Further Musings on the Wang et al. MD5 Collision: Improvements and Corrections on the Work of Hawkes, Paddon, and Rose

Gregory Hirshman
La Jolla Country Day School, 9490 Genesee Ave., La Jolla, CA 92037, U.S.A
ghirshman@yahoo.com
858-457-3073

Abstract

The recent successful attack on the widely used hash function, the MD5 Message Digest Algorithm, was a breakthrough in cryptanalysis. The original paper, published in 2004 by Wang et al., described this attack in an obscure and elliptical manner. Hawkes, Paddon, and Rose subsequently presented the attack in more detail, but even their paper contained numerous unproven statements and several significant errors. In a seven-step process, this paper will explicate their work, prove many of their assertions, and provide original corrections and illustrations to make the differential attack on MD5 more accessible to the mathematically literate reader. First, this paper will augment their introductory material by comparing their unorthodox description of MD5 to the original notation of Ron Rivest. Second, it will provide original examples for conditions that they present for the T_{t}. Third, it will elaborate on the description of the first block of the differential, showing why and how the conditions on the T_{t} are determined. Fourth, it will develop a step by step analysis of the description of the second block of the differential based only on the table that Hawkes, Paddon, and Rose provide. Fifth, it will supply original proofs of their assertions regarding the conditions for the propagation of the differences through the f_{t} functions for the first block. Sixth, it will give both assertions and proofs for the propagation of the differences through the f_{t} functions for the second block. Finally, it will correct two significant errors in the work of Hawkes, Paddon, and Rose. It will demonstrate that the complexity of the attack is only about half as great as they believed, and it will show that their Case Two does not succeed in fulfilling the conditions required for the collision differential to hold.

Keywords: MD5, Collision, Hash function, Differential cryptanalysis.

1 Introduction

For thirteen years, no one was able to find a collision for the cryptographic hash function MD5 [1]. The successful attack demonstrated by X. Wang, D. Feng, X. Lai, and H. Yu in 2004 [2] represented a significant achievement in cryptanalysis. After their paper was published, cryptographers struggled to comprehend the elusive attack. A year later, Hawkes, Paddon, and Rose [3] developed a method to explicate the collision that Wang et al. had found, yet even their paper was terse and schematic, and it contained several important errors. This paper utilizes a step-wise approach and employs a variety of original techniques to make the differential attack on MD5 more comprehensible to a wider audience.

The two-iteration attack on MD5 consists of finding two messages, each two blocks (1024 bits) in length, that produce identical 128-bit message digests. Processing the first block of each message produces a small difference, which is eliminated in processing the second block. The vast majority of the conditions that Wang et al. set for the attack occur in round 1 of each iteration. These conditions preclude a second pre-image attack. Using single-message modification, however, two messages can be created in such a way as to fulfill
every condition in the first round of each iteration. Thus, in calculating the complexity of the attack, only conditions for rounds 2 to 4 need to be considered. We will show that the complexity of the attack is 2^{42}.

This paper is organized as follows. Section 2 presents a brief history of the cryptanalysis on MD5. Section 3 presents the notation that Hawkes, Paddon, and Rose used in explaining the attack. Section 4 provides the new description of MD5 introduced in [3] and then compares this description of the algorithm to the original description in [1]. Section 5 discusses the message construction necessary for the attack to succeed. Section 6 supplies original examples for the conditions on the T_{t} presented in [3] and describes the differential for both the first and second blocks, demonstrating how a collision is obtained at the end of the attack. It also specifies the probabilities that the T_{t} will hold in each step. Section 7 presents the conditions for the propagation of the differences through the f_{t} functions for both the first and second blocks. Section 8 provides proofs for all of the assertions made in section 7. Finally, section 9 describes various errors in [3], some trivial, some minor, and two quite significant.

The original papers on the cryptanalysis of MD5 are only accessible to experts in the field. This paper provides necessary explanations and fills in the gaps to make the attack more comprehensible to a larger audience and to answer many questions which might naturally occur to educated readers. Many original examples, explanations, illustrations, and corrections are provided. It is hoped that this paper will foster understanding of a major mathematical achievement and facilitate further advances in the field.

2 Brief History of the Cryptanalysis on MD5

MD5 was designed by Ron Rivest in 1991 after it became apparent that MD5's predecessor, MD4 [4], was no longer secure. Rivest amended his earlier hash function by implementing a fourth round, by adding a unique additive constant to each step, by changing G function in round 2 to make it less symmetric, by ensuring that each step adds in the result of the previous step, by altering the order in which the input words are accessed in rounds 2 and 3 , and by attempting to optimize the magnitude of the shift function in order to increase the avalanche effect. With these improvements, MD5 became one of the most widespread hash functions ever created, yet it also became the target of much cryptanalytic research.

The first major accomplishment in the cryptanalysis of MD5 came in 1993 when B. den Boer and A. Bosselaers [5] discovered the first pseudo-collision. Three years later, H. Dobbertin [6] found a collision for MD5 using predetermined initial values and input words. It was not until 2004, however, that Wang et al. discovered the first real collision for MD5. This paper sparked great excitement in the cryptographic community, and many of the leading cryptanalyst sought to understand and expand on the collision attack. Later in 2004, P. Hawkes, M. Paddon, and G. Rose presented one of the most comprehensive analyses into how the collision in [2] was actually obtained. Early in the following year, X. Wang and H. Yu [7] presented their method to find collisions in reasonable time. Also in 2005, J. Liang and X. Lai [8] improved on [7] by removing unnecessary conditions and by discovering more efficient pathways, speeding up the attack about 30 -fold. The following year, J. Black, M. Cochran, and T. Highland [9] further improved on [7] by providing insight into both single and multi-message modification and by presenting new multi-message modification techniques to make Wang and Yu's attack even faster. Probably the best known cryptanalyst on MD5 after Wang and Yu is V. Klima, whose 2005 publication [10] combined with a 2006 publication by M. Stevens [11] to find an attack which succeeded in finding collisions in a matter of minutes. Then, in April of 2006, Klima developed the fastest known attack on MD5 using a method known as tunneling [12]. His algorithm can find collisions in an average of 17 seconds.

3 Notation

MD5 is based on processing 32 -bit words. We denote the $i^{t h}$ bit of a 32-bit word, a, as a_{i}. Then, " \wedge " represents the bitwise AND operation with $(a \wedge b)[i]=a[i] \wedge b[i], 0 \leq i \leq 31$, " \vee " represents the bitwise OR operation with $(a \vee b)[i]=a[i] \vee b[i], 0 \leq i \leq 31$, and " \oplus " represents the bitwise exclusive-OR operation with (a $\oplus b)[i]=a[i] \oplus b[i], 0 \leq i \leq 31$. Also, addition and subtraction modulo 2^{32} are represented by "+" AND "-", respectively. In addition, we denote the bitwise complement of x as $\neg x$, so that $\neg x=2^{32}-1-x$. The $\operatorname{ROTL}^{r}(X)$ function denotes the rotation of the bits in X by r positions to the left.

We also employ some shorthand techniques. When we consider several bit conditions, say, $X[a], X[b]$, $X[c]$, and $X[d]$, we denote is as follows:

$$
X[a, b, c, d]=(X[a], X[b], X[c], X[d])
$$

We write the bits in descending order, and if bits are adjacent to one another, we may combine them. For example,

$$
X[a-b, c]=(X[a], X[a-1], \ldots, X[b+1], X[b], X[c]) .
$$

If we want to set individual bits in a set to a specific value, then, for example, we may write:

$$
X[a-b, c]=1 X[a]=1, X[a-1]=1, \ldots, X[b+1]=1, X[b]=1, X[c],=1
$$

4 Description of MD5

We will now present how MD5 is described in [3] and demonstrate how the unorthodox description is essentially the same as that of [1].

4.1 Padding

A message of arbitrary length is padded so that its length will be congruent to $0 \bmod 512$.

4.2 Parsing

The padded message is divided into 512 -bit blocks $M_{0}, M_{1}, \ldots, M_{n}$. Then each block, M_{i} is divided into 16 , 32 -bit words $M_{0}^{(i)}, M_{1}^{(i)}, \ldots, M_{n}^{(i)}$,

4.3 Message Expansion

Each iteration of MD5 processes one, 512-bit message block, and the 64 steps of one iteration process each of the 16,32 -bit words, W_{t}, exactly 4 times. The order in which the message words are processed for a single iteration of MD5 is described below:

$$
f_{t}(X, Y, Z)= \begin{cases}F(X, Y, Z)=(X \wedge Y) \oplus(\bar{X} \wedge Z), 0 \leq t \leq 15 \\ G(X, Y, Z)=(Z \wedge X) \oplus(\bar{Z} \wedge Y), & 16 \leq t \leq 31 \\ H(X, Y, Z)=X \oplus Y \oplus Z, & 32 \leq t \leq 47 \\ I(X, Y, Z)=Y \oplus(X \vee \bar{Z}), & 48 \leq t \leq 63\end{cases}
$$

Note that for each $r, 0 \leq r \leq 3$, the values of $W_{16 r+0}, W_{16 r+1}, \ldots, W_{16 r+15}$ form a permutation in the words of the message block.

This notation means that, for each iteration, the message words are applied in the following manner. In the first round (steps 0 to 15), the message words are inputted into MD5 "in order," so that M_{0} is the input word into step $0, M_{1}$ is the input word into step $1, M_{2}$ is the input word into step 2 , and so on until M_{15} is the input word into step 15 . In the second round (steps 16 to 31), the message words are inputted into MD5, so that $M_{1+5 \times 16(\bmod 16)}=M_{81(\bmod 16)}=M_{1}$ is the input word into step $16, M_{1+5 \times 17(\bmod 16)}=M_{86(\bmod 16)}$ $=M_{6}$ is the input word into step $17, M_{1+5 \times 18(\bmod 16)}=M_{91(\bmod 16)}=M_{11}$ is the input word into step 18, and so on until $M_{1+5 \times 31(\bmod 16)}=M_{156(\bmod 16)}=M_{12}$ is the input word into step 31. In the third round (steps 32 to 47), the message words are inputted into MD5, so that $M_{5+3 \times 32(\bmod 16)}=M_{101(\bmod 16)}=M_{5}$ is the input word into step 32 , that $M_{5+3 \times 33(\bmod 16)}=M_{104(\bmod 16)}=M_{8}$ is the input word into step 33 , that $M_{5+3 \times 34(\bmod 16)}=M_{107(\bmod 16)}=M_{11}$ is the input word into step 34 , and so on until that $M_{5+3 \times 47(\bmod 16)}=$ $M_{146(\bmod 16)}=M_{2}$ is the input word into step 47. In the fourth round (steps 48 to 63), the message words are inputted into MD5, so that $M_{7 \times 48(\bmod 16)}=M_{336(\bmod 16)}=M_{0}$ is the input word into step $48, M_{7 \times 49(\bmod 16)}$ $=M_{343(\bmod 16)}=M_{7}$ is the input word into step $49, M_{7 \times 50(\bmod 16)}=M_{350(\bmod 16)}=M_{14}$ is the input word into step 50, and so on until $M_{7 \times 63(\bmod 16)}=M_{441(\bmod 16)}=M_{9}$ is the input word into step 63 .

4.4 Register Update

After each iteration of MD5, the intermediate hash values, $I H V^{(i)}[0], I H V^{(i)}[1], I H V^{(i)}[2]$, and $I H V^{(i)}[3]$, are updated, where each $I H V^{(i)}$ denotes the intermediate hash value before hashing the ith 512 -bit block. The four words, $I H V^{(0)}[j]$, are initialized to predetermined constants. We denote $Q_{4 t-3}, Q_{4 t-2}, Q_{4 t-1}, Q_{4 t}, 1 \leq$ $t \leq 16$, to be our chaining variables. They are initialized after the first iteration as

$$
Q_{0}=I H V^{(i)}[1], Q_{-1}=I H V^{(i)}[2], Q_{-2}=I H V^{(i)}[3], Q_{-3}=I H V^{(i)}[0]
$$

Then, each $I H V^{(i)}[j]$ are calculated as follows:

$$
\begin{aligned}
& I H V^{(i)}[0]=I H V^{(i-1)}[0]+Q_{61}, I H V^{(i)}[3]=I H V^{(i-1)}[3]+Q_{62}, \\
& I H V^{(i)}[2]=I H V^{(i-1)}[2]+Q_{63}, I H V^{(i)}[1]=I H V^{(i-1)}[1]+Q_{64} .
\end{aligned}
$$

In other words, each $I H V^{(i)}[j]$ is the value of one of the four, 32-bit registers after i-1 iterations of the compression function. Relating this notation to that of [1], we find that $I H V^{(i)}[0]$ is equivalent to the chaining variable $a, I H V^{(i)}[3]$ is equivalent to the chaining variable $d, I H V^{(i)}[2]$ is equivalent to the chaining variable $c, I H V^{(i)}[1]$ is equivalent to the chaining variable b since MD5 operates on a, b, c, and d in the order a, d, c, b. Consequently, each $Q_{4 t-3}$ is equivalent to a_{t}, each $Q_{4 t-2}$ is equivalent to d_{t}, each $Q_{4 t-1}$ is equivalent to c_{t}, each $Q_{4 t}$ is equivalent to b_{t}. This means that, for example, $Q_{17}=Q_{4 \times 5-3}=a_{5}, Q_{54}=Q_{4 \times 14-2}=d_{14}$, $Q_{31}=Q_{4 \times 8-1}=c_{8}$, and $Q_{44}=Q_{4 \times 11}=b_{11}$. Thus, our calculations for the intermediate hash values,

$$
\begin{aligned}
& I H V^{(i)}[0]=I H V^{(i-1)}[0]+Q_{61}, I H V^{(i)}[3]=I H V^{(i-1)}[3]+Q_{62}, \\
& I H V^{(l)}[2]=I H V^{(l-1)}[2]+Q_{63}, I H V^{(l)}[1]=I H V^{(l-1)}[1]+Q_{64},
\end{aligned}
$$

could be expressed as

$$
\begin{aligned}
& I H V^{(i)}[0]=I H V^{(i-1)}[0]+a_{16}, I H V^{(i)}[3]=I H V^{(i-1)}[3]+d_{16}, \\
& I H V^{(i)}[2]=I H V^{(i-1)}[2]+c_{16}, I H V^{(i)}[1]=I H V^{(i-1)}[1]+c_{16} .
\end{aligned}
$$

We denote our calculations in the former way, however, because it facilitates our later presentation of Wang and Yu's attack.

Each round of MD5 consists of a 32-bit input word, W_{t}, a left rotation by $S(t) \in[0,31]$, a predetermined 32 -bit constant, $A C_{t}$, addition modulo 2^{32}, and a non-linear function, f_{t}, which is defined as

$$
f_{t}(X, Y, Z)= \begin{cases}F(X, Y, Z)=(X \wedge Y) \oplus(\bar{X} \wedge Z), 0 \leq t \leq 15 \\ G(X, Y, Z)=(Z \wedge X) \oplus(\bar{Z} \wedge Y), & 16 \leq t \leq 31 \\ H(X, Y, Z)=X \oplus Y \oplus Z, & 32 \leq t \leq 47 \\ I(X, Y, Z)=Y \oplus(X \vee \bar{Z}), & 48 \leq t \leq 63\end{cases}
$$

where each f_{t} takes three, 32 -bit words as input and yields one, 32-bit word as output. The compression function modifies the register as follows:

$$
\begin{aligned}
T_{t} & =f_{t}\left(Q_{t}, Q_{t-1}, Q_{t-2}\right)+Q_{t-3}+A C_{t}+W_{t} \\
R_{t} & =\operatorname{ROTL}^{S(t)}\left(T_{t}\right) ; \quad Q_{t+1}=Q_{t}+R_{t}
\end{aligned}
$$

After all 64 steps of an iteration are complete, the resulting values, Q_{61}, Q_{62}, Q_{63}, and Q_{64} are added to $I H V[0], I H V[3], I H V[2]$, and $I H V[1]$ of the previous round, respectively. These four sums comprise the new intermediate hash value. When the last message block is processed, the new intermediate hash value becomes the message digest. Up until the last message block, the algorithm proceeds to update the registers using the next message block.

Relating this to [1], each W_{t} represents $X[k]$, each $S(t)$ represents $\ll s$, each $A C_{t}$ represents $T[i]$, and each f_{t} represents either F, G, H, or I, where the order in which the input words are used is described above and values for the left rotation and the constants are predetermined. Furthermore, the value of Q_{t+1}, which is expressed in [3] as

$$
Q_{t+1}=Q_{t}+\operatorname{ROTL}^{S(T)}\left(f_{t}\left(Q_{t}, Q_{t-1}, Q_{t-2}\right)+Q_{t-3}+A C_{t}+W_{t}\right)
$$

is more familiarly represented as

$$
\begin{gathered}
a_{i+1}=b_{i}+\left(\left(a_{i}+\phi\left(b_{i}, c_{i}, d_{i}\right)+X[k]+T[i]\right) \ll s\right), \\
d_{i+1}=c_{i}+\left(\left(b_{i}+\phi\left(c_{i}, d_{i}, a_{i+1}\right)+X[k]+T[i]\right) \ll s\right), \\
c_{i+1}=d_{i}+\left(\left(c_{i}+\phi\left(d_{i}, a_{i+1}, b_{i+1}\right)+X[k]+T[i]\right) \ll s\right), \\
b_{i+1}=a_{i+1}+\left(\left(d_{i}+\phi\left(a_{i+1}, b_{i+1}, c_{i+1}\right)+X[k]+T[i]\right) \ll s\right) .
\end{gathered}
$$

where could be the F, G, H, or I function. The values of Q_{61}, Q_{62}, Q_{63}, and Q_{64} are equivalent to a_{16}, d_{16}, c_{16}, b_{16}, respectively, They are added to the intermediate hash value of the previous round to obtain the new intermediate hash value.

5 Message Construction

The collision found in [7] consists of two message blocks of data where the first message is comprised of $(M \mid N)$ and the second message is comprised of $\left(M^{\prime} \mid N^{\prime}\right)$. When split into 32 -bit words, $\left(M_{0}, M_{1}, \ldots, M_{15} \mid\right.$ $\left.N_{0}, N_{1}, \ldots, N_{15}\right)$ and ($\left.M_{0}^{\prime}, M_{1}^{\prime}, \ldots, M_{15}^{\prime} \mid N_{0}^{\prime}, N_{1}^{\prime}, \ldots, N_{15}^{\prime}\right)$, the following conditions must be satisfied according to [7]:

$$
\begin{gathered}
M_{4}-M_{4}= \pm 2^{31}, M_{11}^{\prime}-M_{11}=+2^{15}, M_{14}^{\prime}-M_{14}= \pm 2^{31}, M_{i}^{\prime}=M_{i} \text { otherwise, } \\
N_{4}^{\prime}-N_{4}= \pm 2^{31}, N_{11}^{\prime}-N_{11}=-2^{15}, N_{14}^{\prime}-N_{14}= \pm 2^{31}, N_{i}^{\prime}=N_{i} \text { otherwise. }
\end{gathered}
$$

The message expansion transforms the message block into the input word sequence $W_{t}, 0 \leq t \leq 63$. For the first message blocks M and M^{\prime}, we have:

$$
\begin{gathered}
W_{4}^{\prime}-W_{4}=W_{23}^{\prime}-W_{23}=W_{37}^{\prime}-W_{37}=W_{60}^{\prime}-W_{60}= \pm 2^{31} \\
W_{11}^{\prime}-W_{11}=W_{18}^{\prime}-W_{18}=W_{34}^{\prime}-W_{34}=W_{61}^{\prime}-W_{61}=+2^{15} \\
W_{14}^{\prime}-W_{14}=W_{25}^{\prime}-W_{25}=W_{35}^{\prime}-W_{35}=W_{50}^{\prime}-W_{50}= \pm 2^{31},
\end{gathered}
$$

and $W_{i}=W_{i}$. For the second message blocks N^{\prime} and N, we have:

$$
\begin{gathered}
W_{4}^{\prime}-W_{4}=W_{23}^{\prime}-W_{23}=W_{37}^{\prime}-W_{37}=W_{60}^{\prime}-W_{60}= \pm 2^{31} \\
W_{11}^{\prime}-W_{11}=W_{18}^{\prime}-W_{18}=W_{34}^{\prime}-W_{34}=W_{61}^{\prime}-W_{61}=-2^{15}, \\
W_{14}^{\prime}-W_{14}=W_{25}^{\prime}-W_{25}=W_{35}^{\prime}-W_{35}=W_{50}^{\prime}-W_{50}= \pm 2^{31},
\end{gathered}
$$

and $W_{i}^{\prime}=W_{i}$. Note that for all four of the ΔW_{i} which are equal to $\pm 2^{31}$, Wang and Yu asserted that these ΔW_{i} are equal to $+2^{31}$. This is not an inconsistency, however, since $\pm 2^{31} \equiv+2^{31}\left(\bmod 2^{32}\right)$.

To verify that the only non-zero differences occur with $W_{4}, W_{23}, W_{37}, W_{60}, W_{11}, W_{18}, W_{34}, W_{61}, W_{14}$, W_{25}, W_{35}, and W_{50} for both blocks, we note the following. From [7], we know that the only differences in the original message are in M_{4}, M_{11}, and M_{14}. Because we have that

$$
f_{t}(X, Y, Z)=\left\{\begin{array}{lll}
F(X, Y, Z)=(X \wedge Y) \oplus(\bar{X} \wedge Z), & 0 \leq t \leq 15 \\
G(X, Y, Z)=(Z \wedge X) \oplus(\bar{Z} \wedge Y), & 16 \leq t \leq 31 \\
H(X, Y, Z)=X \oplus Y \oplus Z, & & 32 \leq t \leq 47 \\
I(X, Y, Z)=Y \oplus(X \vee \bar{Z}), & & 48 \leq t \leq 63
\end{array}\right.
$$

we must find three values of t for each round such that the result of the addition and reduction modulo 16 is equal to 4,11 , or 14 . For the first round, it is obvious that $t=4,11,14$. Thus, the only differences are in W_{4}, W_{11}, and W_{14}. For the second round, we find that $t=23,18,25$ since

$$
\begin{aligned}
& 1+5 \times 23(\bmod 16)=116(\bmod 16)=4 \\
& 1+5 \times 18(\bmod 16)=91(\bmod 16)=11 \\
& 1+5 \times 25(\bmod 16)=126(\bmod 16)=14
\end{aligned}
$$

Thus, the only differences are in W_{23}, W_{18}, and W_{25}. For the third round, we find that $t=37,34,35$ since

$$
\begin{gathered}
5+3 \times 37(\bmod 16)=116(\bmod 16)=4 \\
5+3 \times 34(\bmod 16)=107(\bmod 16)=11 \\
5+3 \times 35(\bmod 16)=110(\bmod 16)=14
\end{gathered}
$$

Thus, the only differences are in W_{37}, W_{34}, and W_{35}. For the fourth round, we find that $t=60,61,50$ since

$$
\begin{aligned}
& 7 \times 60(\bmod 16)=420(\bmod 16)=4 \\
& 7 \times 61(\bmod 16)=427(\bmod 16)=11 \\
& 7 \times 50(\bmod 16)=350(\bmod 16)=14
\end{aligned}
$$

Thus, the only differences are in W_{60}, W_{61}, and W_{50}.

6 Description of the Differential

In describing the first and second blocks of the differential, we use the following equations:

$$
\begin{aligned}
\delta T_{t} & =\delta f_{t}\left(Q_{t}, Q_{t-1}, Q_{t-2}\right)+\delta Q_{t-3}+\delta W_{t} \\
\delta Q_{t+1} & =\delta Q_{t}+\delta R_{t}
\end{aligned}
$$

Note that since the $A C_{t}$ are predetermined constants, $\Delta A C_{t}=0$, so we have not inserted $\Delta A C_{t}$ in our calculation of ΔT_{t}.

Tables 1 and 2 on the following two pages summarize the differential in [7] for the first and second blocks, listing the values of $\Delta Q_{t}, \Delta f_{t}, \Delta Q_{t-3}, \Delta W_{t}, S(t)$, and ΔR_{t}. The columns of $\Delta Q_{t}, \Delta f_{t}, \Delta Q_{t-3}, \Delta W_{t}$, and ΔR_{t} give the result of the appropriate add-difference. For example, $\Delta Q_{t}=Q_{t}^{\prime}-Q_{t}\left(\bmod 2^{32}\right)$. To save space,

- a difference of the form $+2^{j}$ is denoted $\stackrel{+}{j}$, and
- a difference of the form -2^{j} is denoted \bar{j}.

Note that since $-2^{31} \equiv+2^{31} \equiv \pm 2^{31}$, we usually input " \pm " in front of bit 31 . The only time that the congruency does not hold is when bit 31 is rotated to some other bit position. In this case, we must distinguish between -2^{31} and -2^{31} by setting a condition. Also note that the propagation of the differences through the f_{t} functions will be discussed in section 7 .

6.1 Conditions on T_{t}

In creating table 1 , it is necessary that we place restrictions on T_{t} to ensure that the rotation of T_{t}, i.e., R_{t}, will produce the correct add-difference. We impose three restrictions on T_{t} and provide examples to explain them.

Condition I:

- A given add-difference usually must not propagate past the bit position for T_{t} which is rotated to bit $R_{t}[31]$. Otherwise, the rotation will carry that add-difference to low order bits, which will result in the wrong add-difference for R_{t}.

To understand what this means, consider the following example. Suppose that $T_{t}=+2^{8}$. Also, suppose that $S(t)=22$, so upon rotation, we should have $R_{t}=+2^{8+22=30}=2^{30}$. T_{t} could be written as

$$
\Delta T_{t}=00000000000000000000000+00000000
$$

t	δQ_{t}	δf_{t}	δQ_{t-3}	δW_{t}	δT_{t}	$S(t)$	δR_{t}
0-3	-	-	-	-	-		-
4	-	-	-	$\overline{31}$	31	7	6
5	6	$\stackrel{+}{19},{ }_{11}^{+}$	-	-	$\stackrel{+}{19},{ }_{11}^{+}$	12	$\stackrel{+}{31},{ }_{23}^{+}$
6	$\stackrel{ \pm}{31},{ }_{23}{ }^{+}, \overline{6}$	$\overline{14}, \overline{10}$	-	-	$\overline{15}, \stackrel{+}{14}, \overline{10}$	17	$\stackrel{+}{31, ~} \overline{27}, \overline{0}$
7	$\stackrel{-}{27}, \stackrel{+}{23}, \overline{6}, \overline{0}$	$\overline{27}, \overline{25}, \stackrel{+}{16}, \stackrel{+}{10}, \stackrel{+}{5}, \overline{2}$	-	-	$\overline{27}, \overline{25}, \stackrel{+}{16}, \stackrel{+}{10}, \stackrel{+}{5}, \overline{2}$	22	$\stackrel{+}{27}, \overline{24}, \overline{17}, \overline{15}, \stackrel{+}{6}, \stackrel{+}{1}$
8	$\overline{23}, \overline{17}, \overline{15},{ }_{0}^{+}$	$\stackrel{ \pm}{31}, \stackrel{-}{24}, \stackrel{+}{16}, \stackrel{+}{10}, \stackrel{+}{8}, \stackrel{+}{6}$	6	-	$\overline{31}, \stackrel{-}{24}, \stackrel{+}{16}, \stackrel{+}{10}, \stackrel{+}{8}$	7	$\stackrel{-}{31}, \stackrel{+}{23}, \stackrel{+}{17}, \stackrel{+}{15}, \overline{6}$
9	$\stackrel{ \pm}{31}, \overline{6},{ }_{0}^{+}$	$\stackrel{ \pm}{31}, \stackrel{+}{26}, \overline{23}, \overline{20}, \stackrel{+}{6}, \stackrel{+}{0}$	$\stackrel{ \pm}{31}, \stackrel{+}{23}, \overline{6}$	-	$\stackrel{+}{26}, \overline{20}, \stackrel{+}{0}$	12	${ }_{12}^{+},{ }_{6}^{6}, \overline{0}$
10	$\stackrel{+}{31} \stackrel{+}{12}$	$\stackrel{-}{23}, \stackrel{+}{13}, \stackrel{+}{6}, \stackrel{+}{0}$	$\overline{27} \overline{2}_{23}+\overline{6}, \overline{0}$	-	$-\stackrel{+}{27}{ }_{13}$	17	$\stackrel{+}{30}, \stackrel{-}{12}$
11	$\stackrel{+}{31,} \stackrel{+}{30}$	$\overline{8}, \overline{0}$	$\overline{23}, \overline{17}, \overline{15},{ }_{0}^{+}$	$\stackrel{+}{15}$	$\overline{23}, \overline{17}, \overline{8}$	22	$\overline{30}, \overline{13}, \overline{7}$
12	$\stackrel{+}{31, ~} \overline{13}, \overline{7}$	$\stackrel{+}{31,17}{ }^{+},{ }_{7}^{+}$	$\overline{31}, \overline{6},{ }_{0}^{+}$	-	$\stackrel{+}{17}, \stackrel{+}{6},{ }_{0}^{+}$	7	$\stackrel{+}{24,} \stackrel{+}{13},{ }_{7}^{7}$
13	$\stackrel{+}{1} \stackrel{+}{24}$	${ }_{31,13}$	$\stackrel{+}{1} \stackrel{+}{12}$		12	12	24
13	31, 24	31,13	31, 12	-	12	12	24
14	${ }^{+}$	$\stackrel{+}{31,}{ }_{18}^{+}$	$\stackrel{+}{31,}{ }_{30}^{+}$	$\overline{31}$	- ${ }^{+}{ }_{18}^{+}$	17	15, ${ }_{3}^{+}$
15	$\stackrel{+}{31}, \overline{15},{ }_{3}^{+}$	$\stackrel{+}{31,} \stackrel{+}{25}$	$\stackrel{+}{31, ~} \overline{13}, \overline{7}$	-	$\stackrel{+}{25, ~} \overline{13}, \overline{7}$	22	$\overline{29},{ }_{15}{ }^{\text {a }}$, $\overline{3}$
16	$\stackrel{+}{31,29}$	$\stackrel{+}{31}$	$\stackrel{+}{31},{ }_{24}^{4}$	-	$\stackrel{+}{24}$	5	$\stackrel{+}{29}$
17	$\stackrel{+}{3}$	${ }^{+}$	$\stackrel{+}{31}$	-	-	9	-
18	$\stackrel{+}{31}$	$\stackrel{+}{31}$	$\stackrel{+}{31,15}{ }_{1}{ }_{3}^{+}$	$\stackrel{+}{15}$	${ }_{3}^{+}$	14	$\stackrel{+}{17}$
19	$\stackrel{+}{31,17}$	$\stackrel{+}{+}$	$\stackrel{+}{31}, \stackrel{-}{29}$	-	$\overline{29}$	20	17
20-21	${ }^{+}$	${ }^{+}$	${ }^{+}$				
20-21			31	-	+	.	-
22	$\stackrel{+}{31}$	$\stackrel{+}{31}$	$\stackrel{+}{31,17}$	-	${ }_{17}^{+}$	14	$\stackrel{+}{31}$
23	-	-	$\stackrel{+}{31}$	$\overline{31}$	-	20	-
24	-	$\stackrel{+}{31}$	$\stackrel{+}{31}$	-	-	5	-
25	-	-	31	$\overline{31}$	-	9	-
26-33	-	-	-	-	-	.	-
34	-	-	-	$\stackrel{+}{15}$	$\stackrel{+}{15}$	16	$\stackrel{+}{1}$
35	$\stackrel{+}{31}$	31	-	31	-	23	-
36	$\stackrel{+}{31}$	-	-	-	-	4	-
37	$\stackrel{+}{31}$	$\stackrel{+}{31}$		31	-	11	-
38-49	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	\pm	-	-		-
50	31		31	31	-	15	-
51-59	31	$\stackrel{+}{31}$	+	-	-		-
60	$\stackrel{+}{31}$		$\overline{31}$	31	-	6	-
61	31	31	31	$\stackrel{+}{15}$	${ }_{15}^{+}$	10	$\stackrel{+}{25}$
62-63	$\stackrel{ \pm}{31},{ }_{25}^{+}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	-	-		-

Table 1. The first block of the differential. Recall that $\Delta Q_{t}=\Delta Q_{t-1}+\Delta R_{t-1}, \Delta T_{t}=\Delta f_{t}+\Delta Q_{t-3}+\Delta W_{t}$, and (most of the time) $\Delta R_{t}=R O T L^{S(t)}\left(\Delta T_{t}\right)$.

t	δQ_{t}	δf_{t}	δQ_{t-3}	δW_{t}	δT_{t}	$S(t)$	δR_{t}
0	$\stackrel{ \pm}{31} \stackrel{+}{25}_{+}^{+}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$			7	
1	$\stackrel{ \pm}{31},{ }_{25}^{+}$	± 1	$\stackrel{ \pm}{31}, \stackrel{+}{25}$		$\stackrel{+}{25}$	12	$\stackrel{+}{5}$
2	$\stackrel{ \pm}{31}, \stackrel{+}{25}, \stackrel{+}{5}$	+	+ ${ }^{ \pm}$, ${ }^{\text {+ }}$		+ ${ }^{1},{ }^{+}{ }^{+}$	17	${ }^{+} 6,{ }^{+}{ }^{+}$
3	$\stackrel{ \pm}{31}, \stackrel{+}{25},+_{16}, \stackrel{+}{11}, \stackrel{+}{5}$	$\stackrel{ \pm}{31}, \overline{27},{ }^{+}{ }^{5}, \overline{21}, \overline{11}$	+ ${ }^{ \pm}$, ${ }^{\text {+ }}$		$\overline{26}, \overline{21}, \overline{11}$	22	$\overline{16}, \overline{11}, \overline{1}$
3	$31,25,16,11,5$ $\pm++-$	$31,27,25,21,11$ $+\quad-\quad+$	31,25 $\pm+$	\pm	26, $+\quad+\quad+\quad++$	22	- $16,11,1$
4	31, 25, 5, 1	$30,26,18,3,1$	31, 25	31	$30,26,25,18,2,1$	7	$25,10,8,5,1,0$
5	$\stackrel{ \pm}{31}, \stackrel{+}{10}, \overline{8}, \stackrel{+}{6}, \stackrel{+}{0}$	$\stackrel{+}{30}, \stackrel{+}{28}, \overline{26}, \overline{25}, \overline{20}, \overline{8}, \overline{5}, \overline{4}$	$\stackrel{ \pm}{31}, \stackrel{+}{25}, \stackrel{+}{5}$		$\overline{30}, \stackrel{+}{28}, \overline{26}, \overline{20}, \overline{8}, \overline{4}$	12	$\overline{20}, \overline{16}, \overline{10}, \stackrel{+}{8}, \overline{6}, \overline{0}$
6	$\stackrel{ \pm}{31}, \overline{20}, \overline{16}$	$\overline{25}, \overline{21}, \overline{16}, \overline{11}, \overline{10}, \overline{5},+\stackrel{+}{3}$	$\stackrel{ \pm}{31}, \stackrel{+}{25}, \stackrel{+}{16},{ }_{11}{ }^{+}, \stackrel{+}{5}$		$\overline{31}, \overline{21}, \overline{10},{ }_{3}^{+}$	17	$\overline{27}, \stackrel{+}{20},{ }_{16}, \overline{6}$
	寺 $\overline{27}$ -	$\pm{ }_{31}^{ \pm}-{ }^{+}$	$\stackrel{ \pm}{31} \stackrel{+}{25}$ +		$\stackrel{-}{27}+{ }_{2}+{ }^{+}$		
7	31, 27, 6	31, 27, 16	31, 25, 5, 1		$27,25,16,5,1$	22	$27,23,17,15,6$
8	$\stackrel{ \pm}{31}, \overline{23}, \overline{17}, \stackrel{+}{15}$	$\stackrel{+}{25}, \stackrel{+}{16}, \overline{6}$	$\stackrel{ \pm}{31}, \stackrel{+}{10}, \overline{7}, \overline{6}, \stackrel{+}{0}$		$\overline{31}, \stackrel{+}{25}, \stackrel{+}{16}, \stackrel{+}{9}, \stackrel{+}{8}, \stackrel{+}{0}$	7	$\stackrel{+}{23}, \stackrel{+}{16}, \stackrel{+}{15}, \stackrel{+}{6}, \stackrel{+}{0}$
9	$\stackrel{ \pm}{31}, \stackrel{+}{6},{ }_{0}^{+}$	$\stackrel{ \pm}{31}, \stackrel{-}{26}, 1+\stackrel{+}{0}$	$\stackrel{ \pm}{31}, \overline{20}, \overline{16}$		$\overline{26}, \overline{20}, \stackrel{+}{0}$	12	$\stackrel{+}{12}, \overline{6}, \overline{0}$
			\pm - -				
10	31, 12	31, 6	31, 27, 6		27	17	12
11	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}, \overline{23},-\overline{17},+\frac{+}{15}$	$\overline{15}$	$\overline{23}, \overline{17}$	22	$\overline{13}, \overline{7}$
	\pm -	$\pm+$	+ \pm		$+{ }^{+}+$		$+{ }_{+}+$
12	31, 13, 7	31, 17	31, 6, 0		17, 6,0	7	24, 13, 7
13	$\stackrel{ \pm}{31},{ }_{24}^{+}$	$\stackrel{ \pm}{31}, \overline{13}$	$\stackrel{ \pm}{31,12}$		$\overline{12}$	12	$\stackrel{-}{24}$
				\pm	$+{ }^{+}$		+ +
14	31	30, 18	31	31	30, 18	17	15,3
15	$\stackrel{ \pm}{31},{ }_{15}, \stackrel{+}{3}$	①, $\overline{25}$	$\stackrel{ \pm}{31}, \overline{13}, \overline{7}$		$\overline{-5}, \overline{13}, \overline{7}$	22	$\overline{-15} \overline{15}$
	± 1	$\stackrel{+}{+}$	+		$+$,
16	31, 29	31	31, 24		24	5	29
17	$\stackrel{ \pm}{31}$	± 1	$\stackrel{ \pm}{31}$			9	
	\pm	\pm	$\pm+$	-			+
18	31	31	31, 15, 3	15	3	14	17
19	$\stackrel{ \pm}{31},{ }_{17}^{+}$	$\pm{ }^{ \pm}$	$\stackrel{ \pm}{31,} \stackrel{-}{29}$		$\overline{29}$	20	17
	\pm	\pm	\pm				
20-21	31	31	31				
22	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31},{ }_{17}^{+}$		${ }_{17}^{+}$	14	$\stackrel{ \pm}{31}$
23			$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$		20	
24		$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$			5	
25			$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$		9	
26-33							
34				$\overline{15}$	$\overline{15}$	16	$\stackrel{ \pm}{31}$
35	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$		\pm		23	
36	$\stackrel{ \pm}{31}$					4	
	\pm	\pm		\pm			
37	31	31		31		11	
38-49	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$				
50	$\stackrel{ \pm}{31}$		$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$		15	
51-59	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$				
	\pm	31	\pm				
60	31		31	31		6	
61	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\overline{15}$	15	10	$\overline{25}$
62-63	$\stackrel{ \pm}{31}, \overline{25}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$				

Table 2. Sequence of add-differences for rounds 16 to 63 of the second block. Recall that $\Delta Q_{t}=\Delta Q_{t-1}+\Delta R_{t-1}$, $\Delta T_{t}=\Delta f_{t}+\Delta Q_{t-3}+\Delta W_{t}$, and (most of the time) $\Delta R_{t}=R O T L^{S(t)}\left(\Delta T_{t}\right)$.

Upon applying $S(t)$, we have

$$
\Delta R_{t}=0+000000000000000000000000000000 .
$$

This is desired since $\Delta R_{t}=+2^{8+22=30}=+2^{30}$. T_{t} could also be written as

$$
\Delta T_{t}=0000000000000000000000+-00000000
$$

since $\Delta T_{t}=+2^{9}-2^{8}=+2^{8}$. Upon applying $S(t)$, we have

$$
\Delta R_{t}=+-000000000000000000000000000000 .
$$

This would also suffice since $\Delta R_{t}=+2^{31}-2^{30}=+2^{30}$. But T_{t} could be written as

$$
\Delta T_{t}=000000000000000000000+--00000000
$$

since $\Delta T_{t}=+2^{10}-2^{9}-2^{8}=+2^{8}$. However, upon applying $S(t)$, we have

$$
\Delta R_{t}=--00000000000000000000000000000+.
$$

But this is equal to $-2^{31}-2^{30}+2^{0} \equiv 2^{30}+2^{0}\left(\bmod 2^{32}\right)$, which is not what we wanted. As we stated earlier, the add-difference must not propagate past the bit position for T_{t} which is rotated to bit $R_{t}[31]$ since the rotation would carry that add-difference to low order bits. That is exactly what happened during the last part of the example. For the first two parts, the add-difference did not propagate past the bit position for T_{t} which is rotated to bit $R_{t}[31]$, so there was no problem. For the last part, however, the add-difference propagated past the bit position for T_{t} which is rotated to bit $R_{t}[31]$, so there was a carry to a low order bit, which resulted in the wrong add-difference for $R_{t}[31]$.

Condition II:

- A given add-difference may sometimes have to propagate past a certain bit position in T_{t} to ensure that the rotation will carry to low order bits in order to obtain the correct add-difference for R_{t}.

This means is that sometimes it is useful for a bit to be rotated so that it carries to a low order bit in order to cancel out another low order bit. Suppose, for example, that we would like to cancel out the -2^{0} term of Q_{t} in our calculation of

$$
\Delta T_{t}=+2^{12}+2^{4}+2^{2}
$$

and a shift of magnitude 19 for step t. If we apply the shift function, we would get

$$
\Delta R_{t}=+2^{12+19=31}+2^{4+19=23}+2^{2+19=21}=+2^{31}+2^{23}+2^{21}
$$

which clearly cannot cancel out -2^{0}. However, suppose we write our add-difference of ΔT_{t} as

$$
\Delta T_{t}=+2^{13}-2^{12}+2^{4}+2^{2} .
$$

This is, of course, the same value for ΔT_{t} since

$$
\Delta T_{t}=\left(+2^{13}-2^{12}\right)+2^{4}+2^{2}=+2^{12}+2^{4}+2^{2} .
$$

But, expressing ΔT_{t} in this manner will give us

$$
\Delta R_{t}=+2^{13+19=32 \equiv 0(\bmod 32)}-2^{12+19=31}+2^{4+19=23}+2^{2+19=21}=-2^{31}+2^{23}+2^{21}+2^{0} .
$$

Since $\Delta Q_{t+1}=\Delta Q_{t}+\Delta R_{t}$, the -2^{0} term of ΔQ_{t} will be cancelled out by the $+2^{0}$ term of ΔR_{t}.
Condition III:

- An add-difference must not propagate past bit 31 before rotation since this will yield in an undesirable result.

