate approximations from one round to the next to ensure that an overall linear 

approximation involves only plaintext and ciphertext bits. In doing this, an attacker must 
have an effective approach to selecting which S-boxes are actively involved in the 

approximation to maximize the bias of the overall linear approximation. It is well known, 
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based on the piling-up lemma, that minimizing the number of active S-boxes and 
maximizing the bias of the active S-box approximations increases the bias of the overall 

cipher linear approximation.  
An algorithm developed by Matsui [5] successfully found the best possible linear 

approximation of the Data Encryption Standard. However, when applied to the 64-bit 
SPN, we found the algorithm not efficient enough to finish the search for the best linear 

approximation. Hence, we have developed an algorithm that efficiently searches through 
the set of possible cipher linear approximations to find the one with the largest bias or 

one that is close to the largest bias. The intuition behind the approach is to collect a large 
list of the best approximations that can be found after two rounds and then to base the 

search over the next two rounds on this list. For example, for four rounds, each result in 
the list for the first two rounds is concatenated to all possible approximations for the next 

two rounds and the combinations giving the best approximations for all four rounds are 
used to prepare the list of results to be used in deriving approximations for six rounds. 

The process is iteratively repeated after every two rounds until the best approximation is 
obtained for n rounds. The assumption in the approach is that by basing the result for n 

rounds, on a list of good results for n−2 rounds, the overall result will be good, if not 

optimal.  
We refer to this algorithm as the Two-Round Iterative (TRI) algorithm and note that 

the algorithm is very efficient and linear in terms of the number of rounds of the cipher. 
While the algorithm is not guaranteed to find the optimal linear approximation (i.e., the 
one with the largest bias), experiments on small ciphers support the conjecture that there 

is a high probability that the outcome of the algorithm is optimal and, in virtually all 
cases, the outcome is close to optimal [6]. Note that typically, linear cryptanalysis 

employs linear approaches of n−1 rounds where n is the number of rounds in the cipher. 

Details of the relatively trivially issues for applying the TRI algorithm to an odd number 
of rounds are given in [6]. 

 

Analysis of a Block Cipher 

In this section, we examine the results obtained by running the TRI algorithm on the 

64-bit SPN block cipher. In studying the bias tables of 8 8×  S-boxes, it was found that, 
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by considering the maximum value in the bias table for 10000 randomly selected S-
boxes, approximately 94% of the S-boxes have maximum bias around 32/256 to 38/256. 

Since the largest biases for a linear approximation of a cipher typically occur when a 
small number of S-boxes are active in the approximation (as was supported by the results 

from smaller networks [6]), we conjecture that not more than 3 S-boxes are involved in 
each round in the best linear approximation of the 64-bit SPN cipher. Hence, this 

constraint is used when applying the TRI algorithm and is necessary to make the 
algorithm run in a practical amount of time on the 64-bit cipher. Consequently, we have 

studied the maximum value from the bias table when only one S-box is active per round 

during the approximation, i.e., when wt(α) = wt(β) = 1 where wt(⋅) represents the 

Hamming weight operator. It was discovered that 65% of the 10000 S-boxes tested have 

maximum biases for wt(α) = wt(β) = 1 concentrated around 18/256 to 22/256. The 

implications of this result are that it seems likely that the best cipher linear approximation 

will be significantly influenced by the low bias values for wt(α) = wt(β) = 1. As a result, 

simple upper bounds on the bias computed based on the maximum S-box bias (for any 

values of α and β) and the minimum number of possible S-boxes in an approximation 

(eg. one S-box per round in the 64-bit SPN) are dramatically pessimistic for many 
ciphers. Nevertheless, simple bounding techniques have been typically used when 

analyzing the level of cipher security [2][3].  
The TRI algorithm was run for 10 ciphers differentiated by using 10 random S-boxes 

labeled R1 to R10 as the cipher S-box and results from the S-box bias tables are shown in 
Table 1. The table also includes the results for mathematically structured S-boxes, known 

to have good nonlinear properties, such as the AES and Camellia [7] S-boxes. As well, 

four randomly found "good" S-boxes that have low bias values for wt(α) = wt(β) = 1, 

labeled from R1
* to R4

*, are shown. From the table, we can see that for the 10 random S-

boxes the maximum bias value in the table is high compared to the S-boxes of AES and 
Camellia. The "good" S-boxes have a bias of 12/256 to 14/256, comparable to AES and 

