
Efficient Fully-Simulatable Oblivious Transfer∗

Yehuda Lindell†

Department of Computer Science
Bar-Ilan University, Israel.
lindell@cs.biu.ac.il

Abstract

Oblivious transfer, first introduced by Rabin, is one of the basic building blocks of cryp-
tographic protocols. In an oblivious transfer (or more exactly, in its 1-out-of-2 variant), one
party known as the sender has a pair of messages and the other party known as the receiver
obtains one of them. Somewhat paradoxically, the receiver obtains exactly one of the messages
(and learns nothing of the other), and the sender does not know which of the messages the
receiver obtained. Due to its importance as a building block for secure protocols, the efficiency
of oblivious transfer protocols has been extensively studied. However, to date, there are almost
no known oblivious transfer protocols that are secure in the presence of malicious adversaries
under the real/ideal model simulation paradigm (without using general zero-knowledge proofs).
Thus, efficient protocols that reach this level of security are of great interest. In this paper we
present efficient oblivious transfer protocols that are secure according to the ideal/real model
simulation paradigm. We achieve constructions under the DDH, Nth residuosity and quadratic
residuosity assumptions, as well as under the assumption that homomorphic encryption exists.

1 Introduction

In an oblivious transfer, a sender with a pair of strings m0,m1 interacts with a receiver so that at
the end the receiver learns exactly one of the strings, and the sender learns nothing [24, 11]. This
is a somewhat paradoxical situation because the receiver can only learn one string (thus the sender
cannot send both) whereas the sender cannot know which string the receiver learned (and so the
receiver cannot tell the sender which string to send). Surprisingly, it is possible to achieve oblivious
transfer under a wide variety of assumptions and adversary models [11, 15, 19, 23, 1, 17].

Oblivious transfer is one of the most basic and widely used protocol primitives in cryptography.
It stands at the center of the fundamental results on secure two-party and multiparty computation
showing that any efficient functionality can be securely computed [25, 15]. In fact, it has even
been shown that oblivious transfer is complete, meaning that it is possible to securely compute any
efficient function once given a box that computes oblivious transfer [18]. Thus, oblivious transfer
has great importance to the theory of cryptography. In addition to this, oblivious transfer has been
widely used to construct efficient protocols for problems of interest (e.g., it is central to almost all
of the work on privacy-preserving data mining).

Due to its general importance, the task of constructing efficient oblivious transfer protocols has
attracted much interest. In the semi-honest model (where adversaries follow the protocol specifi-
cation but try to learn more than allowed by examining the protocol transcript), it is possible to

∗An extended abstract of this work appeared at CT-RSA 2008.
†Most of this work was carried out for Aladdin Knowledge Systems.

1

construct efficient oblivious transfer from (enhanced) trapdoor permutations [11] and homomorphic
encryption [19, 1]. However, the situation is significantly more problematic in the malicious model
where adversaries may arbitrarily deviate from the protocol specification. One possibility is to
use the protocol compiler of Goldreich, Micali and Wigderson [15] to transform oblivious transfer
protocols for semi-honest adversaries into protocols that are also secure in the presence of malicious
adversaries. However, the result would be a highly inefficient protocol. The difficulties in obtain-
ing secure oblivious transfer in this model seem to be due to the strict security requirements of
simulation-based definitions that follow the ideal/real model paradigm.1 Thus, until recently, the
only known oblivious transfer protocols that were secure under this definition, and thus were fully
simulatable, were protocols that were obtained by applying the compiler of [15]. In contrast, highly-
efficient oblivious transfer protocols that guarantee privacy (but not simulatability) in the presence
of malicious adversaries have been constructed. These protocols guarantee that even a malicious
sender cannot learn which string the receiver learned, and that a malicious receiver can learn only
one of the sender’s input strings. Highly efficient protocols have been constructed for this setting
under the DDH and N-residuosity assumptions and using homomorphic encryption [19, 23, 1, 17].

This current state of affairs is highly unsatisfactory. The reason for this is that oblivious transfer
is often used as a building block in other protocols. However, oblivious transfer protocols that only
provide privacy are difficult – if not impossible – to use as building blocks. Thus, the vast number of
protocols that assume (fully simulatable) oblivious transfer do not have truly efficient instantiations
today. For just one example, this is true of the protocol of [20] that in turn is used in the protocol
of [2] for securely computing the median. The result is that [2] has no efficient instantiation, even
though it is efficient when ignoring the cost of the oblivious transfers. We conclude that the absence
of efficient fully-simulatable oblivious transfer acts as a bottleneck in numerous other protocols.

Our results. In this paper, we construct oblivious transfer protocols that are secure (i.e., fully-
simulatable) in the presence of malicious adversaries. Our constructions build on those of [23, 1, 17]
and use cut-and-choose techniques. It is folklore that the protocols of [23, 1, 17] can be modified
to yield full simulatability by adding proofs of knowledge. To some extent, this is what we do.
However, a direct application of proofs of knowledge does not work. This is because the known
efficient protocols are all information-theoretically secure in the presence of a malicious receiver.
This means that only one of the sender’s inputs is defined by the protocol transcript and thus a
standard proof of knowledge cannot be applied. (Of course, it is possible to have the sender prove
that it behaved honestly according to some committed input but this will already not be efficient.)
Our protocols yield full simulatability and we provide a full proof of security.

As we show, our protocols are in the order of ` times the complexity of the protocols of [23, 1, 17],
where ` is such the simulation fails with probability 2−`+2. Thus, ` can be taken to be relatively
small (say, in the order of 30 or 40). This is a considerable overhead. However, our protocols are
still by far the most efficient known without resorting to a random oracle.

Related work. There has been much work on efficient oblivious transfer in a wide range of
settings. However, very little has been done regarding fully-simulatable oblivious transfer that is
also efficient (without using random oracles). Despite this, recently there has been some progress
in this area. In [6], fully simulatable constructions are presented. However, these rely on strong
and relatively non-standard assumptions (q-power DDH and q-strong Diffie-Hellman). Following

1According to this paradigm, a real execution of a protocol is compared to an ideal execution in which a trusted
third party receives the parties’ inputs and sends them their outputs.

2

this, protocols were presented that rely on the Decisional Bilinear Diffie-Hellman assumption [16].
Our protocols differ from those of [6] and [16] in the following ways:

1. Assumptions: We present protocols that can be constructed assuming that DDH is hard, that
there exist homomorphic encryption schemes, and more. Thus, we rely on far more standard
and long-standing hardness assumptions.

2. Complexity: Regarding the number of exponentiations, it appears that our protocols are of a
similar complexity to [6, 16]. However, as pointed out in [10], bilinear curves are considerably
more expensive than regular Elliptic curves. Thus, the standard decisional Diffie-Hellman
assumption is much more efficient to use (curves that provide pairing need keys that are
similar in size to RSA, in contrast to regular curves that can be much smaller).