For example, suppose that the desired add-difference is $\Delta T_{t}=-2^{25}$ and that $T_{t}[j]=0,25 \leq j \leq 31$. Then, the second message will have $T_{t}^{\prime}[j]=1,25 \leq j \leq 31$, since

$$
\Delta T_{t}=T_{t}^{\prime}-T_{t}=2^{25}+2^{26}+2^{27}+2^{28}+2^{29}+2^{30}+2^{31} \equiv-2^{25}\left(\bmod 2^{32}\right) .
$$

Now suppose that $S(t)=12$. Applying the rotation, we should have $\Delta R_{t}=-2^{25+12=37 \equiv 5(\bmod 32)}=-2^{5}$. However, for our example, we have

$$
\Delta R_{t}=\sum_{j=25}^{31}+2^{j+12(\bmod 32)}=\sum_{j=5}^{11}+2^{j}
$$

But this is not the desired add-difference since

$$
\Delta R_{t}=+2^{5}+2^{6}+2^{7}+2^{8}+2^{9}+2^{10}+2^{11}=+2^{12}-2^{5} \not \equiv-2^{5} .
$$

Thus, we must ensure that that this add-difference does not propagate past bit 31, so we must have that at least one bit of $T_{t}[j], 25 \leq j \leq 31$, be equal to 1 . Consider the following example. Suppose for our adddifference $\Delta T_{t}=-2^{25}$ that $T_{t}[j]=0,25 \leq j \leq 30$, and that $T_{t}[31]=1$. Then, the second message will have $T_{t}^{\prime}[j]=1,25 \leq j \leq 30$, and $T_{t}^{\prime}[31]=0$ since

$$
\Delta T_{t}=T_{t}^{\prime}-T_{t}=+2^{25}+2^{26}+2^{27}+2^{28}+2^{29}+2^{30}-2^{31}=-2^{25}
$$

Suppose again $S(t)=12$. Applying the rotation, we should have $R_{t}=-2^{25+12=37 \equiv 5(\bmod 32)}=-2^{5}$, and, for our example, we have

$$
\Delta R_{t}=\sum_{j=25}^{31}+2^{j+12(\bmod 32)}-2^{31+12(\bmod 32)}=\sum_{j=5}^{10}+2^{j}-2^{11}=-2^{5}
$$

which is exactly what we wanted since

$$
\Delta R_{t}=2^{5}+2^{6}+2^{7}+2^{8}+2^{9}+2^{10}+2^{11}=-2^{5}
$$

6.2 Description of the First Block of the Differential

Steps 0 to 3 :
$-\Delta Q_{t}=0$.
$-\Delta f_{t}=\Delta Q_{t-3}=0, \Delta W_{t}=0$.
$-\Delta T_{t}=\Delta f_{t}+\Delta Q_{t-3}+\Delta W_{t}=0+0+0=0$.

- Condition(s) on ΔT_{t} : none
$-\Delta T_{t}=0 \Rightarrow \Delta R_{t}=0$.
$-\Delta Q_{t+1}=\Delta Q_{t}+\Delta R_{t}=0+0=0$.

Step 4:

$-\Delta Q_{4}=0$.
$-\Delta f_{4}=0, \Delta Q_{1}=0$, and $\Delta W_{4}=-2^{31}$.
$-\Delta T_{4}=\Delta f_{4}+\Delta Q_{1}+\Delta W_{4}=0+0+\left(-2^{31}\right)=-2^{31}$.

- Condition(s) on ΔT_{4} :
$-\Delta T_{4}[31]=1$ ensures that the add difference is -2^{31} (condition III). The probability that this condition holds is $\left(2^{-1}\right)$ since $\Delta T_{4}[31]=1$ rather than $\Delta T_{4}[31]=(0,1)$.
$-S(4)=7$, so $\Delta T_{4}=-2^{31} \Rightarrow \Delta R_{4}=-2^{31+7=38 \equiv 6(\bmod 32)}=-2^{6}$.
$-\Delta Q_{5}=\Delta Q_{4}+\Delta R_{4}=0+\left(-2^{6}\right)=-2^{6}$.

Step 5:
$-\Delta Q_{5}=-2^{6}$.
$-\Delta f_{5}=+2^{19}+2^{11}, \Delta Q_{2}=0$, and ΔW_{5}.
$-\Delta T_{5}=\Delta f_{5}+\Delta Q_{2}+\Delta W_{5}=\left(+2^{19}+2^{11}\right)+0+0=+2^{19}+2^{11}$.

- Condition(s) on ΔT_{5} :
- $\Delta=\left(+2^{19}+2^{11}\right)$ must not propagate past bit 19 since we do not want to affect low order bits upon rotation (condition I). The probability that this condition holds is $2^{-1} \times\left(1-2^{-8}\right)$ since $T_{5}[19]=0$ and $0 \in T_{5}[18-11]$ to ensure there is no propagation past bit 19 .
- $S(5)=12$, so $\Delta T_{5}=+2^{19}+2^{11} \Rightarrow \Delta R_{5}=+2^{19+12=31}+2^{11+12=23}=+2^{31}+2^{23}$.
- $\Delta Q_{6}=\Delta Q_{5}+\Delta R_{5}=\left(-2^{6}\right)+\left(+2^{31}+2^{23}\right)= \pm 2^{31}+2^{23}-2^{6}$.

Step 6:
$-\Delta Q_{6}= \pm 2^{31}+2^{23}-2^{6}$.
$-\Delta f_{6}=-2^{14}-2^{10}, \Delta Q_{3}=0$, and $\Delta W_{6}=0$.
$-\Delta T_{6}=\Delta f_{6}+\Delta Q_{3}+\Delta W_{6}=\left(-2^{14}-2^{10}\right)+0+0=-2^{14}-2^{10}$.

- Condition(s) on ΔT_{6} :
- $\Delta=\left(-2^{14}\right)$ must propagate to bit 15 since we want to affect bit 0 upon rotation (condition II). Thus, -2^{14} is rewritten as $-2^{15}+2^{14}$. The probability that this condition holds is 2^{-1} since having $T_{6}[14]$ $=0$ will ensure the appropriate propagation.
- $\Delta=\left(-2^{10}\right)$ must not propagate past bit 13 (bit 14 has already been specified) since we do not want to affect any more low order bits upon rotation (condition I). The probability that this condition holds is $\left(1-2^{-4}\right)$ since $1 \in T_{6}[13-10]$ to ensure there is no propagation past bit 13.
$-S(6)=17$, so $\Delta T_{6}=-2^{15}+2^{14}-2^{10} \Rightarrow \Delta R_{6}=-2^{15+17=32 \equiv 0(\bmod 32)}+2^{14+17=31}-2^{10+17=27}=+2^{31}-$ $2^{27}-2^{0}$.
$-\Delta Q_{7}=\Delta Q_{6}+\Delta R_{6}=\left(\pm 2^{31}+2^{23}-2^{6}\right)+\left(+2^{31}-2^{27}-2^{0}\right)=-2^{27}+2^{23}-2^{6}-2^{0}$.
- the add-differences $\left(\pm 2^{31}\right)$ and $\left(+2^{31}\right)$ cancel each other out modulo 2^{32}.

Step 7:
$-\Delta Q_{7}=-2^{27}+2^{23}-2^{6}-2^{0}$.
$-\Delta f_{7}=-2^{27}-2^{25}+2^{16}+2^{10}+2^{5}-2^{2}, \Delta Q_{4}=0$, and $\Delta W_{7}=0$.
$-\Delta T_{7}=\Delta f_{7}+\Delta Q_{4}+\Delta W_{7}=\left(-2^{27}-2^{25}+2^{16}+2^{10}+2^{5}-2^{2}\right)+0+0=-2^{27}-2^{25}+2^{16}+2^{10}+2^{5}$ -2^{2}.

- Condition(s) on ΔT_{7} :
- $\Delta=\left(-2^{27}-2^{25}+2^{16}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-5}\right) \times\left(1-2^{-2}\right) \times\left(1-2^{-9}\right)$ since 1 $\in T_{7}[31-27], 1 \in T_{7}\left[2^{6}, 25\right]$, and $0 \in T_{7}[24-16]$ to ensure there is no propagation past bit 31 .
- $\Delta=\left(+2^{10}+2^{5}\right)$ must propagate to bit 11 since we want to affect bit 1 upon rotation (condition II). Thus, $+2^{10}+2^{5}$ is written as $+2^{11}-2^{9}-2^{8}-2^{7}-2^{6}-2^{5}$. The probability that this condition is 2^{-5} since $T_{7}[9-5]=1$, where each of the five bits contains a 2^{-1} chance of being a 1 .
- $\Delta=\left(-2^{2}\right)$ must not propagate past bit 9 since we do not want to affect any more low order bits upon rotation (condition I). The probability that this condition holds is $\left(1-2^{-8}\right)$ since $1 \in T_{7}[9-2]$ to ensure there is no propagation past bit 9 .
$-S(7)=22$, so $\Delta T_{7}=-2^{27}-2^{25}+2^{16}+2^{11}-2^{9}-2^{8}-2^{7}-2^{6}-2^{5}-2^{2} \Rightarrow$

$$
\begin{aligned}
\Delta R_{7}= & -2^{27+22=49 \equiv 17}-2^{25+22=47 \equiv 15}+2^{16+22=38 \equiv 6}+2^{11+22=33 \equiv 1}-2^{2+22=24} \\
& +\underbrace{\left(-2^{9+22=31}-2^{8+22=30}-2^{7+22=29}-2^{6+22=28}-2^{5+22=27}\right)}_{=+2^{27}} \\
= & +2^{27}-2^{24}-2^{17}-2^{15}+2^{6}+2^{1} .
\end{aligned}
$$

$-\Delta Q_{8}=\Delta Q_{7}+\Delta R_{7}=\left(-2^{27}+2^{23}-2^{6}-2^{0}\right)+\left(+2^{27}-2^{24}-2^{17}-2^{15}+2^{6}+2^{1}\right)=-2^{23}-2^{17}-2^{15}+2^{0}$.

- the add-differences $\left(-2^{27}\right)$ and $\left(+2^{27}\right)$ cancel each other out,
- the add-differences $\left(+2^{23}\right)$ and $\left(-2^{24}\right)$ combine to yield $\left(-2^{23}\right)$,
- the add-differences $\left(-2^{6}\right)$ and $\left(+2^{6}\right)$ cancel each other out, and
- the add-differences $\left(-2^{0}\right)$ and $\left(+2^{1}\right)$ combine to yield $\left(+2^{0}\right)$.

Step 8:
$-\Delta Q_{8}=-2^{23}-2^{17}-2^{15}+2^{0}$.
$-\Delta f_{8}= \pm 2^{31}-2^{24}+2^{16}+2^{10}+2^{8}+2^{6}, \Delta Q_{5}=-2^{6}$, and $\Delta W_{8}=0$.
$-\Delta T_{8}=\Delta f_{8}+\Delta Q_{5}+\Delta W_{8}=\left(\pm 2^{31}-2^{24}+2^{16}+2^{10}+28+2^{6}\right)+\left(-2^{6}\right)+0= \pm 2^{31}-2^{24}+2^{16}+$ $2^{10}+2^{8}$.

- the add-differences $\left(+2^{6}\right)$ and $\left(-2^{6}\right)$ cancel each other out.
- Condition(s) on ΔT_{8} :
- $\Delta T_{8}[31]=1$ ensures that the add difference is -2^{31} (condition III). The probability that this condition holds is $\left(2^{-1}\right)$ since $\Delta T_{8}[31]=1$ rather than $\Delta T_{8}[31]=(0,1)$.
- $\Delta=\left(-2^{24}+2^{16}+2^{10}+2^{8}\right)$ must not propagate past bit 24 since we do not want to affect low order bits upon rotation (condition I). The probability that this condition holds is $\left(2^{-1}\right) \times\left(1-2^{-8}\right) \times$ $\left(1-2^{-6}\right) \times\left(1-2^{-2}\right)$ since $T_{8}[24]=1,0 \in T_{8}[23-16], 0 \in T_{8}[15-10]$, and $0 \in T_{8}[9,8]$ to ensure there is no propagation past bit 24 .
$-S(8)=7$, so $\Delta T_{8}=-2^{31}-2^{24}+2^{16}+2^{10}+2^{8} \Rightarrow \Delta R_{8}=-2^{31+7=38 \equiv 6(\bmod 32)}-2^{24+7=31}+2^{16+7=23}+$ $2^{10+7=17}+2^{8+7=15}=-2^{31}+2^{23}+2^{17}+2^{15}-2^{6}$.
$-\Delta Q_{9}=\Delta Q_{8}+\Delta R_{8}=\left(-2^{23}-2^{17}-2^{15}+2^{0}\right)+\left(-2^{31}+2^{23}+2^{17}+2^{15}-2^{6}\right)= \pm 2^{31}-2^{6}+2^{0}$.
- the add-differences $\left(-2^{23}\right)$ and $\left(+2^{23}\right)$ cancel each other out,
- the add-differences $\left(-2^{17}\right)$ and $\left(+2^{17}\right)$ cancel each other out, and
- the add-differences $\left(-2^{15}\right)$ and $\left(+2^{15}\right)$ cancel each other out.

Step 9:
$-\Delta Q_{9}= \pm 2^{31}-2^{6}+2^{0}$.
$-\Delta f_{9}= \pm 2^{31}+2^{26}-2^{23}-2^{20}+2^{6}+2^{0}, \Delta Q_{6}= \pm 2^{31}+2^{23}-2^{6}$, and $\Delta W_{9}=0$.
$-\Delta T_{9}=\Delta f_{9}+\Delta Q_{6}+\Delta W_{9}=\left(\pm 2^{31}+2^{26}-2^{23}-2^{20}+2^{6}+20\right)+\left(\pm 2^{31}+2^{23}-2^{6}\right)+0=+2^{26}-2^{20}$ $+2^{0}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32},
- the add-differences $\left(-2^{23}\right)$ and $\left(+2^{23}\right)$ cancel each other out, and
- the add-differences $\left(+2^{6}\right)$ and $\left(-2^{6}\right)$ cancel each other out.
- Condition(s) on ΔT_{9} :
- $\Delta=\left(+2^{26}-2^{20}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-6}\right) \times\left(1-2^{-6}\right)$ since $0 \in T_{9}[31-$ $26]$ and $1 \in T_{9}[25-20]$ to ensure there is no propagation past bit 31 .
- $\Delta=\left(+2^{0}\right)$ must not propagate past bit 19 since we do not want to affect any more low order bits upon rotation (condition I). The probability that this condition holds is ($1-2^{-20}$) since $0 \in T_{9}[19-$ $0]$ to ensure there is no propagation past bit 19.
$-S(9)=12$, so $\Delta T_{9}=+2^{26}-2^{20}+2^{0} \Rightarrow \Delta R_{9}=+2^{26+12=38 \equiv 6(\bmod 32)}-2^{20+12=32 \equiv 0(\bmod 32)}+2^{0+12=12}$ $=+2^{12}+2^{6}-2^{0}$.
$-\Delta Q_{10}=\Delta Q_{9}+\Delta R_{9}=\left(\pm 2^{31}-2^{6}+2^{0}\right)+\left(+2^{12}+2^{6}-2^{0}\right)= \pm 2^{31}+2^{12}$.
- the add-differences $\left(-2^{6}\right)$ and $\left(+2^{6}\right)$ cancel each other out.
- the add-differences $\left(+2^{0}\right)$ and $\left(-2^{0}\right)$ cancel each other out.

Step 10:
$-\Delta Q_{10}= \pm 2^{31}+2^{12}$.
$-\Delta f_{10}=-2^{23}+2^{13}+2^{6}+2^{0}, \Delta Q_{7}=-2^{27}+2^{23}-2^{6}-2^{0}$, and $\Delta W_{10}=0$.
$-\Delta T_{10}=\Delta f_{10}+\Delta Q_{7}+\Delta W_{10}=\left(-2^{23}+2^{13}+2^{6}+2^{0}\right)+\left(-2^{27}+2^{23}-2^{6}-20\right)+0=-2^{27}+2^{13}$.

- the add-differences $\left(-2^{23}\right)$ and $\left(+2^{23}\right)$ cancel each other out,
- the add-differences $\left(+2^{6}\right)$ and $\left(-2^{6}\right)$ cancel each other out, and
- the add-differences $\left(+2^{0}\right)$ and $\left(-2^{0}\right)$ cancel each other out.
- Condition(s) on ΔT_{10} :
- $\Delta=\left(-2^{27}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-5}\right)$ since $1 \in T_{10}[31-27]$ to ensure there is no propagation past bit 31 .
- $\Delta=\left(+2^{13}\right)$ must not propagate past bit 14 since we do not want to affect any more low order bits upon rotation (condition I). The probability that this condition holds is ($1-2^{-2}$) since $0 \in T_{10}[14$, 13] to ensure there is no propagation past bit 14 .
$-S(10)=17$, so $\Delta T_{10}=-2^{27}+2^{13} \Rightarrow \Delta R_{10}=-2^{27+17=44 \equiv 12(\bmod 32)}+2^{13+17=30}=+2^{30}-2^{12}$.
$-\Delta Q_{11}=\Delta Q_{10}+\Delta R_{10}=\left(\pm 2^{31}+2^{12}\right)+\left(+2^{30}-2^{12}\right)= \pm 2^{31}+2^{30}$.
- the add-differences $\left(+2^{12}\right)$ and $\left(-2^{12}\right)$ cancel each other out.

Step 11:
$-\Delta Q_{11}= \pm 2^{31}+2^{30}$.
$-\Delta f_{11}=-2^{8}-2^{0}, \Delta Q_{8}=-2^{23}-2^{17}-2^{15}+2^{0}$, and $\Delta W_{11}=+2^{15}$.
$-\Delta T_{11}=\Delta f_{11}+\Delta Q_{8}+\Delta W_{11}=\left(-2^{8}-2^{0}\right)+\left(-2^{23}-2^{17}-2^{15}+2^{0}\right)+\left(+2^{15}\right)=-2^{23}-2^{17}-2^{8}$.

- the add-differences $\left(-2^{15}\right)$ and $\left(+2^{15}\right)$ cancel each other out, and
- the add-differences $\left(-2^{0}\right)$ and $\left(+2^{0}\right)$ cancel each other out, and
- Condition(s) on ΔT_{11} :
- $\Delta=\left(-2^{23}-2^{17}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-9}\right) \times\left(1-2^{-6}\right)$ since $1 \in T_{11}[31-$ 23] and $1 \in T_{11}[22-17]$ to ensure there is no propagation past bit 31 .
- $\Delta=\left(-2^{8}\right)$ must not propagate past bit 9 since we do not want to affect any more low order bits upon rotation (condition I). The probability that this condition holds is $\left(1-2^{-2}\right)$ since $1 \in T_{11}[9,8]$ to ensure there is no propagation past bit 9 .
$-S(11)=22$, so $\Delta T_{11}=-2^{23}-2^{17}-2^{8} \Rightarrow \Delta R_{11}=-2^{23+22=45 \equiv 13(\bmod 32)}-2^{17+22=39 \equiv 7(\bmod 32)}-2^{8+22=30}$ $=-2^{30}-2^{13}-2^{7}$.
$-\Delta Q_{12}=\Delta Q_{11}+\Delta R_{11}=\left(\pm 2^{31}+2^{30}\right)+\left(-2^{30}-2^{13}-2^{7}\right)= \pm 2^{31}-2^{13}-2^{7}$.
- the add-differences $\left(+2^{30}\right)$ and $\left(-2^{30}\right)$ cancel each other out.

Step 12:
$-\Delta Q_{12}= \pm 2^{31}-2^{13}-2^{7}$.
$-\Delta f_{12}= \pm 2^{31}+2^{17}+2^{7}, \Delta Q_{9}= \pm 2^{31}-2^{6}+2^{0}$, and $\Delta W_{12}=0$.
$-\Delta T_{12}=\Delta f_{12}+\Delta Q_{9}+\Delta W_{12}=\left(\pm 2^{31}+2^{17}+2^{7}\right)+\left(\pm 2^{31}-2^{6}+20\right)+0=+2^{17}+2^{6}+2^{0}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}, and
- the add-differences $\left(+2^{7}\right)$ and $\left(-2^{6}\right)$ combine to yield $\left(+2^{6}\right)$.
- Condition(s) on ΔT_{12} :
- $\Delta=\left(+2^{17}+2^{6}+2^{0}\right)$ must not propagate past bit 24 since we do not want to affect any more low order bits upon rotation (condition I). The probability that this condition holds is $\left(1-2^{-8}\right) \times$ $\left(1-2^{-11}\right) \times\left(1-2^{-6}\right)$ since $0 \in T_{12}[24-17], 0 \in T_{12}[16-6]$, and $0 \in T_{12}[5-0]$ to ensure there is no propagation past bit 24 .
$-S(12)=7$, so Delta $T_{12}=+2^{17}+2^{6}+2^{0} \Rightarrow \Delta R_{12}=+2^{17+7=24}+2^{6+7=13}+2^{0+7=7}=+2^{24}+2^{13}+$ 2^{7}.
$-\Delta Q_{13}=\Delta Q_{12}+\Delta R_{12}=\left(\pm 2^{31}-2^{13}-27\right)+\left(+2^{24}+2^{13}+2^{7}\right)= \pm 2^{31}+2^{24}$.
- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32},
- the add-differences $\left(-2^{13}\right)$ and $\left(+2^{13}\right)$ cancel each other out, and
- the add-differences $\left(-2^{7}\right)$ and $\left(+2^{7}\right)$ cancel each other out.

Step 13:
$-\Delta Q_{13}= \pm 2^{31}+2^{24}$.
$-\Delta f_{13}= \pm 2^{31}-2^{13}, \Delta Q_{10}= \pm 2^{31}+2^{12}$, and $\Delta W_{13}=0$.
$-\Delta T_{13}=\Delta f_{13}+\Delta Q_{10}+\Delta W_{13}=\left(\pm 2^{31}-2^{13}\right)+\left(\pm 2^{31}+2^{12}\right)+0=-2^{12}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}, and
- the add-differences $\left(-2^{13}\right)$ and $\left(+2^{12}\right)$ combine to yield $\left(-2^{12}\right)$.
- Condition(s) on ΔT_{13} :
- $\Delta=\left(-2^{12}\right)$ must not propagate past bit 19 since we do not want to affect any more low order bits upon rotation (condition I). The probability that this condition holds is (1-2-8) since $1 \in T_{13}[19-$ 12] to ensure there is no propagation past bit 19.
$-S(13)=12$, so $\Delta T_{13}=-2^{12} \Rightarrow \Delta R_{13}=-2^{12+12=24}=-2^{24} . \Delta Q_{14}=\Delta Q_{13}+\Delta R_{13}=\left(\pm 2^{31}+2^{24}\right)+$ $\left(-2^{24}\right)= \pm 2^{31}$.
- the add-differences $\left(+2^{24}\right)$ and $\left(-2^{24}\right)$ cancel each other out.

Step 14:
$-\Delta Q_{14}= \pm 2^{31}$.
$-\Delta f_{14}= \pm 2^{31}+2^{18}, \Delta Q_{11}= \pm 2^{31}+2^{30}$, and $\Delta W_{14}= \pm 2^{31}$.
$-\Delta T_{14}=\Delta f_{14}+\Delta Q_{11}+\Delta W_{14}=\left(\pm 2^{31}+2^{18}\right)+\left(\pm 2^{31}+2^{30}\right)+\left(\pm 2^{31}\right)=-2^{30}+2^{18}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}, and
- the add-differences $\left(+2^{30}\right)$ and $\left(\pm 2^{31}\right)$ combine to yield $\left(-2^{30}\right)$ modulo 2^{32}.
- Condition(s) on ΔT_{14} :
- $\Delta=\left(-2^{30}+2^{18}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-2}\right) \times\left(1-2^{-12}\right)$ since $1 \in T_{14}[31$, 30] and $0 \in T_{14}[29-18]$ to ensure there is no propagation past bit 31 .
$-S(14)=17$, so $\Delta T_{14}=-2^{30}+2^{18} \Rightarrow \Delta R_{14}=-2^{30+17=47 \equiv 15(\bmod 32)}+2^{18+17=35 \equiv 3(\bmod 32)}=-2^{15}+2^{3}$.
$-\Delta Q_{15}=\Delta Q_{14}+\Delta R_{14}=\left(\pm 2^{31}\right)+\left(-2^{15}+2^{3}\right)= \pm 2^{31}-2^{15}+2^{3}$.

Step 15:
$-\Delta Q_{15}= \pm 2^{31}-2^{15}+2^{3}$.
$-\Delta f_{15}= \pm 2^{31}+2^{25}, \Delta Q_{12}= \pm 2^{31}-2^{13}-2^{7}$, and $\Delta W_{15}=0$.
$-\Delta T_{15}=\Delta f_{15}+\Delta Q_{12}+\Delta W_{15}=\left(\pm 2^{31}+2^{25}\right)+\left(\pm 2^{31}-2^{13}-2^{7}\right)+0=+2^{25}-2^{13}-2^{7}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{15} :
- $\Delta=\left(+2^{25}-2^{13}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-7}\right) \times\left(1-2^{-12}\right)$ since $0 \in T_{15}[31-$ 25] and $1 \in T_{15}[24-13]$ to ensure there is no propagation past bit 31 .
- $\Delta=\left(-2^{7}\right)$ must not propagate past bit 9 since we do not want to affect any more low order bits upon rotation (condition I). The probability that this condition holds is $\left(1-2^{-3}\right)$ since $1 \in T_{15}[9-7]$ to ensure there is no propagation past bit 9 .
$-S(15)=22$, so $\Delta T_{15}=+2^{25}-2^{13}-2^{7} \Rightarrow \Delta R_{15}=+2^{25+22=47 \equiv 15(\bmod 32)}-2^{13+22=35 \equiv 3(\bmod 32)}-2^{7+22=29}$ $=-2^{29}+2^{15}-2^{3}$.
$-\Delta Q_{16}=\Delta Q_{15}+\Delta R_{15}=\left(\pm 2^{31}-2^{15}+2^{3}\right)+\left(-2^{29}+2^{15}-2^{3}\right)= \pm 2^{31}-2^{29}$.
- the add-differences $\left(-2^{15}\right)$ and $\left(+2^{15}\right)$ cancel each other out, and
- the add-differences $\left(+2^{3}\right)$ and $\left(-2^{3}\right)$ cancel each other out.

Step 16:
$-\Delta Q_{16}= \pm 2^{31}-2^{29}$.
$-\Delta f_{16}= \pm 2^{31}, \Delta Q_{13}= \pm 2^{31}+2^{24}$, and $\Delta W_{16}=0$.
$-\Delta T_{16}=\Delta f_{16}+\Delta Q_{13}+\Delta W_{16}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}+2^{24}\right)+0=+2^{24}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{16} :
- $\Delta=\left(+2^{24}\right)$ must not propagate past bit 26 since we do not want to affect any more low order bits upon rotation (condition I). The probability that this condition holds is ($1-2^{-3}$) since $0 \in T_{16}[26-$ 24] to ensure there is no propagation past bit 26 .
$-S(16)=5$, so $\Delta T_{16}=+2^{24} \Rightarrow \Delta R_{16}=+2^{24+5=29}=+2^{29}$.
$-\Delta Q_{17}=\Delta Q_{16}+\Delta R_{16}=\left(\pm 2^{31}-2^{29}\right)+\left(+2^{29}\right)= \pm 2^{31}$.
- the add-differences $\left(-2^{29}\right)$ and $\left(+2^{29}\right)$ cancel each other out.

Step 17:
$-\Delta Q_{17}= \pm 2^{31}$.
$-\Delta f_{17}= \pm 2^{31}, \Delta Q_{14}= \pm 2^{31}$, and $\Delta W_{17}=0$.
$-\Delta T_{17}=\Delta f_{17}+\Delta Q_{14}+\Delta W_{17}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+0=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{17} : none
$-\Delta T_{17}=0 \Rightarrow \Delta R_{17}=0$.
$-\Delta Q_{18}=\Delta Q_{17}+\Delta R_{17}=\left(\pm 2^{31}\right)+(0)= \pm 2^{31}$.

Step 18:

$$
-\Delta Q_{18}= \pm 2^{31}
$$

$-\Delta f_{18}= \pm 2^{31}, \Delta Q_{15}= \pm 2^{31}-2^{15}+2^{3}$, and $\Delta W_{18}=+2^{15}$.
$-\Delta T_{18}=\Delta f_{18}+\Delta Q_{15}+\Delta W_{18}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}-2^{15}+2^{3}\right)+\left(+2^{15}\right)=+2^{3}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}, and
- the add-differences $\left(-2^{15}\right)$ and $\left(+2^{15}\right)$ cancel each other out.
- Condition(s) on ΔT_{18} :
- $\Delta=\left(+2^{3}\right)$ must not propagate past bit 17 since we do not want to affect any more low order bits upon rotation (condition I). The probability that this condition holds is ($1-2^{-15}$) since $0 \in T_{18}[17$ - 3] to ensure there is no propagation past bit 17 .
$-S(18)=14$, so $\Delta T_{18}=+2^{3} \Rightarrow \Delta R_{18}=+2^{3+14}=17=+2^{17} . \Delta Q_{19}=\Delta Q_{18}+\Delta R_{18}=\left(\pm 2^{31}\right)+\left(+2^{17}\right)$ $= \pm 2^{31}+2^{17}$.

Step 19:
$-\Delta Q_{19}= \pm 2^{31}+2^{17}$.
$-\Delta f_{19}= \pm 2^{31}, \Delta Q_{16}= \pm 2^{31}-2^{29}$, and $\Delta W_{19}=0$.
$-\Delta T_{19}=\Delta f_{19}+\Delta Q_{16}+\Delta W_{19}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}-2^{29}\right)+0=-2^{29}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{19} :
- $\Delta=\left(-2^{29}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-3}\right)$ since $1 \in T_{19}[31-29]$ to ensure there is no propagation past bit 31 .
$-S(19)=20$, so $\Delta T_{19}=-2^{29} \Rightarrow \Delta R_{19}=-2^{29+20=49 \equiv 17(\bmod 32)}=-2^{17}$.
$-\Delta Q_{20}=\Delta Q_{19}+\Delta R_{19}=\left(\pm 2^{31}+2^{17}\right)+\left(-2^{17}\right)= \pm 2^{31}$.
- the add-differences $\left(+2^{17}\right)$ and $\left(-2^{17}\right)$ cancel each other out.

Steps 20 and 21:
$-\Delta Q_{t}= \pm 2^{31}$.
$-\Delta f_{t}= \pm 2^{31}, \Delta Q_{t-3}= \pm 2^{31}$, and $\Delta W_{t}=0$.
$-\Delta T_{t}=\Delta f_{t}+\Delta Q_{t-3}+\Delta W_{t}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+0=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{t} : none
$-\Delta T_{t}=0 \Rightarrow \Delta R_{t} 0$.
$-\Delta Q_{t+1}=\Delta Q_{t}+\Delta R_{t}=\left(\pm 2^{31}\right)+0= \pm 2^{31}$.

Step 22:
$-\Delta Q_{22}= \pm 2^{31}$.
$-\Delta f_{22}= \pm 2^{31}, \Delta Q_{19}= \pm 2^{31}+2^{17}$, and $\Delta W_{22}=0$.
$-\Delta T_{22}=\Delta f_{22}+\Delta Q_{19}+\Delta W_{22}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}+2^{17}\right)+0=+2^{17}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{22} :
- $\Delta=\left(+2^{17}\right)$ must not propagate past bit 17 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(2^{-1}\right)$ since $T_{22}[17]=0$ to ensure there is no propagation past bit 17 .
$-S(22)=14$, so $\Delta T_{22}=+2^{17} \Rightarrow \Delta R_{22}=+2^{17+14=31}=+2^{31}$.
$-\Delta Q_{23}=\Delta Q_{22}+\Delta R_{22}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0$.
- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.

Step 23:
$-\Delta Q_{23}=0$.
$-\Delta f_{23}=0, \Delta Q_{20}= \pm 2^{31}$, and $\Delta W_{23}= \pm 2^{31}$.
$-\Delta T_{23}=\Delta f_{23}+\Delta Q_{20}+\Delta W_{23}=0+\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{23} : none
$-\Delta T_{23}=0 \Rightarrow \Delta R_{23}=0$.
$-\Delta Q_{24}=\Delta Q_{23}+\Delta R_{23}=0+0=0$.

Step 24:
$-\Delta Q_{24}=0$.
$-\Delta f_{24}= \pm 2^{31}, \Delta Q_{21}= \pm 2^{31}$, and $\Delta W_{24}=0$.
$-\Delta T_{24}=\Delta f_{24}+\Delta Q_{21}+\Delta W_{24}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+0=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{24} : none
$-\Delta T_{24}=0 \Rightarrow \Delta R_{24}=0$.
$-\Delta Q_{25}=\Delta Q_{24}+\Delta R_{24}=0+0=0$.

Step 25:
$-\Delta Q_{25}=0$.
$-\Delta f_{25}=0, \Delta Q_{22}= \pm 2^{31}$, and $\Delta W_{25}= \pm 2^{31}$.
$-\Delta T_{25}=\Delta f_{25}+\Delta Q_{22}+\Delta W_{25}=0+\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{25} : none
$-\Delta T_{25}=0 \Rightarrow \Delta R_{25}=0$.
$-\Delta Q_{26}=\Delta Q_{25}+\Delta R_{25}=0+0=0$.

Steps 26 to 33:
$-\Delta Q_{t}=0$.
$-\Delta f_{t}=\Delta Q_{t-3}=\Delta W_{t}=0$.
$-\Delta T_{t}=\Delta f_{t}+\Delta Q_{t-3}+\Delta W_{t}=0+0+0=0$.

- Condition(s) on ΔT_{t} : none
- $\Delta T_{t}=0 \Rightarrow \Delta R_{t}=0$.
$-\Delta Q_{t+1}=\Delta Q_{t}+\Delta R_{t}=0+0=0$.

Step 34:
$-\Delta Q_{34}=0$.
$-\Delta f_{34}=0, \Delta Q_{31}=0$, and $\Delta W_{34}=+2^{15}$.
$-\Delta T_{34}=\Delta f_{34}+\Delta Q_{31}+\Delta W_{34}=0+0+\left(+2^{15}\right)=+2^{15}$.

- Condition(s) on ΔT_{34} :
- $\Delta=\left(+2^{15}\right)$ must not propagate past bit 15 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(2^{-1}\right)$ since $T^{34}[15]=0$ to ensure there is no propagation past bit 15 .
$-S(34)=16$, so $\Delta T_{34}=+2^{15} \Rightarrow \Delta R_{34}=+2^{15+16=31}=+2^{31}$.
$-\Delta Q_{35}=\Delta Q_{34}+\Delta R_{34}=0+\left(\pm 2^{31}\right)= \pm 2^{31}$.

Step 35:
$-\Delta Q_{35}= \pm 2^{31}$.
$-\Delta f_{35}= \pm 2^{31}, \Delta Q_{32}=0$, and $\Delta W_{35}= \pm 2^{31}$.
$-\Delta T_{35}=\Delta f_{35}+\Delta Q_{32}+\Delta W_{35}=\left(\pm 2^{31}\right)+0+\left(\pm 2^{31}\right)=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{35} : none
- $\Delta T_{35}=0 \Rightarrow \Delta R_{35}=0$.
$-\Delta Q_{36}=\Delta Q_{35}+\Delta R_{35}=\left(\pm 2^{31}\right)+0= \pm 2^{31}$.

Step 36:
$-\Delta Q_{36}= \pm 2^{31}$.
$-\Delta f_{36}=0, \Delta Q_{33}=0$, and $\Delta W_{36}=0$.
$-\Delta T_{36}=\Delta f_{36}+\Delta Q_{33}+\Delta W_{36}=0+0+0=0$.

- Condition(s) on ΔT_{36} : none
- $\Delta T_{36}=0 \Rightarrow \Delta R_{36}=0$.
$-\Delta Q_{37}=\Delta Q_{36}+\Delta R_{36}=\left(\pm 2^{31}\right)+0= \pm 2^{31}$.

Step 37:
$-\Delta Q_{37}= \pm 2^{31}$.
$-\Delta f_{37}= \pm 2^{31}, \Delta Q_{34}=0$, and $\Delta W_{37}= \pm 2^{31}$.
$-\Delta T_{37}=\Delta f_{37}+\Delta Q_{34}+\Delta W_{37}=\left(\pm 2^{31}\right)+0+\left(\pm 2^{31}\right)=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{37} : none
$-\Delta T_{37}=0 \Rightarrow \Delta R_{37}=0$.
$-\Delta Q_{38}=\Delta Q_{37}+\Delta R_{37}=\left(\pm 2^{31}\right)+0= \pm 2^{31}$.

Steps 38 to 49 :

- $\Delta Q_{t}= \pm 2^{31}$.
$-\Delta f_{t}= \pm 2^{31}, \Delta Q_{t-3}= \pm 2^{31}$, and $\Delta W_{t}=0$.
$-\Delta T_{t}=\Delta f_{t}+\Delta Q_{t-3}+\Delta W_{t}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+0=0$.
- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{t} : none
- $\Delta T_{t}=0 \Rightarrow \Delta R_{t}=0$.
$-\Delta Q_{t+1}=\Delta Q_{t}+\Delta R_{t}=\left(\pm 2^{31}\right)+0=0$.

Step 50:
$-\Delta Q_{50}= \pm 2^{31}$.
$-\Delta f_{50}=0, \Delta Q_{47}= \pm 2^{31}$, and $\Delta W_{50}= \pm 2^{31}$.
$-\Delta T_{50}=\Delta f_{50}+\Delta Q_{47}+\Delta W_{50}=0+\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{50} : none
- $\Delta T_{50}=0 \Rightarrow \Delta R_{50}=0$.
$-\Delta Q_{51}=\Delta Q_{50}+\Delta R_{50}=\left(\pm 2^{31}\right)+0= \pm 2^{31}$.

Steps 51 to 59 :
$-\Delta Q_{t}= \pm 2^{31}$.
$-\Delta f_{t}= \pm 2^{31}, \Delta Q_{t-3}= \pm 2^{31}$, and $\Delta W_{t}=0$.
$-\Delta T_{t}=\Delta f_{t}+\Delta Q_{t-3}+\Delta W_{t}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+0=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{t} : none
- $\Delta T_{t}=0 \Rightarrow \Delta R_{t}=0$.
$-\Delta Q_{t+1}=\Delta Q_{t}+\Delta R_{t}=\left(\pm 2^{31}\right)+0=0$.

Step 60:
$-\Delta Q_{60}= \pm 2^{31}$.
$-\Delta f_{60}=0, \Delta Q_{58}= \pm 2^{31}$, and $\Delta W_{60}= \pm 2^{31}$.
$-\Delta T_{60}=\Delta f_{60}+\Delta Q_{58}+\Delta W_{60}=0+\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{60} : none
$-\Delta T_{60}=0 \Rightarrow \Delta R_{60}=0$.
$-\Delta Q_{61}=\Delta Q_{60}+\Delta R_{60}=\left(\pm 2^{31}\right)+0= \pm 2^{31}$.

Step 61:
$-\Delta Q_{61}= \pm 2^{31}$.
$-\Delta f_{61}= \pm 2^{31}, \Delta Q_{58}= \pm 2^{31}$, and $\Delta W_{61}=+2^{15}$.
$-\Delta T_{61}=\Delta f_{61}+\Delta Q_{58}+\Delta W_{61}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+\left(+2^{15}\right)=+2^{15}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{61} :
- $\Delta=\left(+2^{15}\right)$ must not propagate past bit 21 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(1-2^{-7}\right)$ since $0 \in \Delta T_{61}[21-15]$ to ensure there is no propagation past bit 21 .
$-S(61)=10$, so $\Delta T_{61}=+2^{15} \Rightarrow \Delta R_{61}=+2^{15+10=25}=+2^{25}$.
$-\Delta Q_{62}=\Delta Q_{61}+\Delta R_{61}=\left(\pm 2^{31}\right)+\left(+2^{25}\right)= \pm 2^{31}+2^{25}$.

Steps 62 to 63 :
$-\Delta Q_{t}= \pm 2^{31}+2^{25}$.
$-\Delta f_{t}= \pm 2^{31}, \Delta Q_{t-3}= \pm 2^{31}$, and $\Delta W_{t}=0$.
$-\Delta T_{t}=\Delta f_{t}+\Delta Q_{t-3}+\Delta W_{t}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+0=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{t} : none
$-\Delta T_{t}=0 \Rightarrow \Delta R_{t}=0$.
$-\Delta Q_{t+1}=\Delta Q_{t}+\Delta R_{t}=\left(\pm 2^{31}+2^{25}\right)+0= \pm 2^{31}+2^{25}$.

Assuming that all of our conditions are met, the final result of the differential for the first block is

$$
\begin{gathered}
\Delta Q_{61}=\Delta I H V^{(1)}[0]= \pm 2^{31}, \\
\Delta Q_{62}=\Delta I H V^{(1)}[3]= \pm 2^{31}+2^{25}, \\
\Delta Q_{63}=\Delta I H V^{(1)}[2]= \pm 2^{31}+2^{25} \\
\Delta Q_{64}=\Delta I H V^{(1)}[1]= \pm 2^{31}+2^{25} .
\end{gathered}
$$

Thus, we have:

$$
\begin{gathered}
\Delta I H V^{(1)}[0]=\Delta I H V^{(0)}[0]+\Delta Q_{61}=(0)+\left(\pm 2^{31}\right)= \pm 2^{31} \\
\Delta I H V^{(1)}[3]=\Delta I H V^{(0)}[3]+\Delta Q_{62}=(0)+\left(\pm 2^{31}+2^{25}\right)= \pm 2^{31}+2^{25}, \\
\Delta I H V^{(1)}[2]=\Delta I H V^{(0)}[2]+\Delta Q_{63}=(0)+\left(\pm 2^{31}+2^{25}\right)= \pm 2^{31}+2^{25}, \\
\Delta I H V^{(1)}[1]=\Delta I H V^{(0)}[1]+\Delta Q_{64}=(0)+\left(\pm 2^{31}+2^{25}\right)= \pm 2^{31}+2^{25}
\end{gathered}
$$

The second block begins with

$$
\begin{aligned}
\Delta I H V^{(1)}[0]=(0)+\left(\pm 2^{31}\right) & = \pm 2^{31} \\
\Delta I H V^{(1)}[3]=(0)+\left(\pm 2^{31}+2^{25}\right) & = \pm 2^{31}+2^{25} \\
\Delta I H V^{(1)}[2]=(0)+\left(\pm 2^{31}+2^{25}\right) & = \pm 2^{31}+2^{25} \\
\Delta I H V^{(1)}[1]=(0)+\left(\pm 2^{31}+2^{25}\right) & = \pm 2^{31}+2^{25} .
\end{aligned}
$$

6.3 Description of the Second Block of the Differential

Step 0:
$-\Delta Q_{0}=\Delta I H V^{(1)}[1]= \pm 2^{31}+2^{25}$.
$-\Delta f_{0}= \pm 2^{31}, \Delta Q_{-3}=\Delta I H V^{(1)}[0]= \pm 2^{31}$, and $\Delta W_{0}=0$.
$-\Delta T_{0}=\Delta f_{0}+\Delta Q_{-3}+\Delta W_{0}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+0=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{0} : none
$-\Delta T_{0}=0 \Rightarrow \Delta R_{0}=0$.
$-\Delta Q_{1}=\Delta Q_{0}+\Delta R_{0}=\left(\pm 2^{31}+2^{25}\right)+0= \pm 2^{31}+2^{25}$.