Camellia, for wt(α) = wt(β) = 1; however they differ significantly for overall maximum 

value in the bias table. This occurs because the AES and Camellia S-boxes have good 

values spread out consistently in the tables, while the "good" S-boxes are randomly 

generated and selected to have low values when wt(α) = wt(β) = 1.  
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S-box R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

Max Value 
in Bias 
Table 

38 38 34 36 34 32 42 38 36 34 

Max Value 
for  wt(α) = 
wt(β) = 1 

22 22 20 26 22 18 22 18 20 22 

 

S-box AES Cam R1
* R2

* R3
* R4

* 

Max Value 
in Bias 
Table 

16 16 32 32 34 36 

Max Value 
for  wt(α) = 
wt(β) = 1 

16 14 14 12 12 14 

 
Table 1. Maximum Value in Bias Table for Different S-boxes 

(bias = value / 256) 

 
A seven round approximation (targeted to attack an 8 round cipher) is determined 

using the TRI algorithm and the resulting biases are shown in Table 2. The TRI algorithm 
is run with a list size of 8000 for all of the ciphers and takes just a few minutes on a PC. 
From the table, we can see that ciphers using "good" S-boxes have particularly low biases 

and can be even lower than the AES and Camellia S-box based networks. Similarly, it 
can be seen that, in all cases, a random S-box based network gives a comparable result 

(that is, within an order of magnitude) to the AES and Camellia S-box based networks. 
The results vary from about 8% of the bias of the AES-based cipher for a "good" S-box 

to about 8 times the AES-based cipher bias for a purely randomly selected S-box. The 
resulting implication is that the bias for an AES-based cipher is not significantly better 

and is, in a few cases, potentially worse than the bias for other ciphers with randomly 
selected S-boxes. In comparison, the simple upper bounds calculated based on one active 

S-box per round using the largest bias for the S-box (regardless of the input and output 
mask values) vary even more significantly. Although the upper bounds for the AES-

based and Camellia-based ciphers are quite tight, for other S-boxes, the biases can be 
hundreds, or even thousands, of times smaller than implied by the upper bound. Hence, 
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the calculated simple upper bound can not be considered to be a very good indicator of 
the actual relative strength of a cipher.  

 

Cipher Maximum Bias 
(ε) 

Upper Bound 
(Γ = 26λ7) 

Relative Bias 
(ε / εAES) 

Relative Upper 
Bound (Γ / ε) 

AES 1.788e-7 2.384e-7 1 1.3 
Camellia 1.223e-7 2.384e-7 0.68 1.9 
R1 1.337e-6 1.016e-4 7.48 76.0 
R2 4.754e-7 1.016e-4 2.66 213.7 
R3 3.830e-7 4.665e-5 2.14 121.8 
R4 1.344e-6 6.960e-5 7.52 51.8 
R5 3.781e-7 4.665e-5 2.11 123.4 
R6 4.516e-7 3.052e-5 2.53 67.6 
R7 9.104e-7 2.047e-4 5.09 224.8 
R8 1.432e-6 1.016e-4 8.01 70.9 
R9 1.230e-6 6.960e-5 6.88 56.6 
R10 1.208e-6 4.665e-5 6.76 38.6 
R1

* 2.737e-7 3.052e-5 1.53 111.5 
R2

* 4.638e-8 3.052e-5 0.26 658.0 
R3

* 1.349e-8 4.665e-5 0.08 3458.1 
R4

* 1.720e-7 6.960e-5 0.96 404.7 
     

Table 2. Bias for 7 Round Linear Approximation Found Using TRI Algorithm 
(λ = maximum value in bias table / 256) 

  

Conclusions 

We have used a two-round iterative algorithm to find good linear approximations and 

the corresponding biases in a basic 64-bit SPN. The results indicate that it is quite 
possible to have low biases in ciphers which do not use the AES S-box, an S-box 

mathematically structured to have good properties. Similar results have been found for 
differential cryptanalysis [6] in the same set of random S-boxes. This is significant 

because it is conceivable that the mathematical structure of the AES S-box, used to give 
good nonlinear properties, may actually make the cipher susceptible to other 

mathematical attacks; using S-boxes without mathematical structure (i.e., randomly 
selected) may make a cipher less vulnerable to attacks based on mathematical properties.  
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