3. The problem solved: We solve the basic 1-out-of-2 oblivious transfer problem, although our
protocols can easily be extended to solve the static k-out-of-n oblivious transfer problem
(where static means that the receiver must choose which k elements it wishes to receive at
the onset). In contrast, [6] and [16] both solve the considerably harder problem of adaptive
k-out-of-n oblivious transfer where the receiver chooses the elements to receive one and a
time, and can base its choice on the elements it has already received.

In conclusion, if adaptive k-out-of-n oblivious transfer is needed, then [6, 16] are the best solutions
available. However, if (static) oblivious transfer suffices, then our protocols are considerably more
efficient and are based on far more standard assumptions.

2 Definitions

In this section we present the definition of security for oblivious transfer, that is based on the
general simulation-based definitions for secure computation; see [14, 21, 5, 7]. We refer the reader
to [12, Chapter 7] for full definitions, and provide only a brief overview here. Since we only consider
oblivious transfer in this paper, our definitions are tailored to the secure computation of this specific
function only.

Preliminaries. We denote by s ∈R S the process of randomly choosing an element s from a set
S. A function µ(·) is negligible in n, or just negligible, if for every positive polynomial p(·) and all
sufficiently large n’s it holds that µ(n) < 1/p(n). A probability ensemble X = {X(n, a)}a∈{0,1}∗;n∈N

is an infinite sequence of random variables indexed by a and n ∈ N. (The value a will represent
the parties’ inputs and n the security parameter.) Two distribution ensembles X = {X(n, a)}n∈N

and Y = {Y (n, a)}n∈N are said to be computationally indistinguishable, denoted X
c≡ Y , if for every

non-uniform polynomial-time algorithm D there exists a negligible function µ(·) such that for every
a ∈ {0, 1}∗,

|Pr[D(X(n, a), a) = 1]− Pr[D(Y (n, a), a) = 1]| ≤ µ(n)

All parties are assumed to run in time that is polynomial in the security parameter. (Formally,
each party has a security parameter tape upon which that value 1n is written. Then the party is
polynomial in the input on this tape.)

3

Oblivious transfer. The oblivious transfer functionality is formally defined as a function f with
two inputs and one output. The first input is a pair (m0, m1) and the second input is a bit σ.
The output is the string mσ. Party P1, also known as the sender, inputs (m0,m1) and receives
no output. In contrast, party P2, also known as the receiver, inputs the bit σ and receives mσ for
output. Formally, we write f((m0,m1), σ) = (λ,mσ) where λ denotes the empty string. Stated in
words, in the oblivious transfer functionality party P1 receives no output, whereas party P2 receives
mσ (and learns nothing about m1−σ).

Adversarial behavior. Loosely speaking, the aim of a secure two-party protocol is to protect
an honest party against dishonest behavior by the other party. In this paper, we consider malicious
adversaries who may arbitrarily deviate from the specified protocol. Furthermore, we consider the
static corruption model, where one of the parties is adversarial and the other is honest, and this is
fixed before the execution begins.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in the protocol to what it can do in an ideal scenario that is secure by definition.
This is formalized by considering an ideal computation involving an incorruptible trusted third
party to whom the parties send their inputs. The trusted party computes the functionality on the
inputs and returns to each party its respective output. Loosely speaking, a protocol is secure if
any adversary interacting in the real protocol (where no trusted third party exists) can do no more
harm than if it was involved in the above-described ideal computation.

Oblivious transfer in the ideal model. An ideal oblivious transfer execution proceeds as
follows:

Inputs: Party P1 obtains an input pair (m0,m1) with |m0| = |m1|, and party P2 obtains an input
bit σ.

Send inputs to trusted party: An honest party always sends its input unchanged to the trusted
party. A malicious party may either abort, in which case it sends ⊥ to the trusted party, or
send some other input to the trusted party.

Trusted party computes output: If the trusted party receives ⊥ from one of the parties, then
it sends ⊥ to both parties and halts. Otherwise, upon receiving some (m′

0, m
′
1) from P1 and

a bit σ′ from P2, the trusted party sends m′
σ′ to party P2 and halts.

Outputs: An honest party always outputs the message it has obtained from the trusted party (⊥
or nothing in the case of P1, and ⊥ or m′

σ′ in the case of P2). A malicious party may output
an arbitrary (probabilistic polynomial-time computable) function of its initial input and the
message obtained from the trusted party.

Denote by f the oblivious transfer functionality and let M = (M1, M2) be a pair of non-uniform
probabilistic expected polynomial-time machines (representing parties in the ideal model). Such a
pair is admissible if for at least one i ∈ {1, 2} we have that Mi is honest (i.e., follows the honest
party instructions in the above-described ideal execution). Then, the joint execution of f under M
in the ideal model (on input ((m0,m1), σ)), denoted idealf,M ((m0,m1), σ), is defined as the output
pair of M1 and M2 from the above ideal execution.

4

Execution in the real model. We next consider the real model in which a real two-party
protocol is executed and there exists no trusted third party. In this case, a malicious party may
follow an arbitrary feasible strategy; that is, any strategy implementable by non-uniform proba-
bilistic polynomial-time machines. Let π be a two-party protocol. Furthermore, let M = (M1,M2)
be a pair of non-uniform probabilistic polynomial-time machines (representing parties in the real
model). Such a pair is admissible if for at least one i ∈ {1, 2} we have that Mi is honest (i.e., follows
the strategy specified by π). Then, the joint execution of π under M in the real model (on input
((m0,m1), σ)), denoted realπ,M ((m0,m1), σ), is defined as the output pair of M1 and M2 resulting
from the protocol interaction.

Security as emulation of a real execution in the ideal model. Having defined the ideal
and real models, we can now define security of protocols. Loosely speaking, the definition asserts
that a secure two-party protocol (in the real model) emulates the ideal model (in which a trusted
party exists). This is formulated by saying that admissible pairs in the ideal model are able to
simulate admissible pairs in an execution of a secure real-model protocol.

Definition 1 Let f denote the oblivious transfer protocol and let π be a two-party protocol. Pro-
tocol π is said to be a secure oblivious transfer protocol if for every pair of admissible non-uniform
probabilistic polynomial-time machines A = (A1, A2) for the real model, there exists a pair of ad-
missible non-uniform probabilistic expected polynomial-time machines B = (B1, B2) for the ideal
model, such that for every m0, m1 ∈ {0, 1}∗ of the same length and every σ ∈ {0, 1},

{
idealf,B(n, (m0,m1), σ)

}
c≡

{
realπ,A(n, (m0,m1), σ)

}

Note that we allow the ideal adversary/simulator to run in expected (rather than strict)
polynomial-time. This is essential for achieving constant-round protocols; see [4].