Step 1:
$-\Delta Q_{1}= \pm 2^{31}+2^{25}$.
$-\Delta f_{1}= \pm 2^{31}, \Delta Q_{-2}=\Delta I H V^{(1)}[3]= \pm 2^{31}+2^{25}$, and $\Delta W_{1}=0$.
$-\Delta T_{1}=\Delta f_{1}+\Delta Q_{-2}+\Delta W_{1}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}+2^{25}\right)+0=+2^{25}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{1} :
- $\Delta=\left(+2^{25}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-7}\right)$ since $0 T_{1}[31-25]$ to ensure there is no propagation past bit 31 .
$-S(1)=12$, so $\Delta T_{1}=+2^{25} \Rightarrow \Delta R_{1}=+2^{25+12=37 \equiv 5(\bmod 32)}=+2^{5}$.
$-\Delta Q_{2}=\Delta Q_{1}+\Delta R_{1}=\left(\pm 2^{31}+2^{25}\right)+\left(+2^{5}\right)= \pm 2^{31}+2^{25}+2^{5}$.

Step 2:
$-\Delta Q_{2}= \pm 2^{31}+2^{25}+2^{5}$.
$-\Delta f_{2}=+2^{25}, \Delta Q_{-1}=\Delta I H V^{(1)}[2]= \pm 2^{31}+2^{25}$, and $\Delta W_{2}=0$.
$-\Delta T_{2}=\Delta f_{2}+\Delta Q_{-1}+\Delta W_{2}=\left(+2^{25}\right)+\left(\pm 2^{31}+2^{25}\right)+0= \pm 2^{31}+2^{26}$.

- the add-differences $\left(+2^{25}\right)$ and $\left(+2^{25}\right)$ combine to yield $\left(+2^{26}\right)$.
- Condition(s) on ΔT_{2} :
- $\Delta T_{2}[31]=0$ ensures that the add difference is $+2^{31}$ (condition III). The probability that this condition holds is $\left(2^{-1}\right)$ since $\Delta T_{2}[31]=0$ rather than $T_{2}[31]=(0,1)$.
- $\Delta=\left(+2^{26}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-6}\right)$ since $0 \in T_{2}[31-26]$ to ensure there is no propagation past bit 31 .
$-S(2)=17$, so $\Delta T_{2}=+2^{31}+2^{26} \Rightarrow \Delta R_{2}=+2^{31+17=48 \equiv 16(\bmod 32)}+2^{26+17=43 \equiv 11(\bmod 32)}=+2^{16}+2^{11}$.
$-\Delta Q_{3}=\Delta Q_{2}+\Delta R_{2}=\left(\pm 2^{31}+2^{25}+2^{5}\right)+\left(+2^{16}+2^{11}\right)= \pm 2^{31}+2^{25}+2^{16}+2^{11}+2^{5}$.

Step 3:
$-\Delta Q_{3}= \pm 2^{31}+2^{25}+2^{16}+2^{11}+2^{5}$.
$-\Delta f_{3}= \pm 2^{31}-2^{27}+2^{25}-2^{21}-2^{11}, \Delta Q_{0}=\Delta I H V^{(1)}[1]= \pm 2^{31}+2^{25}$, and ΔW_{3}.
$-\Delta T_{3}=\Delta f_{3}+\Delta Q_{0}+\Delta W_{3}=\left(\pm 2^{31}-2^{27}+2^{25}-2^{21}-2^{11}\right)+\left(\pm 2^{31}+2^{25}\right)+0=-2^{26}-2^{21}-2^{11}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}, and
- the add-differences $\left(-2^{27}\right),\left(+2^{25}\right)$, and $\left(+2^{25}\right)$ combine to yield $\left(-2^{26}\right)$.
- Condition(s) on ΔT_{3} :
- $\Delta=\left(-2^{26}-2^{21}-2^{11}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-6}\right) \times\left(1-2^{-5}\right) \times\left(1-2^{-10}\right)$ since $1 \in T_{3}[31-26], 1 \in T_{3}[25-21]$, and $1 \in T_{3}[20-11]$ to ensure there is no propagation past bit 31 .
$-S(3)=22$, so $\Delta T_{3}=-2^{26}-2^{21}-2^{11} \Rightarrow \Delta R_{3}=-2^{26+22=48 \equiv 16(\bmod 32)}-2^{21+22=43 \equiv 11(\bmod 32)}-2^{11+22=33 \equiv 1(\bmod 32)}$ $=-2^{16}-2^{11}-2^{1}$.
$-\Delta Q_{4}=\Delta Q_{3}+\Delta R_{3}=\left(\pm 2^{31}+2^{25}+2^{16}+2^{11}+2^{5}\right)+\left(-2^{16}-2^{11}-2^{1}\right)= \pm 2^{31}+2^{25}+2^{5}-2^{1}$.
- the add-differences $\left(+2^{16}\right)$ and $\left(-2^{16}\right)$ cancel each other out, and
- the add-differences $\left(+2^{11}\right)$ and $\left(-2^{11}\right)$ cancel each other out.

Step 4:
$-\Delta Q_{4}= \pm 2^{31}+2^{25}+2^{5}-2^{1}$.
$-\Delta f_{4}=+2^{30}+2^{26}-2^{18}+2^{2}+2^{1}, \Delta Q_{1}= \pm 2^{31}+2^{25}$, and $\Delta W_{4}= \pm 2^{31}$.
$-\Delta T_{4}=\Delta f_{4}+\Delta Q_{1}+\Delta W_{4}=\left(+2^{30}+2^{26}-2^{18}+2^{2}+2^{1}\right)+\left(\pm 2^{31}+2^{25}\right)+\left(\pm 2^{31}\right)=+2^{30}+2^{26}+$ $2^{25}-2^{18}+2^{3}-2^{1}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{4} :
- $\Delta=\left(+2^{30}+2^{26}+2^{25}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-2}\right) \times\left(1-2^{-4}\right) \times\left(2^{-1}\right)$ since $0 \in T_{4}[31,30], 0 \in T_{4}\left[29-2^{6}\right]$, and $T_{4}[25]=0$ to ensure there is no propagation past bit 31 .
- $\Delta=\left(-2^{18}+2^{3}-2^{1}\right)$ must not propagate past bit 24 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(1-2^{-7}\right) \times\left(1-2^{-15}\right) \times\left(1-2^{-2}\right)$ since 1 $\in T_{4}[24-18], 0 \in T_{4}[17-3]$, and $1 \in T_{4}[2,1]$ to ensure there is no propagation past bit 24 .

$$
\begin{aligned}
&- S(4)=7, \text { so } \Delta T_{4}=+2^{30}+2^{26}+2^{25}-2^{18}+2^{3}-2^{1} \Rightarrow \Delta R_{4}=+2^{30+7=37 \equiv 5(\bmod 32)}+2^{26+7=33 \equiv 1(\bmod 32)} \\
&+2^{25+7=32 \equiv 0(\bmod 32)}-2^{18+7=25}+2^{3+7=10}-2^{1+7=8}=-2^{25}+2^{10}-2^{8}+2^{5}+2^{1}+2^{0} . \\
&-\Delta Q_{5}=\Delta Q_{4}+\Delta R_{4}=\left(\pm 2^{31}+2^{25}+2^{5}-2^{1}\right)+\left(-2^{25}+2^{10}-2^{8}+2^{5}+2^{1}+2^{0}\right)= \pm 2^{31}+2^{10}-2^{8}+ \\
& 2^{6}+2^{0} .
\end{aligned}
$$

- the add-differences $\left(+2^{25}\right)$ and $\left(-2^{25}\right)$ cancel each other out,
- the add-differences $\left(+2^{5}\right)$ and $\left(+2^{5}\right)$ combine to yield $\left(+2^{6}\right)$, and
- the add-differences $\left(-2^{1}\right)$ and $\left(+2^{1}\right)$ cancel each other out.

Step 5:
$-\Delta Q_{5}= \pm 2^{31}+2^{10}-2^{8}+2^{6}+2^{0}$.
$-\Delta f_{5}=+2^{30}+2^{28}-2^{26}-2^{25}-2^{20}-2^{8}-2^{5}-2^{4}, \Delta Q_{2}= \pm 2^{31}+2^{25}+2^{5}$, and ΔW_{5}.
$-\Delta T_{5}=\Delta f_{5}+\Delta Q_{2}+\Delta W_{5}=\left(+2^{30}+2^{28}-2^{26}-2^{25}-2^{20}-2^{8}-2^{5}-2^{4}\right)+\left(\pm 2^{31}+2^{25}+2^{5}\right)+0=$ $-2^{30}+2^{28}-2^{26}-2^{20}-2^{8}-2^{4}$.

- the add-differences $\left(+2^{30}\right)$ and $\left(\pm 2^{31}\right)$ combine to yield $\left(-2^{30}\right)$ modulo 2^{32},
- the add-differences $\left(-2^{25}\right)$ and $\left(+2^{25}\right)$ cancel each other out, and
- the add-differences $\left(-2^{5}\right)$ and $\left(+2^{5}\right)$ cancel each other out.
- Condition(s) on ΔT_{5} :
- $\Delta=\left(-2^{30}+2^{28}-2^{26}-2^{20}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-2}\right) \times\left(1-2^{-2}\right) \times(1-$ $\left.2^{-2}\right) \times\left(1-2^{-6}\right)$ since $1 \in T_{5}[31,30], 0 \in T_{5}[29,28], 1 \in T_{5}\left[27,2^{6}\right]$, and $1 \in T_{5}[25-20]$ to ensure there is no propagation past bit 31.
- $\Delta=\left(-2^{8}-2^{4}\right)$ must not propagate past bit 19 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(1-2^{-12}\right) \times\left(1-2^{-4}\right)$ since $1 \in T_{5}[19-8]$ and $1 \in T_{5}[7-4]$ to ensure there is no propagation past bit 19 .
$-S(5)=12$, so $\Delta T_{5}=-2^{30}+2^{28}-2^{26}-2^{20}-2^{8}-2^{4} \Rightarrow \Delta R_{5}=-2^{30+12=42 \equiv 10(\bmod 32)}+2^{28+12=40 \equiv 8(\bmod 32)}$ $-2^{26+12=38 \equiv 6(\bmod 32)}-2^{20+12=32 \equiv 0(\bmod 32)}-2^{8+12=20}-2^{4+12=16}=-2^{20}-2^{16}-2^{10}+2^{8}-2^{6}-2^{0}$.
$-\Delta Q_{6}=\Delta Q_{5}+\Delta R_{5}=\left(\pm 2^{31}+2^{10}-2^{8}+2^{6}+2^{0}\right)+\left(-2^{20}-2^{16}-2^{10}+2^{8}-2^{6}-2^{0}\right)= \pm 2^{31}-2^{20}-2^{16}$.
- the add-differences $\left(+2^{10}\right)$ and $\left(-2^{10}\right)$ cancel each other out,
- the add-differences $\left(-2^{8}\right)$ and $\left(+2^{8}\right)$ cancel each other out, and
- the add-differences $\left(+2^{6}\right)$ and $\left(-2^{6}\right)$ cancel each other out.
- the add-differences $\left(+2^{0}\right)$ and $\left(-2^{0}\right)$ cancel each other out.

Step 6:
$-\Delta Q_{6}= \pm 2^{31}-2^{20}-2^{16}$.
$-\Delta f_{6}=-2^{25}-2^{21}-2^{16}-2^{11}-2^{10}-2^{5}+2^{3}, \Delta Q_{3}= \pm 2^{31}+2^{25}+2^{16}+2^{11}+2^{5}$, and $\Delta W_{6}=0$.
$-\Delta T_{6}=\Delta f_{6}+\Delta Q_{3}+\Delta W_{6}=\left(-2^{25}-2^{21}-2^{16}-2^{11}-2^{10}-2^{5}+2^{3}\right)+\left(\pm 2^{31}+2^{25}+2^{16}+2^{11}+2^{5}\right)$ $+0= \pm 2^{31}-2^{21}-2^{10}+2^{3}$.

- the add-differences $\left(-2^{25}\right)$ and $\left(+2^{25}\right)$ cancel each other out,
- the add-differences $\left(-2^{16}\right)$ and $\left(+2^{16}\right)$ cancel each other out,
- the add-differences $\left(-2^{11}\right)$ and $\left(+2^{11}\right)$ cancel each other out, and
- the add-differences $\left(-2^{5}\right)$ and $\left(+2^{5}\right)$ cancel each other out.
- Condition(s) on ΔT_{6} :
- $\Delta T_{6}[31]=0$ ensures that the add difference is $+2^{31}$ (condition III). The probability that this condition holds is $\left(2^{-1}\right)$ since $\Delta T_{6}[31]=0$ rather than $T_{6}[31]=(0,1)$.
- $\Delta=\left(-2^{21}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-1} 1\right)$ since $1 \in T_{6}[31-21]$ to ensure there is no propagation past bit 31 .
- $\Delta=\left(-2^{10}+2^{3}\right)$ must not propagate past bit 14 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(1-2^{-5}\right) \times\left(1-2^{-7}\right)$ since $1 \in T_{6}[14-10]$ and $0 \in T_{6}[9-3]$ to ensure there is no propagation past bit 14 .
$-S(6)=17$, so $\Delta T_{6}=+2^{31}-2^{21}-2^{10}+2^{3} \Rightarrow \Delta R_{6}=+2^{31+17=48 \equiv 16(\bmod 32)}-2^{21+17=38 \equiv 6(\bmod 32)}-$ $2^{10+17=27}+2^{3+17=20}=-2^{27}+2^{20}+2^{16}-2^{6}$.
$-\Delta Q_{7}=\Delta Q_{6}+\Delta R_{6}=\left(\pm 2^{31}-2^{20}-2^{16}\right)+\left(-2^{27}+2^{20}+2^{16}-2^{6}\right)= \pm 2^{31}-2^{27}-2^{6}$.
- the add-differences $\left(-2^{20}\right)$ and $\left(-2^{20}\right)$ cancel each other out, and
- the add-differences $\left(-2^{16}\right)$ and $\left(+2^{16}\right)$ cancel each other out.

Step 7:
$-\Delta Q_{7}= \pm 2^{31}-2^{27}-2^{6}$.
$-\Delta f_{7}= \pm 2^{31}-2^{27}+2^{16}, \Delta Q_{4}= \pm 2^{31}+2^{25}+2^{5}-2^{1}$, and $\Delta W_{7}=0$.
$-\Delta T_{7}=\Delta f_{7}+\Delta Q_{4}+\Delta W_{7}=\left(\pm 2^{31}-2^{27}+2^{16}\right)+\left(\pm 2^{31}+2^{25}+2^{5}-2^{1}\right)+0=-2^{27}+2^{25}+2^{16}+$ $2^{5}-2^{1}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{7} :
- $\Delta=\left(-2^{27}+2^{25}+2^{16}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-5}\right) \times\left(1-2^{-2}\right) \times\left(1-2^{-9}\right)$ since $1 \in T_{7}[31-27], 0 \in T_{7}\left[2^{6}, 25\right]$, and $0 \in T_{7}[24-16]$ to ensure there is no propagation past bit 31.
- $\Delta=\left(+2^{5}-2^{1}\right)$ must not propagate past bit 9 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(1-2^{-5}\right) \times\left(1-2^{-4}\right)$ since $0 \in T_{7}[9-5]$ and $1 \in T_{7}[4-1]$ to ensure there is no propagation past bit 9 .
$-S(7)=22$, so $\Delta T_{7}=-2^{27}+2^{25}+2^{16}+2^{5}-2^{1} \Rightarrow \Delta R_{7}=-2^{27+22=49 \equiv 17(\bmod 32)}+2^{25+22=47 \equiv 15(\bmod 32)}$ $+2^{16+22=38 \equiv 6(\bmod 32)}+2^{5+22=27}-2^{1+22=23}=+2^{27}-2^{23}-2^{17}+2^{15}+2^{6}$.
$-\Delta Q_{8}=\Delta Q_{7}+\Delta R_{7}=\left(\pm 2^{31}-2^{27}-2^{6}\right)+\left(+2^{27}-2^{23}-2^{17}+2^{15}+2^{6}\right)= \pm 2^{31}-2^{23}-2^{17}+2^{15}$.
- the add-differences $\left(-2^{27}\right)$ and $\left(+2^{27}\right)$ cancel each other out, and
- the add-differences $\left(-2^{6}\right)$ and $\left(+2^{6}\right)$ cancel each other out.

Step 8:
$-\Delta Q_{8}= \pm 2^{31}-2^{23}-2^{17}+2^{15}$.
$-\Delta f_{8}=+2^{25}+2^{16}-2^{6}, \Delta Q_{5}= \pm 2^{31}+2^{10}-2^{8}+2^{6}+2^{0}$, and ΔW_{8}.
$-\Delta T_{8}=\Delta f_{8}+\Delta Q_{5}+\Delta W_{8}=\left(+2^{25}+2^{16}-2^{6}\right)+\left(\pm 2^{31}+2^{10}-2^{8}+2^{6}+2^{0}\right)+0= \pm 2^{31}+2^{25}+$ $2^{16}+2^{10}-2^{8}+2^{0}$.

- the add-differences $\left(-2^{6}\right)$ and $\left(+2^{6}\right)$ cancel each other out.
- Condition(s) on ΔT_{8} :
- $\Delta T_{8}[31]=1$ ensures that the add difference is -2^{31} (condition III). The probability that this condition holds is $\left(2^{-1}\right)$ since $\Delta T_{8}[31]=1$ rather than $T_{8}[31]=(0,1)$.
- $\Delta=\left(+2^{25}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-7}\right)$ since $0 \in T_{8}[31-25]$ to ensure there is no propagation past bit 31 .
- $\Delta=\left(+2^{16}+2^{10}-28+20\right)$ must not propagate past bit 24 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(1-2^{-9}\right) \times\left(1-2^{-6}\right) \times\left(1-2^{-2}\right)$ $\times\left(1-2^{-8}\right)$ since $0 \in T_{8}[24-16], 0 \in T_{8}[15-10], 1 \in T_{8}[9,8]$, and $0 \in T_{8}[7-0]$ to ensure there is no propagation past bit 24 .
$-S(8)=7$, so $\Delta T_{8}= \pm 2^{31}+2^{25}+2^{16}+2^{10}-2^{8}+2^{0} \Rightarrow \Delta R_{8}=-2^{31+7=38 \equiv 6(\bmod 32)}+2^{25+7=32 \equiv 0(\bmod 32)}$ $+2^{16+7=23}+2^{10+7=17}-2^{8+7=15}+2^{0+7=7}=+2^{23}+2^{17}-2^{15}+\left(2^{7}-2^{6}\right)+2^{0}=+2^{23}+2^{17}-2^{15}+$ $2^{6}+2^{0}$.
$-\Delta Q_{9}=\Delta Q_{8}+\Delta R_{8}=\left(\pm 2^{31}-2^{23}-2^{17}+2^{15}\right)+\left(+2^{23}+2^{17}-2^{15}-2^{6}+2^{0}\right)= \pm 2^{31}+2^{6}+2^{0}$.
- the add-differences $\left(-2^{23}\right)$ and $\left(+2^{23}\right)$ cancel each other out,
- the add-differences $\left(-2^{17}\right)$ and $\left(+2^{17}\right)$ cancel each other out, and
- the add-differences $\left(+2^{15}\right)$ and $\left(-2^{15}\right)$ cancel each other out.

Step 9:
$-\Delta Q_{9}= \pm 2^{31}+2^{6}+2^{0}$.
$-\Delta f_{9}= \pm 2^{31}-2^{26}+2^{16}+2^{0}, \Delta Q_{6}= \pm 2^{31}-2^{20}-2^{16}$, and $\Delta W_{9}=0$.
$-\Delta T_{9}=\Delta f_{9}+\Delta Q_{6}+\Delta W_{9}=\left(\pm 2^{31}-2^{26}+2^{16}+2^{0}\right)+\left(\pm 2^{31}-2^{20}-2^{16}\right)+0=-2^{26}-2^{20}+2^{0}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}, and
- the add-differences $\left(+2^{16}\right)$ and $\left(-2^{16}\right)$ cancel each other out.
- Condition(s) on ΔT_{9} :
- $\Delta=\left(-2^{26}-2^{20}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-6}\right) \times\left(1-2^{-6}\right)$ since $1 \in T_{9}[31-$ 26] and $1 \in T_{9}[25-20]$ to ensure there is no propagation past bit 31 .
- $\Delta=\left(+2^{0}\right)$ must not propagate past bit 19 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(1-2^{-20}\right)$ since $0 \in T_{9}[19-0]$ to ensure there is no propagation past bit 19 .
$-S(9)=12$, so $\Delta T_{9}=-2^{26}-2^{20}+2^{0} \Rightarrow \Delta R_{9}=-2^{26+12=38 \equiv 6(\bmod 32)}-2^{20+12=32 \equiv 0(\bmod 32)}+2^{0+12=12}=$ $+2^{12}-2^{6}-2^{0}$.
$-\Delta Q_{10}=\Delta Q_{9}+\Delta R_{9}=\left(\pm 2^{31}+2^{6}+2^{0}\right)+\left(+2^{12}-2^{6}-2^{0}\right)= \pm 2^{31}+2^{12}$.
- the add-differences $\left(+2^{6}\right)$ and $\left(-2^{6}\right)$ cancel each other out, and
- the add-differences $\left(+2^{0}\right)$ and $\left(-2^{0}\right)$ cancel each other out.

Step 10:
$-\Delta Q_{10}= \pm 2^{31}+2^{12}$.
$-\Delta f_{10}= \pm 2^{31}+2^{6}, \Delta Q_{7}= \pm 2^{31}-2^{27}-2^{6}$, and $\Delta W_{10}=0$.
$-\Delta T_{10}=\Delta f_{10}+\Delta Q_{7}+\Delta W_{10}=\left(\pm 2^{31}+2^{6}\right)+\left(\pm 2^{31}-2^{27}-2^{6}\right)+0=-2^{27}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}, and
- the add-differences $\left(+2^{6}\right)$ and $\left(-2^{6}\right)$ cancel each other out.
- Condition(s) on ΔT_{10} :
- $\Delta=\left(-2^{27}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-5}\right)$ since $1 \in T_{10}[31-27]$ to ensure there is no propagation past bit 31 .
$-S(10)=17$, so $\Delta T_{10}=-2^{27} \Rightarrow \Delta R_{10}=-2^{27+17=44 \equiv 12(\text { mod } 32)}=-2^{12}$.
$-\Delta Q_{11}=\Delta Q_{10}+\Delta R_{10}=\left(\pm 2^{31}+2^{12}\right)+\left(-2^{12}\right)= \pm 2^{31}$.
- the add-differences $\left(+2^{12}\right)$ and $\left(-2^{12}\right)$ cancel each other out.

Step 11:

- $\Delta Q_{11}= \pm 2^{31}$.
$-\Delta f_{11}= \pm 2^{31}, \Delta Q_{8}= \pm 2^{31}-2^{23}-2^{17}+2^{15}$, and $\Delta W_{11}=-2^{15}$.
$-\Delta T_{11}=\Delta f_{11}+\Delta Q_{8}+\Delta W_{11}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}-2^{23}-2^{17}+2^{15}\right)+\left(-2^{15}\right)=-2^{23}-2^{17}$.
- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}, and
- the add-differences $\left(+2^{15}\right)$ and $\left(-2^{15}\right)$ cancel each other out.
- Condition(s) on ΔT_{11} :
- $\Delta=\left(-2^{23}-2^{17}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-9}\right) \times\left(1-2^{-6}\right)$ since $1 \in T_{11}[31-$ 23] and $1 \in T_{11}[22-17]$ to ensure there is no propagation past bit 31.
$-S(11)=22$, so $\Delta T_{11}=-2^{23}-2^{17} \Rightarrow \Delta R_{11}=-2^{23+22=45 \equiv 13(\text { mod } 32)}-2^{17+22=39 \equiv 7(\bmod 32)}=-2^{13}-2^{7}$.
$-\Delta Q_{12}=\Delta Q_{11}+\Delta R_{11}=\left(\pm 2^{31}\right)+\left(-2^{13}-2^{7}\right)= \pm 2^{31}-2^{13}-2^{7}$.

Step 12:
$-\Delta Q_{12}= \pm 2^{31}-2^{13}-2^{7}$.
$-\Delta f_{12}= \pm 2^{31}+2^{17}, \Delta Q_{9}= \pm 2^{31}+2^{6}+2^{0}$, and $\Delta W_{12}=0$.
$-\Delta T_{12}=\Delta f_{12}+\Delta Q_{9}+\Delta W_{12}=\left(\pm 2^{31}+2^{17}\right)+\left(\pm 2^{31}+2^{6}+2^{0}\right)+0=+2^{17}+2^{6}+2^{0}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{12} :
- $\Delta=\left(+2^{17}+2^{6}+2^{0}\right)$ must not propagate past bit 24 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(1-2^{-8}\right) \times\left(1-2^{-11}\right) \times\left(1-2^{-6}\right)$ since 0 $\in T_{12}[24-17], 0 \in T_{12}[16-6]$, and $0 \in T_{12}[5-0]$ to ensure there is no propagation past bit 24 .
$-S(12)=7$, so $\Delta T_{12}=+2^{17}+2^{6}+2^{0} \Rightarrow \Delta R_{12}=+2^{17+7=24}+2^{6+7=13}+2^{0+7=7}=+2^{24}+2^{13}+2^{7}$. $-\Delta Q_{13}=\Delta Q_{12}+\Delta R_{12}=\left(\pm 2^{31}-2^{13}-2^{7}\right)+\left(+2^{24}+2^{13}+27\right)= \pm 2^{31}+2^{24}$.
- the add-differences $\left(-2^{13}\right)$ and $\left(+2^{13}\right)$ cancel each other out, and
- the add-differences $\left(-2^{7}\right)$ and $\left(+2^{7}\right)$ cancel each other out.

Step 13:
$-\Delta Q_{13}= \pm 2^{31}+2^{24}$.
$-\Delta f_{13}= \pm 2^{31}-2^{13}, \Delta Q_{10}= \pm 2^{31}+2^{12}$, and $\Delta W_{13}=0$.
$-\Delta T_{13}=\Delta f_{13}+\Delta Q_{10}+\Delta W_{13}=\left(\pm 2^{31}-2^{13}\right)+\left(\pm 2^{31}+2^{12}\right)+0=-2^{12}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- the add-differences $\left(-2^{13}\right)$ and $\left(+2^{12}\right)$ combine to yield $\left(-2^{12}\right)$.
- Condition(s) on ΔT_{13} :
- $\Delta=\left(-2^{12}\right)$ must not propagate past bit 19 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(1-2^{-8}\right)$ since $1 \in T_{13}[19-12]$ to ensure there is no propagation past bit 19 .
$-S(13)=12$, so $\Delta T_{13}=-2^{12} \Rightarrow \Delta R_{13}=-2^{12+12=24}=-2^{24}$.
$-\Delta Q_{14}=\Delta Q_{13}+\Delta R_{13}=\left(\pm 2^{31}+2^{24}\right)+\left(-2^{24}\right)= \pm 2^{31}$.
- the add-differences $\left(+2^{24}\right)$ and $\left(-2^{24}\right)$ cancel each other out.

Step 14:
$-\Delta Q_{14}= \pm 2^{31}$.
$-\Delta f_{14}=+2^{30}+2^{18}, \Delta Q_{11}= \pm 2^{31}$, and $\Delta W_{14}= \pm 2^{31}$.
$-\Delta T_{14}=\Delta f_{12}+\Delta Q_{11}+\Delta W_{14}=\left(+2^{30}+2^{18}\right)+\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=+2^{30}+2^{18}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{14} :
- $\Delta=\left(+2^{30}+2^{18}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-2}\right) \times\left(1-2^{-12}\right)$ since $0 \in T_{14}[31$, 30] and $0 \in T_{14}[29-18]$ to ensure there is no propagation past bit 31 .
$-S(14)=17$, so $\Delta T_{14}=+2^{30}+2^{18} \Rightarrow \Delta R_{14}=+2^{30+17=47 \equiv 15(\bmod 32)}+2^{18+17=35 \equiv 3(\bmod 32)}=+2^{15}+$ 2^{3}.
$-\Delta Q_{15}=\Delta Q_{14}+\Delta R_{14}=\left(\pm 2^{31}\right)+\left(+2^{15}+2^{3}\right)= \pm 2^{31}+2^{15}+2^{3}$.

Step 15:
$-\Delta Q_{15}= \pm 2^{31}+2^{15}+2^{3}$.
$-\Delta f_{15}= \pm 2^{31}-2^{25}, \Delta Q_{12}= \pm 2^{31}-2^{13}-27$, and $\Delta W_{15}=0$.
$-\Delta T_{15}=\Delta f_{15}+\Delta Q_{12}+\Delta W_{15}=\left(\pm 2^{31}-2^{25}\right)+\left(\pm 2^{31}-2^{13}-27\right)+0=-2^{25}-2^{13}-2^{7}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{15} :
- $\Delta=\left(-2^{25}-2^{13}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-7}\right) \times\left(1-2^{-12}\right)$ since $1 \in T_{15}[31-$ 25] and $1 \in T_{15}[24-13]$ to ensure there is no propagation past bit 31 .
- $\Delta=\left(-2^{7}\right)$ must not propagate past bit 9 since we do not want to affect any more low order bits upon rotation (condition I). The probability that this condition holds is $\left(1-2^{-3}\right)$ since $1 \in T_{15}[9-7]$ to ensure there is no propagation past bit 9 .
$-S(15)=22$, so $\Delta T_{15}=-2^{25}-2^{13}-2^{7} \Rightarrow \Delta R_{15}=-2^{25+22=47 \equiv 15(\bmod 32)}-2^{13+22=35 \equiv 3(\bmod 32)}-2^{7+22=29}$ $=-2^{29}-2^{15}-2^{3}$.
$-\Delta Q_{16}=\Delta Q_{15}+\Delta R_{15}=\left(\pm 2^{31}+2^{15}+2^{3}\right)+\left(-2^{29}-2^{15}-2^{3}\right)= \pm 2^{31}-2^{29}$.
- the add-differences $\left(+2^{15}\right)$ and $\left(-2^{15}\right)$ cancel each other out, and
- the add-differences $\left(+2^{3}\right)$ and $\left(-2^{3}\right)$ cancel each other out.

Step 16:
$-\Delta Q_{16}= \pm 2^{31}-2^{29}$.
$-\Delta f_{16}= \pm 2^{31}, \Delta Q_{13}= \pm 2^{31}+2^{24}$, and $\Delta W_{16}=0$.
$-\Delta T_{16}=\Delta f_{16}+\Delta Q_{13}+\Delta W_{16}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}+2^{24}\right)+0=+2^{24}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{16} :
- $\Delta=\left(+2^{24}\right)$ must not propagate past bit 2^{6} since we do not want to affect any more low order bits upon rotation (condition I). The probability that this condition holds is ($1-2^{-3}$) since $0 \in T_{16}[26-$ 24] to ensure there is no propagation past bit 26 .
$-S(16)=5$, so $\Delta T_{16}=+2^{24} \Rightarrow \Delta R_{16}=+2^{24+5=29}=+2^{29}$.
$-\Delta Q_{17}=\Delta Q_{16}+\Delta R_{16}=\left(\pm 2^{31}-2^{29}\right)+\left(+2^{29}\right)= \pm 2^{31}$.
- the add-differences $\left(-2^{29}\right)$ and $\left(+2^{29}\right)$ cancel each other out.

Step 17:
$-\Delta Q_{17}= \pm 2^{31}$.
$-\Delta f_{17}= \pm 2^{31}, \Delta Q_{14}= \pm 2^{31}$, and $\Delta W_{17}=0$.
$-\Delta T_{17}=\Delta f_{17}+\Delta Q_{14}+\Delta W_{17}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+0=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{17} : none
$-\Delta T_{17}=0 \Rightarrow \Delta R_{17}=0$.
$-\Delta Q_{18}=\Delta Q_{17}+\Delta R_{17}=\left(\pm 2^{31}\right)+(0)= \pm 2^{31}$.

Step 18:
$-\Delta Q_{18}= \pm 2^{31}$.
$-\Delta f_{18}= \pm 2^{31}, \Delta Q_{15}= \pm 2^{31}+2^{15}+2^{3}$, and $\Delta W_{18}=-2^{15}$.
$-\Delta T_{18}=\Delta f_{18}+\Delta Q_{15}+\Delta W_{18}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}+2^{15}+2^{3}\right)+\left(-2^{15}\right)=+23$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}, and
- the add-differences $\left(+2^{15}\right)$ and $\left(-2^{15}\right)$ cancel each other out.
- Condition(s) on ΔT_{18} :
- $\Delta=(+23)$ must not propagate past bit 17 since we do not want to affect any more low order bits upon rotation (condition I). The probability that this condition holds is ($1-2^{-15}$) since $0 \in T_{18}[17$ - 3] to ensure there is no propagation past bit 17.

$$
\begin{aligned}
& -S(18)=14, \text { so } \Delta T_{18}=+2^{3} \Rightarrow \Delta R_{18}=+2^{3+14=17}=+2^{17} \cdot \Delta Q_{19}=\Delta Q_{18}+\Delta R_{18}=\left(\pm 2^{31}\right)+\left(+2^{17}\right) \\
& \quad= \pm 2^{31}+2^{17}
\end{aligned}
$$

Step 19:
$-\Delta Q_{19}= \pm 2^{31}+2^{17}$.
$-\Delta f_{19}= \pm 2^{31}, \Delta Q_{16}= \pm 2^{31}-2^{29}$, and $\Delta W_{19}=0$.
$-\Delta T_{19}=\Delta f_{19}+\Delta Q_{16}+\Delta W_{19}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}-2^{29}\right)+0=-2^{29}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{19} :
- $\Delta=\left(-2^{29}\right)$ must not propagate past bit 31 since we do not want to affect lower order bits (condition III). The probability that this condition holds is $\left(1-2^{-3}\right)$ since $1 \in T_{19}[31-29]$ to ensure there is no propagation past bit 31 .
$-S(19)=20$, so $\Delta T_{19}=-2^{29} \Rightarrow \Delta R_{19}=-2^{29+20=4917(\bmod 32)}=-2^{17}$.
$-\Delta Q_{20}=\Delta Q_{19}+\Delta R_{19}=\left(\pm 2^{31}+2^{17}\right)+\left(-2^{17}\right)= \pm 2^{31}$.
- the add-differences $\left(+2^{17}\right)$ and $\left(-2^{17}\right)$ cancel each other out.

Steps 20 to 21:
$-\Delta Q_{t}= \pm 2^{31}$.
$-\Delta f_{t}= \pm 2^{31}, \Delta Q_{t-3}= \pm 2^{31}$, and $\Delta W_{t}=0$.
$-\Delta T_{t}=\Delta f_{t}+\Delta Q_{t-3}+\Delta W_{t}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+0=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{t} : none
$-\Delta T_{t}=0 \Rightarrow \Delta R_{t} 0$.
$-\Delta Q_{t+1}=\Delta Q_{t}+\Delta R_{t}=\left(\pm 2^{31}\right)+0= \pm 2^{31}$.

Step 22:
$-\Delta Q_{22}= \pm 2^{31}$.
$-\Delta f_{22}= \pm 2^{31}, \Delta Q_{19}= \pm 2^{31}+2^{17}$, and $\Delta W_{22}=0$.
$-\Delta T_{22}=\Delta f_{22}+\Delta Q_{19}+\Delta W_{22}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}+2^{17}\right)+0=+2^{17}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{22} :
- $\Delta=\left(+2^{17}\right)$ must not propagate past bit 17 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(2^{-1}\right)$ since $T_{22}[17]=0$ to ensure there is no propagation past bit 17 .
$-S(22)=14$, so $\Delta T_{22}=+2^{17} \Rightarrow \Delta R_{22}=+2^{17+14=31}=+2^{31}$.
$-\Delta Q_{23}=\Delta Q_{22}+\Delta R_{22}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0$.
- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.

Step 23:
$-\Delta Q_{23}=0$.
$-\Delta f_{23}=0, \Delta Q_{20}= \pm 2^{31}$, and $\Delta W_{23}= \pm 2^{31}$.
$-\Delta T_{23}=\Delta f_{23}+\Delta Q_{20}+\Delta W_{23}=0+\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{23} : none
$-\Delta T_{23}=0 \Rightarrow \Delta R_{23}=0$.
$-\Delta Q_{24}=\Delta Q_{23}+\Delta R_{23}=0+0=0$.

Step 24:
$-\Delta Q_{24}=0$.
$-\Delta f_{24}= \pm 2^{31}, \Delta Q_{21}= \pm 2^{31}$, and $\Delta W_{24}=0$.
$-\Delta T_{24}=\Delta f_{24}+\Delta Q_{21}+\Delta W_{24}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+0=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{24} : none
$-\Delta T_{24}=0 \Rightarrow \Delta R_{24}=0$.
$-\Delta Q_{25}=\Delta Q_{24}+\Delta R_{24}=0+0=0$.

Step 25:
$-\Delta Q_{25}=0$.
$-\Delta f_{25}=0, \Delta Q_{22}= \pm 2^{31}$, and $\Delta W_{25}= \pm 2^{31}$.
$-\Delta T_{25}=\Delta f_{25}+\Delta Q_{22}+\Delta W_{25}=0+\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{25} : none
$-\Delta T_{25}=0 \Rightarrow \Delta R_{25}=0$.
$-\Delta Q_{26}=\Delta Q_{25}+\Delta R_{25}=0+0=0$.

Steps 26 to 33:
$-\Delta Q_{t}=0$.
$-\Delta f_{t}=\Delta Q_{t-3}=\Delta W_{t}=0$.
$-\Delta T_{t}=\Delta f_{t}+\Delta Q_{t-3}+\Delta W_{t}=0+0+0=0$.

- Condition(s) on ΔT_{t} : none
$-\Delta T_{t}=0 \Rightarrow \Delta R_{t}=0$.
$-\Delta Q_{t+1}=\Delta Q_{t}+\Delta R_{t}=0+0=0$.

Step 34:
$-\Delta Q_{34}=0$.
$-\Delta f_{34}=0, \Delta Q_{31}=0$, and $\Delta W_{34}=+2^{15}$.
$-\Delta T_{34}=\Delta f_{34}+\Delta Q_{31}+\Delta W_{34}=0+0+\left(-2^{15}\right)=-2^{15}$.

- Condition(s) on ΔT_{34} :
- $\Delta=\left(-2^{15}\right)$ must not propagate past bit 15 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(2^{-1}\right)$ since $T^{34}[15]=1$ to ensure there is no propagation past bit 15 .
$-S(34)=16$, so $\Delta T_{34}=-2^{15} \Rightarrow \Delta R_{34}=-2^{15+16=31}=-2^{31}$.
$-\Delta Q_{35}=\Delta Q_{34}+\Delta R_{34}=0+\left(\pm 2^{31}\right)= \pm 2^{31}$.

Step 35:
$-\Delta Q_{35}= \pm 2^{31}$.
$-\Delta f_{35}= \pm 2^{31}, \Delta Q_{32}=0$, and $\Delta W_{35}= \pm 2^{31}$.
$-\Delta T_{35}=\Delta f_{35}+\Delta Q_{32}+\Delta W_{35}=\left(\pm 2^{31}\right)+0+\left(\pm 2^{31}\right)=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{35} : none
$-\Delta T_{35}=0 \Rightarrow \Delta R_{35}=0$.
$-\Delta Q_{36}=\Delta Q_{35}+\Delta R_{35}=\left(\pm 2^{31}\right)+0= \pm 2^{31}$.

Step 36:
$-\Delta Q_{36}= \pm 2^{31}$.
$-\Delta f_{36}=0, \Delta Q_{33}=0$, and $\Delta W_{36}=0$.
$-\Delta T_{36}=\Delta f_{36}+\Delta Q_{33}+\Delta W_{36}=0+0+0=0$.

- Condition(s) on ΔT_{36} : none
$-\Delta T_{36}=0 \Rightarrow \Delta R_{36}=0$.
$-\Delta Q_{37}=\Delta Q_{36}+\Delta R_{36}=\left(\pm 2^{31}\right)+0= \pm 2^{31}$.

Step 37:
$-\Delta Q_{37}= \pm 2^{31}$.
$-\Delta f_{37}= \pm 2^{31}, \Delta Q_{34}=0$, and $\Delta W_{37}= \pm 2^{31}$.
$-\Delta T_{37}=\Delta f_{37}+\Delta Q_{34}+\Delta W_{37}=\left(\pm 2^{31}\right)+0+\left(\pm 2^{31}\right)=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{37} : none
$-\Delta T_{37}=0 \Rightarrow \Delta R_{37}=0$.
$-\Delta Q_{38}=\Delta Q_{37}+\Delta R_{37}=\left(\pm 2^{31}\right)+0= \pm 2^{31}$.

Steps 38 to 49:

- $\Delta Q_{t}= \pm 2^{31}$.
$-\Delta f_{t}= \pm 2^{31}, \Delta Q_{t-3}= \pm 2^{31}$, and $\Delta W_{t}=0$.
$-\Delta T_{t}=\Delta f_{t}+\Delta Q_{t-3}+\Delta W_{t}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+0=0$.
- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{t} : none
- $\Delta T_{t}=0 \Rightarrow \Delta R_{t}=0$.
$-\Delta Q_{t+1}=\Delta Q_{t}+\Delta R_{t}=\left(\pm 2^{31}\right)+0=0$.

Step 50:
$-\Delta Q_{50}= \pm 2^{31}$.
$-\Delta f_{50}=0, \Delta Q_{47}= \pm 2^{31}$, and $\Delta W_{50}= \pm 2^{31}$.
$-\Delta T_{50}=\Delta f_{50}+\Delta Q_{47}+\Delta W_{50}=0+\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{50} : none
- $\Delta T_{50}=0 \Rightarrow \Delta R_{50}=0$.
$-\Delta Q_{51}=\Delta Q_{50}+\Delta R_{50}=\left(\pm 2^{31}\right)+0= \pm 2^{31}$.

Steps 51 to 59 :

- $\Delta Q_{t}= \pm 2^{31}$.
$-\Delta f_{t}= \pm 2^{31}, \Delta Q_{t-3}= \pm 2^{31}$, and $\Delta W_{t}=0$.
$-\Delta T_{t}=\Delta f_{t}+\Delta Q_{t-3}+\Delta W_{t}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+0=0$.
- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{t} : none
$-\Delta T_{t}=0 \Rightarrow \Delta R_{t}=0$.
$-\Delta Q_{t+1}=\Delta Q_{t}+\Delta R_{t}=\left(\pm 2^{31}\right)+0=0$.