3 Oblivious Transfer Under the DDH Assumption

In this section we present an oblivious transfer protocol that is secure in the presence of malicious
adversaries, under the DDH assumption. The protocol is a variant of the two-round protocol
of [23] with some important changes. Before proceeding, we recall the protocol of [23]. Basically,
this protocol works by the receiver generating a tuple (ga, gb, gc, gd) with the following property:
if the receiver’s input equals 0 then c = ab and d is random, and if the receiver’s input equals 1
then d = ab and c is random. The sender receives this tuple and carries out a manipulation that
randomizes the tuple so that if c = ab then the result of the manipulation on (ga, gb, gc) is still a
DDH tuple and the result of the manipulation on (ga, gb, gd) yields a completely random tuple (if
d = ab then the same holds in reverse). The sender then derives a secret key from the manipulation
of each of (ga, gb, gc) and (ga, gb, gd), and sends information that enables the receiver to derive the
same secret key from the DDH tuple, whereas the key from the non-DDH tuple remains completely
random. In addition, the sender encrypts its first message under the key derived from (ga, gb, gc)
and its second message under the key derived from (ga, gb, gd). The receiver is able to decrypt the
message derived from the DDH tuple but has no information about the other key and so cannot
learn anything about the other message. We remark that the sender checks that gc 6= gd. This
ensures that only one of (ga, gb, gc) and (ga, gb, gd) is a DDH tuple.

The secret key that is derived from the non-DDH tuple above is information-theoretically hidden
from the receiver. This causes a problem when attempting to construct a simulator for the protocol

5

because the simulator must learn both of the sender’s inputs in order to send them to the trusted
party (and for whatever first message the simulator sends, it can only learn one of the sender’s
inputs). We remark that if rewinding is used to obtain both messages then this causes a problem
because the sender can make its input depend on the first message from the receiver. We therefore
change the protocol of [23] so that instead of sending (ga, gb, gc, gd) where at most one of c or d
equals a · b, the receiver sends two tuples: one of the tuples is a DDH type and the other is not.
The parties then interact to ensure that indeed only one of the tuples is of the DDH type. As we
will see, this ensures that the receiver obtains only one message. The “interaction” used to prove
this is of the simplest cut-and-choose type.

The protocol below uses two commitment schemes for the purpose of coin tossing: a perfectly
hiding commitment scheme denoted Comh, and a perfectly binding commitment scheme, denoted
Comb. We remark that such commitment schemes exist under the Discrete Log assumption, and
thus also under the DDH assumption. We assume that the input values m0,m1 of the sender are
in the group G that we are working with for the DDH assumption. If they cannot be mapped to G
(e.g., they are too long), then the oblivious transfer can be used to exchange secret keys k0 and k1

that are used to encrypt m0 and m1, respectively.

Protocol 1

• Auxiliary input: The parties have the description of a group G of order q, and a generator g
for the group. In addition, they have a statistical error parameter `.

• Input: The sender has a pair of group elements (m0,m1) and the receiver has a bit σ.

• The protocol:

1. For i = 1, . . . , `, the receiver P2 chooses a random bit σi ∈R {0, 1} and random values
a0

i , b
0
i , c

0
i , a

1
i , b

1
i , c

1
i ∈R {1, . . . , q} under the constraint that cσi

i = aσi
i · bσi

i and c1−σi
i 6= a1−σi

i ·
b1−σi
i . Then, P2 computes the tuples γ0

i = (ga0
i , gb0i , gc0i) and γ1

i = (ga1
i , gb1i , gc1i). Note that

γσi
i is a DDH tuple and γ1−σi

i is not.
P2 sends all of the pairs 〈(γ0

1 , γ1
1), . . . , (γ0

` , γ1
`)〉 to the sender P1.

2. Coin tossing:

(a) P1 chooses a random s ∈R {0, 1}` and sends Comh(s) to P2.
(b) P2 chooses a random s′ ∈R {0, 1}` and sends Comb(s′) to P1.
(c) P1 and P2 send decommitments to Comh(s) and Comb(s′), respectively, and set r =

s⊕ s′. Denote r = r1, . . . , r`.

3. For every i for which ri = 1, party P2 sends a0
i , b

0
i , c

0
i , a

1
i , b

1
i , c

1
i to P1.

In addition, for every j for which rj = 0, party P2 sends a “reordering” of γ0
j and γ1

j so
that all of the γσ

j tuples are DDH tuples and all of the γ1−σ
j tuples are not. This reordering

is a bit such that if it equals 0 then the tuples are left as is, and if it equals 1 then γ0
j and

γ1
j are interchanged.

4. P1 checks that for every i for which ri = 1 it received the appropriate values and that they
define γ0

i and γ1
i . Furthermore, it checks that exactly one of γ0

i and γ1
i is a DDH tuple

as defined above and the other is not. If any of the checks fail, P1 halts and outputs ⊥.
Otherwise it continues as follows:

(a) Denote γ0
j = (x0

j , y
0
j , z

0
j) and γ1

j = (x1
j , y

1
j , z

1
j). Then, for every j for which rj = 0,

party P1 chooses random u0
i , u

1
i , v

0
i , v

1
i ∈R {1, . . . , q} and computes the following four

6

values:

w0
j =

(
x0

j

)u0
i · gv0

i k0
j =

(
z0
j

)u0
i ·

(
y0

j

)v0
i

w1
j =

(
x1

j

)u1
i · gv1

i k1
j =

(
z1
j

)u1
i ·

(
y1

j

)v1
i

(b) Let j1, . . . , jt be the indices j for which rj = 0. Then, P1 “encrypts” m0 under all of
the keys k0

j , and m1 under all of the keys k1
j , as follows:

c0 =

(
t∏

i=1

k0
ji

)
·m0 c1 =

(
t∏

i=1

k1
ji

)
·m1

P1 sends P2 all of the w0
j , w

1
j values, as well as the pair (c0, c1).

5. For every j for which rj = 0, party P2 computes kσ
j = (wσ

j)b0j . Then, P2 outputs mσ =

cσ ·
(∏t

i=1 kσ
ji

)−1
.