Step 60:
$-\Delta Q_{60}= \pm 2^{31}$.
$-\Delta f_{60}=0, \Delta Q_{57}= \pm 2^{31}$, and $\Delta W_{6} 0= \pm 2^{31}$.
$-\Delta T_{60}=\Delta f_{60}+\Delta Q_{58}+\Delta W_{60}=0+\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{60} : none
- $\Delta T_{60}=0 \Rightarrow \Delta R_{60}=0$.
$-\Delta Q_{61}=\Delta Q_{60}+\Delta R_{60}=\left(\pm 2^{31}\right)+0= \pm 2^{31}$.

Step 61:
$-\Delta Q_{61}= \pm 2^{31}$.
$-\Delta f_{61}= \pm 2^{31}, \Delta Q_{58}= \pm 2^{31}$, and $\Delta W_{61}=+2^{15}$.
$-\Delta T_{61}=\Delta f_{61}+\Delta Q_{58}+\Delta R_{61}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+\left(-2^{15}\right)=-2^{15}$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{61} :
- $\Delta=\left(-2^{15}\right)$ must not propagate past bit 21 since we do not want to affect lower order bits (condition I). The probability that this condition holds is $\left(1-2^{-7}\right)$ since $1 \in \Delta T_{61}[21-15]$ to ensure there is no propagation past bit 21 .
$-S(61)=10$, so $\Delta T_{61}=-2^{15} \Rightarrow \Delta R_{61}=-2^{15+10=25}=-2^{25}$.
$-\Delta Q_{62}=\Delta Q_{61}+\Delta R_{61}=\left(\pm 2^{31}\right)+\left(-2^{25}\right)= \pm 2^{31}-2^{25}$.

Steps 62 to 63:
$-\Delta Q_{t}= \pm 2^{31}-2^{25}$.
$-\Delta f_{t}= \pm 2^{31}, \Delta Q_{t-3}= \pm 2^{31}$, and $\Delta W_{t}=0$.
$-\Delta T_{t}=\Delta f_{t}+\Delta Q_{t-3}+\Delta W_{t}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)+0=0$.

- the add-differences $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ cancel each other out modulo 2^{32}.
- Condition(s) on ΔT_{t} : none
$-\Delta T_{t}=0 \Rightarrow \Delta R_{t}=0$.
$-\Delta Q_{t+1}=\Delta Q_{t}+\Delta R_{t}=\left(\pm 2^{31}-2^{25}\right)+0= \pm 2^{31}-2^{25}$.

Assuming all of our conditions are met, the end result of the differential for the second block is

$$
\begin{gathered}
\Delta Q_{61}= \pm 2^{31}, \\
\Delta Q_{62}= \pm 2^{31}-2^{25}, \\
\Delta Q_{63}= \pm 2^{31}-2^{25} \\
\Delta Q_{64}= \pm 2^{31}-2^{25}
\end{gathered}
$$

Thus, we have our collision:

$$
\begin{gathered}
\Delta I H V^{(2)}[0]=\Delta I H V^{(1)}[0]+\Delta Q_{61}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0, \\
\Delta I H V^{(2)}[3]=\Delta I H V^{(1)}[3]+\Delta Q_{62}=\left(\pm 2^{31}-2^{25}\right)+\left(\pm 2^{31}+2^{25}\right)=0, \\
\Delta I H V^{(2)}[2]=\Delta I H V^{(1)}[2]+\Delta Q_{63}=\left(\pm 2^{31}-2^{25}\right)+\left(\pm 2^{31}+2^{25}\right)=0, \\
\Delta I H V^{(2)}[1]=\Delta I H V^{(1)}[1]+\Delta Q_{64}=\left(\pm 2^{31}-2^{25}\right)+\left(\pm 2^{31}+2^{25}\right)=0 .
\end{gathered}
$$

6.4 Summary of the Probabilities of the Conditions for the First Block

For each step in both blocks, the probabilities for the conditions on the ΔT_{t} were presented. These probabilities will now be summarized. For the first block, we have the following. Note that only the steps with conditions are shown.

Step 4: $\left(2^{-1}\right)=0.500$

Step 5: $\left(2^{-1}\right) \times\left(1-2^{-8}\right)=0.498$
Step 6: $\left(2^{-1}\right) \times\left(1-2^{-4}\right)=0.469$
Step 7: $\left(1-2^{-5}\right) \times\left(1-2^{-2}\right) \times\left(1-2^{-9}\right) \times\left(1-2^{-8}\right) \times\left(2^{-5}\right)=0.0226$
Step 8: $\left(2^{-1}\right) \times\left(2^{-1}\right) \times\left(1-2^{-8}\right) \times\left(1-2^{-6}\right) \times\left(1-2^{-2}\right)=0.184$
Step 9: $\left(1-2^{-6}\right) \times\left(1-2^{-6}\right) \times\left(1-2^{-20}\right)=0.969$
Step 10: $\left(1-2^{-5}\right) \times\left(1-2^{-3}\right)=0.848$
Step 11: $\left(1-2^{-9}\right) \times\left(1-2^{-6}\right) \times\left(1-2^{-2}\right)=0.737$
Step 12: $\left(1-2^{-8}\right) \times\left(1-2^{-11}\right) \times\left(1-2^{-6}\right)=0.980$ Step 13: $\left(1-2^{-8}\right)=0.996$
Step 14: $\left(1-2^{-2}\right) \times\left(1-2^{-12}\right)=0.750$
Step 15: $\left(1-2^{-7}\right) \times\left(1-2^{-12}\right) \times\left(1-2^{-3}\right)=0.868$
Step 16: $\left(1-2^{-3}\right)=0.875$
Step 18: $\left(1-2^{-15}\right)=1.000$
Step 19: $\left(1-2^{-3}\right)=0.875$
Step 22: $\left(2^{-1}\right)=0.500$
Step 34: $\left(2^{-1}\right)=0.500$
Step 61: $\left(1-2^{-7}\right)=0.992$
We denote P_{0-63}^{1} to be the probability that the conditions on ΔT_{t} will hold for all 64 steps of the first block. P_{0-63}^{1} is simply the product of the probabilities shown above. We find that it is:

$$
P_{0-63}^{1} \approx 3.54 \times 10^{-5} \approx 2^{-14.8}
$$

Thus, for a random message, all of the conditions for ΔT_{t} will hold with probability $2^{-14.8}$. Suppose we define a " ΔT_{t}-good" message M to be a message such that the conditions for the first round (steps 0 to 15) of the first block are satisfied. A cryptanalyst can readily compute " ΔT_{t}-good" messages by using single-message modification. The probability that a " $\Delta T_{t^{-}}$-good" message satisfies all of the conditions for the first iteration is then the probability that it satisfies all the probabilities from rounds 2 to 4 (steps 16 to 63). We find this probability, P_{16-63}^{1} to be

$$
P_{16-63}^{1} \approx 0.190 \approx 2^{-2.4}
$$

Thus, with probability $2^{-2.4}$, a cryptanalyst using single-message modification can satisfy all the conditions for ΔT_{t} of the first block.

6.5 Summary of the Probabilities of the Conditions for the Second Block

The probability of the conditions on the ΔT_{t} for each step of the second block is as follows. Note that only the steps with conditions are shown.

Step 1: $\left(1-2^{-7}\right)=0.992$
Step 2: $\left(2^{-1}\right) \times\left(1-2^{-6}\right)=0.492$
Step 3: $\left(1-2^{-6}\right) \times\left(1-2^{-5}\right) \times\left(1-2^{1} 0\right)=0.953$
Step 4: $\left(1-2^{-2}\right) \times\left(1-2^{-4}\right) \times\left(2^{-1}\right) \times\left(1-2^{-7}\right) \times\left(1-2^{-15}\right) \times\left(1-2^{-2}\right)=0.262$
Step 5: $\left(1-2^{-2}\right) \times\left(1-2^{-2}\right) \times\left(1-2^{-2}\right) \times\left(1-2^{-6}\right) \times\left(1-2^{-12}\right) \times\left(1-2^{-4}\right)=0.389$
Step 6: $\left(2^{-1}\right) \times\left(1-2^{-11}\right) \times\left(1-2^{-5}\right) \times\left(1-2^{-7}\right)=0.480$
Step 7: $\left(1-2^{-5}\right) \times\left(1-2^{-2}\right) \times\left(1-2^{-9}\right) \times\left(1-2^{-5}\right) \times\left(1-2^{-4}\right)=0.659$
Step 8: $\left(2^{-1}\right) \times\left(1-2^{-7}\right) \times\left(1-2^{-9}\right) \times\left(1-2^{-6}\right) \times\left(1-2^{-2}\right) \times\left(1-2^{-8}\right)=0.364$

Step 9: $\left(1-2^{-6}\right) \times\left(1-2^{-6}\right) \times\left(1-2^{-20}\right)=0.969$
Step 10: $\left(1-2^{-5}\right)=0.969$
Step 11: $\left(1-2^{-9}\right) \times\left(1-2^{-6}\right)=0.982$
Step 12: $\left(1-2^{-8}\right) \times\left(1-2^{-11}\right)\left(1-2^{-6}\right)=0.980$
Step 13: $\left(1-2^{-8}\right)=0.996$
Step 14: $\left(1-2^{-2}\right) \times\left(1-2^{-12}\right)=0.750$
Step 15: $\left(1-2^{-7}\right) \times\left(1-2^{-12}\right) \times\left(1-2^{-3}\right)=0.868$
Step 16: $\left(1-2^{-3}\right)=0.875$
Step 18: $\left(1-2^{-15}\right)=1.000$
Step 19: $\left(1-2^{-3}\right)=0.875$
Step 22: $\left(2^{-1}\right)=0.500$
Step 34: $\left(2^{-1}\right)=0.500$
Step 61: $\left(1-2^{-7}\right)=0.992$
We denote P_{0-63}^{2} to be the probability that the conditions on ΔT_{t} will hold for all 64 steps of the second block. P_{0-63}^{1} is simply of the probabilities shown above. We find that it is:

$$
P_{0-63}^{1} \approx 6.07 \times 10^{-4} \approx 2^{-10.7}
$$

Thus, for a random message, all of the conditions for ΔT_{t} will hold with probability $2^{-10.7}$. Again, a cryptanalyst can readily compute " $T_{t^{-}}$-good" messages using single-message modification. The probability that a " T_{t}-good" message satisfies all of the conditions for the first iteration is then the probability that it satisfies steps 16 to 63 . We find this probability, P_{16-63}^{2} to be

$$
P_{16-63}^{2} \approx 0.190 \approx 2^{-2.4}
$$

Thus, with probability $2^{-2.4}$, a cryptanalyst using single-message modification can satisfy all the conditions for ΔT_{t} of the second block.

7 Conditions for the Propagation of the Differences Through the f_{t} Functions

In presenting the conditions of the propagation of the differences through the f_{t} functions, we have proven all of the assertions made in [3] regarding bit conditions for the first block except for those mentioned in the sections labeled "Obtaining the Correct ΔQ_{t}." The discussions provided for those conditions were sufficient. For all other conditions, however, proofs were necessary to provide to explain why each assertion was made. Therefore, after each assertion, the number of the proof that corresponds to that assertion is given. The proofs are then presented in section 8. Note that only the conditions for Case One are presented. (We will prove in section 9 that the conditions required for Case Two do not produce the desired collision differential.) For the second block, all of the assertions regarding bit conditions are original, based only on a few tables in [3]. As with the first block, after each assertion, the number of the proof that corresponds to that assertion is given. The proofs are then presented in section 8 .

7.1 Conditions for the Propagation of the Differences Through the f_{t} Functions for the First Block

Round 1: $f_{t}=F(X, Y, Z)$

Steps 0 to 4:
We have $Q_{t-2}=0, Q_{t-1}=0$, and $Q_{t}=0$, so we will obtain $f_{t}=0$. There are no conditions for these steps.

Step 5:
We have $Q_{3}=0, Q_{4}=0$, and $Q_{5}=-2^{6}$, and we want to obtain $f_{5}=+2^{19}+2^{11}$.
Obtaining the Correct Q_{5} :
$-Q_{5}[21-6]=0$
$-Q_{5}[22]=1$
The Constant Bits of Q_{5} :
$\left.\overline{Q_{5}[j]=0, j \in[31-23,5}-0\right]$

- To obtain $f_{5}[j]=0$, no conditions are required for $Q_{5} \in[31-23,5-0]$.

The Non-Constant Bits of Q_{5} :
$\overline{Q_{5}[j]}=+1, j \in[21-6]$

- To obtain $f_{5}[j]=0$, we require $Q_{3}[j]=Q_{4}[j]$ for $j \in[21,20,18-12,10-6]$. See proof 12 .
- To obtain $f_{5}[j]=+1$, we require $Q_{3}[j]=0$ and $Q_{4}[j]=1$ for $j \in[19,11]$. See proof 14 .
$Q_{5}[j]=-1, j \in[22]$
- To obtain $f_{5}[j]=0$, we require $Q_{3}[j]=Q_{4}[j]$ for $j \in[22]$. See proof 13 .

Summary of the conditions for step 5:
$-Q_{3}[19,11]=Q_{5}[21-6]=0$
$-Q_{4}[19,11]=Q_{5}[22]=1$
$-Q_{3}[21,20,18-12,10-6]=Q_{4}[21,20,18-12,10-6]$
Step 6:
We have $Q_{4}, Q_{5}=-2^{6}$, and $Q_{6}= \pm 2^{31}+2^{23}-2^{6}$, and we want to obtain $f_{6}=-2^{14}-2^{10}$.
$\underline{\text { Obtaining the Correct } Q_{6} \text { : }}$
$-Q_{6}[23]=0$
$-Q_{6}[6]=1$
The Constant Bits of Q_{6} :
$\overline{Q_{6}[j]=0, j \in[30-24,22-7,5-0]}$

- To obtain $f_{6}[j]=-1$, we require $Q_{6}[j]=1$ for $j \in[22]$. See proof 25 .
- To obtain $f_{6}[j]=+1$, we require $Q_{6}[j]=1$ for $j \in[21-15,13-10]$. See proof 23 .
- To obtain $f_{6}[j]=0$, we require $Q_{6}[j]=0$ for $j \in[14,9-7]$. See proof 22 .
- To obtain $f_{6}[j]=0$, we need no requirements for $Q_{6}[30-24,5-0]$.

The Non-Constant Bits of Q_{6} :
$\overline{Q_{6}[j]}=+1, j \in[23]$

- To obtain $f_{6}[j]=0$, we require $Q_{4}[j]=Q_{5}[j]$ for $j \in[23]$. See proof 12 .
$Q_{6}[j]=-1, j \in[6]$
- To obtain $f_{6}[j]=0$, we require $Q_{4}[j]=0$ for $j \in[6]$. See proof 26 .
$Q_{6}[j]= \pm 1, j \in[31]$
- To obtain $f_{6}[j]=0$, we require $Q_{4}[j]=Q_{5}[j]$ for $j \in[31]$. See proof 1 .

Summary of the conditions for step 6 :
$-Q_{4}[6]=Q_{6}[23,14,9-7]=0$

- $Q_{6}[22-15,13-10,6]=1$
$-Q_{4}[31,23]=Q_{5}[31,23]$
Step 7:
We have $Q_{5}=-2^{6}, Q_{6}= \pm 2^{31}+2^{23}-2^{6}$, and $Q_{7}=-2^{27}+2^{23}-2^{6}-2^{0}$, and we want to obtain $f_{7}=$ $-2^{27}-2^{25}+2^{16}+2^{10}+2^{5}-2^{2}$.
$\underline{\text { Obtaining the Correct } Q_{7} \text { : }}$
$-Q_{7}[30-26,10-6,4-0]=0$
$-Q_{7}[25-23,11,5]=1$
$\frac{\text { The Constant Bits of } Q_{7} \text { : }}{Q_{7}[j]=0, j \in[22-12]}$
- To obtain $f_{7}[j]=0$, we require $Q_{7}[j]=1$ for $j \in[22]$. See proof 20 .
- To obtain $f_{7}[j]=0$, we require $Q_{7}[j]=1$ for $j \in[21-17,15-12]$. See proof 18 .
- To obtain $f_{7}[j]=+1$, we require $Q_{7}[j]=0$ for $j \in[16]$. See proof 19 .

The Non-Constant Bits of Q_{7} :
$\overline{Q_{7}[j]}=+1, j \in[30-26,10-6,4-0]$

- To obtain $f_{7}[j]=0$, we require $Q_{5}[j]=Q_{6}[j]$ for $j \in[30-28,26,4,3,1,0]$. See proof 12 .
- To obtain $f_{7}[j]=+1$, we require $Q_{6}[j]=1$ for $j \in[10]$. See proof 28 .
- To obtain $f_{7}[j]=0$, we require $Q_{6}[j]=0$ for $j \in[9-7]$. See proof 2^{7}.
- To obtain $f_{7}[j]=0$, we need no requirements for $Q_{7}[6]$. See proof 9 .
- To obtain $f_{7}[j]=-1$, we require $Q_{5}[j]=1$ and $Q_{6}[j]=0$ for $j \in[27,2]$. See proof 15 .
$Q_{7}[j]=-1, j \in[25-23,11,5]$
- To obtain $f_{7}[j]=-1$, we require $Q_{5}[j]=0$ and $Q_{6}[j]=1$ for $j \in[25]$. See proof 17 .
- To obtain $f_{7}[j]=0$, we require $Q_{5}[j]=Q_{6}[j]$ for $j \in[24]$. See proof 13 .
- To obtain $f_{7}[j]=0$, we require $Q_{5}[j]=0$ for $j \in[23]$. See proof 26 .
- To obtain $f_{7}[j]=0$, we require $Q_{6}[j]=1$ for $j \in[11]$. See proof 29 .
- To obtain $f_{7}[j]=+1$, we require $Q_{5}[j]=1$ and $Q_{6}[j]=0$ for $j \in[5]$. See proof 16 .
$Q_{7}[j]= \pm 1, j \in[31]$
- To obtain $f_{9}[j]=1$, we require $Q_{7}[j]=Q_{6}[j] Q_{5}[j]$ for $j \in[31]$. See proof 2 .

Summary of the conditions for step 7:
$-Q_{5}[25,23]=Q_{6}[9,8,5,2]=Q_{7}[30-26,16,10-6,4-0]=0$
$-Q_{5}[5,2]=Q_{6}[27,25,11,10]=Q_{7}[25-17,15-11,5]=1$
$-Q_{5}[30-28,26,24,4,3,1,0]=Q_{6}[30-28,26,24,4,3,1,0]$
$-Q_{7}[31]=\overline{Q_{6}[31] \oplus Q_{5}[31]}$
Step 8:
We have $Q_{6}= \pm 2^{31}+2^{23}-2^{6}, Q_{7}=-2^{27}+2^{23}-2^{6}-2^{0}$, and $Q_{8}=-2^{23}-2^{17}-2^{15}+2^{0}$, and we want to obtain $f_{8}= \pm 2^{31}-2^{24}+2^{16}+2^{10}+2^{6}+2^{0}$.

Obtaining the Correct Q_{8} :
$-Q_{8}[19-17,15,0]=0$
$-Q_{8}[23,20,16]=1$
The Constant Bits of Q_{8} :
$\overline{Q_{8}[j]}=0, j \in[31-24,22,21,14-1]$

- To obtain $f_{8}[j]=1$, we need no requirements for $Q_{8}[31]$. See proof 3 .
- To obtain $f_{8}[j]=0$, we require $Q_{8}[j]=0$ for $j \in[30-26,9,7,4-1]$. See proof 22 .
- To obtain $f_{8}[j]=0$, we require $Q_{8}[j]=0$ for $j \in[25,11,5]$. See proof 24 .
- To obtain $f_{8}[j]=-1$, we require $Q_{8}[j]=1$ for $j \in[24]$. See proof 25 .
- To obtain $f_{8}[j]=+1$, we require $Q_{8}[j]=1$ for $j \in[10,8]$. See proof 23 .
- To obtain $f_{8}[j]=+1$, we require $Q_{8}[j]=1$ for $j \in[6]$. See proof 32 .
- To obtain $f_{8}[j]=0$, we need no requirements for $Q_{8}[22,21,14-12]$.

The Non-Constant Bits of Q_{8} :
$\overline{Q_{8}[j]}=+1, j \in[19-17,15,0]$

- To obtain $f_{8}[j]=0$, we require $Q_{6}[j]=Q_{7}[j]$ for $j \in[19-17,15]$. See proof 12 .
- To obtain $f_{8}[j]=0$, we require $Q_{6}[j]=1$ for $j \in[0]$. See proof 35 .
$Q_{8}[j]=-1, j \in[23,20,16]$
- To obtain $f_{8}[j]=0$, we need no requirements for $Q_{8}[23]$. See proof 10 .
- To obtain $f_{8}[j]=0$, we require $Q_{6}[j]=Q_{7}[j]$ for $j \in[20]$. See proof 13 .
- To obtain $f_{8}[j]=+1$, we require $Q_{6}[j]=1$ and $Q_{7}[j]=0$ for $j \in[16]$. See proof 16 .

Summary of the conditions for step 8:
$-Q_{7}[16]=Q_{8}[30-25,19-17,15,11,9,7,5-0]=0$
$-Q_{6}[16,0]=Q_{7}[0]=Q_{8}[24,23,20,16,10,8,6]=1$
$-Q_{6}[20-17,15]=Q_{7}[20-17,15]$

Step 9:
We have $Q_{7}=-2^{27}+2^{23}-2^{6}-2^{0}$, $Q_{8}=-2^{23}-2^{17}-2^{15}+2^{0}$, and $Q_{9}= \pm 2^{31}-2^{6}+2^{0}$, and we want to obtain $f_{9}= \pm 2^{31}+2^{26}-2^{23}-2^{20}+2^{6}+2^{0}$.
$\underline{\text { Obtaining the Correct } Q_{9} \text { : }}$
$-Q_{9}[7,6,1]=0$
$-Q_{9}[8,0]=1$
The Constant Bits of Q_{9} :
$\overline{Q_{9}[j]}=0, j \in[30-9,5-2]$

- To obtain $f_{9}[j]=0$, we require $Q_{9}[j]=1$ for $j \in[30-27,10,9,4-2]$. See proof 18 .
- To obtain $f_{9}[j]=+1$, we require $Q_{9}[j]=0$ for $j \in[26]$. See proof 19 .
- To obtain $f_{9}[j]=0$, we require $Q_{9}[j]=1$ for $j \in[25,24,11,5]$. See proof 20.
- To obtain $f_{9}[j]=-1$, we need no requirements for $Q_{9}[23]$. See proof 34 .
- To obtain $f_{9}[j]=-1$, we require $Q_{9}[j]=1$ for $j \in[20]$. See proof 25 .
- To obtain $f_{9}[j]=0$, we require $Q_{9}[j]=0$ for $j \in[19-17,15]$. See proof 22 .
- To obtain $f_{9}[j]=0$, we require $Q_{9}[j]=0$ for $j \in[16]$. See proof 24 .
- To obtain $f_{9}[j]=0$, we need no requirements for $Q_{9}[22,21,14-12]$.

The Non-Constant Bits of Q_{9} :
$\overline{Q_{9}}[j]=+1, j \in[7,6,1]$

- To obtain $f_{9}[j]=0$, we require $Q_{8}[j]=0$ for $j \in[7,1]$. See proof 2^{7}.
- To obtain $f_{9}[j]=+1$, we require $Q_{8}[j]=1$ for $j \in[6]$. See proof 28 .
$Q_{9}[j]=-1, j \in[8,0]$
- To obtain $f_{9}[j]=0$, we require $Q_{8}[j]=1$ for $j \in[8]$. See proof 29 .
- To obtain $f_{9}[j]=+1$, we need no requirements for $Q_{9}[0]$. See proof 8 .
$Q_{9}[j]= \pm 1, j \in[31]$
- To obtain $f_{9}[j]=1$, we require $Q_{9}[j]=Q_{8}[j] Q_{7}[j]$ for $j \in[31]$. See proof 4 .

Summary of the conditions for step 9:
$-Q_{8}[7,1]=Q_{9}[26,19-15,7,6,1]=0$
$-Q_{8}[8,6]=Q_{9}[30-27,25,24,20,11-8,5-2,0]=1$
$-Q_{9}[31]=\overline{Q_{8}[31] \oplus Q_{7}[31]}$
Step 10:
We have $Q_{8}=-2^{23}-2^{17}-2^{15}+2^{0}, Q_{9}= \pm 2^{31}-2^{6}+2^{0}$, and $Q_{10}= \pm 2^{31}+2^{12}$, and we want to obtain $f_{10}=-2^{23}+2^{13}+2^{6}+2^{0}$.

Obtaining the Correct Q_{10} :

$$
-Q_{10}[13]=0
$$

$-Q_{10}[12]=1$
The Constant Bits of Q_{10} :
$\overline{Q_{10}[j]}=0, j \in[30-14,11-0]$

- To obtain $f_{10}[j]=-1$, we require $Q_{10}[j]=0$ for $j \in[23]$. See proof 21 .
- To obtain $f_{10}[j]=0$, we require $Q_{10}[j]=1$ for $j \in[20,16]$. See proof 20 .
- To obtain $f_{10}[j]=0$, we require $Q_{10}[j]=1$ for $j \in[19-17,15]$. See proof 18 .
- To obtain $f_{10}[j]=0$, we require $Q_{10}[j]=0$ for $j \in[8]$. See proof 24 .
- To obtain $f_{10}[j]=0$, we require $Q_{10}[j]=0$ for $j \in[7,1]$. See proof 22 .
- To obtain $f_{10}[j]=+1$, we require $Q_{10}[j]=1$ for $j \in[6]$. See proof 23 .
- To obtain $f_{10}[j]=+1$, we require $Q_{10}[j]=0$ for $j \in[0]$. See proof 37 .
- To obtain $f_{10}[j]=0$, we need no requirements for $Q_{10}[30-24,22,2114,11-9,5-2]$.

The Non-Constant Bits of Q_{10} :
$\overline{Q_{10}[j]}=+1, j \in[13]$

- To obtain $f_{10}[j]=+1$, we require $Q_{8}[j]=0$ and $Q_{9}[j]=1$ for $j \in[13]$. See proof 14 .
$Q_{10}[j]=-1, j \in[12]$
- To obtain $f_{10}[j]=0$, we require $Q_{8}[j]=Q_{9}[j]$ for $j \in[12]$. See proof 13 .
$Q_{10}[j]= \pm 1, j \in[31]$
- To obtain $f_{10}[j]=0$, we require $Q_{10}[31]=Q_{9}[31] Q_{8}[31]$ for $j \in[31]$. See proof 2 .

Summary of the conditions for step 10:
$-Q_{8}[13]=Q_{10}[23,13,8,7,1,0]=0$
$-Q_{9}[13]=Q_{10}[20-15,12,6]=1$
$-Q_{8}[12]=Q_{9}[12]$
$-Q_{10}[31]=\overline{Q_{9}[31] \oplus Q_{8}[31]}$
Step 11:
We have $Q_{9}= \pm 2^{31}-2^{6}+2^{0}, Q_{10}= \pm 2^{31}+2^{12}$, and $Q_{11}=2^{31}+2^{30}$, and we want to obtain $f_{11}=-2^{8}+2^{0}$.
$\underline{\text { Obtaining the Correct } Q_{11} \text { : }}$
$-Q_{11}[30]=0$
The Constant Bits of Q_{11} :
$\overline{Q_{11}[j]}=0, j \in[29-0]$

- To obtain $f_{11}[j]=0$, we require $Q_{11}[j]=0$ for $j \in[13]$. See proof 22 .
- To obtain $f_{11}[j]=0$, we require $Q_{11}[j]=0$ for $j \in[12]$. See proof 24 .
- To obtain $f_{11}[j]=-1$, we require $Q_{11}[j]=0$ for $j \in[8,0]$. See proof 21 .
- To obtain $f_{11}[j]=0$, we require $Q_{11}[j]=1$ for $j \in[7,6,1]$. See proof 18 .
- To obtain $f_{11}[j]=0$, we need no requirements for $Q_{11}[29-14,11-9,5-2]$.

The Non-Constant Bits of Q_{11} :
$\overline{Q_{11}[j]}=+1, j \in[30]$

- To obtain $f_{11}[j]=0$, we require $Q_{9}[j]=Q_{10}[j]$ for $j \in[30]$. See proof 12 .
$Q_{11}[j]= \pm 1, j \in[31]$
- To obtain $f_{11}[j]=0$, we require $Q_{9}[j]=Q_{10}[j]$ for $j \in[31]$. See proof 5 . Note that since we already have $Q_{10}[31]=Q_{9}[31] Q_{8}[31]$ from step 10 , we obtain $Q_{8}[31]=0$.

Summary of the conditions for step 11:
$-Q_{8}[31]=Q_{11}[13,12,8,0]=0$
$-Q_{11}[7,6,1]=1$
$-Q_{9}[30]=Q_{10}[30]$
$-Q_{9}[31]=\overline{Q_{10}}[31]$
Step 12:
We have $Q_{10}= \pm 2^{31}+2^{12}, Q_{11}= \pm 2^{31}+2^{30}$, and $Q_{12}= \pm 2^{31}-2^{13}-2^{7}$, and we want to obtain f_{12} $= \pm 2^{31}+2^{17}+2^{7}$.

Obtaining the Correct Q_{12} :
$-Q_{12}[18-13,7]=0$
$-Q_{12}[19,8]=1$
The Constant Bits of Q_{12} :
$\left.\overline{Q_{12}[j]=0, j \in[30-20,12}-9,6-0\right]$

- To obtain $f_{12}[j]=0$, we require $Q_{12}[j]=0$ for $j \in[30]$. See proof 22 .
- To obtain $f_{12}[j]=0$, we require $Q_{12}[j]=1$ for $j \in[12]$. See proof 20 .
- To obtain $f_{12}[j]=0$, we need no requirements for $Q_{12}[29-20,11-9,6-0]$.

The Non-Constant Bits of Q_{12} :
$\overline{Q_{12}[j]}=+1, j \in[18-13,7]$

- To obtain $f_{12}[j]=-1$, we require $Q_{10}[j]=1$ and $Q_{11}[j]=0$ for $j \in[18,17]$. See proof 15 .
- To obtain $f_{12}[j]=0$, we require $Q_{10}[j]=Q_{11}[j]$ for $j \in[16-14]$. See proof 12 .
- To obtain $f_{12}[j]=0$, we require $Q_{11}[j]=0$ for $j \in[13]$. See proof 2^{7}.
- To obtain $f_{12}[j]=+1$, we require $Q_{10}[j]=0$ and $Q_{11}[j]=1$ for $j \in[7]$. See proof 14 .
$Q_{12}[j]=-1, j \in[19,8]$
- To obtain $f_{12}[j]=+1$, we require $Q_{10}[j]=1$ and $Q_{11}[j]=0$ for $j \in[19]$. See proof 16 .
- To obtain $f_{12}[j]=0$, we require $Q_{10}[j]=Q_{11}[j]$ for $j \in[8]$. See proof 13 .
$Q_{12}[j]= \pm 1, j \in[31]$
- To obtain $f_{12}[j]=1$, we require $Q_{10}[j]=Q_{11}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 12 :
$-Q_{11}[19-17,13]=Q_{12}[30,18-13,7]=0$
$-Q_{10}[19-17]=Q_{12}[19,12,8]=1$
$-Q_{10}[31,16-14,8,7]=Q_{11}[31,16-14,8,7]$
Step 13:
We have $Q_{11}= \pm 2^{31}+2^{30}, Q_{12}= \pm 2^{31}-2^{13}-2^{7}$, and $Q_{13}= \pm 2^{31}+2^{24}$, and we want to obtain f_{13} $= \pm 2^{31}-2^{13}$.

Obtaining the Correct Q_{13} :
$-Q_{13}[25]=0$

- $Q_{13}[24]=1$

The Constant Bits of Q_{13} :
$\overline{Q_{13}[j]}=0, j \in[30-26,23-0]$

- To obtain $f_{13}[j]=0$, we require $Q_{13}[j]=1$ for $j \in[30]$. See proof 18 .
- To obtain $f_{13}[j]=-1$, we require $Q_{13}[j]=1$ for $j \in[19]$. See proof 25 .
- To obtain $f_{13}[j]=+1$, we require $Q_{13}[j]=1$ for $j \in[18-13]$. See proof 23 .
- To obtain $f_{13}[j]=0$, we require $Q_{13}[j]=0$ for $j \in[8]$. See proof 24 .
- To obtain $f_{13}[j]=0$, we require $Q_{13}[j]=0$ for $j \in[7]$. See proof 22 .
- To obtain $f_{13}[j]=0$, we need no requirements for $Q_{13}[29-26,23-20,12-9,6-0]$.

The Non-Constant Bits of Q_{13} :
$\overline{Q_{13}[j]}=+1, j \in[25]$

- To obtain $f_{13}[j]=0$, we require $Q_{11}[j]=Q_{12}[j]$ for $j \in[25]$. See proof 12 .
$Q_{13}[j]=-1, j \in[24]$
- To obtain $f_{13}[j]=0$, we require $Q_{11}[j]=Q_{12}[j]$ for $j \in[24]$. See proof 13 .
$Q_{13}[j]= \pm 1, j \in[31]$
- To obtain $f_{13}[j]=1$, we require $Q_{11}[j]=Q_{12}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 13:

- $Q_{13}[25,8,7]=0$
$-Q_{13}[30,24,19-13]=1$
$-Q_{11}[31,25,24]=Q_{12}[31,25,24]$
Step 14:
We have $Q_{12}= \pm 2^{31}-2^{13}-2^{7}, Q_{13}= \pm 2^{31}+2^{24}$, and $Q_{14}= \pm 2^{31}$, and we want to obtain $f_{14}= \pm 2^{31}+2^{18}$.
Obtaining the Correct Q_{14} : No conditions required
The Constant Bits of Q_{14} :
$\overline{Q_{14}[j]}=0, j \in[30-0]$
- To obtain $f_{14}[j]=0$, we require $Q_{14}[j]=0$ for $j \in[25]$. See proof 22 .
- To obtain $f_{14}[j]=0$, we require $Q_{14}[j]=0$ for $j \in[24]$. See proof 24 .
- To obtain $f_{14}[j]=0$, we require $Q_{14}[j]=1$ for $j \in[19,8]$. See proof 20 .
- To obtain $f_{14}[j]=+1$, we require $Q_{14}[j]=0$ for $j \in[18]$. See proof 19 .
- To obtain $f_{14}[j]=0$, we require $Q_{14}[j]=1$ for $j \in[17-13,7]$. See proof 18 .
- To obtain $f_{14}[j]=0$, we need no requirements for $Q_{14}[30-26,23-20,12-9,6-0]$.

The Non-Constant Bits of Q_{14} :
$\overline{Q_{14}[j]}= \pm 1, j \in[31]$

- To obtain $f_{14}[j]=1$, we require $Q_{12}[j]=Q_{13}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 14:

- $Q_{14}[25,24,18]=0$
$-Q_{14}[19,17-13,8,7]=1$
$-Q_{12}[31]=Q_{13}[31]$
Step 15:
We have $Q_{13}= \pm 2^{31}+2^{24}, Q_{14}= \pm 2^{31}$, and $Q_{15}= \pm 2^{31}-2^{15}+2^{3}$, and we want to obtain $f_{15}= \pm 2^{31}+2^{25}$.
Obtaining the Correct Q_{15} :
$-Q_{15}[3]=0$
$-Q_{15}[15]=1$
The Constant Bits of Q_{15} :
$\left.\overline{Q_{15}[j]=0, j \in[30-16,14}-4,2-0\right]$
- To obtain $f_{15}[j]=0$, we require $Q_{15}[j]=0$ for $j \in[25]$. See proof 19 .
- To obtain $f_{15}[j]=0$, we require $Q_{15}[j]=1$ for $j \in[24]$. See proof 20 .
- To obtain $f_{15}[j]=0$, we need no requirements for $Q_{15}[30-26,23-16,14-4,2-0]$.

The Non-Constant Bits of Q_{15} :
$\overline{Q_{15}[j]}=+1, j \in[3]$

- To obtain $f_{15}[j]=0$, we require $Q_{13}[j]=Q_{14}[j]$ for $j \in[3]$. See proof 12 .
$Q_{15}[j]=-1, j \in[15]$
- To obtain $f_{15}[j]=0$, we require $Q_{13}[j]=Q_{14}[j]$ for $j \in[8]$. See proof 13 .
$Q_{15}[j]= \pm 1, j \in[31]$
- To obtain $f_{15}[j]=1$, we require $Q_{13}[j]=Q_{14}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 15 :

- $Q_{15}[25,3]=0$
$-Q_{15}[24,15]=1$
$-Q_{13}[31,15,3]=Q_{14}[31,15,3]$

Round 2: $f_{t}=G(X, Y, Z)$
Step 16:
We have $Q_{14}= \pm 2^{31}, Q_{15}= \pm 2^{31}-2^{15}+2^{3}$, and $Q_{16}= \pm 2^{31}-2^{29}$, and we want to obtain $f_{16}=$ $\pm 2^{31}$.

Obtaining the Correct Q_{16} :

$$
-Q_{16}[29]=1
$$

The Constant Bits of Q_{14} :
$\overline{Q_{14}[j]}=0, j \in[30-0]$

- To obtain $f_{16}[j]=0$, we require $Q_{14}[j]=0$ for $j \in[29]$. See proof 39 .
- To obtain $f_{16}[j]=0$, we require $Q_{14}[j]=1$ for $j \in[15]$. See proof 40 .
- To obtain $f_{16}[j]=0$, we require $Q_{14}[j]=1$ for $j \in[3]$. See proof 41 .
- To obtain $f_{16}[j]=0$, we need no requirements for $Q_{14}[30,28-16,14-4,2-0]$.

The Non-Constant Bits of Q_{14} :
$\overline{Q_{14}[j]}= \pm 1, j \in[31]$

- To obtain $f_{16}[j]=1$, we require $Q_{15}[j]=Q_{16}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 16 :
$-Q_{14}[29]=0$

- $Q_{14}[15,3]=1$
$-Q_{15}[31]=Q_{16}[31]$
Step 17:
We have $Q_{15}= \pm 2^{31}-2^{15}+2^{3}, Q_{16}= \pm 2^{31}-2^{29}$, and $Q_{17}= \pm 2^{31}$, and we want to obtain $f_{17}=$ $\pm 2^{31}$ 。

Obtaining the Correct Q_{17} : No conditions required
The Constant Bits of Q_{15} :
$\overline{Q_{15}[j]}=0, j \in[30-16,14-4,2-0]$

- To obtain $f_{17}[j]=0$, we require $Q_{15}[j]=1$ for $j \in[29]$. See proof 40 .
- To obtain $f_{17}[j]=0$, we need no requirements for $Q_{15}[30,28-16,14-4,2-0]$.

The Non-Constant Bits of Q_{15} :
$\overline{Q_{15}[j]}=+1, j \in[3]$

- To obtain $f_{17}[j]=0$, we require $Q_{16}[j]=Q_{17}[j]$ for $j \in[3]$. See proof 43 .
$Q_{15}[j]=-1, j \in[15]$
- To obtain $f_{17}[j]=0$, we require $Q_{16}[j]=Q_{17}[j]$ for $j \in[15]$. See proof 42 .
$Q_{15}[j]= \pm 1, j \in[31]$
- To obtain $f_{17}[j]=1$, we require $Q_{16}[j]=Q_{17}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 17:

- $Q_{15}[29]=1$
- $Q_{16}[31,15,3]=Q_{17}[31,15,3]$

Step 18:
We have $Q_{16}= \pm 2^{31}-2^{29}, Q_{17}= \pm 2^{31}$, and $Q_{18}= \pm 2^{31}$, and we want to obtain $f_{18}= \pm 2^{31}$.
Obtaining the Correct Q_{18} : No conditions required
The Constant Bits of Q_{16} :
$\overline{Q_{16}[j]=0, j \in[30,28-0]}$

- To obtain $f_{18}[j]=0$, we need no requirements for $Q_{16}[30,28-0]$.

The Non-Constant Bits of Q_{16} :
$\overline{Q_{16}[j]=-1, j \in[29]}$

- To obtain $f_{18}[j]=0$, we require $Q_{17}[j]=Q_{18}[j]$ for $j \in[15]$. See proof 42 .
$Q_{16}[j]= \pm 1, j \in[31]$
- To obtain $f_{18}[j]=1$, we require $Q_{17}[j]=Q_{18}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 18:

- $Q_{17}[31,29]=Q_{18}[31,29]$

Step 19:
We have $Q_{17}= \pm 2^{31}, Q_{18}= \pm 2^{31}$, and $Q_{19}= \pm 2^{31}+2^{17}$, and we want to obtain $f_{19}= \pm 2^{31}$.
Obtaining the Correct Q_{19} :

- $Q_{19}[17]=0$

The Constant Bits of Q_{17} :

- To obtain $f_{19}[j]=0$, we require $Q_{17}[j]=0$ for $j \in[17]$. See proof 44 .
- To obtain $f_{19}[j]=0$, we need no requirements for $Q_{17}[30-18,16-0]$.

The Non-Constant Bits of Q_{17} :
$\overline{Q_{17}[j]=} \pm 1, j \in[31]$

- To obtain $f_{19}[j]=1$, we require $Q_{18}[j]=Q_{19}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 19:
$-Q_{17}[17]=Q_{19}[17]=0$
$-Q_{18}[31]=Q_{19}[31]$
Step 20:
We have $Q_{18}= \pm 2^{31}, Q_{19}= \pm 2^{31}+2^{17}$, and $Q_{20}= \pm 2^{31}$, and we want to obtain $f_{20}= \pm 2^{31}$.
Obtaining the Correct Q_{20} : No conditions required
The Constant Bits of Q_{18} :
$Q_{18}[j]=0, j \in[30-0]$

- To obtain $f_{20}[j]=0$, we require $Q_{18}[j]=1$ for $j \in[17]$. See proof 41 .
- To obtain $f_{20}[j]=0$, we need no requirements for $Q_{18}[30-18,16-0]$.

The Non-Constant Bits of Q_{18} :
$\overline{Q_{18}}[j]= \pm 1, j \in[31]$

- To obtain $f_{20}[j]=1$, we require $Q_{19}[j]=Q_{20}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 20:
$-Q_{18}[17]=1$
$-Q_{19}[31]=Q_{20}[31]$
Step 21:
We have $Q_{19}= \pm 2^{31}+2^{17}, Q_{20}= \pm 2^{31}$, and $Q_{21}= \pm 2^{31}$, and we want to obtain $f_{21}= \pm 2^{31}$.
Obtaining the Correct Q_{21} : No conditions required
The Constant Bits of Q_{19} :
$\overline{Q_{19}[j]}=0, j \in[30-18,16-0]$

- To obtain $f_{21}[j]=0$, we need no requirements for $Q_{19}[30-18,16-0]$.