Before proceeding to the proof, we show that the protocol “works”, meaning that when P1 and
P2 are honest, the output is correctly obtained. We present this to “explain” the computations
that take place in the protocol, although these are exactly as in the protocol of [23]. First, notice
that (

wσ
j

)bσ
j =

(
xσ

j

)uσ
j ·bσ

j ·
(
gvσ

j

)bσ
j =

(
gaσ

j ·bσ
j

)uσ
j ·

(
gbσ

j

)vσ
j

By the fact that γσ
j is a DDH tuple we have that gaσ

j ·bσ
j = zσ

j and so

(
wσ

j

)bσ
j =

(
zσ
j

)uσ
j ·

(
yσ

j

)vσ
j = kσ

j

Thus P2 correctly computes each key kσ
j for j such that rj = 0. Given all of these keys, it

immediately follows that P2 can decrypt cσ, obtaining mσ. We now proceed to prove the security
of the protocol.

Theorem 1 Assume that the decisional Diffie-Hellman problem is hard in G with generator g, that
Comh is a perfectly-hiding commitment scheme, and that Comb is a perfectly-binding commitment
scheme. Then, Protocol 1 securely computes the oblivious transfer functionality in the presence of
malicious adversaries.

Proof: We separately prove the security of the protocol for the case that no parties are corrupted,
P1 is corrupted, and P2 is corrupted. In the case that both P1 and P2 are honest, we have already
seen that P2 obtains exactly mσ. Thus, security holds. We now proceed to the other cases.

P1 is corrupted. Let A1 be a non-uniform probabilistic polynomial-time real adversary that
controls P1. We construct a non-uniform probabilistic expected polynomial-time ideal-model ad-
versary/simulator S1. The basic idea behind how S1 works is that it uses rewinding in order to
ensure that all of the “checked” tuples are valid (i.e., one is a DDH tuple and the other is not),
whereas all of the “unchecked” tuples have the property that they are both of the DDH type. Now,
since the protocol is such that a receiver can obtain a key kσ

j as long as γσ
j was a DDH tuple, it

follows that S1 can obtain all of the k0
j and k1

j keys. This enables it to decrypt both c0 and c1

and obtain both messages input by A1 into the protocol. S1 then sends these inputs to the trusted

7

party, and the honest party P2 in the ideal model will receive the same message that it would
have received in a real execution with A1 (or more accurately, a message that is computationally
indistinguishable from that message).

We now describe S1 formally. Upon input 1n and (m0,m1), the machine S1 invokes A1 upon
the same input and works as follows:

1. S1 chooses a random r ∈R {0, 1}` and generates tuples γ0
1 , γ1

1 , . . . , γ0
` , γ1

` with the following
property:

(a) For every i for which ri = 1, S1 constructs γ0
i and γ1

i like an honest P2 (i.e., one of them
being a DDH tuple and the other not, in random order).

(b) For every j for which rj = 0, S1 constructs γ0
j and γ1

j to both be DDH tuples.

S1 hands the tuples to A1.

2. Simulation of the coin tossing: S1 simulates the coin tossing so that the result is r, as follows:

(a) S1 receives a commitment ch from A1.

(b) S1 chooses a random s′ ∈R {0, 1}` and hands cb = Comb(s′) to A1.

(c) If A1 does not send a valid decommitment to ch, then S1 simulates P2 aborting and
sends ⊥ to the trusted party. Then S1 outputs whatever A1 outputs and halts.
Otherwise, let s be the decommitted value. S1 proceeds as follows:

i. S1 sets s′ = r ⊕ s, rewinds A1, and hands it Comb(s′).
ii. If A1 decommits to s, then S1 proceeds to the next step. If A1 decommits to a value

s̃ 6= s, then S1 outputs fail. Otherwise, if it does not decommit to any value, S1

returns to the previous step and tries again until A1 does decommit to s. (We stress
that in every attempt, S1 hands A1 a commitment to the same value s′. However,
the randomness used to generate the commitment Comb(s′) is independent each
time.)2

3. Upon receiving a valid decommitment to s from A1, simulator S1 decommits to A1, revealing
s′. (Note that r = s⊕ s′.)

4. For every i for which ri = 1, simulator S1 hands A1 the values a0
i , b

0
i , c

0
i , a

1
i , b

1
i , c1

i used to
generate γ0

i and γ1
i . In addition, S1 hands A1 a random reordering of the pairs.

5. If A1 does not reply with a valid message, then S1 sends ⊥ to the trusted party, outputs
whatever A1 outputs and halts. Otherwise, it receives a series of pairs (w0

j , w
1
j) for every j

for which rj = 0, as well as ciphertexts c0 and c1. S1 then follows the instructions of P2 for
deriving the keys. However, unlike an honest P2, it computes k0

j = (w0
j)

b0j and k1
j = (w1

j)
b1j

and uses the keys it obtains to decrypt both c0 and c1. (Note that for each such j, both γ0
j

and γ1
j are DDH tuples; thus this makes sense.)

Let m0 and m1 be the messages obtained by decrypting. S1 sends the pair to the trusted
party as the first party’s input, outputs whatever A1 outputs and halts.

2This strategy by S1 is actually over-simplified and does not guarantee that it runs in expected polynomial-time.
This technicality will be discussed below, and we will show how S1 can be “fixed” so that its expected running-time
is polynomial.

8

We now prove that the joint output distribution of S1 and an honest P2 in an ideal execution is
computationally indistinguishable from the output distribution of A1 and an honest P2 in a real
execution. First, note that the view of A1 in the simulation with S1 is indistinguishable from its
view in a real execution. The only difference in its view is due to the fact that the tuples γ0

j and
γ1

j for which rj = 0 are both of the DDH type. The only other difference is due to the coin tossing
(and the rewinding). However, by the binding property of the commitment sent by A1 and the
fact that P2 generates its commitment after receiving A1’s, we have that the outcome of the coin
tossing in a real execution is statistically close to uniform (where the only difference is due to the
negligible probability that A1 will break the computational binding property of the commitment
scheme.) In the simulation by S1, the outcome is always uniformly distributed, assuming that
S1 does not output fail. Since S1 outputs fail when A1 breaks the computational binding of the
commitment scheme, this occurs with at most negligible probability (a rigorous analysis of this is
given in [13]). We therefore have that, apart from the negligible difference due to the coin tossing,
the only difference is due to the generation of the tuples. Intuitively, indistinguishability therefore
follows from the DDH assumption. More formally, this is proven by constructing a machine D that
distinguishes many copies of DDH tuples from many copies of non-DDH tuples. D receives a series
of tuples and runs in exactly the same way as S1 except that it constructs the γ0

j and γ1
j tuples (for

rj = 0) so that one is a DDH tuple and the other is from its input, in random order. Furthermore,
it provides the reordering so that all of the DDH tuples it generates are associated with σ and all
of the ones it receives externally are associated with 1−σ. (For the sake of this mental experiment,
we assume that D is given the input σ of P2.) It follows that if D receives a series of DDH tuples,
then the view of A1 is exactly the same as in the simulation with S1 (because all the tuples are
of the Diffie-Hellman type). In contrast, if D receives a series of non-DDH tuples, then the view
of A1 is exactly the same as in a real execution (because only the tuples associated with σ are of
the Diffie-Hellman type). This suffices for showing that the output of A1 in a real execution is
indistinguishable from the output of S1 in an ideal execution (recall that S1 outputs whatever A1