The Non-Constant Bits of Q_{19} :
$\overline{Q_{19}}[j]=+1, j \in[17]$

- To obtain $f_{21}[j]=0$, we require $Q_{20}[j]=Q_{21}[j]$ for $j \in[17]$. See proof 43 .
$Q_{19}[j]= \pm 1, j \in[31]$
- To obtain $f_{21}[j]=1$, we require $Q_{20}[j]=Q_{21}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 21:
$-Q_{20}[31,17]=Q_{21}[31,17]$

Step 22:
We have $Q_{20}= \pm 2^{31}, Q_{21}= \pm 2^{31}$, and $Q_{22}= \pm 2^{31}$, and we want to obtain $f_{22}= \pm 2^{31}$.
Obtaining the Correct Q_{22} : No conditions required
The Constant Bits of Q_{20} :
$\overline{Q_{20}[j]}=0, j \in[30-0]$

- To obtain $f_{22}[j]=0$, we need no requirements for $Q_{20}[30-0]$.

The Non-Constant Bits of Q_{20} :
$\overline{Q_{20}[j]}= \pm 1, j \in[31]$

- To obtain $f_{22}[j]=1$, we require $Q_{21}[j]=Q_{22}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 22:
$-Q_{21}[31]=Q_{22}[31]$
Step 23:
We have $Q_{21}= \pm 2^{31}, Q_{22}= \pm 2^{31}$, and $Q_{23}=0$, and we want to obtain $f_{23}=0$.
Obtaining the Correct Q_{23} : No conditions required
The Constant Bits of Q_{21} :
$\overline{Q_{21}[j]}=0, j \in[30-0]$

- To obtain $f_{23}[j]=0$, we need no requirements for $Q_{21}[30-0]$.

The Non-Constant Bits of Q_{21} :
$\overline{Q_{21}[j]}= \pm 1, j \in[31]$

- To obtain $f_{23}[j]=0$, we require $Q_{23}[j]=0$ for $j \in[31]$. See proof 45 .

Summary of the conditions for step 23:

$$
-Q_{23}[31]=0
$$

Step 24:
We have $Q_{22}= \pm 2^{31}, Q_{23}=0$, and $Q_{24}=0$, and we want to obtain $f_{24}= \pm 2^{31}$.
$\underline{\text { Obtaining the Correct } Q_{24} \text { : No conditions required }}$
The Constant Bits of Q_{22} :
$\overline{Q_{22}[j]}=0, j \in[30-0]$

- To obtain $f_{24}[j]=0$, we need no requirements for $Q_{22}[30-0]$.

The Non-Constant Bits of Q_{22} :
$\overline{Q_{22}[j]}= \pm 1, j \in[31]$

- To obtain $f_{24}[j]=1$, we require $Q_{24}[j]=1$ for $j \in[31]$. See proof 46 .

Summary of the conditions for step 24:

$$
-Q_{24}[31]=0
$$

Steps 25 to 31 :
We have $Q_{t-2}=0, Q_{t-1}=0$, and $Q_{t}=0$, so we will obtain $f_{t}=0$. There are no conditions for these steps.

Round 3: $f_{t}=H(X, Y, Z)$
In round 3 , the only differences in the Q_{t} occur in the most significant bit. The sign of the most significant bit is important only when it is rotated to some other bit position. However, during round 3, the differences in the most significant bits are always cancelled out by differences in the most significant bit in either f_{t}, Q_{t-3}, or W_{t}. Therefore, in round 3 , the sign on the difference the most significant bit does not matter.

Steps 32 to 34 :
We have $Q_{t-2}=0, Q_{t-1}=0$, and $Q_{t}=0$, so we will obtain $f_{t}=0$. There are no conditions for these steps.

Step 35:
We have $Q_{33}=0, Q_{34}=0$, and $Q_{35}= \pm 2^{31}$, so we will obtain $f_{35}= \pm 2^{31}$. See proof 47 .
Step 36:
We have $Q_{34}=0, Q_{35}= \pm 2^{31}$, and $Q_{36}= \pm 2^{31}$, so we will obtain $f_{36}=0$. See proof 48 .
Steps 37 to 47:
We have $Q_{t-2}= \pm 2^{31}, Q_{t-1}= \pm 2^{31}$, and $Q_{t}= \pm 2^{31}$, so we will obtain $f_{t}= \pm 2^{31}$. See proof 49 .
Round 4: $f_{t}=I(X, Y, Z)$
The values of Q46 and Q47 each have two possibilities, $\left(\Delta Q_{46}, \Delta Q_{47}\right)=(+1,-1)$. Thus, there are four combinations of $\left(\Delta Q_{46}, \Delta Q_{47}\right)$. In $[7],\left(\Delta Q_{46}, \Delta Q_{47}\right)=(+1,-1)$ were chosen as the initial values for the fourth round of the first iteration. Thus, we must impose two conditions:

$$
\begin{aligned}
& -\Delta Q_{46}=+1 \Rightarrow Q_{46}=0 \\
& -\Delta Q_{47}=-1 \Rightarrow Q_{47}=1
\end{aligned}
$$

Steps 48 to 49 :
We have $\Delta Q_{t-2}= \pm 2^{31}, \Delta Q_{t-1}= \pm 2^{31}$, and $\Delta Q_{t}= \pm 2^{31}$, and we want to obtain $\Delta f_{t}= \pm 2^{31}$. Thus, we require that $\Delta Q_{t-2}=\Delta Q_{t} \Rightarrow Q_{t-2}=Q_{t}$. See proof 50 .

Step 50:
We have $\Delta Q_{48}= \pm 2^{31}, \Delta Q_{49}= \pm 2^{31}$, and $\Delta Q_{50}= \pm 2^{31}$, and we want to obtain $\Delta f_{50}=0$. Thus, we require that $\Delta Q_{48}=-\Delta Q_{50} \Rightarrow Q_{48}=\overline{Q_{50}}$. See proof 51 .

Steps 51 to 59:
We have $\Delta Q_{t-2}= \pm 2^{31}, \Delta Q_{t-1}= \pm 2^{31}$, and $\Delta Q_{t}= \pm 2^{31}$, and we want to obtain $\Delta f_{t}= \pm 2^{31}$. Thus, we require that $\Delta Q_{t-2}=\Delta Q_{t} \Rightarrow Q_{t-2}=Q_{t}$. See proof 50 .

Step 60:
We have $\Delta Q_{58}= \pm 2^{31}, \Delta Q_{59}= \pm 2^{31}$, and $\Delta Q_{60}= \pm 2^{31}$, and we want to obtain $\Delta f_{60}=0$. Thus, we require that $\Delta Q_{58}=-\Delta Q_{60} \Rightarrow Q_{58}=\overline{Q_{60}}$. See proof 51 .

Step 61:
We have $\Delta Q_{59}= \pm 2^{31}, \Delta Q_{60}= \pm 2^{31}$, and $\Delta Q_{61}= \pm 2^{31}$, and we want to obtain $\Delta f_{61}= \pm 2^{31}$. Thus, we require that $\Delta Q_{59}=\Delta Q_{61} \Rightarrow Q_{59}=Q_{61}$. See proof 50 .

Step 62:
Obtaining the Correct ΔQ_{62} :
$-Q_{62}[25]=0$

We have $\Delta Q_{60}=2^{31}, \Delta Q_{61}=2^{31}$, and $\Delta Q_{62}=2^{31}+2^{25}$, and we want to obtain $\Delta f_{62}=2^{31}$. Thus, we must impose two conditions. First, to obtain $\Delta f_{62}= \pm 1$, we require that $\Delta Q_{60}=\Delta Q_{62} \Rightarrow Q_{60}=Q_{62}$. See proof 50 . Second, to obtain $f_{62}[25]=0$, we require that $Q_{60}[25]=0$. See proof 52 .

Step 63:
Obtaining the Correct Q_{63} :
$-Q_{63}[25]=0$

We have $Q_{61}=2^{31}, Q_{62}=2^{31}+2^{25}$, and $Q_{63}=2^{31}+2^{25}$, and we want to obtain $f_{63}=2^{31}$. Thus, we must impose two conditions. First, to obtain $f_{63}[31]= \pm 1$, we require that $Q_{61}=Q_{63} \Rightarrow Q_{61}=Q_{63}$. See proof 50 . Second, to obtain $f_{63}[25]=0$, we require that $Q_{61}[25]=1$. See proof 53 .

7.2 Conditions for the Propagation of the Differences Through the f_{t} Functions for the Second Block

Round 1: $f_{t}=F(X, Y, Z)$
The values of Q_{-2} and Q_{-1} in the second iteration are the same as the values of Q_{62} and Q_{63} in the first iteration, respectively. But Q_{-1} is now described as $\pm 2^{31}+2^{26}-2^{25}$ to ensure that the second block differential holds. Since we have rewritten Q_{-1} in this manner, we must impose the following conditions:
$-Q_{-1}[26]=0$
$-Q_{-1}[25]=1$

Step 0:
We have $Q_{-2}= \pm 2^{31}+2^{25}, Q_{-1}= \pm 2^{31}+2^{25}$, and $Q_{0}= \pm 2^{31}+2^{25}$, and we want to obtain $f_{0}=$ $\pm 2^{31}$.

Obtaining the Correct Q_{0} :
$-Q_{0}[25]=0$
The Constant Bits of Q_{0} :
$\overline{Q_{0}[j]}=0, j \in[30-26,24-0]$

- To obtain $f_{0}[j]=0$, we require $Q_{0}[j]=0$ for $Q_{0}[26]$. See proof 22 .
- To obtain $f_{0}[j]=0$, no conditions are required for $Q_{0}[30-27,24-0]$.

The Non-Constant Bits of $Q_{0}: Q_{0}[j]=+1, j \in[25]$

- To obtain $f_{0}[j]=0$, no conditions are required for $Q_{0}[25]$. See proof 9 .
$Q_{0}[j]= \pm 1, j \in[31]$
- To obtain $f_{0}[j]=1$, we require $Q_{-2}[j]=Q_{-1}[j]$ for $j \in[31]$. See proof 6 .
$\underline{\text { Summary of the conditions for step } 0}$
$-\Delta Q_{0}[26,25]=0$
$-Q_{-2}[31]=Q_{-1}[31]$
Step 1:
We have $Q_{-1}= \pm 2^{31}+2^{25}, Q_{0}= \pm 2^{31}+2^{25}$, and $Q_{1}= \pm 2^{31}+2^{25}$, and we want to obtain $f_{1}=$ $\pm 2^{31}$.

Obtaining the Correct Q_{1} :

$$
-Q_{1}[25]=0
$$

The Constant Bits of Q_{1} :
$\overline{Q_{1}[j]}=0, j \in[30-26,24-0]$

- To obtain $f_{1}[j]=0$, no conditions are required for $Q_{1}[30-26,24-0]$.

The Non-Constant Bits of Q_{1} :
$\overline{Q_{1}[j]}=+1, j \in[25]$

- To obtain $f_{1}[j]=0$, no conditions are required for $Q_{1}[25]$. See proof 11 .
$Q_{1}[j]= \pm 1, j \in[31]$
- To obtain $f_{1}[j]=1$, we require $Q_{-1}[j]=Q_{0}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 1:
$-Q_{1}[25]=0$
$-Q_{-1}[31]=Q_{0}[31]$

Step 2:

We have $Q_{0}= \pm 2^{31}+2^{25}$, $Q_{1}= \pm 2^{31}+2^{25}$, and $Q_{2}= \pm 2^{31}+2^{25}+2^{5}$, and we want to obtain f_{2} $=+2^{25}$.

Obtaining the Correct Q_{2} :
$-Q_{2}[25,5]=0$
The Constant Bits of Q_{2} :
$\overline{Q_{2}[j]=0, j \in[30-26,24-6,4-0]}$

- To obtain $f_{2}[j]=0$, no conditions are required for $Q_{2}[30-26,24-6,4-0]$.

The Non-Constant Bits of Q_{2} :
$\overline{Q_{2}[j]}=+1, j \in[25,5]$

- To obtain $f_{2}[j]=+1$, no conditions are required for $Q_{2}[25]$. See proof 7 .
- To obtain $f_{2}[j]=0$, we require $Q_{0}[j]=Q_{1}[j]$ for $j \in[5]$. See proof 12 .
$Q_{2}[j]= \pm 1, j \in[31]$
- To obtain $f_{2}[j]=0$, we require $Q_{0}[j]=Q_{1}[j]$ for $j \in[31]$. See proof 5 .

Summary of the conditions for step 2:
$-Q_{2}[25,5]=0$
$-Q_{0}[5]=Q_{1}[5]$
$-Q_{0}[31]=\overline{Q_{1}}[31]$
Step 3:
We have $Q_{1}= \pm 2^{31}+2^{25}, Q_{2}= \pm 2^{31}+2^{25}+2^{5}$, and $Q_{3}= \pm 2^{31}+2^{25}+2^{16}+2^{11}+2^{5}$, and we want to obtain $f_{3}= \pm 2^{31}-2^{27}+2^{25}-2^{21}-2^{11}$.

Obtaining the Correct Q_{3} :
$-Q_{3}[30,21,12,7]=0$
$-Q_{3}[29-25,20-16,11,6,5]=1$
The Constant Bits of Q_{3} :
$\overline{Q_{3}[j]}=0, j \in[24-22,15-13,10-8,4-0]$

- To obtain $f_{3}[j]=0$, no conditions are required for $Q_{3}[24-22,15-13,10-8,4-0]$.

The Non-Constant Bits of Q_{3} :
$\overline{Q_{3}[j]}=+1, j \in[30,21,12,7]$

- To obtain $f_{3}[j]=0$, we require $Q_{1}[j]=Q_{2}[j]$ for $j \in[30,12,7]$. See proof 12 .
- To obtain $f_{3}[j]=-1$, we require $Q_{1}[j]=1$ and $Q_{2}[j]=0$ for $j \in[21]$. See proof 15 .
$Q_{3}[j]=-1, j \in[29-25,20-16,11,6,5]$
- To obtain $f_{3}[j]=0$, we require $Q_{1}[j]=Q_{2}[j]$ for $Q_{3}[29,28,20-16,6]$. See proof 13 .
- To obtain $f_{3}[j]=-1$, we require $Q_{1}[j]=0$ and $Q_{2}[j]=1$ for $j \in[27,11]$. See proof 17 .
- To obtain $f_{3}[j]=+1$, no conditions are required for $Q_{3}[25]$. See proof 8 .
- To obtain $f_{3}[j]=0$, we require $Q_{1}[j]=0$ for $j \in[5]$. See proof 26 .
$Q_{3}[j]= \pm 1, j \in[31]$
- To obtain $f_{3}[j]=1$, we require $Q_{1}[j]=Q_{2}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 3:
$-Q_{1}[27,11]=Q_{2}[21]=Q_{3}[30,21,12,7]=0$
$-Q_{1}[21]=Q_{2}[27,11]=Q_{3}[29-25,20-16,11,6,5]=1$
$-Q_{1}[31-28,26,20-16,12,7-5]=Q_{2}[31-28,26,20-16,12,7-5]$
Step 4:
We have $Q_{2}= \pm 2^{31}+2^{25}+2^{5}$, $Q_{3}= \pm 2^{31}+2^{25}+2^{16}+2^{11}+2^{5}$, and $Q_{4}= \pm 2^{31}+2^{25}+2^{5}-$ 2^{1}, and we want to obtain $f_{4}= \pm 2^{31}+2^{26}-2^{18}+2^{2}+2^{1}$.
$\underline{\text { Obtaining the Correct } Q_{4}}$:
$-Q_{4}[26,5,3-1]=0$
$-\mathrm{Q} 4[25,4]=1$
The Constant Bits of Q_{4} :
$\left.\overline{Q_{4}[j]=0, j \in[30-27,24}-6,0\right]$

- To obtain $f_{4}[j]=0$, we require $Q_{4}[j]=0$ for $j \in[30,21,12,7]$. See proof 22 .
- To obtain $f_{4}[j]=0$, we require $Q_{4}[j]=0$ for $j \in[20,19,17,16,11,6]$. See proof 24 .
- To obtain $f_{4}[j]=-1$, we require $Q_{4}[j]=1$ for $j \in[29-27,18]$. See proof 25 .
- To obtain $f_{4}[j]=0$, no conditions are required for $Q_{4}[24-22,15-13,10-8,0]$.

The Non-Constant Bits of Q4:
$\overline{Q_{4}[j]=+1, j \in[26,5,3-1]}$

- To obtain $f_{4}[j]=-1$, we require $Q_{2}[j]=1$ for $j \in[26]$. See proof 36 .
- To obtain $f_{4}[j]=0$, no conditions are required for $\mathrm{Q} 4[5]$. See proof 9 .
- To obtain $f_{4}[j]=0$, we require $Q_{2}[j]=Q_{3}[j]$ for $j \in[3]$. See proof 12 .
- To obtain $f_{4}[j]=+1$, we require $Q_{2}[j]=0$ and $Q_{3}[j]=1$ for $j \in[2,1]$. See proof 14 .
$Q_{4}[j]=-1, j \in[25,4]$
- To obtain $f_{4}[j]=0$, no conditions are required for $\mathrm{Q} 4[25]$. See proof 10 .
- To obtain $f_{4}[j]=0$, we require $Q_{2}[j]=Q_{3}[j]$ for $j \in[4]$. See proof 13 .
$Q_{4}[j]= \pm 1, j \in[31]$
- To obtain $f_{4}[j]=1$, we require $Q_{2}[j]=Q_{3}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 4:
$-Q_{2}[2,1]=Q_{4}[30,26,21-19,17,16,12,11,7-5,3-1]=0$
$-Q_{2}[26]=Q_{3}[2,1]=Q_{4}[29-27,25,18,4]=1$
$-Q_{2}[31,4,3]=Q_{3}[31,4,3]$
Step 5:
We have $Q_{3}= \pm 2^{31}+2^{25}+2^{16}+2^{11}+2^{5}$, $Q_{4}= \pm 2^{31}+2^{25}+2^{5}-2^{1}$, and $Q_{5}= \pm 2^{31}+2^{9}+2^{6}$ $+2^{0}$, and we want to obtain $f_{5}=+2^{30}+2^{27}+2^{25}-2^{20}-2^{8}-2^{6}+2^{4}$.

Obtaining the Correct Q_{5} :
$-Q_{5}[12,8,0]=0$
$-Q_{5}[11-9,7,6]=1$
The Constant Bits of Q_{5} :
$\left.\overline{Q_{5}[j]=0, j \in[30-13,5}-1\right]$

- To obtain $f_{5}[j]=0$, we require $Q_{5}[j]=1$ for $j \in[30,21]$. See proof 18 .
- To obtain $f_{5}[j]=-1$, we require $Q_{5}[j]=0$ for $j \in[29,28,20]$. See proof 21 .
- To obtain $f_{5}[j]=0$, we require $Q_{5}[j]=1$ for $j \in[27,19-16]$. See proof 20 .
- To obtain $f_{5}[j]=-1$, we require $Q_{5}[j]=0$ for $j \in[26,5]$. See proof 33 .
- To obtain $f_{5}[j]=-1$, no conditions are required for $Q_{5}[25]$. See proof 34 .
- To obtain $f_{5}[j]=-1$, we require $Q_{5}[j]=1$ for $j \in[4]$. See proof 25 .
- To obtain $f_{5}[j]=0$, we require $Q_{5}[j]=0$ for $j \in[3-1]$. See proof 22 .
- To obtain $f_{5}[j]=0$, no conditions are required for $Q_{5}[24-22,15-13]$.

The Non-Constant Bits of Q_{5} :
$\overline{Q_{5}[j]}=+1, j \in[12,8,7,0]$

- To obtain $f_{5}[j]=0$, we require $Q_{4}[j]=0$ for $j \in[12,7]$. See proof 2^{7}.
- To obtain $f_{5}[j]=-1$, we require $Q_{3}[j]=1$ and $Q_{4}[j]=0$ for $j \in[8]$. See proof 15 .
- To obtain $f_{5}[j]=0$, we require $Q_{3}[j]=Q_{4}[j]$ for $j \in[0]$. See proof 12 .
$Q_{5}[j]=-1, j \in[11-9,6]$
- To obtain $f_{5}[j]=0$, we require $Q_{4}[j]=0$ for $j \in[11,6]$. See proof 31 .
- To obtain $f_{5}[j]=0$, we require $Q_{3}[j]=Q_{4}[j]$ for $j \in[10,9]$. See proof 13 .
$Q_{5}[j]= \pm 1, j \in[31]$
- To obtain $f_{5}[j]=1$, we require $Q_{3}[j]=Q_{4}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 5:
$-Q_{4}[12,11,8,6]=\mathrm{Q} 4[7]=Q_{5}[29-26,20,12,8,5,3-0]=0$
$-Q_{3}[8]=Q_{5}[30,27,21,19-16,11-9,7,6,4]=1$
$-Q_{3}[31,10,9,0]=Q_{4}[31,10,9,0]$
Step 6:
We have $Q_{4}= \pm 2^{31}+2^{25}+2^{5}-2^{1}$, $Q_{5}= \pm 2^{31}+2^{9}+2^{6}+2^{0}$, and $Q_{6}= \pm 2^{31}-2^{20}-2^{16}$, and we want to obtain $f_{6}=-2^{25}-2^{21}-2^{16}-2^{11}-2^{10}-2^{5}+2^{3}$.

Obtaining the Correct Q_{6} :

- $Q_{6}[20,16]=0$
$-Q_{6}[21,17]=1$
The Constant Bits of Q_{6} :
$\overline{Q_{6}[j]}=0, j \in[30-22,19,18,15-0]$
- To obtain $f_{6}[j]=0$, we require $Q_{6}[j]=1$ for $j \in[26,2,1]$. See proof 18 .
- To obtain $f_{6}[j]=-1$, we require $Q_{6}[j]=0$ for $j \in[25]$. See proof 21 .
- To obtain $f_{6}[j]=0$, we require $Q_{6}[j]=0$ for $j \in[12,8,7,0]$. See proof 22 .
- To obtain $f_{6}[j]=-1$, we require $Q_{6}[j]=1$ for $j \in[11,10,6]$. See proof 25 .
- To obtain $f_{6}[j]=0$, we require $Q_{6}[j]=0$ for $j \in[9]$. See proof 24 .
- To obtain $f_{6}[j]=+1$, we require $Q_{6}[j]=0$ for $j \in[5,3]$. See proof 19 .
- To obtain $f_{6}[j]=0$, we require $Q_{6}[j]=1$ for $j \in[4]$. See proof 20 .
- To obtain $f_{6}[j]=0$, no conditions are required for $Q_{6}[30-27,24-22,19,18,15-13]$.

The Non-Constant Bits of Q_{6} :
$\overline{Q_{6}[j]}=+1, j \in[20,16]$

- To obtain $f_{6}[j]=0$, we require $Q_{4}[j]=Q_{5}[j]$ for $j \in[20]$. See proof 12 .
- To obtain $f_{6}[j]=+1$, we require $Q_{4}[j]=0$ and $Q_{5}[j]=1$ for $j \in[16]$. See proof 14 .
$Q_{6}[j]=-1, j \in[21,17]$
- To obtain $f_{6}[j]=-1$, we require $Q_{4}[j]=0$ and $Q_{5}[j]=1$ for $j \in[21,17]$. See proof 17 .
$Q_{6}[j]= \pm 1, j \in[31]$
- To obtain $f_{6}[j]=0$, we require $Q_{4}[j]=Q_{5}[j]$ for $j \in[31]$. See proof 5 .

Summary of the conditions for step 6:
$-Q_{4}[21,17,16]=Q_{6}[25,20,16,12,9-7,5-3,0]=0$
$-Q_{5}[21,17,16]=Q_{6}[26,21,17,11,10,6,4,2,1]=1$
$-Q_{4}[20]=Q_{5}[20]$
$-Q_{4}[31]=\overline{Q_{5}}[31]$
Step 7:
We have $Q_{5}= \pm 2^{31}+2^{9}+2^{6}+2^{0}$, $Q_{6}= \pm 2^{31}-2^{20}-2^{16}$, and $Q_{7}= \pm 2^{31}-2^{27}-2^{6}$, and we want to obtain $f_{7}= \pm 2^{31}-2^{27}+2^{16}$.

Obtaining the Correct Q_{7} :
$-Q_{7}[27,8-6]=0$
$-Q_{7}[28,9]=1$
The Constant Bits of Q_{7} :
$\left.\overline{Q_{7}[j]=0, j \in[30,29,26}-10,5-0\right]$

- To obtain $f_{7}[j]=0$, we require $Q_{7}[j]=0$ for $j \in[21,17]$. See proof 24 .
- To obtain $f_{7}[j]=0$, we require $Q_{7}[j]=0$ for $j \in[20]$. See proof 22 .
- To obtain $f_{7}[j]=+1$, we require $Q_{7}[j]=1$ for $j \in[16]$. See proof 23 .
- To obtain $f_{7}[j]=0$, we require $Q_{7}[j]=1$ for $j \in[12,0]$. See proof 18 .
- To obtain $f_{7}[j]=0$, we require $Q_{7}[j]=1$ for $j \in[11,10]$. See proof 20 .
- To obtain $f_{7}[j]=0$, no conditions are required for $Q_{7}[30,29,26-22,19,18,15-13,5-1]$.

The Non-Constant Bits of Q_{7} :
$\overline{Q_{7}[j]}=+1, j \in[27,8-6]$

- To obtain $f_{7}[j]=-1$, we require $Q_{5}[j]=1$ and $Q_{6}[j]=0$ for $j \in[27]$. See proof 15 .
- To obtain $f_{7}[j]=0$, we require $Q_{6}[j]=0$ for $j \in[8,7]$. See proof 2^{7}.
- To obtain $f_{7}[j]=0$, we require $Q_{6}[j]=1$ for $j \in[6]$. See proof 30 .
$Q_{7}[j]=-1, j \in[28,9]$
- To obtain $f_{7}[j]=0$, we require $Q_{5}[j]=Q_{6}[j]$ for $j \in[28]$. See proof 13 .
- To obtain $f_{7}[j]=0$, we require $Q_{6}[j]=0$ for $j \in[9]$. See proof 31 .
$Q_{7}[j]= \pm 1, j \in[31]$
- To obtain $f_{7}[j]=1$, we require $Q_{5}[j]=Q_{6}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 7 :
$-Q_{6}[27,9-7]=Q_{7}[27,21,20,17,8-6]=0$
$-Q_{5}[27]=Q_{6}[6]=Q_{7}[28,16,12-9,0]=1$
$-Q_{5}[31,28]=Q_{6}[31,28]$
Step 8:
We have $Q_{6}= \pm 2^{31}-2^{20}-2^{16}, Q_{7}= \pm 2^{31}-2^{27}-2^{6}$, and $Q_{8}= \pm 2^{31}-2^{23}-2^{17}+2^{15}$, and we want to obtain $f_{8}=+2^{25}+2^{16}-2^{6}$.

Obtaining the Correct Q_{8} :
$-Q_{8}[25-23,16]=0$
$-Q_{8}[26,17,15]=1$
The Constant Bits of Q_{8} :
$\overline{Q_{8}[j]}=0, j \in[30-27,22-18,14-0]$

- To obtain $f_{8}[j]=0$, we require $Q_{8}[j]=0$ for $j \in[28]$. See proof 24 .
- To obtain $f_{8}[j]=0$, we require $Q_{8}[j]=0$ for $j \in[27]$. See proof 22 .
- To obtain $f_{8}[j]=0$, we require $Q_{8}[j]=1$ for $j \in[21]$. See proof 20 .
- To obtain $f_{8}[j]=0$, we require $Q_{8}[j]=1$ for $j \in[20]$. See proof 18 .
- To obtain $f_{8}[j]=-1$, we require $Q_{8}[j]=1$ for $j \in[9]$. See proof 25 .
- To obtain $f_{8}[j]=+1$, we require $Q_{8}[j]=1$ for $j \in[8-6]$. See proof 23 .
- To obtain $f_{8}[j]=0$, no conditions are required for $Q_{8}[30,29,22,19,18,14-10,5-0]$.

The Non-Constant Bits of Q_{8} :
$\overline{Q_{8}[j]}=+1, j \in[25-23,16]$

- To obtain $f_{8}[j]=+1$, we require $Q_{6}[j]=0$ and $Q_{7}[j]=1$ for $j \in[25]$. See proof 14 .
- To obtain $f_{8}[j]=0$, we require $Q_{6}[j]=Q_{7}[j]$ for $j \in[24,23]$. See proof 12 .
- To obtain $f_{8}[j]=+1$, we require $Q_{7}[j]=1$ for $j \in[16]$. See proof 28 .
$Q_{8}[j]=-1, j \in[26,17,15]$
- To obtain $f_{8}[j]=0$, we require $Q_{6}[j]=Q_{7}[j]$ for $j \in[26,15]$. See proof 13 .
- To obtain $f_{8}[j]=0$, we require $Q_{7}[j]=0$ for $j \in[17]$. See proof 31 .
$Q_{8}[j]= \pm 1, j \in[31]$
- To obtain $f_{8}[j]=0$, we require $Q_{6}[j]=Q_{7}[j]$ for $j \in[31]$. See proof 5 .

Summary of the conditions for step 8:
$-Q_{6}[25]=Q_{7}[17]=Q_{8}[28,27,25-23,16]=0$
$-Q_{7}[25,16]=Q_{8}[26,21,20,17,15,9-6]=1$
$-Q_{6}[26,24,23,15]=Q_{7}[26,24,23,15]$
$-Q_{6}[31]=\overline{Q_{7}}[31]$
Step 9:
We have $Q_{7}= \pm 2^{31}-2^{27}-2^{6}$, $Q_{8}= \pm 2^{31}-2^{23}-2^{17}+2^{15}$, and $Q_{9}= \pm 2^{31}+2^{6}+2^{0}$, and we want to obtain $f_{9}= \pm 2^{31}-2^{26}+2^{16}+2^{0}$.

Obtaining the Correct Q_{9} :

- $Q_{9}[9,1]=0$
$-Q_{9}[8-6,0]=1$
The Constant Bits of Q_{9} :
$\left.\overline{Q_{9}[j]=0, j \in[30-10,5}-2\right]$
- To obtain $f_{9}[j]=0$, we require $Q_{9}[j]=1$ for $j \in[28]$. See proof 20 .
- To obtain $f_{9}[j]=0$, we require $Q_{9}[j]=1$ for $j \in[27]$. See proof 18 .
- To obtain $f_{9}[j]=-1$, we require $Q_{9}[j]=1$ for $j \in[26]$. See proof 25 .
- To obtain $f_{9}[j]=0$, we require $Q_{9}[j]=0$ for $j \in[25-23]$. See proof 22 .
- To obtain $f_{9}[j]=0$, we require $Q_{9}[j]=0$ for $j \in[17,15]$. See proof 24 .
- To obtain $f_{9}[j]=+1$, we require $Q_{9}[j]=1$ for $j \in[16]$. See proof 23 .
- To obtain $f_{9}[j]=0$, no conditions are required for $Q_{9}[30,29,22-18,14-10,5-2]$.

The Non-Constant Bits of Q_{9} :
$\overline{Q_{9}[j]}=+1, j \in[9,1]$

- To obtain $f_{9}[j]=0$, we require $Q_{8}[j]=1$ for $j \in[9]$. See proof 30 .
- To obtain $f_{9}[j]=0$, we require $Q_{7}[j]=Q_{8}[j]$ for $j \in[1]$. See proof 12 .
$Q_{9}[j]=-1, j \in[8-6,0]$
- To obtain $f_{9}[j]=0$, we require $Q_{8}[j]=1$ for $j \in[8-6]$. See proof 29 .
- To obtain $f_{9}[j]=+1$, we require $Q_{7}[j]=1$ and $Q_{8}[j]=0$ for $j \in[0]$. See proof 16 .
$Q_{9}[j]= \pm 1, j \in[31]$
- To obtain $f_{9}[j]=1$, we require $Q_{7}[j]=Q_{8}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 9:
$-Q_{8}[0]=Q_{9}[25-23,17,15,9,1]=0$
$-Q_{7}[0]=Q_{8}[9-6]=Q_{9}[28-26,15,8-6,0]=1$
$-Q_{7}[31,1]=Q_{8}[31,1]$
Step 10:
We have $Q_{8}= \pm 2^{31}-2^{23}-2^{17}+2^{15}, Q_{9}= \pm 2^{31}+2^{6}+2^{0}$, and $Q_{10}= \pm 2^{31}+2^{12}$, and we want to obtain $f_{10}= \pm 2^{31}+2^{6}$.

Obtaining the Correct Q_{10} :

$$
-Q_{10}[12]=0
$$

The Constant Bits of Q_{10} :
$\overline{Q_{10}[j]}=0, j \in[30-13,11-0]$

- To obtain $f_{10}[j]=0$, we require $Q_{10}[j]=1$ for $j \in[26,17,15]$. See proof 20 .
- To obtain $f_{10}[j]=0$, we require $Q_{10}[j]=1$ for $j \in[25-23,16]$. See proof 18 .
- To obtain $f_{10}[j]=+1$, we require $Q_{10}[j]=1$ for $j \in[9]$. See proof 23 .
- To obtain $f_{10}[j]=-1$, we require $Q_{10}[j]=1$ for $j \in[8-6]$. See proof 25 .
- To obtain $f_{10}[j]=0$, we require $Q_{10}[j]=0$ for $j \in[1]$. See proof 22 .
- To obtain $f_{10}[j]=0$, we require $Q_{10}[j]=0$ for $j \in[0]$. See proof 24 .
- To obtain $f_{10}[j]=0$, no conditions are required for $Q_{10}[30-27,22-18,14,13,11,10,5-2]$.

The Non-Constant Bits of Q_{10} :
$\overline{Q_{10}[j]}=+1, j \in[12]$

- To obtain $f_{10}[j]=0$, we require $Q_{8}[j]=Q_{9}[j]$ for $j \in[12]$. See proof 12 .
$Q_{10}[j]= \pm 1, j \in[31]$
- To obtain $f_{10}[j]=1$, we require $Q_{8}[j]=Q_{9}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 10:
$-Q_{10}[12,1,0]=0$
$-Q_{10}[26-23,17-15,9-6]=1$
$-Q_{8}[31,12]=Q_{9}[31,12]$
Step 11:
We have $Q_{9}= \pm 2^{31}+2^{6}+2^{0}, Q_{10}= \pm 2^{31}+2^{12}$, and $Q_{11}= \pm 2^{31}$, and we want to obtain $f_{11}=$ $\pm 2^{31}$.

Obtaining the Correct Q_{11} : No conditions required
The Constant Bits of Q_{11} :
$\overline{Q_{11}[j]}=0, j \in[30-0]$

- To obtain $f_{11}[j]=0$, we require $Q_{11}[j]=0$ for $j \in[12]$. See proof 22 .
- To obtain $f_{11}[j]=0$, we require $Q_{11}[j]=1$ for $j \in[9,1]$. See proof 18 .
- To obtain $f_{11}[j]=0$, we require $Q_{11}[j]=1$ for $j \in[8-6,0]$. See proof 20 .
- To obtain $f_{11}[j]=0$, no conditions are required for $Q_{11}[30-13,11,10,5-2]$.

The Non-Constant Bits of Q_{11} :
$\overline{Q_{11}[j]}= \pm 1, j \in[31]$

- To obtain $f_{11}[j]=1$, we require $Q_{9}[j]=Q_{10}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 11:
$-Q_{11}[12]=0$

- $Q_{10}[9-6,1,0]=1$
$-Q_{9}[31]=Q_{10}[31]$
Step 12:
We have $Q_{10}= \pm 2^{31}+2^{12}, Q_{11}= \pm 2^{31}$, and $Q_{12}= \pm 2^{31}-2^{13}-2^{7}$, and we want to obtain $f_{12}= \pm 2^{31}+2^{17}$.
Obtaining the Correct Q_{12} :
$-Q_{12}[18-13]=0$
$-Q_{12}[19,7]=0$
The Constant Bits of Q_{12} :
$\overline{Q_{12}[j]}=0, j \in[30-20,12-8,6-0]$
- To obtain $f_{12}[j]=0$, we require $Q_{12}[j]=1$ for $j \in[12]$. See proof 18 .
- To obtain $f_{12}[j]=0$, no conditions are required for $Q_{12}[30-20,11-8,6-0]$.

The Non-Constant Bits of Q_{12} :
$\overline{Q_{12}[j]}=+1, j \in[18-13]$

- To obtain $f_{12}[j]=+1$, we require $Q_{10}[j]=0$ and $Q_{11}[j]=1$ for $j \in[18]$. See proof 14 .
- To obtain $f_{12}[j]=-1$, we require $Q_{10}[j]=1$ and $Q_{11}[j]=0$ for $j \in[17]$. See proof 15 .
- To obtain $f_{12}[j]=0$, we require $Q_{10}[j]=Q_{11}[j]$ for $j \in[16-13]$. See proof 12 .
$Q_{12}[j]=-1, j \in[19,7]$
- To obtain $f_{12}[j]=0$, we require $Q_{10}[j]=Q_{11}[j]$ for $j \in[19,7]$. See proof 13 .
$Q_{12}[j]= \pm 1, j \in[31]$
- To obtain $f_{12}[j]=1$, we require $Q_{10}[j]=Q_{11}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 12:
$-Q_{10}[18]=Q_{11}[17]=Q_{12}[18-13]=0$
$-Q_{10}[17]=Q_{11}[18]=Q_{12}[19,12,7]=1$
$-Q_{10}[31,19,16-13,7]=Q_{11}[31,19,16-13,7]$
Step 13:
We have $Q_{11}= \pm 2^{31}, Q_{12}= \pm 2^{31}-2^{13}-2^{7}$, and $Q_{13}= \pm 2^{31}+2^{24}$, and we want to obtain $f_{13}=$ $\pm 2^{31}-2^{13}$ 。

Obtaining the Correct Q_{13} :
$-Q_{13}[30]=0$
$-Q_{13}[29-24]=0$
The Constant Bits of Q_{13} :
$\overline{Q_{13}[j]}=0, j \in[23-0]$

- To obtain $f_{13}[j]=-1$, we require $Q_{13}[j]=1$ for $j \in[19]$. See proof 25 .
- To obtain $f_{13}[j]=+1$, we require $Q_{13}[j]=1$ for $j \in[18-13]$. See proof 23 .
- To obtain $f_{13}[j]=0$, we require $Q_{13}[j]=0$ for $j \in[7]$. See proof 24 .
- To obtain $f_{13}[j]=0$, no conditions are required for $Q_{13}[23-20,12-8,6-0]$.

The Non-Constant Bits of Q_{13} :
$\overline{Q_{13}[j]}=+1, j \in[30]$

- To obtain $f_{13}[j]=0$, we require $Q_{11}[j]=Q_{12}[j]$ for $j \in[30]$. See proof 12 .
$Q_{13}[j]=-1, j \in[29-24]$
- To obtain $f_{13}[j]=0$, we require $Q_{11}[j]=Q_{12}[j]$ for $j \in[29-24]$. See proof 13 .
$Q_{13}[j]= \pm 1, j \in[31]$
- To obtain $f_{13}[j]=1$, we require $Q_{11}[j]=Q_{12}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 13:

- $Q_{13}[30,7]=0$
- $Q_{13}[29-24,19-13]=1$
$-Q_{11}[31-24]=Q_{12}[31-24]$
Step 14:
We have $Q_{11}= \pm 2^{31}-2^{13}-2^{7}, Q_{12}= \pm 2^{31}+2^{24}$, and $Q_{13}= \pm 2^{31}$, and we want to obtain $f_{13}=+2^{30}+2^{18}$.
Obtaining the Correct Q_{14} : No conditions required
The Constant Bits of Q_{14} :
$\overline{Q_{14}[j]}=0, j \in[30-0]$
- To obtain $f_{14}[j]=+1$, we require $Q_{14}[j]=1$ for $j \in[30]$. See proof 23 .
- To obtain $f_{14}[j]=0$, we require $Q_{14}[j]=0$ for $j \in[29-24]$. See proof 24 .
- To obtain $f_{14}[j]=0$, we require $Q_{14}[j]=1$ for $j \in[19,7]$. See proof 20 .
- To obtain $f_{14}[j]=+1$, we require $Q_{14}[j]=0$ for $j \in[18]$. See proof 19 .
- To obtain $f_{14}[j]=0$, we require $Q_{14}[j]=1$ for $j \in[17-13]$. See proof 18 .
- To obtain $f_{14}[j]=0$, no conditions are required for $Q_{14}[23-20,12-8,6-0]$.

The Non-Constant Bits of Q_{14} :
$\overline{Q_{14}[j]}= \pm 1, j \in[31]$

- To obtain $f_{14}[j]=0$, we require $Q_{12}[j]=Q_{13}[j]$ for $j \in[31]$. See proof 5 .

Summary of the conditions for step 14:
$-Q_{14}[30-24,7]=0$
$-Q_{14}[19-13]=1$
$-Q_{12}[31]=\overline{Q_{13}}[31]$
Step 15:
We have $Q_{13}= \pm 2^{31}+2^{24}, Q_{14}= \pm 2^{31}$, and $Q_{15}= \pm 2^{31}+2^{15}+2^{3}$, and we want to obtain $f_{15}= \pm 2^{31}-2^{25}$.
Obtaining the Correct Q_{15} :
$-Q_{15}[15,3]=0$
The Constant Bits of Q_{15} :
$\overline{Q_{15}[j]}=0, j \in[30-16,14-4,2-0]$

- To obtain $f_{15}[j]=0$, we require $Q_{15}[j]=1$ for $j \in[30]$. See proof 18 .
- To obtain $f_{15}[j]=0$, we require $Q_{15}[j]=1$ for $j \in[29-26,24]$. See proof 20 .
- To obtain $f_{15}[j]=-1$, we require $Q_{15}[j]=0$ for $j \in[25]$. See proof 21 .
- To obtain $f_{15}[j]=0$, no conditions are required for $Q_{15}[23-16,14-4,2-0]$.

The Non-Constant Bits of Q_{15} :
$\overline{Q_{15}[j]}=+1, j \in[15,3]$

- To obtain $f_{15}[j]=0$, we require $Q_{13}[j]=Q_{14}[j]$ for $j \in[15,3]$. See proof 12 .
$Q_{15}[j]= \pm 1, j \in[31]$
- To obtain $f_{15}[j]=1$, we require $Q_{13}[j]=Q_{14}[j]$ for $j \in[31]$. See proof 6 .

Summary of the conditions for step 15:
$-Q_{15}[25,15,3]=0$
$-Q_{15}[30-26,24]=1$
$-Q_{13}[31,15,3]=Q_{14}[31,15,3]$
Round 2: $f_{t}=G(X, Y, Z)$
Step 16:
We have $Q_{14}= \pm 2^{31}, Q_{15}= \pm 2^{31}+2^{15}+2^{3}$, and $Q_{16}= \pm 2^{31}-2^{29}$, and we want to obtain $f_{17}=$ $\pm 2^{31}$.