outputs). However, we have to show this for the joint distribution of the output of A1 (or S1) and
the honest P2. In order to see this, recall that the output of P2 is mσ where σ is the honest P2’s
input. Now, assume that there exists a polynomial-time distinguisher D′ that distinguishes between
the real and ideal distributions with non-negligible probability. We construct a distinguisher D
as above that distinguishes DDH from non-DDH tuples. The machine D receives the input σ of
P2 and a series of tuples that are either DDH or non-DDH tuples. D then works exactly as above
(i.e., constructing the γ0

j and γ1
j tuples so that in the reordering step, all the γσ

j tuples are those it
generated itself and all the γ1−σ

j tuples are those it received as input). Since D generated all of the
γσ

j tuples, it is able to “decrypt” cσ and obtain mσ. Machine D therefore does this, and invokes D′

on the output of A1 and the message mσ (which is the output that an honest P2 would receive).
Finally D outputs whatever D′ does. It is clear that if D receives non-DDH tuples, then the output
distribution generated is exactly like that of a real execution between A1 and P2. In contrast, if it
receives DDH tuples, then the output distribution is exactly like of an ideal execution with S1. (A
subtle point here is that the distribution over the γ tuples generated by D who knows σ is identical
to the distribution generated by S1 who does not know σ. The reason for this is that when all the
tuples are of the DDH type, their ordering makes no difference.) We conclude that D solves the
DDH problem with non-negligible probability, in contradiction to the DDH assumption. Thus, the
real and ideal output distributions must be computationally indistinguishable, as required.

It remains to prove that S1 runs in expected polynomial-time. Unfortunately, this is not true!
In order to see this, denote by p the probability that A1 decommits correctly to s when it receives
a commitment to a random s′. Next, denote by q the probability that A1 decommits correctly

9

when it receives a commitment to s′ = s ⊕ r. (Note that this is not random because r is implicit
in the way that S1 generated the tuples. That is, if ri = 1 then γ0

i and γ1
i are honestly generated,

and otherwise they are both of the DDH type.) Now, by the hiding property of the commitment
scheme Comb, the difference between p and q can be at most negligible. Furthermore, the expected
running-time of S1 in the rewinding stage equals p/q times some fixed polynomial factor. In order
to see this, observe that S1 enters the rewinding stage with probability p, and concludes after
an expected 1/q number of rewindings. It thus remains to bound p/q. (We remark that S1’s
running time in the rest of the simulation is a fixed polynomial and so we ignore this from now on).
Unfortunately, even though p and q are at most negligibly far from each other, as we have discussed,
the value p/q may not necessarily be polynomial. For example, if p = 2−n and q = 2−n + 2−n/2

then p/q ≈ 2n/2. Thus, the expected running-time of S1 is not necessarily polynomial. Fortunately,
this can be solved using the techniques of [13] who solved an identical problem. Loosely speaking,
the technique of [13] works by first estimating p and then ensuring that the number of rewinding
attempts does not exceed a fixed polynomial times the estimation of p. It is shown that this yields
a simulator that is guaranteed to run in expected polynomial time. Furthermore, the output of the
simulator is only negligibly far from the original (simplified) strategy described above. Thus, these
techniques can be applied here and the simulator appropriately changed, with the result being that
the output is only negligibly different from before, as required.

P2 is corrupted. As before, we let A2 be any non-uniform probabilistic polynomial-time adver-
sary controlling P2 and we construct a non-uniform probabilistic expected polynomial-time simula-
tor S2. The simulator S2 extracts the bit σ used by A2 by rewinding it and obtaining the reordering
of tuples that it had previously opened. Formally, upon input 1n and σ, the simulator S2 invokes
A2 upon the same input and works as follows:

1. S2 receives a series of tuples γ0
1 , γ1

1 , . . . , γ0
` , γ1

` from A2.

2. S2 hands A2 a commitment ch = Comh(s) to a random s ∈R {0, 1}`, receives back cb, decom-
mits to ch and receives A2’s decommitment to cb. S2 then receives all of the a0

i , b
0
i , c

0
i , a

1
i , b

1
i , c

1
i

values from A2, for i where ri = 1, and the reorderings for j where rj = 0. If the values sent
by A2 are not valid (as checked by P1 in the protocol) or A2 did not send valid decommit-
ments, S2 sends ⊥ to the trusted party, outputs whatever A2 outputs, and halts. Otherwise,
it continues to the next step.

3. S2 rewinds A2 back to the beginning of the coin-tossing, hands A2 a commitment c̃h =
Comh(s̃) to a fresh random s̃ ∈R {0, 1}`, receives back some c̃b, decommits to c̃h and re-
ceives A2’s decommitment to c̃b. In addition, S2 receives the a0

i , b
0
i , c

0
i , a

1
i , b

1
i , c

1
i values and

reorderings.

If any of the values are not valid, S2 repeats this step using fresh randomness each time, until
all values are valid.

4. Following this, S2 rewinds A2 to the beginning and resends the exact messages of the first
coin tossing (resulting in exactly the same transcript as before).

5. Denote by r the result of the first coin tossing (Step 2 above), and r̃ the result of the second
coin tossing (Step 3 above). If r = r̃ then S2 outputs fail and halts. Otherwise, S2 searches for
a value t such that rt = 0 and r̃t = 1. (Note that by the definition of the simulation, exactly
one of γ0

t and γ1
t is a DDH tuple. Otherwise, the values would not be considered valid.) If

no such t exists (i.e., for every t such that rt 6= r̃t it holds that rt = 1 and r̃t = 0), then S2

10

begins the simulation from scratch with the exception that it must find r and r̃ for which all
values are valid (i.e., if for r the values sent by A2 are not valid it does not terminate the
simulation but rather rewinds until it finds an r for which the responses of A2 are all valid).

If S2 does not start again, we have that it has a0
t , b

0
t , c

0
t , a

1
t , b

1
t , c

1
t and can determine which of

γ0
t and γ1

t is a DDH tuple. Furthermore, since r̃t = 1, the reordering that S2 receives from
A2 after the coin tossing indicates whether the DDH tuple is associated with 0 or with 1. S2

sets σ = 0 if after the reordering γ0
t is of the DDH type, and sets σ = 1 if after the reordering

γ1
t is of the DDH type. (Note that exactly one of the tuples is of the DDH type because this

is checked in the second coin tossing.)