Obtaining the Correct Q_{16} :

$$
-Q_{16}[29]=1
$$

The Constant Bits of Q_{14} :
$\overline{Q_{14}[j]}=0, j \in[30-0]$

- To obtain $f_{16}[j]=0$, we require $Q_{14}[j]=0$ for $j \in[29]$. See proof 39 .
- To obtain $f_{16}[j]=0$, we require $Q_{14}[j]=1$ for $j \in[15,3]$. See proof 41 .
- To obtain $f_{16}[j]=0$, we need no requirements for $Q_{14}[30,28-16,14-4,2-0]$.

The Non-Constant Bits of Q_{14} :
$\overline{Q_{14}[j]}= \pm 1, j \in[31]$

- To obtain $f_{16}[j]=1$, we require $Q_{15}[j]=Q_{16}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 16:

- $Q_{14}[29]=0$
- $Q_{14}[15,3]=1$
$-Q_{15}[31]=Q_{16}[31]$
Step 17:
We have $Q_{15}= \pm 2^{31}+2^{15}+2^{3}, Q_{16}= \pm 2^{31}-2^{29}$, and $Q_{17}= \pm 2^{31}$, and we want to obtain $f_{17}=$ $\pm 2^{31}$.

Obtaining the Correct Q_{17} : No conditions required
The Constant Bits of Q_{15} :
$\overline{Q_{15}[j]}=0, j \in[30-16,14-4,2-0]$

- To obtain $f_{17}[j]=0$, we require $Q_{15}[j]=1$ for $j \in[29]$. See proof 40 .
- To obtain $f_{17}[j]=0$, we need no requirements for $Q_{15}[30,28-16,14-4,2-0]$.

The Non-Constant Bits of Q_{15} :
$\overline{Q_{15}[j]}=+1, j \in[3]$

- To obtain $f_{17}[j]=0$, we require $Q_{16}[j]=Q_{17}[j]$ for $j \in[15,3]$. See proof 43 .
$Q_{15}[j]= \pm 1, j \in[31]$
- To obtain $f_{17}[j]=1$, we require $Q_{16}[j]=Q_{17}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 17:

- $Q_{15}[29]=1$
$-Q_{16}[31,15,3]=Q_{17}[31,15,3]$
Step 18:
We have $Q_{16}= \pm 2^{31}-2^{29}, Q_{17}= \pm 2^{31}$, and $Q_{18}= \pm 2^{31}$, and we want to obtain $f_{18}= \pm 2^{31}$.
$\underline{\text { Obtaining the Correct } Q_{18} \text { : No conditions required }}$
The Constant Bits of Q_{16} :
$\overline{Q_{16}[j]}=0, j \in[30,28-0]$
- To obtain $f_{18}[j]=0$, we need no requirements for $Q_{16}[30,28-0]$.

The Non-Constant Bits of Q_{16} :
$\overline{Q_{16}[j]}=-1, j \in[29]$

- To obtain $f_{18}[j]=0$, we require $Q_{17}[j]=Q_{18}[j]$ for $j \in[15]$. See proof 42 .
$Q_{16}[j]= \pm 1, j \in[31]$
- To obtain $f_{18}[j]=1$, we require $Q_{17}[j]=Q_{18}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 18:
$-Q_{17}[31,29]=Q_{18}[31,29]$
Step 19:
We have $Q_{17}= \pm 2^{31}, Q_{18}= \pm 2^{31}$, and $Q_{19}= \pm 2^{31}+2^{17}$, and we want to obtain $f_{19}= \pm 2^{31}$.

Obtaining the Correct Q_{19} :

$$
-Q_{19}[17]=0
$$

The Constant Bits of Q_{17} :
$\overline{Q_{17}[j]}=0, j \in[30-0]$

- To obtain $f_{19}[j]=0$, we require $Q_{17}[j]=0$ for $j \in[17]$. See proof 44 .
- To obtain $f_{19}[j]=0$, we need no requirements for $Q_{17}[30-18,16-0]$.

The Non-Constant Bits of Q_{17} :
$\overline{Q_{17}[j]}= \pm 1, j \in[31]$

- To obtain $f_{19}[j]=1$, we require $Q_{18}[j]=Q_{19}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 19:
$-Q_{17}[17]=Q_{19}[17]=0$
$-Q_{18}[31]=Q_{19}[31]$
Step 20:
We have $Q_{18}= \pm 2^{31}, Q_{19}= \pm 2^{31}+2^{17}$, and $Q_{20}= \pm 2^{31}$, and we want to obtain $f_{20}= \pm 2^{31}$.
Obtaining the Correct Q_{20} : No conditions required
$\frac{\text { The Constant Bits of } Q_{18}:}{Q_{18}[j]=0, j \in[30-0]}$

- To obtain $f_{20}[j]=0$, we require $Q_{18}[j]=1$ for $j \in[17]$. See proof 41 .
- To obtain $f_{20}[j]=0$, we need no requirements for $Q_{18}[30-18,16-0]$.

The Non-Constant Bits of Q_{18} :
$\overline{Q_{18}[j]}= \pm 1, j \in[31]$

- To obtain $f_{20}[j]=1$, we require $Q_{19}[j]=Q_{20}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 20:
$-Q_{18}[17]=1$
$-Q_{19}[31]=Q_{20}[31]$
Step 21:
We have $Q_{19}= \pm 2^{31}+2^{17}, Q_{20}= \pm 2^{31}$, and $Q_{21}= \pm 2^{31}$, and we want to obtain $f_{21}= \pm 2^{31}$.
Obtaining the Correct Q_{21} : No conditions required
The Constant Bits of Q_{19} :
$\overline{Q_{19}[j]=0, j \in[30-18,16-0]}$

- To obtain $f_{21}[j]=0$, we need no requirements for $Q_{19}[30-18,16-0]$.

The Non-Constant Bits of Q_{19} :
$\overline{Q_{19}}[j]=+1, j \in[17]$

- To obtain $f_{21}[j]=0$, we require $Q_{20}[j]=Q_{21}[j]$ for $j \in[17]$. See proof 43 .
$Q_{19}[j]= \pm 1, j \in[31]$
- To obtain $f_{21}[j]=1$, we require $Q_{20}[j]=Q_{21}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 21:

$$
-Q_{20}[31,17]=Q_{21}[31,17]
$$

Step 22:
We have $Q_{20}= \pm 2^{31}, Q_{21}= \pm 2^{31}$, and $Q_{22}= \pm 2^{31}$, and we want to obtain $f_{22}= \pm 2^{31}$.
Obtaining the Correct Q_{22} : No conditions required
The Constant Bits of Q_{20} :
$\overline{Q_{20}[j]}=0, j \in[30-0]$

- To obtain $f_{22}[j]=0$, we need no requirements for $Q_{20}[30-0]$.

The Non-Constant Bits of Q_{20} :
$\overline{Q_{20}}[j]= \pm 1, j \in[31]$

- To obtain $f_{22}[j]=1$, we require $Q_{21}[j]=Q_{22}[j]$ for $j \in[31]$. See proof 38 .

Summary of the conditions for step 22:
$-Q_{21}[31]=Q_{22}[31]$
Step 23:
We have $Q_{21}= \pm 2^{31}, Q_{22}= \pm 2^{31}$, and $Q_{23}=0$, and we want to obtain $f_{23}=0$.
Obtaining the Correct Q_{23} : No conditions required
The Constant Bits of Q_{21} :
$Q_{21}[j]=0, j \in[30-0]$

- To obtain $f_{23}[j]=0$, we need no requirements for $Q_{21}[30-0]$.

The Non-Constant Bits of Q_{21} :
$\overline{Q_{21}[j]}= \pm 1, j \in[31]$

- To obtain $f_{23}[j]=0$, we require $Q_{23}[j]=0$ for $j \in[31]$. See proof 45 .

Summary of the conditions for step 23:

$$
-Q_{23}[31]=0
$$

Step 24:
We have $Q_{22}= \pm 2^{31}, Q_{23}=0$, and $Q_{24}=0$, and we want to obtain $f_{24}= \pm 2^{31}$.
Obtaining the Correct Q_{24} : No conditions required
The Constant Bits of Q_{22} :
$\overline{Q_{22}[j]}=0, j \in[30-0]$

- To obtain $f_{24}[j]=0$, we need no requirements for $Q_{22}[30-0]$.

The Non-Constant Bits of Q_{22} :
$\overline{Q_{22}[j]}= \pm 1, j \in[31]$

- To obtain $f_{24}[j]=1$, we require $Q_{24}[j]=1$ for $j \in[31]$. See proof 46 .

Summary of the conditions for step 24:
$-Q_{24}[31]=0$
Steps 25 to 31:
We have $Q_{t-2}=0, Q_{t-1}=0$, and $Q_{t}=0$, so we will obtain $f_{t}=0$. There are no conditions for these steps.

Round 3: $f_{t}=H(X, Y, Z)$
In round 3 , the only differences in the Q_{t} occur in the most significant bit. The sign of the most significant bit is important only when it is rotated to some other bit position. However, during round 3, the differences in the most significant bits are always cancelled out by differences in the most significant bit in either f_{t}, Q_{t-3}, or W_{t}. Therefore, in round 3 , the sign on the difference the most significant bit does not matter.

Steps 32 to 34 :
We have $Q_{t-2}=0, Q_{t-1}=0$, and $Q_{t}=0$, so we will obtain $f_{t}=0$. There are no conditions for these steps.

Step 35:
We have $Q_{33}=0, Q_{34}=0$, and $Q_{35}= \pm 2^{31}$, so we will obtain $f_{35}= \pm 2^{31}$. See proof 47 .
Step 36:
We have $Q_{34}=0, Q_{35}= \pm 2^{31}$, and $Q_{36}= \pm 2^{31}$, so we will obtain $f_{36}=0$. See proof 48 .
Steps 37 to 47 :
We have $Q_{t-2}= \pm 2^{31}, Q_{t-1}= \pm 2^{31}$, and $Q_{t}= \pm 2^{31}$, so we will obtain $f_{t}= \pm 2^{31}$. See proof 49 .
Round 4: $f_{t}=I(X, Y, Z)$
The values of Q46 and Q47 each have two possibilities, $\left(\Delta Q_{46}, \Delta Q_{47}\right)=(-1,+1)$. Thus, there are four combinations of $\left(\Delta Q_{46}, \Delta Q_{47}\right)$. In $[7],\left(\Delta Q_{46}, \Delta Q_{47}\right)=(-1,+1)$ were chosen as the initial values for the fourth round of the first iteration. Thus, we must impose two conditions:

$$
-\Delta Q_{46}=-1 \Rightarrow Q_{46}=1
$$

$$
-\Delta Q_{47}=+1 \Rightarrow Q_{47}=0
$$

Steps 48 to 49:
We have $\Delta Q_{t-2}= \pm 2^{31}, \Delta Q_{t-1}= \pm 2^{31}$, and $\Delta Q_{t}= \pm 2^{31}$, and we want to obtain $\Delta f_{t}= \pm 2^{31}$. Thus, we require that $\Delta Q_{t-2}=\Delta Q_{t} \Rightarrow Q_{t-2}=Q_{t}$. See proof 50 .

Step 50:
We have $\Delta Q_{48}= \pm 2^{31}, \Delta Q_{49}= \pm 2^{31}$, and $\Delta Q_{50}= \pm 2^{31}$, and we want to obtain $\Delta f_{50}=0$. Thus, we require that $\Delta Q_{48}=-\Delta Q_{50} \Rightarrow Q_{48}=\overline{Q_{50}}$. See proof 51 .

Steps 51 to 59 :
We have $\Delta Q_{t-2}= \pm 2^{31}, \Delta Q_{t-1}= \pm 2^{31}$, and $\Delta Q_{t}= \pm 2^{31}$, and we want to obtain $\Delta f_{t}= \pm 2^{31}$. Thus, we require that $\Delta Q_{t-2}=\Delta Q_{t} \Rightarrow Q_{t-2}=Q_{t}$. See proof 50 .

Step 60:
We have $\Delta Q_{58}= \pm 2^{31}, \Delta Q_{59}= \pm 2^{31}$, and $\Delta Q_{60}= \pm 2^{31}$, and we want to obtain $\Delta f_{60}=0$. Thus, we require that $\Delta Q_{58}=-\Delta Q_{60} \Rightarrow Q_{58}=\overline{Q_{60}}$. See proof 51 .

Step 61:
We have $\Delta Q_{59}= \pm 2^{31}, \Delta Q_{60}= \pm 2^{31}$, and $\Delta Q_{61}= \pm 2^{31}$, and we want to obtain $\Delta f_{61}= \pm 2^{31}$. Thus, we require that $\Delta Q_{59}=\Delta Q_{61} \Rightarrow Q_{59}=Q_{61}$. See proof 50 .

Step 62:
Obtaining the Correct ΔQ_{62} :
$-Q_{62}[25]=1$
We have $\Delta Q_{60}=2^{31}, \Delta Q_{61}=2^{31}$, and $\Delta Q_{62}=2^{31}-2^{25}$, and we want to obtain $\Delta f_{62}=2^{31}$. Thus, we must impose two conditions. First, to obtain $\Delta f_{62}= \pm 1$, we require that $\Delta Q_{60}=\Delta Q_{62} \Rightarrow Q_{60}=Q_{62}$. See proof 50 . Second, to obtain $f_{62}[25]=0$, we require that $Q_{60}[25]=0$. See proof 54 .

Step 63:
Obtaining the Correct ΔQ_{63} :

$$
-Q_{63}[25]=1
$$

We have $\Delta Q_{61}=2^{31}, \Delta Q_{62}=2^{31}-2^{25}$, and $Q_{63}=2^{31}-2^{25}$, and we want to obtain $f_{63}=2^{31}$. Thus, we must impose two conditions. First, to obtain $f_{63}[31]= \pm 1$, we require that $Q_{61}=Q_{63} \Rightarrow Q_{61}=Q_{63}$. See proof 50 . Second, to obtain $f_{63}[25]=0$, we require that $Q_{61}[25]=1$. See proof 55 .

7.3 Complexity of the Attack

Tables 3, 4, 5, and 6 on the following four pages summarize the conditions for the propagation of the differences through the f_{t} functions for the first and second blocks. A random message will satisfy all of the conditions for the first block with probability 2^{-277} since the values of A, B, H, I, and J are arbitrary. Similarly, a random message will satisfy all of the conditions for the second block with probability 2^{-319} since the values of A, C, I, and J are arbitrary. These probabilities preclude a second pre-image attack. The vast majority of the conditions, however, occur during the first 16 steps of each block. Only 39 in each block do not.

Suppose we define an " f_{t}-good" message as a message which satisfies all of the conditions for the first round. With single-message modification, we can find " f_{t}-good" messages with probability 2^{-39} for each block. For our collision differential to hold, our message must be both " T_{t}-good" and " f_{t}-good." We found in section 6 that the probability of obtaining a " T_{t}-good" message was $2^{-2.4}$ for each block. Therefore, the probability of finding a message which is both " T_{t}-good" and " f_{t}-good" for each block is:

$$
2^{-39} \times 2^{-2.4} \approx 2^{-41}
$$

This means that the complexity of the attack for each block is 2^{41}. Thus, the complexity of the overall attack is:

$$
2^{41}+2^{41}=2^{42}
$$

8 Proofs

We use the following notation for each proof:

$$
\begin{aligned}
& " \pm " \Rightarrow \Delta X= \pm 1 \text {, i.e., } X^{\prime}-X= \pm 1 \\
& "+" \Rightarrow \Delta X=+1 \text {, i.e., } X^{\prime}-X=+1 \\
& "-" \Rightarrow \Delta X=-1 \text {, i.e., } X^{\prime}-X=-1 \\
& " 0 " \Rightarrow \Delta X=0 \text {, i.e., } X^{\prime}=X .
\end{aligned}
$$

For the title of each proof, we use the shorthand format ($x y z w$) where
$x y z w \Rightarrow \Delta Q_{t}=x, \Delta Q_{t-1}=y, \Delta Q_{t-2}=z$, and $\Delta f_{t}=w$.
For example,

$$
+0++\Rightarrow \Delta Q_{t}=+1, \Delta Q_{t-1}=0, \Delta Q_{t-2}=+1, \text { and } \Delta f_{t}=+1
$$

8.1 Proofs for Round 1

For round 1, note that $f_{t}=F(X, Y, Z)=(X \wedge Y) \vee(\neg X \wedge Z)$.
1: ± 000
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(\pm 1,0,0)$, i.e., $Q_{t}^{\prime}-Q_{t}= \pm 1, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=Q_{t-2}$.

t	Conditions on Q_{t}			
	Case One	Eq	Def	None
3	.vvv0vvvvvvvo0vvvv0.	13 v	3	16
4	C. $0^{\sim \sim} 1^{\sim \sim \sim \sim \sim \sim} 1^{\sim \cdots \sim} 0$.	13-	5	11
5	Cvvv1v0v0100000000000000001vv1v1	8 v	24	
6	B^~~0^1~0111111110111100010~~0^1	8	24	
7	A0000011111111101111100000100000		32	
8	000000011. . 100010.0v010101000000	1v	28	3
9	E1111011...100000.1~. 1100111101	1^{\sim}	25	6
10	A1. 0. .111111101. . $0001 . . .00$		17	15
11	A0. . . .vv. . . 000 . . $00 . . .01110$	2 v	15	15
12	A0.... ~~. . . $10000001 . . .10$.	2^{-}	12	18
13	A1....01... . $1111111 . .$. . $00 . . .1$		14	18
14	A.0..00....1011111....11... 1		14	18
15	H.1...01........1. 0		6	26
		Eq	Def	Combined
	Subtotal $0 \leq t \leq 15$: Case One	24	219	243
	Case Two	Eq	Def	None
3	.vvv0vvvvvvvv0vvvv0	13 v	3	16
4	0.......00~~1~~~~~~1 $1^{\sim \sim \sim} 0$ 0.	13-	5	11
5	0.. . Ov0v0100000000000000001vv1v1	5 v	24	3
61^1^0111111110111100010~~0^1	5^{-}	23	4
7	1... 1011111111101111100000100000		29	2
8	0...00011. . 100010.0v010101000000	1v	25	6
9	E. . . 1011. . . 100000.1^{\sim}. . 1100111101	1^{\sim}	22	9
10	A1......0..111111101...001... 00		17	15
11	A0. . . .vv. . . 000 . . 00 . . 01110	2 v	15	15
12	A0. . . ${ }^{\sim}$. . . . $10000001 . . .10$.	2 -	12	18
13	A1... 01....1111111... $00 . . .1 .$.		14	18
14	A.0...00... 1011111....11... 1		14	18
15	H.1...01........1.... $0 . .$.		6	26
		Eq	Def	Combined
	Subtotal $0 \leq t \leq 15:$ Case Two	21	209	230

Table 3. Conditions for on $Q_{t}, 15 \leq t \leq 32$ in the first block. There are two variables with two possibilities each: $A \in\{0,1\}, B \in\{0,1\}$, with $C=\overline{A \oplus B}, E=\bar{A}$. The column headed by "Eq" contains the number of equality relationships of the form $Q_{t}[j]=Q_{t-1}[j]$. The column headed by "Def" contains the number of definitions of the form $Q_{t}[j]=0$ or $Q_{t}[j]=1$. The column headed by "None" contains the number of bits with no conditions. When computing subtotals, the column headed by "Comb." contains the combination of equality relationships and definitions.

t	Conditions on Q_{t}	Eq	Def	None
14	A.0...00...1011111....11...1...			
15	H.1...01........1............0...			
16	H.1.............v............v...	2 v	2	28
17	H.v...........0.^............ . . .	$1 \mathrm{v}, 2^{\wedge}$	2	27
18	H. ${ }^{\text {¢ }}$. 1.	1^{-}	2	29
19	H. 0.		2	30
20	H. v .	1 v	1	30
21	H. ${ }^{\text {a }}$	1^{\sim}	1	30
22	H.		1	31
23	0.		1	31
24	1.		1	31
25-45				32
46	I.		1	31
47	J.		1	31
48	I.		1	31
49	J.		1	31
50	K.		1	31
51	J.		1	31
52	K.		1	31
53	J.		1	31
54	K.		1	31
55	J.		1	31
56	K.		1	31
57	J.		1	31
58	K.		1	31
59	J.		1	31
60	I..... 0.		2	30
61	J. 1		2	30
62	I..... 0.		2	30
63	J.....0........................... .		2	30
		Eq	Def	Combined
	Sub-total: $16 \leq t \leq 31$	4	13	17
	Sub-total: $32 \leq t \leq 47$	-	2	2
	Sub-total: $48 \leq t \leq 63$	-	20	20
	SubTotal: $16 \leq t \leq 63$ (This Table)	4	35	
	Sub-total: $-2 \leq t \leq 15$: Case One	24	219	243
	Sub-total: $-2 \leq t \leq 15$: Case Two	21	209	230
	Total: $-2 \leq t \leq 63$: Case One	28	254	282
	Total: $-2 \leq t \leq 63$: Case Two	25	244	269

Table 4. Conditions for on $Q_{t}, 15 \leq t \leq 32$ in the first block. There are three new variables with two possibilities each: $H \in\{0,1\}, I \in\{0,1\}$, and $J \in\{0,1\}$, with $K=\bar{I}$. The column headed by "Eq" contains the number of equality relationships of the form $Q_{t}[j]=Q_{t-1}[j]$. The column headed by "Def" contains the number of definitions of the form $Q_{t}[j]=0$ or $Q_{t}[j]=1$. The column headed by "None" contains the number of bits with no conditions. In the last few rows, the column headed by "Comb." contains the combination of equality relationships and definitions.

t	Conditions on Q_{t}	Eq	Def	None
-2	A. . . . 0 .		2	30
-1	A. . . 01		3	29
0	A. . . 00.	1 v	3	28
1	Bvvv010...1vvvvv. . .v0...v1~	$10 \mathrm{v}, 1^{\sim}$	7	14
2		$2 \mathrm{v}, 10^{-}$	10	10
3	B011111...011111...01vv1011~~11v	$3 \mathrm{v}, 2^{\wedge}$	21	6
4	B011101. . .000100. . .00~~00001000~	3^{-}	23	6
5	A100101. . . 101111. . 0111001010000		26	6
6	A. .0010v1.10..101. 0110001010110	1 v	24	7
7	B. .1011~1.00..011..1111000....v1	1v,1~	19	11
8	B. $001000.11 . .101 . . v . .1111 . . .{ }^{\text {a }} 0$	1v,1~	17	13
9	B. .111000.... 010. . . . $0111 . . .01$	1^{\sim}	16	15
10	B....1111...v0111100..1111... . 00	1 v	18	13
11	Bvvvvvvv. . . . $1011100 . .111111$	7v,1^	14	10
12	Bヘ~~~~~. . . 100000011	7	10	15
13	A0111111....1111111.....0... 1		17	15
14	A1000000....1011111.....1... 1		17	15
15	C1111101........0........... 0.		10	22
		Eq	Def	Combined
	Sub-total: $-2 \leq t \leq 15$	27	257	

Table 5. Conditions on $\nabla Q_{t},-2 \leq t \leq 15$, of the second block to get the correct propagation of differences through f_{t}. The attacker can allow $A \in\{0,1\}, C \in\{0,1\}$ with $B=\bar{A}$. The column headed by "Eq" contains the number of relationships of the form $Q_{t}[j]=Q_{t-1}[j]$. The column headed by "Def" contains the number of definitions of the form $Q_{t}[j]=0$ or $Q_{t}[j]=1$. The column headed by "None" contains the number of bits with no conditions. In the last row, the column headed by "Comb." contains the combination of equality relationships and definitions. Note the conditions on Q_{-2}, Q_{-1}, Q_{0} apply to the intermediate hash value $I H V^{(1)}$.

t	Conditions on Q_{t}	Eq	Def	None
14	A1000000....1011111.....1...1...			
15	C1111101........0............0...			
16	C.1.............v............v...	2 v	2	28
17	C.v...........0.^............. ${ }^{\wedge}$	$2^{\wedge}, 1 \mathrm{v}$	2	27
18	C.^............1..	1^{\wedge}	2	29
19	C............. 0.		2	30
20	C.v.	1 v	1	30
21	C.	1^	1	30
22	C.		1	31
23	0.		1	31
24	1.		1	31
25-31			32
32-45			32
46	I.		1	31
47	J.		1	31
48	I		1	31
49	J.		1	31
50	K.		1	31
51	J.		1	31
52	K.		1	31
53	J.		1	31
54	K.		1	31
55	J.		1	31
56	K.		1	31
57	J.		1	31
58	K.		1	31
59	J.		1	31
60	I..... 0.		2	30
61	J..... 1		2	30
62	I..... 1		2	30
63	J.....1...........................		2	30
		Eq	Def	Combined
	Sub-total: $16 \leq t \leq 31$	4	13	
	Sub-total: $32 \leq t \leq 47$	-	2	
	Sub-total: $48 \leq t \leq 63$	-	20	
	SubTotal: $16 \leq t \leq 63$ (This Table)	4	35	
	Sub-total: $-2 \leq t \leq 15$ (Table 5)	27	257	
	Total: $-2 \leq t \leq 63$	31	292	323

Table 6. Conditions on $\nabla Q_{t}, 16 \leq t \leq 63$, of the second block to get the correct propagation of differences through f_{t}. There are two new variables with two possibilities each: $I \in\{0,1\}$, and $J \in\{0,1\}$, with $K=\bar{I}$. The column headed by "Eq" contains the number of equality relationships of the form $Q_{t}[j]=Q_{t-1}[j]$. The column headed by "Def" contains the number of definitions of the form $Q_{t}[j]=0$ or $Q_{t}[j]=1$. The column headed by "None" contains the number of bits with no conditions. In the last few rows, the column headed by "Comb." contains the combination of equality relationships and definitions.

We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}= \pm 1$, we require that $Q_{t}=Q_{t}=\overline{Q_{t-1} \oplus Q_{t-2}}$. Now, $Q_{t}^{\prime}-Q_{t}=-1,+1, Q_{t-1}=Q_{t-1}=(0$, 1), and $Q_{t-2}^{\prime}-Q_{t-2}=-1,+1$. We consider four possibilities. First, we have $Q_{t-1}=0$ and $Q_{t-2}=0$, so Q_{t} $=1$. This gives us $Q_{t}=1, Q_{t}^{\prime}=0, Q_{t-1}=Q_{t-1}^{\prime}=0, Q_{t-2}=0$, and $Q_{t-2}^{\prime}=1$. Thus,

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 1)] \quad f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 0)]\)
\(f_{t}^{\prime}=[0 \vee 1] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=0\).
```

Second, when $Q_{t}^{\prime}=0, Q_{t}=1, Q_{t-1}^{\prime}=Q_{t-1}=Q_{t-2}=Q_{t-2}^{\prime}=1$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge) \vee(1 \wedge 1)] \quad f_{t}=[(1 \wedge 1) \vee(0 \wedge 1)]\)
\(f_{t}^{\prime}=[0 \vee 1] \quad f_{t}=[1 \vee 0]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=1\).
```

Third, when $Q_{t}^{\prime}=1, Q_{t}=0, Q_{t-1}^{\prime}=Q_{t-1}=Q_{t-2}=Q_{t-2}^{\prime}=0$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}[(1 \wedge 0) \vee(0 \wedge 0)] & f_{t}=[(0 \wedge 0) \vee(1 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

Fourth, when $Q_{t}^{\prime}=1, Q_{t}=0, Q_{t-1}^{\prime}=Q_{t-1}=Q_{t-2}=Q_{t-2}^{\prime}=1$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] & f_{t}=[(0 \wedge 1) \vee(1 \wedge 1)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[0 \vee 1] \\
f_{t}^{\prime}=1 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t-1}=Q_{t-2}$

$$
2: \pm \pm 00
$$

We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(\pm 1, \pm 1,0)$, i.e., $Q_{t}^{\prime}-Q_{t}= \pm 1, Q_{t-1}^{\prime}-Q_{t-1}= \pm 1$, and Q_{t-2}^{\prime} $=Q_{t-2}$. We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t}=\overline{Q_{t-1} \oplus Q_{t-2}}$. Now, $Q_{t}^{\prime}-Q_{t}=-1,+1, Q_{t-1}^{\prime}-Q_{t-1}=-1,+1$, and $Q_{t-2}^{\prime}=Q_{t-2}=(0,1)$. We consider four possibilities. First, we have $Q_{t-1}=0$ and $Q_{t-2}=0$, so $Q_{t}=1$. This gives us $Q_{t}=1, Q_{t}^{\prime}=0, Q_{t-1}=0, Q_{t-1}^{\prime}=1$, and $Q_{t-2}=Q_{t-2}^{\prime}=0$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(0 \wedge 1) \vee(1 \wedge 0)] & f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

Second, we have $Q_{t-1}=0$ and $Q_{t-2}=1$, so $Q_{t}=0$. This gives us $Q_{t}=0, Q_{t}^{\prime}=1, Q_{t-1}=0, Q_{t-1}^{\prime}=1$, and $Q_{t-2}=Q_{t-2}^{\prime}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] & f_{t}=[(0 \wedge 0) \vee(1 \wedge 1)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[0 \vee 1] \\
f_{t}^{\prime}=1 . & f_{t}=1 .
\end{array}
$$

Third, we have $Q_{t-1}=1$ and $Q_{t-2}=0$, so $Q_{t}=0$. This gives us $Q_{t}=0, Q_{t}^{\prime}=1, Q_{t-1}=1, Q_{t-1}^{\prime}=0$, and $Q_{t-2}=Q_{t-2}^{\prime}=0$. Thus,

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}[(1 \wedge 0) \vee(0 \wedge 0)] \quad f_{t}=[(0 \wedge 1) \vee(1 \wedge 0)]\)
\(f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=0\).
```

Fourth, we have $Q_{t-1}=1$ and $Q_{t-2}=1$, so $Q_{t}=1$. This gives us $Q_{t}=1, Q_{t}^{\prime}=0, Q_{t-1}=1, Q_{t-1}^{\prime}=0$, and $Q_{t-2}=Q_{t-2}^{\prime}=1$. Thus,

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 1)] \quad f_{t}=[(1 \wedge 1) \vee(0 \wedge 1)]\)
\(f_{t}^{\prime}=[0 \vee 1] \quad f_{t}=[1 \vee 0]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=1\).
```

Condition(s) required for this proof: $Q_{t}=Q_{t}=\overline{Q_{t-1} \oplus Q_{t-2}}$.
3: $0 \pm \pm \pm$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0, \pm 1, \pm 1)$, i.e., $Q_{t}^{\prime}=Q_{t}, Q_{t-1}^{\prime}-Q_{t-1}= \pm 1$, and $Q_{t-2}^{\prime}-Q_{t-2}=$ ± 1.
We want: $\Delta f_{t}= \pm 1$, i.e., $f_{t}^{\prime}-f_{t}= \pm 1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}= \pm 1$, no requirements are necessary. Now, $Q_{t}^{\prime}=\mathrm{Qt}$, and $Q_{t-1}^{\prime}-Q_{t-1}=-1,+1$, and ΔQ_{t-2}^{\prime} $-Q_{t-2}=-1,+1$. We consider eight possibilities. First, when $Q_{t}^{\prime}=Q_{t}=0, Q_{t-1}^{\prime}=0, Q_{t-1}=1, \Delta Q_{t-2}^{\prime}=$ 0 , and $Q_{t-2}=1$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 0)] \quad f_{t}=[(0 \wedge 1) \vee(1 \wedge 1)]\)
\(f_{t}^{\prime}=[0 \vee 0]\)
\(f_{t}=\left[\begin{array}{lll}0 \vee 1\end{array}\right]\)
\(f_{t}^{\prime}=0\).
\(f_{t}=1\).
```

Second, when $Q_{t}^{\prime}=Q_{t}=0, Q_{t-1}^{\prime}=0, Q_{t-1}=1, \Delta Q_{t-2}^{\prime}=1$, and $Q_{t-2}=0$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 1)] \quad f_{t}=[(0 \wedge 1) \vee(1 \wedge 0)]\)
\(f_{t}^{\prime}=[0 \vee 1] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=0\).
```

Third, when $Q_{t}^{\prime}=Q_{t}=0, Q_{t-1}^{\prime}=1, Q_{t-1}=0, \Delta Q_{t-2}^{\prime}=0$, and $Q_{t-2}=1$, then
$f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]$
$f_{t}^{\prime}=[(0 \wedge 1) \vee(1 \wedge 0)] \quad f_{t}=[(0 \wedge 0) \vee(1 \wedge 1)]$
$f_{t}^{\prime}=[0 \vee 0]$
$f_{t}=[0 \vee 1]$
$f_{t}^{\prime}=0 . \quad f_{t}=1$.
Fourth, when $Q_{t}^{\prime}=Q_{t}=0, Q_{t-1}^{\prime}=1, Q_{t-1}=0, \Delta Q_{t-2}^{\prime}=1$, and $Q_{t-2}=0$, then
$f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]$
$f_{t}^{\prime}=[(0 \wedge) \vee(1 \wedge 1)] \quad f_{t}=[(0 \wedge 0) \vee(1 \wedge 0)]$
$f_{t}^{\prime}=[0 \vee 1] \quad f_{t}=[0 \vee 0]$
$f_{t}^{\prime}=1 . \quad f_{t}=0$.
Fifth, when $Q_{t}^{\prime}=Q_{t}=1, Q_{t-1}^{\prime}=0, Q_{t-1}=1, \Delta Q_{t-2}^{\prime}=0$, and $Q_{t-2}=1$, then
$f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]$
$f_{t}^{\prime}[(1 \wedge 0) \vee(0 \wedge 0)] \quad f_{t}=[(1 \wedge 1) \vee(0 \wedge 1)]$
$f_{t}^{\prime}=[0 \vee 0]$
$f_{t}=[1 \vee 0]$
$f_{t}^{\prime}=0 . \quad f_{t}=1$.
Sixth, when $Q_{t}^{\prime}=Q_{t}=1, Q_{t-1}^{\prime}=0, Q_{t-1}=1, \Delta Q_{t-2}^{\prime}=1$, and $Q_{t-2}=0$, then

$f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right]$	$f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]$
$f_{t}^{\prime}[(1 \wedge 0) \vee(0 \wedge 1)]$	$f_{t}=[(1 \wedge 1) \vee(0 \wedge 0)]$
$f_{t}^{\prime}=[0 \vee 0]$	$f_{t}=[1 \vee 0]$
$f_{t}^{\prime}=0$.	$f_{t}=1$.

Seventh, when $Q_{t}^{\prime}=Q_{t}=1, Q_{t-1}^{\prime}=1, Q_{t-1}=0, \Delta Q_{t-2}^{\prime}=0$, and $Q_{t-2}=1$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 0)] \quad f_{t}=[(1 \wedge 0) \vee(0 \wedge 1)]\)
\(f_{t}^{\prime}=[1 \vee 0] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=0\).
```

Eighth, when $Q_{t}^{\prime}=Q_{t}=1, Q_{t-1}^{\prime}=1, Q_{t-1}=0, \Delta Q_{t-2}^{\prime}=1$, and $Q_{t-2}=0$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] & f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 0)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=0 .
\end{array}
$$

Condition(s) required for this proof: none
4: $\pm 0 \pm \pm$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(\pm 1,0, \pm 1)$, i.e., $Q_{t}^{\prime}-Q_{t}= \pm 1, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}-Q_{t-2}=$ ± 1.
We want: $\Delta f_{t}= \pm 1$, i.e., $f_{t}^{\prime}-f_{t}= \pm 1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}= \pm 1$, we require that $Q_{t}=Q_{t}=\overline{Q_{t-1} \oplus Q_{t-2}}$. Now, $Q_{t}^{\prime}-Q_{t}=-1,+1, Q_{t-1}=Q_{t-1}=(0$, 1), and $Q_{t-2}^{\prime}-Q_{t-2}=-1,+1$. We consider four possibilities. First, we have $Q_{t-1}=0$ and $Q_{t-2}=0$, so Q_{t} $=1$. This gives us $Q_{t}=1, Q_{t}^{\prime}=0, Q_{t-1}=Q_{t-1}^{\prime}=0, Q_{t-2}=0$, and $Q_{t-2}^{\prime}=1$. Thus,

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 1)] \quad f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 0)]\)
\(f_{t}^{\prime}=[0 \vee 1] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=0\).
```

Second, we have $Q_{t-1}=0$ and $Q_{t-2}=1$, so $Q_{t}=0$. This gives us $Q_{t}=0, Q_{t}^{\prime}=1, Q_{t-1}=Q_{t-1}^{\prime}=1$, $Q_{t-2}=0$, and $Q_{t-1}^{\prime}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] & f_{t}=[(0 \wedge 1) \vee(1 \wedge 0)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=0 .
\end{array}
$$

Third, we have $Q_{t-1}=1$ and $Q_{t-2}=0$, so $Q_{t}=0$. This gives us $Q_{t}=0, Q_{t}^{\prime}=1, Q_{t-1}=Q_{t-1}^{\prime}=0$, $Q_{t-2}=1$, and $Q_{t-2}^{\prime}=0$. Thus,

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}[(1 \wedge 0) \vee(0 \wedge 0)] \quad f_{t}=[(0 \wedge 0) \vee(1 \wedge 1)]\)
\(f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=[0 \vee 1]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=1\).
```

Fourth, we have $Q_{t-1}=1$ and $Q_{t-2}=1$, so $Q_{t}=1$. This gives us $Q_{t}=1, Q_{t}^{\prime}=0, Q_{t-1}=Q_{t-1}^{\prime}=1$, $Q_{t-2}=1$, and $Q_{t-2}^{\prime}=0$. Thus,

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 1) \vee(1 \wedge 0)] \quad f_{t}=[(1 \wedge 1) \vee(0 \wedge 1)]\)
\(f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=[1 \vee 0]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=1\).
```

Condition(s) required for this proof: $Q_{t}=Q_{t}=\overline{Q_{t-1} \oplus Q_{t-2}}$
5: $\pm \pm \pm 0$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(\pm 1, \pm 1, \pm 1)$, i.e., $Q_{t}^{\prime}-Q_{t}= \pm 1, Q_{t-1}^{\prime}-Q_{t-1}= \pm 1$, and $Q_{t-2}^{\prime}-$ $Q_{t-2}= \pm 1$.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-1}=\overline{Q_{t-2}}$. This gives us $Q_{t-1}=\overline{Q_{t-2}}=(0,1)$. We also have $Q_{t}=$ $(0,1)$. We consider four possibilities. First, when $Q_{t}=0, Q_{t}^{\prime}=1, Q_{t-1}=0, Q_{t-1}^{\prime}=1, Q_{t-2}=1$, and Q_{t-2}^{\prime} $=0$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 0)] \quad f_{t}=[(0 \wedge 0) \vee(1 \wedge 1)]\)
\(f_{t}^{\prime}=[1 \vee 0] \quad f_{t}=[0 \vee 1]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=1\).
```

Second, when $Q_{t}=0, Q_{t}^{\prime}=1, Q_{t-1}=1, Q_{t-1}^{\prime}=0, Q_{t-2}=0$, and $Q_{t-2}^{\prime}=1$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 1)] & f_{t}=[(0 \wedge 1) \vee(1 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

Third, when $Q_{t}=1, Q_{t}^{\prime}=0, Q_{t-1}=0, Q_{t-1}^{\prime}=1, Q_{t-2}=1$, and $Q_{t-2}^{\prime}=0$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(0 \wedge 1) \vee(1 \wedge 0)] & f_{t}=[(1 \wedge 0) \vee(0 \wedge 1)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

Fourth, when $Q_{t}=0, Q_{t}^{\prime}=1, Q_{t-1}=0, Q_{t-1}^{\prime}=1, Q_{t-2}=1$, and $Q_{t-2}^{\prime}=0$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 0)] \quad f_{t}=[(0 \wedge 0) \vee(1 \wedge 1)]\)
\(f_{t}^{\prime}=[1 \vee 0] \quad f_{t}=[0 \vee 1]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=1\).
```

Condition(s) required for this proof: $Q_{t-1}=\overline{Q_{t-2}}$
6: $\pm \pm \pm \pm$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(\pm 1, \pm 1, \pm 1)$, i.e., $Q_{t}^{\prime}-Q_{t}= \pm 1, Q_{t-1}^{\prime}-Q_{t-1}= \pm 1$, and $Q_{t-2}^{\prime}-$ $Q_{t-2}= \pm 1$.
We want: $\Delta f_{t}= \pm 1$, i.e., $f_{t}^{\prime}-f_{t}= \pm 1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-1}=Q_{t-2}$. This gives us $Q_{t-1}=Q_{t-2}=(0,1)$. We also have $Q_{t}=$ $(0,1)$. We consider four possibilities. First, when $Q_{t}=0, Q_{t}^{\prime}=1, Q_{t-1}=0, Q_{t-1}^{\prime}=1, Q_{t-2}=0$, and Q_{t-2}^{\prime} $=1$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] \quad f_{t}=[(0 \wedge 0) \vee(1 \wedge 0)]\)
\(f_{t}^{\prime}=[1 \vee 0] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=0\).
```

Second, when $Q_{t}=0, Q_{t}^{\prime}=1, Q_{t-1}=1, Q_{t-1}^{\prime}=0, Q_{t-2}=1$, and $Q_{t-2}^{\prime}=0$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}[(1 \wedge 0) \vee(0 \wedge 0)] \quad f_{t}=[(0 \wedge 1) \vee(1 \wedge 1)]\)
\(f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=[0 \vee 1]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=1\).
```

Third, when $Q_{t}=1, Q_{t}^{\prime}=0, Q_{t-1}=0, Q_{t-1}^{\prime}=1, Q_{t-2}=0$, and $Q_{t-2}^{\prime}=1$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge) \vee(1 \wedge 1)] \quad f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 0)]\)
\(f_{t}^{\prime}=[0 \vee 1] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=0\).
```

Fourth, when $Q_{t}=0, Q_{t}^{\prime}=1, Q_{t-1}=0, Q_{t-1}^{\prime}=1, Q_{t-2}=0$, and $Q_{t-2}^{\prime}=1$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] \quad f_{t}=[(0 \wedge 0) \vee(1 \wedge 0)]\)
\(f_{t}^{\prime}=[1 \vee 0] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=1\).
\(f_{t}=0\).
```

Condition(s) required for this proof: $Q_{t-1}=Q_{t-2}$
$7:++++$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,+1,+1)$, i.e., $Q_{t}^{\prime}=Q_{t-1}^{\prime}=Q_{t-2}^{\prime}=1$ and $Q_{t}=Q_{t-1}=$ $Q_{t-2}=0$.
We want: $\Delta f_{t}=+1$, i.e., $f_{t}^{\prime}=1$ amd $f_{t}=0$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] & f_{t}=[(0 \wedge 0) \vee(1 \wedge 0)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=0 .
\end{array}
$$

Condition(s) required for this proof: none

8: -+++
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(-1,+1,+1)$, i.e., $Q_{t}=Q_{t-1}^{\prime}=Q_{t-2}^{\prime}=1$ and $Q_{t}^{\prime}=Q_{t-1}=$ $Q_{t-2}=0$.
We want: $\Delta f_{t}=+1$, i.e., $f_{t}^{\prime}=1$ amd $f_{t}=0$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(0 \wedge) \vee(1 \wedge 1)] & f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 1] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=0 .
\end{array}
$$