6. S2 sends σ to the trusted party and receives back a string m = mσ. Simulator S2 then
computes the last message from P1 to P2 honestly, while encrypting mσ under the keys kσ

j

(and encrypting any arbitrary string of the same length under the keys kj
1−σ). S2 hands A2

these messages and outputs whatever A2 outputs and halts.

We now prove that the output distribution of A2 in a real execution with an honest P1 (with
input (m0,m1)) is computationally indistinguishable from the output distribution of S2 in an ideal
execution with an honest P1 (with the same input (m0,m1)). We begin by showing that S2 outputs
fail with probability at most 2−`, ignoring for now the probability that r = r̃ in later rewindings
(which may occur if S2 has to start again from scratch). Recall that this event occurs if everything
is “valid” after the first coin tossing (where the result is r), and the result of the second coin-tossing
after which everything is valid is r̃ = r.3 First, observe that the distributions of the strings r and
r̃ are identical. This is because S2 runs the coin tossing in the same way each time (using fresh
random coins), and accepts r̃ when all is valid, exactly as what happened with r. Next, note that
the distribution over the result of the coin tossing – without conditioning over A2 sending valid
decommitments – is uniform. This holds because the commitment that S2 hands to A2 is perfectly
hiding and the commitment returned by A2 to S2 is perfectly binding. Let R be a random variable
that denotes the result of the first coin tossing between A2 and S2 in the simulation, and let valid be
the event that A2 replies with valid decommitments and values after the first coin tossing. Finally,
for a given r ∈ {0, 1}`, let obtainr denote the event that the result of one of the coin tossing attempts
in the second stage equals r. (Note that this does not mean that r̃ = r because r̃ is the result that
is finally accepted after A2 sends valid values. However, the decision of A2 to send valid values may
also depend on the randomness used to generate Comh(s). Thus, r̃ may not equal r, even though
r is obtained in one of the coin tossing attempts in the second stage.) Clearly, fail can only occur
if r is obtained at least once as the result of a coin tossing attempt in the second stage (because
fail can only occur if r̃ = r). We therefore have the following:

Pr[fail] ≤
∑

r∈{0,1}`

Pr[R = r & valid] · Pr[obtainr] (1)

Before analyzing this probability, we compute Pr[obtainr] for a fixed r. Let p denote the probability
(over A2 and S2’s coin tosses) that A2 sends valid values after the coin tossing. It follows that the
expected number of trials by S2 in the second coin tossing is 1/p. Letting Xr be a Boolean random
variable that equals 1 if and only if the result of the second coin tossing attempt equals the fixed
r, we have that E[Xr] = 2−`. By Wald’s equation (e.g., see [22, Page 300]), it follows that the
expected number of times that r is obtained as the result of a coin tossing attempt in the second

3It is very easy to prove that the probability that S2 outputs fail is at most 2−`/2. However, in order to keep ` to
a low value, we present a more subtle analysis that demonstrates that S2 outputs fail with probability at most 2−`.

11

stage by S2 is 1/p · 2−`. Using Markov’s inequality, we have that the probability that r is obtained
at least once as the result of a coin tossing attempt in the second stage is at most 1/p · 2−`. That
is:

Pr[obtainr] ≤ 1
p · 2`

We are now ready to return to Eq. (1). Denote by pr the probability that A2 sends valid values
conditioned on the outcome of the coin tossing being r. It follows that

p =
∑

r∈{0,1}`

Pr[R = r] · pr =
∑

r∈{0,1}`

pr

2`

Furthermore,
Pr[R = r & valid] = Pr[valid | R = r] · Pr[R = r] = pr · 1

2`

Combining the above, we have:

Pr[fail] ≤
∑

r∈{0,1}`

Pr[R = r & valid] · Pr[obtainr]

≤
∑

r∈{0,1}`

pr

2`
· 1
p · 2`

=
1

p · 2`
·

∑

r∈{0,1}`

pr

2`

=
1

p · 2`
· p =

1
2`

We conclude that S2 outputs fail with probability at most 2−`, as required. Recall that this analysis
doesn’t take into account the probability that S2 starts the simulation from scratch. Rather, it just
shows that S2 outputs fail in any simulation attempt (between starts from scratch) with probability
at most 2−`. Below, we will show that the probability that S2 starts from scratch is at most 1/2.
Denote by faili the probability that S2 outputs fail in the ith attempt, given that there is such an
attempt. Likewise, denote by repeati the probability that S2 has an ith attempt. We have shown
that for every i, Pr[faili] = 2−`, and below we show that every repeat happens with probability
1/2 and so for every i, Pr[repeati] = 2i−1 (repeat1 = 1 because we always have one attempt). We
therefore have:

Pr[fail] =
∞∑

i=1

Pr[faili] · Pr[repeati] =
1
2`

∞∑

i=1

1
2i−1

=
1
2`
· 2 =

1
2`−1

Given the above, we proceed to show indistinguishability of the ideal and real distributions.
Notice that in the case that S does not output fail, the final transcript as viewed by A2 consists of
the first coin tossing (that is distributed exactly as in a real execution) and the last message from
S2 to A2. This last message is not generated honestly, in that cσ is indeed an encryption of mσ,
but c1−σ is an encryption of an arbitrary value (and not necessarily of m1−σ). However, as shown
in [23], for any tuple γ1−σ

j that is not a DDH tuple, the value k1−σ
j is uniformly distributed in G

(even given w1−σ
j as received by A2). This implies that c1−σ is uniformly distributed, independent

of the value m1−σ. Thus, A2’s view in the execution with S2 is statistically close to its view in
a real execution with P1 (the only difference being if S2 outputs fail). This completes the proof
regarding indistinguishability.

12

It remains to prove that S2 runs in expected polynomial-time. We begin by analyzing the
rewinding by S2 in the coin tossing phase (clearly, the running-time of S2 outside of the rewinding
is strictly polynomial, and so it suffices to bound the expected number of rewinding attempts).
Denote by p the probability that A2 completes the coin tossing phase and provides valid values to
S2. The important point to note here is that each rewinding attempt is successful with probability
exactly p (there is no difference between the distribution over the first and second coin tossing
attempts, in contrast to the simulation where P1 is corrupted). Thus, with probability p there are
rewinding attempts, and in such a case there are an expected 1/p such attempts. This yields an
expected number of rewindings of 1. We now analyze the number of times that S2 is expected
to have to begin from scratch (due to there being no t for which rt = 0 and r̃t = 1). The main
observation here is that for any pair r and r̃ which forces S2 to begin from scratch, interchanging
r and r̃ would result in a pair for which S2 would be able to continue. Now, since r and r̃ are
derived through independent executions of the coin tossing phase, the probability that they are in
one order equals the probability that they are in the opposite order. Thus, the probability that S2

needs to start from scratch equals at most 1/2. This implies that the expected number of times
that S2 needs to start from scratch is at most two. We remark that when S2 starts from scratch,
the expected number of times it needs to rewind in order to obtain each of r and r̃ is 1/p. Thus,
overall the expected number of rewinding attempts is p · O(1)/p = O(1). We conclude that the
overall expected running time of S2 is polynomial, as required.