Condition(s) required for this proof: none

$9:+-+0$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,-1,+1)$, i.e., $Q_{t}^{\prime}=Q_{t-1}=Q_{t-2}^{\prime}=1$ and $Q_{t}=Q_{t-1}^{\prime}=$ $Q_{t-2}=0$.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 1)] & f_{t}=[(0 \wedge 1) \vee(1 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

Condition(s) required for this proof: none
10: - -+0
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(-1,-1,+1)$, i.e., $Q_{t}=Q_{t-1}=Q_{t-2}^{\prime}=1$ and $Q_{t}^{\prime}=Q_{t-1}^{\prime}=$ $Q_{t-2}=0$. We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$

```
\(f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] \quad f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right]\)
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 1)] \quad f_{t}=[(1 \wedge 1) \vee(0 \wedge 0)]\)
\(f_{t}^{\prime}=[0 \vee 1] \quad f_{t}=[1 \vee 0]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=1\).
```

Condition(s) required for this proof for this proof: none

11: ++-0

We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,+1,-1)$, i.e., $Q_{t}^{\prime}=Q_{t-1}^{\prime}=Q_{t-2}=1$ and $Q_{t}=Q_{t-1}=$ $Q_{t-2}^{\prime}=0$.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 0)] & f_{t}=[(0 \wedge 0) \vee(1 \wedge 1)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[0 \vee 1] \\
f_{t}^{\prime}=1 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: none

$$
12:+000
$$

We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,0,0)$, i.e., $Q_{t}^{\prime}=1, Q_{t}=0, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=$ Q_{t-2}.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(\wedge \wedge Q_{t-1}^{\prime}\right) \vee\left(0 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(0 \wedge Q_{t-1}\right) \vee\left(1 \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-1}=Q_{t-2}$. From this, we have $Q_{t-1}^{\prime}=Q_{t-1}=Q_{t-2}=Q_{t-2}^{\prime}=(0$, 1). When $Q_{t-1}^{\prime}=Q_{t-1}=Q_{t-2}=Q_{t-2}^{\prime}=0$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(1 \wedge Q_{t-1}^{\prime}\right) \vee\left(0 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(0 \wedge Q_{t-1}\right) \vee\left(1 \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}[(1 \wedge 0) \vee(0 \wedge 0)] & f_{t}=[(0 \wedge 0) \vee(1 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

When $Q_{t-1}^{\prime}=Q_{t-1}=Q_{t-2}=Q_{t-2}^{\prime}=1$, then

```
\(f_{t}^{\prime}=\left[\left(1 \wedge Q_{t-1}^{\prime}\right) \vee\left(0 \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(0 \wedge Q_{t-1}\right) \vee\left(1 \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] \quad f_{t}=[(0 \wedge 1) \vee(1 \wedge 1)]\)
\(f_{t}^{\prime}=[1 \vee 0]\)
    \(f_{t}=[0 \vee 1]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=1\).
```

Condition(s) required for this proof: $Q_{t-1}^{\prime}=Q_{t-2}$
13: - 000
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(-1,0,0)$, i.e., $Q_{t}^{\prime}=0, Q_{t}=1, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=Q_{t-2}$.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(0 \wedge Q_{t-1}^{\prime}\right) \vee\left(1 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(1 \wedge Q_{t-1}\right) \vee\left(0 \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-1}=Q_{t-2}$. From this, we have $Q_{t-1}^{\prime}=Q_{t-1}=Q_{t-2}=Q_{t-2}^{\prime}=(0$, 1). When $Q_{t-1}^{\prime}=Q_{t-1}=Q_{t-2}=Q_{t-2}=0$, then

```
\(f_{t}^{\prime}=\left[\left(0 \wedge Q_{t-1}^{\prime}\right) \vee\left(1 \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(1 \wedge Q_{t-1}\right) \vee\left(0 \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 0)] \quad f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 0)]\)
\(f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=0\).
```

When $Q_{t-1}^{\prime}=Q_{t-1}=Q_{t-2}=Q_{t-2}^{\prime}=1$, then

```
f
ft
f
ft=1. 
```

Condition(s) required for this proof: $Q_{t-1}^{\prime}=Q_{t-2}$

```
14: + 0 0 +
```

We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,0,0)$, i.e., $Q_{t}^{\prime}=1, Q_{t}=0, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=$ Q_{t-2}.
We want: $\Delta f_{t}=+1$, i.e., $f_{t}^{\prime}=1$ amd $f_{t}=0$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(1 \wedge Q_{t-1}^{\prime}\right) \vee\left(0 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(0 \wedge Q_{t-1}\right) \vee\left(1 \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=+1$, we require that $Q_{t-1}=1$ and $Q_{t-2}=0$. From this, we have $Q_{t-1}^{\prime}=Q_{t-1}=1$ and $Q_{t-2}=Q_{t-2}^{\prime}=0$. Thus,

```
\(f_{t}^{\prime}=\left[\left(1 \wedge Q_{t-1}^{\prime}\right) \vee\left(0 \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(0 \wedge Q_{t-1}\right) \vee\left(1 \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 0)] \quad f_{t}=[(0 \wedge 1) \vee(1 \wedge 0)]\)
\(f_{t}^{\prime}=[1 \vee 0] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=0\).
```

Condition(s) required for this proof: $Q_{t-1}=1$ and $Q_{t-2}=0$
$15:+00-$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,0,0)$, i.e., $Q_{t}^{\prime}=1, Q_{t}=0, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=$ Q_{t-2}.
We want: $\Delta f_{t}=-1$, i.e., $f_{t}^{\prime}=0$ and $f_{t}=1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(1 \wedge Q_{t-1}^{\prime}\right) \vee\left(0 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(0 \wedge Q_{t-1}\right) \vee\left(1 \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=-1$, we require that $Q_{t-1}=0$ and $Q_{t-2}=1$. From this, we have $Q_{t-1}^{\prime}=Q_{t-1}=0$ and $Q_{t-2}^{\prime}=Q_{t-2}=1$. Thus,

```
\(f_{t}^{\prime}=\left[\left(1 \wedge Q_{t-1}^{\prime}\right) \vee\left(0 \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(0 \wedge Q_{t-1}\right) \vee\left(1 \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 1)] \quad f_{t}=[(0 \wedge 0) \vee(1 \wedge 1)]\)
\(f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=[0 \vee 1]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=1\).
```

Condition(s) required for this proof: $Q_{t-1}=0$ and $Q_{t-2}=1$
16: - $00+$

We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(-1,0,0)$, i.e., $Q_{t}^{\prime}=0, Q_{t}=1, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=Q_{t-2}$.
We want: $\Delta f_{t}=+1$, i.e., $f_{t}^{\prime}=1$ amd $f_{t}=0$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(0 \wedge Q_{t-1}^{\prime}\right) \vee\left(1 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(1 \wedge Q_{t-1}\right) \vee\left(0 \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=+1$, we require that $Q_{t-1}=0$ and $Q_{t-2}=1$. From this, we have $Q_{t-1}^{\prime}=Q_{t-1}=0$ and $Q_{t-2}=Q_{t-2}^{\prime}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(0 \wedge Q_{t-1}^{\prime}\right) \vee\left(1 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(1 \wedge Q_{t-1}\right) \vee\left(0 \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 1)] & f_{t}=[(1 \wedge 0) \vee(0 \wedge 1)] \\
f_{t}^{\prime}=[0 \vee 1] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=0 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t-1}=0$ and $Q_{t-2}=1$
17: - 00 -

We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(-1,0,0)$, i.e., $Q_{t}^{\prime}=0, Q_{t}=1, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=Q_{t-2}$.
We want: $\Delta f_{t}=-1$, i.e., $f_{t}^{\prime}=0$ and $f_{t}=1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(0 \wedge Q_{t-1}^{\prime}\right) \vee\left(1 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(1 \wedge Q_{t-1}\right) \vee\left(0 \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=-1$, we require that $Q_{t-1}=1$ and $Q_{t-2}=0$. From this, we have $Q_{t-1}^{\prime}=Q_{t-1}=1$ and $Q_{t-2}^{\prime}=Q_{t-2}=0$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(0 \wedge Q_{t-1}^{\prime}\right) \vee\left(1 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(1 \wedge Q_{t-1}\right) \vee\left(0 \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(0 \wedge 1) \vee(1 \wedge 0)] & f_{t}=[(1 \wedge 1) \vee(0 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[1 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t-1}=1$ and $Q_{t-2}=0$
18: $00+0$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,0,+1)$, i.e., $Q_{t}^{\prime}=Q_{t}, Q_{t-1}^{\prime}=Q_{t-1}, Q_{t-2}^{\prime}=1$, and Q_{t-2} $=0$.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge 1\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge 0\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t}=1$. From this, we have $Q_{t}^{\prime}=Q_{t}=1$. Now, $Q_{t-1}^{\prime}=Q_{t-1}=(0,1)$. When $Q_{t-1}^{\prime}=Q_{t-1}=0$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge 1\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge 0\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 1)] & f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

When $Q_{t-1}^{\prime}=Q_{t-1}=1$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge 1\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge 0\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] & f_{t}=[(1 \wedge 1) \vee(0 \wedge 0)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[1 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t}=1$
19: $00++$

We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,0,+1)$, i.e., $Q_{t}^{\prime}=Q_{t}, Q_{t-1}^{\prime}=Q_{t-1}, Q_{t-2}^{\prime}=1$, and Q_{t-2} $=0$.
We want: $\Delta f_{t}=+1$, i.e., $f_{t}^{\prime}=1$ amd $f_{t}=0$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge 1\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge 0\right)\right]
\end{array}
$$

To ensure $f_{t}=+1$, we require that $Q_{t}=0$. From this, we have $Q_{t}^{\prime}=Q_{t}=0$. Now, $Q_{t-1}^{\prime}=Q_{t-1}=(0$, 1). When $Q_{t-1}^{\prime}=Q_{t-1}=0$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge 1\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge 0\right)\right] \\
f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 1)] & f_{t}=[(0 \wedge 0) \vee(1 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 1] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=0 .
\end{array}
$$

When $Q_{t-1}^{\prime}=Q_{t-1}=1$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge 1\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge 0\right)\right] \\
f_{t}^{\prime}=[(0 \wedge) \vee(1 \wedge 1)] & f_{t}=[(0 \wedge 1) \vee(1 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 1] & f_{t}=[1 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=0 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t}=0$
20: 00-0
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,0,-1)$, i.e., $Q_{t}^{\prime}=Q_{t}, Q_{t-1}^{\prime}=Q_{t-1}, Q_{t-2}^{\prime}=0$, and $Q_{t-2}=$ 1.

We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge 0\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge 1\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t}=1$. From this, we have $Q_{t}^{\prime}=Q_{t}=1$. Now, $Q_{t-1}^{\prime}=Q_{t-1}=(0,1)$. When $Q_{t-1}^{\prime}=Q_{t-1}=0$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge 0\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge 1\right)\right] \\
f_{t}^{\prime}[(1 \wedge 0) \vee(0 \wedge 0)] & f_{t}=[(1 \wedge 0) \vee(0 \wedge 1)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

When $Q_{t-1}^{\prime}=Q_{t-1}=1$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge 0\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge 1\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 0)] & f_{t}=[(1 \wedge 1) \vee(0 \wedge 1)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[1 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t}=1$
21: 00 - -
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,0,-1)$, i.e., $Q_{t}^{\prime}=Q_{t}, Q_{t-1}^{\prime}=Q_{t-1}, Q_{t-2}^{\prime}=0$, and $Q_{t-2}=$ 1.

We want: $\Delta f_{t}=-1$, i.e., $f_{t}^{\prime}=0$ and $f_{t}=1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge 0\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge 1\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t}=0$. From this, we have $Q_{t}^{\prime}=Q_{t}=0$. Now, $Q_{t-1}^{\prime}=Q_{t-1}=(0,1)$. When $Q_{t-1}^{\prime}=Q_{t-1}=0$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge 0\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge 1\right)\right] \\
f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 0)] & f_{t}=[(0 \wedge 0) \vee(1 \wedge 1)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 1] \\
f_{t}^{\prime}=0 . & f_{t}=1 .
\end{array}
$$

When $Q_{t-1}^{\prime}=Q_{t-1}=1$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge 0\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge 1\right)\right] \\
f_{t}^{\prime}=[(0 \wedge 1) \vee(1 \wedge 0)] & f_{t}=[(0 \wedge 1) \vee(1 \wedge 1)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 1] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t}=0$
22: $0+00$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,+1,0)$, i.e., $Q_{t}^{\prime}=Q_{t} Q_{t-1}^{\prime}=1, Q_{t-1}=0$, and $Q_{t-2}^{\prime}=Q_{t-2}$,
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 1\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 0\right) \vee\left(Q_{t}^{\prime} \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t}=0$. From this, we have $Q_{t}^{\prime}=Q_{t}=0$. Now, $Q_{t-2}^{\prime}=Q_{t-2}=(0,1)$. When $Q_{t-2}^{\prime}=Q_{t-2}=0$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 1\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 0\right) \vee\left(Q_{t}^{\prime} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 1) \vee(1 \wedge 0)]\)
\(f_{t}^{\prime}=[0 \vee 0]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=0\).
```

When $Q_{t-2}^{\prime}=Q_{t-2}=1$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 1\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 0\right) \vee\left(Q_{t}^{\prime} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge) \vee(1 \wedge 1)] \quad f_{t}=[(0 \wedge 0) \vee(1 \wedge 1)]\)
\(f_{t}^{\prime}=\left[\begin{array}{lll}0 \vee 1\end{array}\right] \quad f_{t}=[0 \vee 1]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=1\).
```

Condition(s) required for this proof: $Q_{t}=0$
23: $0+0+$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,+1,0)$, i.e., $Q_{t}^{\prime}=Q_{t}, Q_{t-1}^{\prime}=1, Q_{t-1}=0$, and $Q_{t-2}^{\prime}=$ Q_{t-2}.
We want: $\Delta f_{t}=+1$, i.e., $f_{t}^{\prime}=1$ amd $f_{t}=0$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 1\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge 0\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=+1$, we require that $Q_{t}=1$ From this, we have $Q_{t}^{\prime}=Q_{t}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 1\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge 0\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[(1 \wedge 0) \vee\left(0 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[(1 \wedge 0) \vee\left(0 \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=0 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t}=1$
24: 0-0 0
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,-1,0)$, i.e., $Q_{t}^{\prime}=Q_{t}, Q_{t-1}^{\prime}=0, Q_{t-1}=1$, and $Q_{t-2}^{\prime}=Q_{t-2}$, .
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 0\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge 1\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t}=0$. From this, we have $Q_{t}^{\prime}=Q_{t}=0$. Now, $Q_{t-2}^{\prime}=Q_{t-2}=(0,1)$. When $Q_{t-2}^{\prime}=Q_{t-2}=0$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 0\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge 1\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 0)] \quad f_{t}=[(0 \wedge 1) \vee(1 \wedge 0)]\)
\(f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=0\).
```

When $Q_{t-2}^{\prime}=Q_{t-2}=1$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 0\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge 1\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 1)] \quad f_{t}=[(0 \wedge 1) \vee(1 \wedge 1)]\)
\(f_{t}^{\prime}=[0 \vee 1] \quad f_{t}=[0 \vee 1]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=1\).
```

Condition(s) required for this proof: $Q_{t}=0$
25: 0-0-
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,-1,0)$, i.e., $Q_{t}^{\prime}=Q_{t}, Q_{t-1}^{\prime}=0, Q_{t-1}=1$, and $Q_{t-2}^{\prime}=Q_{t-2}$.
We want: $\Delta f_{t}=-1$, i.e., $f_{t}^{\prime}=0$ and $f_{t}=1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 0\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge 1\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=-1$, we require that $Q_{t}=1$. From this, we have $Q_{t}^{\prime}=Q_{t}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 0\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge 1\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[(1 \wedge 0) \vee\left(0 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[(11)\left(0 Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[1 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t}=1$
26: - + 00
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(-1,+1,0)$, i.e., $Q_{t}=Q_{t-1}^{\prime}=1 Q_{t}^{\prime}=Q_{t-1}=0$, and $Q_{t-2}^{\prime}=$ Q_{t-2}.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[(0 \wedge 1) \vee\left(1 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[(1 \wedge 0) \vee\left(0 \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-2}=0$ From this, we have $Q_{t-2}^{\prime}=Q_{t-2}=0$. Thus,

```
\(f_{t}^{\prime}=\left[(0 \wedge 1) \vee\left(1 \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[(1 \wedge 0) \vee\left(0 \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 1) \vee(1 \wedge 0)] \quad f_{t}=[(1 \wedge 0) \vee(0 \wedge 0)]\)
\(f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=0\).
```

Condition(s) required for this proof: $Q_{t-2}=0$
$27:+0+0$

We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,0,+1)$, i.e., $Q_{t}^{\prime}=Q_{t-2}^{\prime}=1, Q_{t}=Q_{t-2}=0$, and Q_{t-1}^{\prime} $=Q_{t-1}$.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(1 \wedge Q_{t-1}^{\prime}\right) \vee(0 \wedge 1)\right] & f_{t}=\left[\left(0 \wedge Q_{t-1}\right) \vee(1 \wedge 0)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-1}=0$. From this, we have $Q_{t-1}^{\prime}=Q_{t-1}=0$. Thus,

```
\(f_{t}^{\prime}=\left[\left(1 \wedge Q_{t-1}^{\prime}\right) \vee(0 \wedge 1)\right] \quad f_{t}=\left[\left(0 \wedge Q_{t-1}\right) \vee(1 \wedge 0)\right]\)
\(f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 1)] \quad f_{t}=[(0 \wedge 0) \vee(1 \wedge 0)]\)
\(f_{t}^{\prime}=\left[\begin{array}{lll}0 \vee\end{array}\right]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=0\).
```

Condition(s) required for this proof: $Q_{t-1}=0$
28: $+0++$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,0,+1)$, i.e., $Q_{t}^{\prime}=Q_{t-2}^{\prime}=1, Q_{t}=Q_{t-2}=0$, and Q_{t-1}^{\prime} $=Q_{t-1}$.
We want: $\Delta f_{t}=+1$, i.e., $f_{t}^{\prime}=1$ amd $f_{t}=0$.

```
\(f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] \quad f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right]\)
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right]\)
\(f_{t}^{\prime}=\left[\left(1 \wedge Q_{t-1}^{\prime}\right) \vee(0 \wedge 1)\right] \quad f_{t}=\left[\left(0 \wedge Q_{t-1}\right) \vee(1 \wedge 0)\right]\)
```

To ensure $f_{t}=+1$, we require that $Q_{t-1}=1$. From this, we have $Q_{t-1}^{\prime}=Q_{t-1}=1$. Thus,
$f_{t}^{\prime}=\left[\left(1 \wedge Q_{t-1}^{\prime}\right) \vee(0 \wedge 1)\right] \quad f_{t}=\left[\left(0 \wedge Q_{t-1}\right) \vee(1 \wedge 0)\right]$
$f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] \quad f_{t}=[(0 \wedge 1) \vee(1 \wedge 0)]$
$f_{t}^{\prime}=[1 \vee 0] \quad f_{t}=[0 \vee 0]$
$f_{t}^{\prime}=1 . \quad f_{t}=0$.
Condition(s) required for this proof: $Q_{t-1}=1$
29: $-0+0$

We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(-1,0,+1)$, i.e., $Q_{t}^{\prime}=Q_{t-2}=0, Q_{t}=Q_{t-2}^{\prime}=1$, and $Q_{t-1}^{\prime}=$ Q_{t-1}.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(0 \wedge Q_{t-1}^{\prime}\right) \vee(1 \wedge 1)\right] & f_{t}=\left[\left(1 \wedge Q_{t-1}\right) \vee(0 \wedge 0)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-1}=1$. From this, we have $Q_{t-1}^{\prime}=Q_{t-1}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(0 \wedge Q_{t-1}^{\prime}\right) \vee(1 \wedge 1)\right] & f_{t}=\left[\left(1 \wedge Q_{t-1}\right) \vee(0 \wedge 0)\right] \\
f_{t}^{\prime}=[(0 \wedge) \vee(1 \wedge 1)] & f_{t}=[(1 \wedge 1) \vee(0 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 1] & f_{t}=[1 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t-1}=1$
$30:+0-0$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,0,-1)$, i.e., $Q_{t}^{\prime}=Q_{t-2}=1, Q_{t}=Q_{t-2}^{\prime}=0$, and $Q_{t-1}^{\prime}=$ Q_{t-1}.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(1 \wedge Q_{t-1}^{\prime}\right) \vee(0 \wedge 0)\right] & f_{t}=\left[\left(0 \wedge Q_{t-1}\right) \vee(1 \wedge 1)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-1}=1$. From this, we have $Q_{t-1}^{\prime}=Q_{t-1}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(1 \wedge Q_{t-1}^{\prime}\right) \vee(0 \wedge 0)\right] & f_{t}=\left[\left(0 \wedge Q_{t-1}\right) \vee(1 \wedge 1)\right] \\
f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 0)] & f_{t}=[(0 \wedge 1) \vee(1 \wedge 1)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[0 \vee 1] \\
f_{t}^{\prime}=1 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t-1}=1$
31: - 0-0
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(-1,0,-1)$, i.e., $Q_{t}=Q_{t-2}=1, Q_{t}^{\prime}=Q_{t-2}^{\prime}=0$, and $Q_{t-1}^{\prime}=$ Q_{t-1}.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(0 \wedge Q_{t-1}^{\prime}\right) \vee(1 \wedge 0)\right] & f_{t}=\left[\left(1 \wedge Q_{t-1}\right) \vee(0 \wedge 1)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-1}=0$. From this, we have $Q_{t-1}^{\prime}=Q_{t-1}=0$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(0 \wedge Q_{t-1}^{\prime}\right) \vee(1 \wedge 0)\right] & f_{t}=\left[\left(1 \wedge Q_{t-1}\right) \vee(0 \wedge 1)\right] \\
f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 0)] & f_{t}=[(1 \wedge 0) \vee(0 \wedge 1)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t-1}=0$
32: $0+-+$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,+1,-1)$, i.e., $Q_{t}^{\prime}=Q_{t}, Q_{t-1}^{\prime}=Q_{t-2}=1$, and $Q_{t-1}=Q_{t-2}^{\prime}=0$.
We want: $\Delta f_{t}=+1$, i.e., $f_{t}^{\prime}=1$ amd $f_{t}=0$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 1\right) \vee\left(\neg Q_{t}^{\prime} \wedge 0\right)\right] & f_{t}=\left[\left(Q_{t} \wedge 0\right) \vee\left(\neg Q_{t} \wedge 1\right)\right]
\end{array}
$$

To ensure $f_{t}=+1$, we require that $Q_{t}=1$ From this, we have $Q_{t}^{\prime}=Q_{t}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 1\right) \vee\left(\neg Q_{t}^{\prime} \wedge 0\right)\right] & f_{t}=\left[\left(Q_{t} \wedge 0\right) \vee\left(\neg Q_{t} \wedge 1\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 0)] & f_{t}=[(1 \wedge 0) \vee(0 \wedge 1)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=0 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t}=1$
33: $0+--$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,+1,-1)$, i.e., $Q_{t}^{\prime}=Q_{t}, Q_{t-1}^{\prime}=Q_{t-2}=1$, and $Q_{t-1}=Q_{t-2}^{\prime}=0$.
We want: $\Delta f_{t}=-1$, i.e., $f_{t}^{\prime}=0$ and $f_{t}=1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 1\right) \vee\left(\neg Q_{t}^{\prime} \wedge 0\right)\right] & f_{t}=\left[\left(Q_{t} \wedge 0\right) \vee\left(\neg Q_{t} \wedge 1\right)\right]
\end{array}
$$

To ensure $f_{t}=+1$, we require that $Q_{t}=0$ From this, we have $Q_{t}^{\prime}=Q_{t}=0$. Thus,
$f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 1\right) \vee\left(\neg Q_{t}^{\prime} \wedge 0\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge 0\right) \vee\left(\neg Q_{t} \wedge 1\right)\right]$
$f_{t}^{\prime}=[(0 \wedge 1) \vee(1 \wedge 0)] \quad f_{t}=[(0 \wedge 0) \vee(1 \wedge 1)]$
$f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=[0 \vee 1]$
$f_{t}^{\prime}=0 . \quad f_{t}=1$.

Condition(s) required for this proof: $Q_{t}=0$
34: 0-- -

We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,-1,-1)$, i.e., $Q_{t}^{\prime}=Q_{t}, Q_{t-1}^{\prime}=Q_{t-2}^{\prime}=0$, and $Q_{t-1}=Q_{t-2}$ $=1$.
We want: $\Delta f_{t}=-1$, i.e., $f_{t}^{\prime}=0$ and $f_{t}=1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 0\right) \vee\left(\neg Q_{t}^{\prime} \wedge 0\right)\right] & f_{t}=\left[\left(Q_{t} \wedge 1\right) \vee\left(\neg Q_{t} \wedge 1\right)\right]
\end{array}
$$

To ensure $f_{t}=-1$, no requirements are necessary. $Q_{t}=(0,1)$. From this, we have $Q_{t}^{\prime}=Q_{t}=(0,1)$. When $Q_{t}^{\prime}=Q_{t}=0$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 0\right) \vee\left(\neg Q_{t}^{\prime} \wedge 0\right)\right] & f_{t}=\left[\left(Q_{t} \wedge 1\right) \vee\left(\neg Q_{t} \wedge 1\right)\right] \\
f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 0)] & f_{t}=[(0 \wedge 1) \vee(1 \wedge 1)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 1] \\
f_{t}^{\prime}=0 . & f_{t}=1 .
\end{array}
$$

When $Q_{t}^{\prime}=Q_{t}=1$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 0\right) \vee\left(\neg Q_{t}^{\prime} \wedge 0\right)\right] & f_{t}=\left[\left(Q_{t} \wedge 1\right) \vee\left(\neg Q_{t} \wedge 1\right)\right] \\
f_{t}^{\prime}[(1 \wedge 0) \vee(0 \wedge 0)] & f_{t}=[(1 \wedge 1) \vee(0 \wedge 1)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[1 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=1
\end{array}
$$

Condition(s) required for this proof: none
$35:++00$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,+1,0)$, i.e., $Q_{t}^{\prime}=Q_{t-1}^{\prime}=1, Q_{t}=Q_{t-1}=0$, and Q_{t-2}^{\prime} $=Q_{t-2}$.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[(1 \wedge 1) \vee\left(0 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[(0 \wedge 0) \vee\left(1 \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-2}=1$. From this, we have $Q_{t-2}^{\prime}=Q_{t-2}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[(1 \wedge 1) \vee\left(0 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[(0 \wedge 0) \vee\left(1 \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] & f_{t}=[(0 \wedge 0) \vee(1 \wedge 1)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[0 \vee 1] \\
f_{t}^{\prime}=1 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t-2}=1$
36: + - 0 -
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,-1,0)$, i.e., $Q_{t}^{\prime}=Q_{t-1}=1, Q_{t}=Q_{t-1}^{\prime}=0$, and $Q_{t-2}^{\prime}=$
Q_{t-2}.
We want: $\Delta f_{t}=-1$, i.e., $f_{t}^{\prime}=0$ and $f_{t}=1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[(1 \wedge 0) \vee\left(0 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[(0 \wedge 1) \vee\left(1 \wedge Q_{t-2}\right)\right]
\end{array}
$$

To ensure $f_{t}=-1$, we require that $Q_{t-2}=1$. From this, we have $Q_{t-2}=Q_{t-2}^{\prime}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[(1 \wedge 0) \vee\left(0 \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[(0 \wedge 1) \vee\left(1 \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 1)] & f_{t}=[(0 \wedge 1) \vee(1 \wedge 1)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 1] \\
f_{t}^{\prime}=0 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t-2}=1$
37: $0-++$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,-1,+1)$, i.e., $Q_{t}^{\prime}=\mathrm{Qt}, Q_{t-1}^{\prime}=Q_{t-2}=0$, and $Q_{t-1}=Q_{t-2}^{\prime}=1$.
We want: $\Delta f_{t}=+1$, i.e., $f_{t}^{\prime}=1$ amd $f_{t}=0$.

$$
\begin{array}{ll}
f_{t}^{\prime}=F\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=F\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge Q_{t-1}^{\prime}\right) \vee\left(\neg Q_{t}^{\prime} \wedge Q_{t-2}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t} \wedge Q_{t-1}\right) \vee\left(\neg Q_{t} \wedge Q_{t-2}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 0\right) \vee\left(\neg Q_{t}^{\prime} \wedge 1\right)\right] & f_{t}=\left[\left(Q_{t} \wedge 1\right) \vee\left(\neg Q_{t} \wedge 0\right)\right]
\end{array}
$$

To ensure $f_{t}=+1$, we require that $Q_{t}=0$. From this, we have $Q_{t}^{\prime}=Q_{t}=0$. Thus,

```
\(f_{t}^{\prime}=\left[\left(Q_{t}^{\prime} \wedge 0\right) \vee\left(\neg Q_{t}^{\prime} \wedge 1\right)\right] \quad f_{t}=\left[\left(Q_{t} \wedge 1\right) \vee\left(\neg Q_{t} \wedge 0\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 1)] \quad f_{t}=[(0 \wedge 1) \vee(1 \wedge 0)]\)
\(f_{t}^{\prime}=[0 \vee 1] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=0\).
```

Condition(s) required for this proof: $Q_{t}=0$

8.2 Proofs for Round 2

For round 2, note that $f_{t}=G(X, Y, Z)=(Z \wedge X) \vee(\neg Z \wedge Y)$.
38: $\pm \pm \pm \pm$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(1,1,1)$, i.e., $Q_{t}^{\prime}-Q_{t}= \pm 1, Q_{t-1}^{\prime}-Q_{t-1}= \pm 1$, and $Q_{t-2}^{\prime}-$ $Q_{t-2}= \pm 1$.
We want: $\Delta f_{t}= \pm 1$, i.e., $f_{t}^{\prime}-f_{t}= \pm 1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=G\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=G\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right]
\end{array}
$$

To ensure $f_{t}= \pm 1$, we require that $Q_{t}=Q_{t-1}$. From this, we have $Q_{t}=Q_{t-1}=(0,1)$ and $Q_{t-2}=(0$, $1)$ Thus, we consider four possibilities. First, we consider when $Q_{t}=Q_{t-1}=0, Q_{t}^{\prime}=Q_{t-1}^{\prime}=1, Q_{t-2}=0$, and $Q_{t-2}^{\prime}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right] \\
, f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] & f_{t}=[(0 \wedge 0) \vee(1 \wedge 0)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=0
\end{array}
$$

Second, we consider when $Q_{t}=Q_{t-1}=0, Q_{t}^{\prime}=Q_{t-1}^{\prime}=1, Q_{t-2}=1$, and $Q_{t-2}^{\prime}=0$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right] \\
, f_{t}^{\prime}=[(0 \wedge) \vee(1 \wedge 1)] & f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 1] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=0 .
\end{array}
$$

Third, we consider when $Q_{t}=Q_{t-1}=1, Q_{t}^{\prime}=Q_{t-1}^{\prime}=0, Q_{t-2}=0$, and $Q_{t-2}^{\prime}=1$. Thus,

```
\(f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right]\)
,\(f_{t}^{\prime}=[(1 \wedge 0) \vee(1 \wedge 1)] \quad f_{t}=[(1 \wedge 0) \vee(1 \wedge 1)]\)
\(f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=\left[\begin{array}{lll}0 \vee 1\end{array}\right]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=1\).
```

Fourth, we consider when $Q_{t}=Q_{t-1}=1, Q_{t}^{\prime}=Q_{t-1}^{\prime}=0, Q_{t-2}=1$, and $Q_{t-2}^{\prime}=0$. Thus,

```
\(f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right]\)
,\(f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 0)] \quad f_{t}=[(1 \wedge 1) \vee(0 \wedge 1)]\)
\(f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=[1 \vee 0]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=1\).
```

Condition(s) required for this proof: $Q_{t}=Q_{t-1}$
39: - 000
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(-1,0,0)$, i.e., $Q_{t}^{\prime}=0, Q_{t}=1, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=Q_{t-2}$.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=G\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=G\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime} \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right]\right. & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge 0\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge 1\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-2}=0$. From this, we have $Q_{t-2}^{\prime}=Q_{t-2}=0$. Now, $Q_{t-1}^{\prime}=Q_{t-1}$ $=(0,1)$. When $Q_{t-1}^{\prime}=Q_{t-1}=0$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge 0\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t-2} \wedge 1\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 0)] \quad f_{t}=[(0 \wedge 1) \vee(1 \wedge 0)]\)
\(f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=0\).
```

When $Q_{t-1}^{\prime}=Q_{t-1}=1$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge 0\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t-2} \wedge 1\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 1)] \quad f_{t}=[(0 \wedge 1) \vee(1 \wedge 1)]\)
\(f_{t}^{\prime}=\left[\begin{array}{lll}0 \vee 1\end{array}\right] \quad f_{t}=[0 \vee 1]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=1\).
```

Condition(s) required for this proof: $Q_{t-2}=0$
40: $0-00$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,-1,0)$, i.e., $Q_{t}^{\prime}=\mathrm{Qt}, Q_{t-1}^{\prime}=0, Q_{t-1}=1$, and $Q_{t-2}^{\prime}=$ Q_{t-2}.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=G\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=G\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge 0\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge 1\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-2}=1$. From this, we have $Q_{t-2}^{\prime}=Q_{t-2}=1$. Now, $Q_{t}^{\prime}=Q_{t}=(0$, $1)$. When $Q_{t}=Q_{t}=0$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge 0\right)\right] \quad f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge 1\right)\right]\)
\(f_{t}^{\prime}[(1 \wedge 0) \vee(0 \wedge 0)] \quad f_{t}=[(1 \wedge 0) \vee(0 \wedge 1)]\)
\(f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=0\).
```

When $Q_{t}^{\prime}=Q_{t}=1$, then

```
\(f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge 0\right)\right] \quad f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge 1\right)\right]\)
\(f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 0)] \quad f_{t}=[(1 \wedge 1) \vee(0 \wedge 1)]\)
\(f_{t}^{\prime}=[1 \vee 0] \quad f_{t}=[1 \vee 0]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=1\).
```

Condition(s) required for this proof: $Q_{t-2}=1$
41: $0+00$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,+1,0)$, i.e., $Q_{t}^{\prime}=\mathrm{Qt}, Q_{t-1}^{\prime}=1, Q_{t-1}=0$, and $Q_{t-2}^{\prime}=$ Q_{t-2}.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

96

$$
\begin{array}{ll}
f_{t}^{\prime}=G\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=G\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge 1\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge 0\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-2}=1$. From this, we have $Q_{t-2}^{\prime}=Q_{t-2}=1$. Now, $Q_{t}^{\prime}=Q_{t}=(0$, $1)$. When $Q_{t}=Q_{t}=0$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge 1\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge 0\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 1)] & f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

When $Q_{t}^{\prime}=Q_{t}=1$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge 1\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge 0\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] & f_{t}=[(1 \wedge 1) \vee(0 \wedge 0)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[1 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t-2}=1$
42: 0 0-0
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,0,-1)$, i.e., $Q_{t}^{\prime}=Q_{t}, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=0, Q_{t-2}=$ 1.

We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=G\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=G\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right] \\
f_{t}^{\prime}=\left[\left(0 \wedge Q_{t}^{\prime}\right) \vee\left(1 \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(1 \wedge Q_{t}\right) \vee\left(0 \wedge Q_{t-1}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t}=Q_{t-1}$. From this, we have $Q_{t}^{\prime}=Q_{t}=Q_{t-1}=Q_{t-1}^{\prime}=(0,1)$. When $Q_{t}^{\prime}=Q_{t}=Q_{t-1}=Q_{t-1}^{\prime}=0$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(0 \wedge Q_{t}^{\prime}\right) \vee\left(1 \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(1 \wedge Q_{t}\right) \vee\left(0 \wedge Q_{t-1}\right)\right] \\
f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 0)] & f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0
\end{array}
$$

When $Q_{t}^{\prime}=Q_{t}=Q_{t-1}=Q_{t-1}^{\prime}=1$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(0 \wedge Q_{t}^{\prime}\right) \vee\left(1 \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(1 \wedge Q_{t}\right) \vee\left(0 \wedge Q_{t-1}\right)\right] \\
f_{t}^{\prime}=[(0 \wedge) \vee(1 \wedge 1)] & f_{t}=[(1 \wedge 1) \vee(0 \wedge 1)] \\
f_{t}^{\prime}=[0 \vee 1] & f_{t}=[1 \vee 0] \\
f_{t}^{\prime}=1 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t}=Q_{t-1}$
43: $00+0$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,0,+1)$, i.e., $Q_{t}^{\prime}=\mathrm{Qt}, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=1, Q_{t-2}$ $=0$.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=G\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=G\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime} \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right]\right. & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right] \\
f_{t}^{\prime}=\left[\left(1 \wedge Q_{t}^{\prime}\right) \vee\left(0 \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(0 \wedge Q_{t}\right) \vee\left(1 \wedge Q_{t-1}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t}=Q_{t-1}$. From this, we have $Q_{t}^{\prime}=Q_{t}=Q_{t-1}=Q_{t-1}^{\prime}=(0,1)$. When $Q_{t}^{\prime}=Q_{t}=Q_{t-1}=Q_{t-1}^{\prime}=0$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(1 \wedge Q_{t}^{\prime}\right) \vee\left(0 \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(0 \wedge Q_{t}\right) \vee\left(1 \wedge Q_{t-1}\right)\right] \\
f_{t}^{\prime}[(1 \wedge 0) \vee(0 \wedge 0)] & f_{t}=[(0 \wedge 0) \vee(1 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

When $Q_{t}^{\prime}=Q_{t}=Q_{t-1}=Q_{t-1}^{\prime}=1$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(1 \wedge Q_{t}^{\prime}\right) \vee\left(0 \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(0 \wedge Q_{t}\right) \vee\left(1 \wedge Q_{t-1}\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 1)] & f_{t}=[(0 \wedge 1) \vee(1 \wedge 1)] \\
f_{t}^{\prime}=[1 \vee 0] & f_{t}=[0 \vee 1] \\
f_{t}^{\prime}=1 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t}=Q_{t-1}$
44: + 000
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,0,0)$, i.e., $Q_{t}^{\prime}=1, Q_{t}=0, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=$ Q_{t-2}.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=G\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=G\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime} \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right]\right. & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right] \\
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge 1\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge 0\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-2}=0$. From this, we have $Q_{t-2}^{\prime}=Q_{t-2}=0$. Now, $Q_{t-1}^{\prime}=Q_{t-1}$ $=(0,1)$. When $Q_{t-1}^{\prime}=Q_{t-1}=0$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge 1\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge 0\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right] \\
f_{t}^{\prime}=[(0 \wedge 1) \vee(1 \wedge 0)] & f_{t}=[(0 \wedge 0) \vee(1 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

When $Q_{t-1}^{\prime}=Q_{t-1}=1$, then

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge 1\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] f_{t}=\left[\left(Q_{t-2} \wedge 0\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right] & \\
f_{t}^{\prime}=[(0 \wedge) \vee(1 \wedge 1)] & f_{t}=[(0 \wedge 0) \vee(1 \wedge 1)] \\
f_{t}^{\prime}=[0 \vee 1] & f_{t}=[0 \vee 1] \\
f_{t}^{\prime}=1 . & f_{t}=1
\end{array}
$$

Condition(s) required for this proof: $Q_{t-2}=0$
45: $0 \pm \pm 0$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0, \pm 1, \pm 1)$, i.e., $Q_{t}^{\prime}=\mathrm{Qt}, Q_{t-1}^{\prime}-Q_{t-1}= \pm 1$, and $Q_{t-2}^{\prime}-Q_{t-2}=$ ± 1.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=G\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=G\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right]
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t}=0$. From this, we have $Q_{t}^{\prime}=Q_{t}=0$. From step 22, we showed $Q_{21}=Q_{22}$, so we know $Q_{t-1}=Q_{t-2}$.
Thus, we consider two possibilities. First, we consider when $Q_{t-1}=Q_{t-2}=0$ and $Q_{t-1}^{\prime}=Q_{t-2}^{\prime}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right] \\
f_{t}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 1)] & f_{t}=[(0 \wedge 0) \vee(1 \wedge 0)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

Second, we consider when $Q_{t-1}=Q_{t-2}=1$ and $Q_{t-1}^{\prime}=Q_{t-2}^{\prime}=0$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right] \\
f_{t}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 0)] & f_{t}=[(1 \wedge 0) \vee(0 \wedge 1)] \\
f_{t}^{\prime}=[0 \vee 0] & f_{t}=[0 \vee 0] \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t}=0$
46: $00 \pm \pm$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(0,0, \pm 1)$, i.e., $Q_{t}^{\prime}=\mathrm{Qt}, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}-Q_{t-2}=$ ± 1.
We want: $\Delta f_{t}= \pm 1$, i.e., $f_{t}^{\prime}-f_{t}= \pm 1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=G\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=G\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] & f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right]
\end{array}
$$

To ensure $f_{t}=1$, we require that $Q_{t}=1$. From this, we have $Q_{t}^{\prime}=Q_{t}=1$. From step 23, we showed $Q_{23}=0$, so we know $Q_{t-1}=0$. Thus, we consider two possibilities. First, we consider when $Q_{t-2}=0$ and $Q_{t-2}^{\prime}=1$. Thus,

```
\(f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right]\)
\(f_{t}^{\prime}=[(1 \wedge 1) \vee(0 \wedge 0)] \quad f_{t}=[(0 \wedge 1) \vee(1 \wedge 0)]\)
\(f_{t}^{\prime}=[1 \vee 0] \quad f_{t}=[0 \vee 0]\)
\(f_{t}^{\prime}=1 . \quad f_{t}=0\).
```

Second, we consider when $Q_{t-2}=1$ and $Q_{t-2}^{\prime}=0$. Thus,