Efficiency. The complexity of the protocol is in the order of ` times the basic protocol of [23].
Thus, the efficiency depends strongly on the value of ` that is taken. It is important to notice that
the simulation succeeds except with probability ≈ 2−`+1 (as long as the cryptographic primitives
are not “broken”). To be more exact, one should take ` and n so that the probability of “breaking”
the cryptographic primitives (the commitments for the coin tossing or the security of encryption)
is at most 2−`+1. In such a case, our analysis in the proof shows that the ideal and real executions
can be distinguished with probability at most 2−`+2. This means that ` can be chosen to be
relatively small, depending on the level of security desired. Specifically, with ` = 30 the probability
of successful undetected cheating is 2−28 ≈ 3.7 × 10−9 which is already very very small. Thus, it
is reasonable to say that the complexity of the protocol is between 30 and 40 times of that of [23].
This is a non-trivial price; however, this is far more efficient than known solutions. We also remark
that a similar idea can be used to achieve security in the model of covert adversaries of [3]. For
deterrent factor ε = 1/2 one can use ` = 2 and have the sender choose r singlehandedly with
one bit of r equalling 0 and the other equalling 1. This yields very high efficiency, together with
simulatability (albeit in the weaker model of covert adversaries).

4 Oblivious Transfer using Smooth Hashing

The protocol of [23] was generalized by [17] via the notion of smooth projective hashing of [8]. This
enables the construction of oblivious transfer protocols that are analogous to [23] under the Nth
residuosity and quadratic residuosity assumptions. Protocol 1 can be extended directly in the same
way, yielding oblivious transfer protocols that are secure against malicious adversaries, under the
Nth residuosity and quadratic residuosity assumptions. We remark that as in the protocol of [17],
the instantiation of the protocol under the Nth residuosity assumption is highly efficient, whereas
the instantiation under the quadratic residuosity assumption enables the exchange of a single bit
only (but is based on a longer-standing hardness assumption). We remark, however, that using
Elliptic curves, the solution based on the DDH assumption is by far the most efficient.

13

5 Oblivious Transfer from Homomorphic Encryption

In this section, we present a protocol based on the protocol of [1] that uses homomorphic encryption.
We assume an additive homomorphic encryption scheme (G,E, D), where G(1n) outputs a key-pair
of length n, E is the encryption algorithm and D the decryption algorithm. Note that additive
homomorphic operations imply multiplication by a scalar as well. The ideas behind this protocol
are similar to above, and our presentation is therefore rather brief.

Protocol 2

• Input: The sender has a pair of strings (m0,m1) of known length and the receiver has a bit σ.
Both parties have a security parameter n determining the length of the keys for the encryption
scheme, and a separate statistical security parameter `.

• The protocol:

1. Receiver’s message:

(a) The receiver P2 chooses a key-pair (pk, sk) ← G(1n) from a homomorphic encryption
scheme (G,E, D).4

(b) For i = 1, . . . , `, party P2 chooses a random bit bi ∈R {0, 1} and defines

cbi
i = Epk(0; rbi

i) and c1−bi
i = Epk(1; r1−bi

i) .

where r0
i and r1

i are random strings, and Epk(x; r) denotes an encryption of message
x using random coins r.

(c) P2 sends pk, 〈c0
1, c

1
1, . . . , c

0
` , c

1
`〉 to P1.

2. Coin tossing:

(a) P1 chooses a random s̃ ∈R {0, 1}` and sends Comh(s̃) to P2.
(b) P2 chooses a random ŝ ∈R {0, 1}` and sends Comb(ŝ) to P1.
(c) P1 and P2 send decommitments to Comh(s̃) and Comb(ŝ), respectively, and set s = s̃⊕ŝ.

Denote s = s1, . . . , s`. Furthermore let S1 be the set of all i for which si = 1, and let
S0 be the set of all j for which sj = 0. (Note that S1, S0 are a partition of {1, . . . , `}.)

3. Receiver’s message:

(a) For every i ∈ S1, party P2 sends the randomness r0
i , r

1
i used to encrypt c0

i and c1
i .

(b) In addition, for every j ∈ S0, party P2 sends a bit βj so that if σ = 0 then βj = bj,
and if σ = 1 then βj = 1− bj.

4. Sender’s message:

(a) For every i ∈ S1, party P1 verifies that either c0
i = Epk(0; r0

i) and c1
i = Epk(1; r1

i),
or c0

i = Epk(1; r0
i) and c1

i = Epk(0; r1
i). That is, P1 verifies that in every pair, one

ciphertext is an encryption of 0 and the other is an encryption of 1. If this does not
hold for every such i, party P1 halts. If it does hold, it proceeds to the next step.

(b) For every j ∈ S0, party P1 defines cj and c′j as follows:
i. If βi = 0 then cj = c0

j and c′j = c1
j .

ii. If βi = 1 then cj = c1
j and c′j = c0

j .

4We assume that it is possible to verify that a public-key pk is in the range of the key generation algorithm G. If
this is not the case, then a zero-knowledge proof of this fact must be added.

14

This implies that if σ = 0 then cj = Epk(0) and c′j = Epk(1), and if σ = 1 then
cj = Epk(1) and c′j = Epk(0).5

(c) For every j ∈ S0, party P1 chooses random ρj , ρ
′
j, uniformly distributed in the group

defined by the encryption scheme. Then, P1 uses the homomorphic properties of the
encryption scheme to compute:

c0 =


 ∑

j∈S1

ρj · cj


 + Epk(m0) and c1 =


 ∑

j∈S1

ρ′j · c′j

 + Epk(m1)

where addition above denotes the homomorphic addition of ciphertexts and multiplica-
tion denotes multiplication by a scalar (again using the homomorphic properties).

(d) P1 sends (c0, c1) to P2.

5. Receiver computes output: P2 outputs Dsk(cσ) and halts.

Before discussing security, we demonstrate correctness:

1. Case σ = 0: In this case, as described in Footnote 5, it holds that for every j, cj = Epk(0)
and c′j = Epk(1). Noting that the multiplication of 0 by a scalar equals 0, we have:

c0 =


 ∑

j∈S1

ρj · cj


 + Epk(m0) = Epk(0) + Epk(m0) = Epk(m0).

Thus, when P2 decrypts c0 it receives m0, as required.

2. Case σ = 1: In this case, it holds that for every j, cj = Epk(1) and c′j = Epk(0). Thus,
similarly to before,

c1 = ·

∑

j

ρ′j · c′j

 + Epk(m1) = Epk(0) + Epk(m1) = Epk(m1),

and so when P2 decrypts c1, it receives m1, as required.

We have the following theorem:

Theorem 2 Assume that (G,E, D) is a secure homomorphic encryption scheme, Comh is a perfectly-
hiding commitment scheme and Comb is a perfectly-biding commitment scheme. Then, Protocol 2
securely computes the oblivious transfer functionality in the presence of malicious adversaries.

Proof (sketch): In the case that P2 is corrupted, the simulator works by rewinding the corrupted
P2 over the coin tossing phase in order to obtain two different openings and reorderings. In this
way, the simulator can easily derive the value of P2’s input σ (σ is taken to be 0 if all the cj

ciphertexts for which it obtained both reorderings and openings are encryptions of 0, and is taken
to be 1 otherwise). It sends σ to the trusted party and receives back m = mσ. Finally, the simulator
generates cσ as the honest party P1 would (using m), and generates c1−σ as an encryption to a
random string. Beyond a negligible fail probability in obtaining the two openings mentioned, the

5In order to see this, note that if σ = 0 then βj = bj . Thus, if βj = bj = 0 we have that cj = c0
j = Epk(0) and

c′j = c1
j = Epk(1). In contrast, if βj = bj = 1 then cj = c1

j = Epk(0) and c′j = c0
j = Epk(1). That is, in all cases of

σ = 0 it holds that cj = Epk(0) and c′j = Epk(1). Analogously, if σ = 1 the reverse holds.

15

only difference with respect to a corrupted P2’s view is the way c1−σ is generated. However, notice
that:

c1−σ =


 ∑

j∈S1

ρ̂j · ĉj


 + Epk(m1−σ)

where ρ̂j = ρj and ĉj = cj , or ρ̂j = ρ′j and ĉj = c′j , depending on the value of σ. Now, if at least one
value ĉj for j ∈ S1 is an encryption of 1, then the ciphertext c1−σ is an encryption of a uniformly
distributed value (in the group defined by the homomorphic encryption scheme). This is due to
the fact that ĉj is multiplied by ρ̂j which is uniformly distributed. Now, by the cut-and-choose
technique employed, the probability that for all j ∈ S1 it holds that ĉj 6= Epk(1) is negligible. This
is due to the fact that this can only hold if for many ciphertext pairs c0

i , c
1
i sent by P2 in its first

message, the pair is not correctly generated (i.e., it is not the case that one is an encryption of 0
and the other an encryption of 1). However, if this is the case, then P1 will abort except with
negligible probability, because S0 will almost certainly contain one of these pairs (and the sets S0

and S1 are chosen as a random partition based on the value s output from the coin tossing).
In the case that P1 is corrupted, the simulator manipulates the coin tossing so that in the un-

opened pairs of encryptions, all of the ciphertexts encrypt 0. This implies that both
(∑

j∈S1
ρj · cj

)
=

Epk(0) and
(∑

j∈S1
ρ′j · c′j

)
= Epk(0), in turn implying that c0 = Epk(m0) and c1 = Epk(m1). Thus,

the simulator obtains both m0 and m1 and sends them to the trusted party. This completes the
proof sketch. A full proof follows from the proof of security for Protocol 1.

6 Acknowledgements

We would like to thank Nigel Smart for helpful discussions and Benny Pinkas for pointing out an
error in a previous version.

References

[1] W. Aiello, Y. Ishai and O. Reingold. Priced Oblivious Transfer: How to Sell Digital Goods.
In EUROCRYPT 2001, Springer-Verlag (LNCS 2045), pages 119–135, 2001.

[2] G. Aggarwal, N. Mishra and B. Pinkas. Secure Computation of the k th-Ranked Element.
In EUROCRYPT 2004, Springer-Verlag (LNCS 3027), pages 40–55, 2004.

[3] Y. Aumann and Y. Lindell. Security Against Covert Adversaries: Efficient Protocols for
Realistic Adversaries. In the 4th TCC, Springer-Verlag (LNCS 4392), pages 137–156, 2007.

[4] B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction. SIAM
Journal on Computing, 33(4):783–818, 2004.

[5] D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91, Springer-Verlag
(LNCS 576), pages 377–391, 1991.

[6] J. Camenisch, G. Neven and A. Shelat. Simulatable Adaptive Oblivious Transfer. In EU-
ROCRYPT 2007, Springer-Verlag (LNCS 4515), pages 573–590, 2007.

[7] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143–202, 2000.

16

[8] R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In EUROCRYPT 2002, Springer-Verlag (LNCS
2332), pages 45–64, 2002.

[9] Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk and T. Rabin. Randomness Extraction and
Key Derivation Using the CBC, Cascade and HMAC Modes. In CRYPTO 2004, Springer-
Verlag (LNCS 3152), pages 494–510, 2004.

[10] S.D. Galbraith, K.G. Paterson and N.P. Smart. Pairings for Cryptographers. Cryptology
ePrint Archive Report 2006/165, 2006.

[11] S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing Contracts. In
Communications of the ACM, 28(6):637–647, 1985.

[12] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

[13] O. Goldreich and A. Kahan. How To Construct Constant-Round Zero-Knowledge Proof
Systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

[14] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of Immoral
Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77–93, 1990.

[15] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987. For
details see [12].

[16] M. Green and S. Hohenberger. Blind Identity-Based Encryption and Simulatable Oblivious
Transfer. In Asiacrypt 2007, Springer-Verlag (LNCS 4833), pages 265–282, 2007.

[17] Y.T. Kalai. Smooth Projective Hashing and Two-Message Oblivious Transfer. In EURO-
CRYPT 2005, Springer-Verlag (LNCS 3494), pages 78–95, 2005.

[18] J. Kilian. Founding Cryptograph on Oblivious Transfer. In 20th STOC, pages 20–31, 1988.

[19] E. Kushilevitz and R. Ostrovsky. Replication is NOT Needed: SINGLE Database,
Computationally-Private Information Retrieval. In 38th FOCS, pages 364–373, 1997.

[20] Y. Lindell and B. Pinkas. An Efficient Protocol for Secure Two-Party Computation in the
Presence of Malicious Adversaries. In EUROCRYPT 2007, Springer-Verlag (LNCS 4515),
pages 52–78, 2007.

[21] S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Preliminary
version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–404, 1991.

[22] M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge University Press,
2005.

[23] M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. In 12th SODA, pages 448–
457, 2001.

[24] M. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81, Aiken
Computation Laboratory, Harvard U., 1981.

[25] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167, 1986.

17