```
\(f_{t}^{\prime}=\left[\left(Q_{t-2}^{\prime} \wedge Q_{t}^{\prime}\right) \vee\left(\neg Q_{t-2}^{\prime} \wedge Q_{t-1}^{\prime}\right)\right] \quad f_{t}=\left[\left(Q_{t-2} \wedge Q_{t}\right) \vee\left(\neg Q_{t-2} \wedge Q_{t-1}\right)\right]\)
\(f_{t}^{\prime}=[(0 \wedge 1) \vee(1 \wedge 0)] \quad f_{t}=[(1 \wedge 1) \vee(0 \wedge 0)]\)
\(f_{t}^{\prime}=[0 \vee 0] \quad f_{t}=[1 \vee 0]\)
\(f_{t}^{\prime}=0 . \quad f_{t}=1\).
```

Condition(s) required for this proof: $Q_{t}=1$

8.3 Proofs for Round 3

For round 3, note that $f_{t}=H(X, Y, Z)=X \oplus Y \oplus Z$.
47: $\pm 00 \pm$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(\pm 1,0,0)$, i.e., $Q_{t}^{\prime}-Q_{t}= \pm 1, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=Q_{t-2}$.
We want: $\Delta f_{t}= \pm 1$, i.e., $f_{t}^{\prime}-f_{t}= \pm 1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=H\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=H\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=Q_{t}^{\prime} \oplus\left(Q_{t-1}^{\prime} \oplus Q_{t-2}^{\prime}\right) & f_{t}=Q_{t} \oplus\left(Q_{t-1} \oplus Q_{t-2}\right) \\
f_{t}^{\prime}=Q_{t}^{\prime} \oplus\left(Q_{t-1}^{\prime} \oplus Q_{t-2}^{\prime}\right) & f_{t}=Q_{t} \oplus\left(Q_{t-1} \oplus Q_{t-2}\right) \\
f_{t}^{\prime}=Q_{t}^{\prime} & f_{t}=Q_{t}
\end{array}
$$

Since $Q_{t}^{\prime}-Q_{t}= \pm 1$, we have $f_{t}^{\prime}-f_{t}= \pm 1$, as desired.
Condition(s) required for this proof: none
48: $\pm \pm 00$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(\pm 1, \pm 1,0)$, i.e., $Q_{t}^{\prime}-Q_{t}= \pm 1, Q_{t-1}^{\prime}-Q_{t-1}= \pm 1$, and Q_{t-2}^{\prime} $=Q_{t-2}$.
We want: $\Delta f_{t}= \pm 1$, i.e., $f_{t}^{\prime}-f_{t}= \pm 1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=H\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=H\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left(Q_{t}^{\prime} \oplus Q_{t-1}^{\prime}\right) \oplus Q_{t-2}^{\prime} & f_{t}=\left(Q_{t} \oplus Q_{t-1}\right) \oplus Q_{t-2} \\
f_{t}^{\prime}=\left(Q_{t}^{\prime} \oplus Q_{t-1}^{\prime}\right) \oplus Q_{t-2}^{\prime} & f_{t}=\left(Q_{t} \oplus Q_{t-1}\right) \oplus Q_{t-2} \\
f_{t}^{\prime}=Q_{t-2}^{\prime} & f_{t}=Q_{t-2}
\end{array}
$$

Since $Q_{t-2}^{\prime}=Q_{t-2}$, we have $f_{t}^{\prime}=f_{t}$, as desired.
Condition(s) required for this proof: none
49: $\pm \pm \pm \pm$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(\pm 1, \pm 1, \pm 1)$, i.e., $Q_{t}^{\prime}-Q_{t}= \pm 1, Q_{t-1}^{\prime}-Q_{t-1}= \pm 1$, and $Q_{t-2}^{\prime}-$ $Q_{t-2}= \pm 1$.
We want: $\Delta f_{t}= \pm 1$, i.e., $f_{t}^{\prime}-f_{t}= \pm 1$

$$
\begin{array}{ll}
f_{t}^{\prime}=H\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=H\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=\left(Q_{t}^{\prime} \oplus Q_{t-1}^{\prime}\right) \oplus Q_{t-2}^{\prime} & f_{t}=\left(Q_{t} \oplus Q_{t-1}\right) \oplus Q_{t-2} \\
f_{t}^{\prime}=\left(Q_{t}^{\prime} \oplus Q_{t-1}^{\prime}\right) \oplus Q_{t-2}^{\prime} & f_{t}=\left(Q_{t} \oplus Q_{t-1}\right) \oplus Q_{t-2} \\
f_{t}^{\prime}=Q_{t-2}^{\prime} f_{t}=Q_{t-2} &
\end{array}
$$

Since $Q_{t-2}^{\prime}-Q_{t-2}= \pm 1$, we have $f_{t}^{\prime}-f_{t}= \pm 1$, as desired.
Condition(s) required for this proof: none

8.4 Proofs for Round 4

For round 4, note that $f_{t}=I(X, Y, Z)=Y \oplus(X \vee Z)$.
50: $\pm \pm \pm \pm$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(\pm 1, \pm 1, \pm 1)$, i.e., $Q_{t}-Q_{t}= \pm 1, Q_{t-1}^{\prime}-Q_{t-1}= \pm 1$, and $Q_{t-2}^{\prime}-$ $Q_{t-2}= \pm 1$.
We want: $\Delta f_{t}= \pm 1$, i.e., $f_{t}^{\prime}-f_{t}= \pm 1$.

$$
\begin{array}{ll}
f_{t}^{\prime}=I\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=I\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) & f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right)
\end{array}
$$

To ensure $f_{t}=1$, we require that $Q_{t}=Q_{t-2}$.
From this, we have $Q_{t}=Q_{t-2}=-1,+1$ and $Q_{t-1}=-1,+1$. Thus, we consider four possibilities. First, we consider when $Q_{t}=Q_{t-2}=-1$ and $Q_{t-1}=-1$. This gives us $Q_{t}=Q_{t-2}=1, Q_{t}^{\prime}=Q_{t-2}^{\prime}=0, Q_{t-1}=1$, and $Q_{t-1}^{\prime}=0$. Thus,

```
\(f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) \quad f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right)\)
\(f_{t}^{\prime}=0 \oplus(0 \vee 1) \quad f_{t}=1 \oplus(1 \vee 0)\)
\(f_{t}^{\prime}=0 \oplus 1 \quad f_{t}=1 \oplus 1\)
\(f_{t}^{\prime}=1 . \quad f_{t}=0\).
```

Second, we consider when $Q_{t}=Q_{t-2}=-1$ and $Q_{t-1}=+1$. This gives us $Q_{t}=Q_{t-2}=1, Q_{t}^{\prime}=Q_{t-2}^{\prime}=$ $0, Q_{t-1}=0$, and $Q_{t-1}^{\prime}=1$. Thus,

```
\(f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) \quad f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right)\)
\(f_{t}^{\prime}=1 \oplus(0 \vee 1) \quad f_{t}=0 \oplus(1 \vee 0)\)
\(f_{t}^{\prime}=1 \oplus 1\)
\(f_{t}=0 \oplus 1\)
\(f_{t}^{\prime}=0\).
\(f_{t}=1\).
```

Third, we consider when $Q_{t}=Q_{t-2}=+1$ and $Q_{t-1}=-1$. This gives us $Q_{t}=Q_{t-2}=0, Q_{t}^{\prime}=Q_{t-2}^{\prime}=$ $1, Q_{t-1}=1$, and $Q_{t-1}^{\prime}=0$. Thus,

```
\(f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right)\)
\(f_{t}^{\prime}=0 \oplus(1 \vee 0) \quad f_{t}=1 \oplus(0 \vee 1)\)
\(f_{t}^{\prime}=0 \oplus 1 \quad f_{t}=1 \oplus 1\)
\(f_{t}^{\prime}=1 . \quad f_{t}=0\).
```

Fourth, we consider when $Q_{t}=Q_{t-2}=+1$ and $Q_{t-1}=+1$. This gives us $Q_{t}=Q_{t-2}=0, Q_{t}^{\prime}=Q_{t-2}^{\prime}$ $=1, Q_{t-1}=1$, and $Q_{t-1}^{\prime}=0$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right) & \\
f_{t}^{\prime}=1 \oplus(1 \vee 0) & f_{t}=0 \oplus(0 \vee 1) \\
f_{t}^{\prime}=1 \oplus 1 & f_{t}=0 \oplus 1 \\
f_{t}^{\prime}=0 . & f_{t}=1 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t}=Q_{t-2}==\mathrm{i} Q_{t}=Q_{t-2}$
$51: \pm \pm \pm 0$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(\pm 1, \pm 1, \pm 1)$, i.e., $Q_{t}-Q_{t}= \pm 1, Q_{t-1}^{\prime}-Q_{t-1}= \pm 1$, and $Q_{t-2}^{\prime}-$ $Q_{t-2}= \pm 1$.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=I\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=I\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) & f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right)
\end{array}
$$

To ensure $f_{t}=1$, we require that $Q_{t}=-Q_{t-2}$.
From this, we have $Q_{t}=-Q_{t-2}=-1,+1$ and $Q_{t-1}=-1,+1$. Thus, we consider four possibilities. First, we consider when $Q_{t}=-1, Q_{t-2}=+1$, and $Q_{t-1}=-1$. This gives us $Q_{t}=1, Q_{t-2}=0, Q_{t}^{\prime}=0, Q_{t-2}^{\prime}=1$, $Q_{t-1}=1$, and $Q_{t-1}^{\prime}=0$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right) & \\
f_{t}^{\prime}=0 \oplus(0 \vee 0) & f_{t}=1 \oplus(1 \vee 1) \\
f_{t}^{\prime}=0 \oplus 0 & f_{t}=1 \oplus 1 \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

Second, we consider when $Q_{t}=-1, Q_{t-2}=+1$, and $Q_{t-1}=+1$. This gives us $Q_{t}=1, Q_{t-2}=0, Q_{t}^{\prime}=$ $0, Q_{t-2}^{\prime}=1, Q_{t-1}=0$, and $Q_{t-1}^{\prime}=1$. Thus,

```
\(f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) \quad f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right)\)
\(f_{t}^{\prime}=1 \oplus(0 \vee 0) \quad f_{t}=0 \oplus(1 \vee 1)\)
\(f_{t}^{\prime}=1 \oplus 0 \quad f_{t}=0 \oplus 1\)
\(f_{t}^{\prime}=1\).
\(f_{t}=1\).
```

Third, we consider when $Q_{t}=+1, Q_{t-2}=-1$, and $Q_{t-1}=-1$. This gives us $Q_{t}=0, Q_{t-2}=1, Q_{t}^{\prime}=1$, $Q_{t-2}^{\prime}=0, Q_{t-1}=1$, and $Q_{t-1}^{\prime}=0$. Thus,

```
\(f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) \quad f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right)\)
\(f_{t}^{\prime}=0 \oplus(1 \vee 1) \quad f_{t}=1 \oplus(0 \vee 0)\)
\(f_{t}^{\prime}=0 \oplus 1 \quad f_{t}=1 \oplus 0\)
\(f_{t}^{\prime}=1 . \quad f_{t}=1\).
```

Fourth, we consider when $Q_{t}=+1, Q_{t-2}=-1$, and $Q_{t-1}=+1$. This gives us $Q_{t}=0, Q_{t-2}=1, Q_{t}^{\prime}=$ $1, Q_{t-2}^{\prime}=0, Q_{t-1}=1$, and $Q_{t-1}^{\prime}=0$. Thus,

```
\(f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) \quad f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right)\)
\(f_{t}^{\prime}=1 \oplus(1 \vee 1) \quad f_{t}=0 \oplus(0 \vee 0)\)
\(f_{t}^{\prime}=1 \oplus 1\)
    \(f_{t}=0 \oplus 0\)
\(f_{t}^{\prime}=0\).
    \(f_{t}=0\).
```

Condition(s) required for this proof: $Q_{t}=-Q_{t-2}==i Q_{t}=Q_{t-2}$

```
52:+000
```

We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,0,0)$, i.e., $Q_{t}^{\prime}=1, Q_{t}=0, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=$ Q_{t-2}.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=I\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=I\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) & f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right) \\
f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(1 \vee \neg Q_{t-2}^{\prime}\right) & f_{t}=Q_{t-1} \oplus\left(0 \vee \neg Q_{t-2}\right)
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-2}=0$. From this, we have $Q_{t-2}^{\prime}=Q_{t-2}=0$. Now, $Q_{t-1}^{\prime}=Q_{t-1}$ $=(0,1)$. When $Q_{t-1}^{\prime}=Q_{t-1}=0$, then

```
\(f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(1 \vee \neg Q_{t-2}^{\prime}\right) \quad f_{t}=Q_{t-1} \oplus\left(0 \vee \neg Q_{t-2}\right)\)
\(f_{t}^{\prime}=0 \oplus(1 \vee 1) \quad f_{t}=0 \oplus(0 \vee 1)\)
\(f_{t}^{\prime}=0 \oplus 1 \quad f_{t}=0 \oplus 1\)
\(f_{t}^{\prime}=1 . \quad f_{t}=1\).
```

When $Q_{t-1}^{\prime}=Q_{t-1}=1$, then

```
\(f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(1 \vee \neg Q_{t-2}^{\prime}\right) \quad f_{t}=Q_{t-1} \oplus\left(0 \vee \neg Q_{t-2}\right)\)
\(f_{t}^{\prime}=1 \oplus(1 \vee 1) \quad f_{t}=1 \oplus(0 \vee 1)\)
\(f_{t}^{\prime}=1 \oplus 1 \quad f_{t}=1 \oplus 1\)
\(f_{t}^{\prime}=0 . \quad f_{t}=0\).
```

Condition(s) required for this proof: $Q_{t-2}=0$
$53:++00$
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(+1,+1,0)$, i.e., $Q_{t}^{\prime}=Q_{t-1}^{\prime}=1, Q_{t}=Q_{t-1}=0$, and Q_{t-2}^{\prime} $=Q_{t-2}$.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=I\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=I\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) & f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right) \\
f_{t}^{\prime}=1 \oplus\left(1 \vee \neg Q_{t-2}^{\prime}\right) & f_{t}=0 \oplus\left(0 \vee \neg Q_{t-2}\right)
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-2}=1$. From this, we have $Q_{t-2}^{\prime}=Q_{t-2}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=1 \oplus\left(1 \vee \neg Q_{t-2}^{\prime}\right) & f_{t}=0 \oplus\left(0 \vee \neg Q_{t-2}\right) \\
f_{t}^{\prime}=1 \oplus(1 \vee 0) & f_{t}=0 \oplus(0 \vee 0) \\
f_{t}^{\prime}=1 \oplus 1 & f_{t}=0 \oplus 0 \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t-2}=1$
54: - 000
We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(-1,0,0)$, i.e., $Q_{t}^{\prime}=0, Q_{t}=1, Q_{t-1}^{\prime}=Q_{t-1}$, and $Q_{t-2}^{\prime}=Q_{t-2}$. We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=I\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=I\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) & f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right) \\
f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(0 \vee \neg Q_{t-2}^{\prime}\right) & f_{t}=Q_{t-1}^{\prime}\left(1 Q_{t-2}\right)
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-2}=0$. From this, we have $Q_{t-2}^{\prime}=Q_{t-2}=0$. Now, $Q_{t-1}^{\prime}=Q_{t-1}$ $=(0,1)$. When $Q_{t-1}^{\prime}=Q_{t-1}=0$, then

```
\(f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(0 \vee \neg Q_{t-2}^{\prime}\right)\)
\(f_{t}^{\prime}=0 \oplus(0 \vee 1) \quad f_{t}=0 \oplus(1 \vee 1)\)
\(f_{t}^{\prime}=0 \oplus 1\)
\(f_{t}^{\prime}=1\).
    \(f_{t}=Q_{t-1} \oplus\left(1 \vee \neg Q_{t-2}\right)\)
\(f_{t}=0 \oplus 1\)
```

When $Q_{t-1}^{\prime}=Q_{t-1}=1$, then

```
\(f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(0 \vee \neg Q_{t-2}^{\prime}\right) \quad f_{t}=Q_{t-1} \oplus\left(1 \vee \neg Q_{t-2}\right)\)
\(f_{t}^{\prime}=1 \oplus(0 \vee 1) \quad f_{t}=1 \oplus(1 \vee 1)\)
\(f_{t}^{\prime}=1 \oplus 1 \quad f_{t}=1 \oplus 1\)
\(f_{t}^{\prime}=0 . \quad f_{t}=0\).
```

Condition(s) required for this proof: $Q_{t-2}=0$
55: - - 00

We are given: $\left(\Delta Q_{t}, \Delta Q_{t-1}, \Delta Q_{t-2}\right)=(-1,-1,0)$, i.e., $Q_{t}=Q_{t-1}=1, Q_{t}^{\prime}=Q_{t-1}^{\prime}=0$, and $Q_{t-2}^{\prime}=$ Q_{t-2}.
We want $\Delta f_{t}=0$, i.e., $f_{t}^{\prime}=f_{t}$.

$$
\begin{array}{ll}
f_{t}^{\prime}=I\left[Q_{t}^{\prime}, Q_{t-1}^{\prime}, Q_{t-2}^{\prime}\right] & f_{t}=I\left[Q_{t}, Q_{t-1}, Q_{t-2}\right] \\
f_{t}^{\prime}=Q_{t-1}^{\prime} \oplus\left(Q_{t}^{\prime} \vee \neg Q_{t-2}^{\prime}\right) & f_{t}=Q_{t-1} \oplus\left(Q_{t} \vee \neg Q_{t-2}\right) \\
f_{t}^{\prime}=0 \oplus\left(0 \vee \neg Q_{t-2}^{\prime}\right) & f_{t}=1 \oplus\left(1 \vee \neg Q_{t-2}\right)
\end{array}
$$

To ensure $f_{t}=0$, we require that $Q_{t-2}=1$. From this, we have $Q_{t-2}^{\prime}=Q_{t-2}=1$. Thus,

$$
\begin{array}{ll}
f_{t}^{\prime}=0 \oplus\left(0 \vee \neg Q_{t-2}^{\prime}\right) & f_{t}=1 \oplus\left(1 \vee \neg Q_{t-2}\right) \\
f_{t}^{\prime}=0 \oplus(0 \vee 0) & f_{t}=1 \oplus(1 \vee 0) \\
f_{t}^{\prime}=0 \oplus 0 & f_{t}=1 \oplus 1 \\
f_{t}^{\prime}=0 . & f_{t}=0 .
\end{array}
$$

Condition(s) required for this proof: $Q_{t-2}=1$

9 Errata

In scrutinizing [3], several errors were found. We have divided the errors into three sections. Trivial errors are simply misprints and do not affect the attack in any way as a whole. The minor errors are more important, yet they still do not affect the overall attack. The two significant errors, however, have a considerable effect on the attack. In correcting the first error, we will show that the complexity of the attack is only about half of what was stated in [3]. In correcting the second, we will show that Case Two as presented in [3] does not succeed in fulfilling the conditions required for the collision differential to hold.

9.1 Trivial Errors

Page 4, Description of the f_{t} functions:
$F(X, Y, Z)=(X \wedge Y) \oplus(\neg X \wedge Z), 0 \leq t \leq 15 \rightarrow F(X, Y, Z)=(X \wedge Y) \vee(\neg X \wedge Z), 0 \leq t \leq 15$
$G(X, Y, Z)=(Z \wedge X) \oplus(\neg Z \wedge Y), 0 \leq t \leq 15 \rightarrow G(X, Y, Z)=(Z \wedge X) \vee(\neg Z \wedge Y), 0 \leq t \leq 15$
Page 7, Condition III:

$$
\delta R_{t}=\sum_{j=25}^{31}+2^{j+12(\bmod 32)}=\sum_{j=5}^{31}+2^{j} \rightarrow \delta R_{t}=\sum_{j=25}^{31}+2^{j+12(\bmod 32)}=\sum_{j=5}^{11}+2^{j}
$$

Page 9, Round 8:
Conditions on $T_{6} \rightarrow$ Conditions on T_{8}
$\delta T_{8}=\left(+2^{31}-2^{24}+2^{16}+2^{10}+2^{8}+2^{6}\right)+\left(-2^{-6}\right) \rightarrow \delta T_{8}=\left(+2^{31}-2^{24}+2^{16}+2^{10}+2^{8}+2^{6}\right)+\left(-2^{6}\right)$
Page 13, Round 18:
$\delta Q_{18}=+2^{31}+2^{17} \rightarrow \delta Q_{18}=+2^{31}$
Page 13, Round 19:
$\delta Q_{t-3}=Q_{19}=+2^{31}-2^{17} \rightarrow \delta Q_{t-3}=Q_{16}=+2^{31}-2^{17}$
Page 14, Round 25:
$\delta Q_{t-3}=Q_{19}=+2^{31} \rightarrow \delta Q_{t-3}=Q_{22}=+2^{31}$
Page 16, Round 61:
$\delta Q_{62}=\delta Q_{61}+R_{61}=\left(+2^{31}\right)+(0)=+2^{31}+2^{25} \rightarrow Q_{62}=Q_{61}+R_{61}=\left(+2^{31}\right)+\left(+2^{25}\right)=+2^{31}+2^{25}$
Page 18, Round 5:
$0 \in T_{5}[11-18] \rightarrow 0 \in T_{5}[18-11]$
Page 18, Round 10:
$0 \in T_{10}[14,12] \rightarrow 0 \in T_{10}[14-12]$
Page 18, Round 11:
$1 \in T_{11}[22,17] \rightarrow 1 \in T_{11}[22-17]$
Page 30, $\nabla Q_{9}[31]= \pm 1$:
$Q_{8}[31]=\overline{Q_{7}[31] \oplus Q_{8}[31]} \rightarrow Q_{9}[31]=\overline{Q_{7}[31] \oplus Q_{8}[31]}$
Page 33, Constant bits of Q_{11} :
For $j \in[8,0], \nabla f_{11}[j]=+1$, requires $Q_{11}[j]=0 \rightarrow$ For $j \in[8,0], \nabla f_{11}[j]=-1$, requires $Q_{11}[j]=0$
Page 34, Non-Constant bits of Q_{11} :
$f_{11} *[30]=f_{11}[30]$, requires $Q_{9} *[30]=Q_{9}[30]=Q_{10}[30] \rightarrow f_{11 *} *[30]=f_{11}[30]$, requires $Q_{10} *[30]=Q_{10}[30]$
$=Q_{9}[30]$
Page 35, Obtaining the Correct ΔQ_{t} :
Since $Q_{11}[7]=1$ and $Q_{11}[7]=0$ are already specified \rightarrow Since $Q_{11}[7]=1$ and $Q_{10}[7]=0$ are already specified
Page 35, Obtaining the Correct f_{t} :
For $j \in[30-20,11,10,9,6-0] \rightarrow$ For $j \in[29-20,11,10,9,6-0]$
Page 44, Obtaining the Correct f_{t} :
$\Delta Q_{15}[j]=0$, for $j \in[30-17,14-44,2,1,0] \rightarrow \Delta Q_{15}[j]=0$, for $j \in[30-16,14-4,2,1,0]$

Page 51, Caption for Table 7:
For rounds 16 to 31 of the first block \rightarrow For rounds 32 to 47 of the first block
Page 51, Round 35:
The attacker has $\delta Q_{32}=0, \delta Q_{34}=0$, and $\delta Q_{35}= \pm 2^{31} \rightarrow$ The attacker has $\delta Q_{33}=0, \delta Q_{34}=0$, and δQ_{35} $= \pm 2^{31}$

Page 58, Caption for Table 11:
Conditions for on $Q_{t}, 15 \leq t \leq 32$, in the first block \rightarrow Conditions on $Q_{t}, 3 \leq t \leq 15$, in the first block
Page 59, Caption for Table 12:
Conditions for on $Q_{t}, 15 \leq t \leq 32$, in the first block \rightarrow Conditions on $Q_{t}, 16 \leq t \leq 63$, in the first block
Page 68, Caption for Table 17:
Add-differences for rounds 16 to 63 of the second block \rightarrow Add-differences for the second block

9.2 Minor Errors

Page 11, Round 12:
$\delta T_{12}=-2^{16}+2^{6}+2^{0} \rightarrow \delta T_{12}=+2^{17}+2^{6}+2^{0}$
$\delta=\left(-2^{16}+2^{6}+2^{0}\right) \rightarrow \delta=\left(+2^{17}+2^{6}+2^{0}\right)$
$\delta T_{12}=-2^{16+7=23}+2^{6+7=13}+2^{0+7=7} \rightarrow \delta T_{12}=+2^{17+7=24}+2^{6+7=13}+2^{0+7=7}$
Page 18, Round 6:
$1 \in T_{6}[13-10] \Rightarrow$ Probability: $\left(1-2^{-5}\right) \rightarrow 1 \in T_{6}[13-10] \Rightarrow$ Probability: $\left(1-2^{-4}\right)$
Page 18, Round 9:
$0 \in T_{9}[19-2] \Rightarrow$ Probability: $\left(1-2^{-18}\right) \rightarrow 0 \in T_{9}[19-0] \Rightarrow$ Probability: $\left(1-2^{-20}\right)$
Page 18, Round 12:
$\delta=\left(-2^{16}+2^{6}+2^{0}\right) \rightarrow \delta=\left(+2^{17}+2^{6}+2^{0}\right)$
$0 \in \delta T_{12}[24-16] \Rightarrow$ Probability: $\left(1-2^{-9}\right) \rightarrow 0 \in \delta T_{12}[24-17] \Rightarrow$ Probability: $\left(1-2^{-8}\right)$
$0 \in \delta T_{12}[15-6] \Rightarrow$ Probability: $\left(1-2^{-10}\right) \rightarrow 0 \in \delta T_{12}[16-6] \Rightarrow$ Probability: $\left(1-2^{-11}\right)$
$0 \in \delta T_{12}[5-2] \Rightarrow$ Probability: $\left(1-2^{-4}\right) \rightarrow 0 \in \delta T_{12}[5-0] \Rightarrow$ Probability: $\left(1-2^{-6}\right)$
Page 30, Summary of the Requirements resulting from this round:
$Q_{8}[7,1]=Q_{9}[26,19-15]=0 \rightarrow Q_{8}[7,1]=Q_{9}[26,19-15,7,6,1]=0$
Page 53, Round 48:
Obtaining $\Delta f_{48}=0$, requires $\nabla Q_{48}[31]=\nabla Q_{48}[31] \rightarrow$ Obtaining $\Delta f_{60}=0$, requires $\nabla Q_{48}[31]=\nabla Q_{46}[31]$
Page 54, Round 49:
Obtaining $\Delta f_{49}=0$, requires $\nabla Q_{49}[31]=\nabla Q_{49}[31] \rightarrow$ Obtaining $\Delta f_{49}=0$, requires $\nabla Q_{49}[31]=\nabla Q_{47}[31]$
Page 54, Round 50:
Obtaining $\Delta f_{50}=0$, requires $\nabla Q_{50}[31]=-\nabla Q_{50}[31] \rightarrow$ Obtaining $\Delta f_{50}=0$, requires $\nabla Q_{50}[31]=-\nabla Q_{48}[31]$

Page 54, Rounds 51 to 59 :
Obtaining $f_{t}=0$, requires $Q_{t}[31]=Q_{t}[31] \rightarrow$ Obtaining $f_{t}=0$, requires $Q_{t}[31]=\nabla Q_{t-2}[31]$
Page 55, Round 60:
Obtaining $\Delta f_{60}=0$, requires $\nabla Q_{60}[31]=-\nabla Q_{60}[31] \rightarrow$ Obtaining $\Delta f_{60}=0$, requires $\nabla Q_{60}[31]=-\nabla Q_{58}[31]$
Page 55, Round 61:
Obtaining $\Delta f_{61}=0$, requires $\nabla Q_{61}[31]=\nabla Q_{61}[31] \rightarrow$ Obtaining $\Delta f_{61}=0$, requires $\nabla Q_{61}[31]=\nabla Q_{59}[31]$
Page 56, Round 62 :
Obtaining $\Delta f_{62}=0$, requires $\nabla Q_{62}[31]=\nabla Q_{62}[31] \rightarrow$ Obtaining $\Delta f_{62}=0$, requires $\nabla Q_{62}[31]=\nabla Q_{60}[31]$
Page 56, Round 63:
Obtaining $\Delta f_{63}=0$, requires $\nabla Q_{63}[31]=\nabla Q_{63}[31] \rightarrow$ Obtaining $\Delta f_{63}=0$, requires $\nabla Q_{63}[31]=\nabla Q_{61}[31]$
Page 60, Second block:
For a given choice of the values $A, B, H, I, J \rightarrow$ For a given choice of the values A, C, I, J
For a random message, the probability is $2^{-318} \rightarrow$ For a random message, the probability is 2^{-319}
Page 68, Step 4:
$\Delta f_{t}=+2^{30}+2^{26}-2^{18}-2^{3}+2^{1} \rightarrow \Delta f_{t}=+2^{30}+2^{26}-2^{18}+2^{3}-2^{1}$
Page 68, Step 6:
$\Delta f_{t}=-2^{31}-2^{21}-2^{10}+2^{3} \rightarrow \Delta f_{t}=+2^{31}-2^{21}-2^{10}+2^{3}$
Page 69, Step 5:
$\nabla Q_{t}=2^{31}+2^{9}+2^{6}+2^{0} \rightarrow \nabla Q_{t}=2^{31}+2^{9}+2^{8}+2^{6}+2^{0}$

9.3 Significant Errors

Significant Error \#1. In the table which presents a summary of the probabilities that the T_{t} would hold in each step, Hawkes, Paddon, and Rose state that T_{t} would hold with probability 2^{-1} in step 16 since they believed that bit 24 of T_{16} must be 0 . However, the true probability is $\left(1-2^{-3}\right)$ because only one of bits 24,25 , or 26 must be 0 since the left shift for step 16 is 5 , not 7 . Therefore, the probability that all of the T_{t} would hold after using single-message modification for each block is $2^{-2.4}$ rather than $2^{-3.2}$. Since the probability that all bits will propagate through the f_{t} functions in the desired manner for each block is 2^{-39}, the probability that the collision differential will hold for each block is

$$
2^{-2.4} \times 2^{-39}=2^{-41}
$$

rather than

$$
2^{-3.2} \times 2^{-39}=2^{-42}
$$

as stated in [3]. Thus, the complexity of the attack on both blocks is

$$
2^{41}+2^{41}=2^{42}
$$

rather than

$$
2^{42}+2^{42}=2^{43}
$$

as stated in [3].
Significant Error \#2: On page 24 in [3], Hawkes, Paddon, and Rose claim that the add-difference (2^{27}) in Q_{7} does not need to propagate to bit 31, as required in [7]. Rather, they claim that no propagation is necessary and that the propagation only results in a large number of additional conditions which are not needed for the attack to succeed. Thus, Hawkes, Paddon, and Rose consider two cases. Case One presents the propagation as illustrated in [7] while Case Two requires no propagation for the add-difference $\left(-2^{27}\right)$. We will prove that Case Two does not succeed in meeting the necessary conditions for collision differential to hold, and therefore, as shown in sectionrefsec:conditions, Case One is the only viable option. We will do this by examining bit 31 in steps 7,8 , and 9 .

According to Case Two, since no propagation is necessary for the add-difference $\left(-2^{27}\right)$ in $Q_{7}, \Delta Q_{7}[31]$ $=0$. From steps 5 and 6 , we have $\Delta Q_{5}[31]=0$ and $\Delta Q_{6}[31]= \pm 1$.
For the collision differential to hold, it is necessary that $\Delta f_{7}[31]=0$. We will now show that $Q_{7}[31]=0$ is required for $\Delta f_{7}[31]=0$:

We are given: $\left(\Delta Q_{7}, \Delta Q_{6}, \Delta Q_{5}\right)=(0, \pm 1,0)$, i.e., $Q_{7}^{\prime}=Q_{7}, Q_{6}^{\prime}-Q_{6}= \pm 1$, and $Q_{5}^{\prime}=Q_{5}$. We want: $\Delta f_{7}=0$, i.e., $f_{7}^{\prime}=f_{7}$.

$$
\begin{array}{ll}
f_{7}^{\prime}=F\left[Q_{7}^{\prime}, Q_{6}^{\prime}, Q_{5}^{\prime}\right] & f_{7}=F\left[Q_{7}, Q_{6}, Q_{5}\right] \\
f_{7}^{\prime}=\left[\left(Q_{7}^{\prime} \wedge Q_{6}^{\prime}\right) \vee\left(\neg Q_{7}^{\prime} \wedge Q_{5}^{\prime}\right)\right] & f_{7}=\left[\left(Q_{7} \wedge Q_{6}\right) \vee\left(\neg Q_{7} \wedge Q_{5}\right)\right]
\end{array}
$$

To ensure $\Delta f_{7}=0$, we require that $Q_{7}=0$. From this, we have $Q_{7}^{\prime}=Q_{7}=0$. Now, $Q_{5}^{\prime}=Q_{5}=(0,1)$. Also, we have $Q_{6}^{\prime}-Q_{6}=-1,+1$. We consider four possibilities. First, when $Q_{6}^{\prime}=0, Q_{6}=1$, and $Q_{5}^{\prime}=Q_{5}$ $=0$, then

```
\(f_{7}^{\prime}=\left[\left(Q_{7}^{\prime} \wedge Q_{6}^{\prime}\right) \vee\left(\neg Q_{7}^{\prime} \wedge Q_{5}^{\prime}\right)\right] \quad f_{7}=\left[\left(Q_{7} \wedge Q_{6}\right) \vee\left(\neg Q_{7} \wedge Q_{5}\right)\right]\)
\(f_{7}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 0)] \quad f_{7}=[(0 \wedge 1) \vee(1 \wedge 0)]\)
\(f_{7}^{\prime}=[0 \vee 0] \quad f_{7}=[0 \vee 0]\)
\(f_{7}^{\prime}=0 . \quad f_{7}=0\).
```

Second, when $Q_{6}^{\prime}=0, Q_{6}=1$, and $Q_{5}^{\prime}=Q_{5}=1$, then
$f_{7}^{\prime}=\left[\left(Q_{7}^{\prime} \wedge Q_{6}^{\prime}\right) \vee\left(\neg Q_{7}^{\prime} \wedge Q_{5}^{\prime}\right)\right] \quad f_{7}=\left[\left(Q_{7} \wedge Q_{6}\right) \vee\left(\neg Q_{7} \wedge Q_{5}\right)\right]$
$f_{7}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 1)] \quad f_{7}=[(0 \wedge 1) \vee(1 \wedge 1)]$
$f_{7}^{\prime}=[0 \vee 1] \quad f_{7}=[0 \wedge 1]$
$f_{7}^{\prime}=1 . \quad f_{7}=1$.
Third, when $Q_{6}^{\prime}=1, Q_{6}=0$, and $Q_{5}^{\prime}=Q_{5}=0$, then

$$
\begin{array}{ll}
f_{7}^{\prime}=\left[\left(Q_{7}^{\prime} \wedge Q_{6}^{\prime}\right) \vee\left(\neg Q_{7}^{\prime} \wedge Q_{5}^{\prime}\right)\right] & f_{7}=\left[\left(Q_{7} \wedge Q_{6}\right) \vee\left(\neg Q_{7} \wedge Q_{5}\right)\right] \\
f_{7}^{\prime}=[(0 \wedge 1) \vee(1 \wedge 0)] & f_{7}=[(0 \wedge 0) \vee(1 \wedge 0)] \\
f_{7}^{\prime}=[0 \vee 0] & f_{7}=[0 \vee 0] \\
f_{7}^{\prime}=0 . & f_{7}=0 .
\end{array}
$$

Fourth, when $Q_{6}^{\prime}=1, Q_{6}=0$, and $Q_{5}^{\prime}=Q_{5}=1$, then

```
\(f_{7}^{\prime}=\left[\left(Q_{7}^{\prime} \wedge Q_{6}^{\prime}\right) \vee\left(\neg Q_{7}^{\prime} \wedge Q_{5}^{\prime}\right)\right] \quad f_{7}=\left[\left(Q_{7} \wedge Q_{6}\right) \vee\left(\neg Q_{7} \wedge Q_{5}\right)\right]\)
\(f_{7}^{\prime}=[(0 \wedge 1) \vee(1 \wedge 1)] \quad f_{7}=[(0 \wedge 0) \vee(1 \wedge 1)]\)
\(f_{7}^{\prime}=[0 \vee 1] \quad f_{7}=[0 \vee 1]\)
\(f_{7}^{\prime}=1 . \quad f_{7}=1\).
```

Condition(s) required for this proof: $Q_{7}=0$
Next, according Case Two, $\Delta Q_{8}[31]=0$. From steps 6 and 7 , we have $\Delta Q_{6}[31]= \pm 1$ and $\Delta Q_{7}[31]=0$. For the collision differential to hold, it is necessary that $\Delta f_{8}[31]= \pm 1$.
We will now show that $Q_{8}[31]=0$ is required for $\Delta f_{8}[31]= \pm 1$:
We are given: $\left(\Delta Q_{8}, \Delta Q_{7}, \Delta Q_{6}\right)=(0,0, \pm 1)$, i.e., $Q_{8}^{\prime}=Q_{8}, Q_{7}^{\prime}=Q_{7}$, and $Q_{6}^{\prime}-Q_{6}= \pm 1$.
We want: $\Delta f_{8}= \pm 1$, i.e., $f_{8}^{\prime}-f_{8}= \pm 1$.

$$
\begin{array}{ll}
f_{8}^{\prime}=F\left[Q_{8}^{\prime}, Q_{7}^{\prime}, Q_{6}^{\prime}\right] & f_{8}=F\left[Q_{8}, Q_{7}, Q_{6}\right] \\
f_{8}^{\prime}=\left[\left(Q_{8}^{\prime} \wedge Q_{7}^{\prime}\right) \vee\left(\neg Q_{8}^{\prime} \wedge Q_{6}^{\prime}\right)\right] & f_{8}=\left[\left(Q_{8} \wedge Q_{7}\right) \vee\left(\neg Q_{8} \wedge Q_{6}\right)\right]
\end{array}
$$

To ensure $\Delta f_{8}= \pm 1$, we require that $Q_{8}=0$. From this, we have $Q_{8}^{\prime}=Q_{8}=0$. Now, since $\Delta Q_{7}=0$ and $Q_{7}=0, Q_{7}^{\prime}=Q_{7}=0$. Also, we have $Q_{6}^{\prime}-Q_{6}=-1,+1$. We consider two possibilities. First, when Q_{6}^{\prime} $=0$, and $Q_{6}=1$, then

$$
\left.\begin{array}{ll}
f_{8}^{\prime}=\left[\left(Q_{8}^{\prime} \wedge Q_{7}^{\prime}\right) \vee\left(\neg Q_{8}^{\prime} \wedge Q_{6}^{\prime}\right)\right] & f_{8}=\left[\left(Q_{8} \wedge Q_{7}\right) \vee\left(\neg Q_{8} \wedge Q_{6}\right)\right] \\
f_{8}=[(0 \wedge 0) \vee(1 \wedge 0)] & \\
f_{8}=[(0 \wedge 0) \vee(1 \wedge 1)] \\
f_{8}=[0 \vee 0] &
\end{array} f_{8}=[0 \vee 1]\right) .
$$

Second, when $Q_{6}^{\prime}=1$, and $Q_{6}=0$, then

```
\(f_{8}^{\prime}=\left[\left(Q_{8}^{\prime} \wedge Q_{7}^{\prime}\right) \vee\left(\neg Q_{8}^{\prime} \wedge Q_{6}^{\prime}\right)\right] \quad f_{8}=\left[\left(Q_{8} \wedge Q_{7}\right) \vee\left(\neg Q_{8} \wedge Q_{6}\right)\right]\)
\(f_{8}=[(0 \wedge 0) \vee(1 \wedge 1)] \quad f_{8}=[(0 \wedge 0) \vee(1 \wedge 0)]\)
\(f_{8}=[0 \vee 1] \quad f_{8}=[0 \vee 0]\)
\(f_{8}=1 . \quad f_{8}=0\).
```

Condition(s) required for this proof: $Q_{8}=0$

Then, according Case Two, no conditions are required for $\Delta f_{9}[31]= \pm 1$.
This is because $Q_{7}[31]=1$ and $Q_{8}[31]=0$ implies that $\Delta f_{9}[31]= \pm 1$.
This statement is true, as shown below:
We are given: $\left(\Delta Q_{9}, \Delta Q_{8}, \Delta Q_{7}\right)=(\pm 1,0,0)$, i.e., $Q_{9}^{\prime}-Q_{9}= \pm 1, Q_{8}^{\prime}=Q_{8}$, and $Q_{7}^{\prime}=Q_{7}$.
We want: $\Delta f_{9}= \pm 1$, i.e., $f_{9}^{\prime}-f_{9}= \pm 1$.

$$
\begin{array}{ll}
f_{9}^{\prime}=F\left[Q_{9}^{\prime}, Q_{8}^{\prime}, Q_{7}^{\prime}\right] & f_{9}=F\left[Q_{9}, Q_{8}, Q_{7}\right] \\
f_{9}^{\prime}=\left[\left(Q_{9}^{\prime} \wedge Q_{8}^{\prime}\right) \vee\left(\neg Q_{9}^{\prime} \wedge Q_{7}^{\prime}\right)\right] & f_{9}=\left[\left(Q_{9} \wedge Q_{8}\right) \vee\left(\neg Q_{9} \wedge Q_{7}\right)\right]
\end{array}
$$

To ensure $\Delta f_{9}= \pm 1$, no requirements are necessary. Now, since $\Delta Q_{7}=0$ and $Q_{7}=1, Q_{7}^{\prime}=Q_{7}=1$, and since $\Delta Q_{8}=0$ and $Q_{8}=0, Q_{8}^{\prime}=Q_{8}=0$. We consider two possibilities. First, when $Q_{9}^{\prime}=0$ and $Q_{9}=$ 1 , then

```
\(f_{9}^{\prime}=\left[\left(Q_{9}^{\prime} \wedge Q_{8}^{\prime}\right) \vee\left(\neg Q_{9}^{\prime} \wedge Q_{7}^{\prime}\right)\right] \quad f_{9}=\left[\left(Q_{9} \wedge Q_{8}\right) \vee\left(\neg Q_{9} \wedge Q_{7}\right)\right]\)
\(f_{9}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 1)] \quad f_{9}=[(1 \wedge 0) \vee(0 \wedge 1)]\)
\(f_{9}^{\prime}=[0 \vee 1] \quad f_{9}=[0 \vee 0]\)
\(f_{9}^{\prime}=1 . \quad f_{9}=0\).
```

Second, when $Q_{9}^{\prime}=1$ and $Q_{9}=0$, then

```
\(f_{9}^{\prime}=\left[\left(Q_{9}^{\prime} \wedge Q_{8}^{\prime}\right) \vee\left(\neg Q_{9}^{\prime} \wedge Q_{7}^{\prime}\right)\right] \quad f_{9}=\left[\left(Q_{9} \wedge Q_{8}\right) \vee\left(\neg Q_{9} \wedge Q_{7}\right)\right]\)
\(f_{9}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 1)] \quad f_{9}=[(0 \wedge 0) \vee(1 \wedge 1)]\)
\(f_{9}^{\prime}=[0 \vee 0] \quad f_{9}=[0 \vee 1]\)
\(f_{9}^{\prime}=0 . \quad f_{9}=1\).
```

Condition(s) required for this proof: none
But there is a problem. In step 7 , we proved that $Q_{7}[31]=0$, but now according Case Two, $Q_{7}[31]=1$. This is impossible. In fact, we will show that if $Q_{7}[31]=0$, we cannot have $\Delta f_{9}[31]= \pm 1$:

We are given: $\left(\Delta Q_{9}, \Delta Q_{8}, \Delta Q_{7}\right)=(\pm 1,0,0)$, i.e., $Q_{9}^{\prime}-Q_{9}= \pm 1, Q_{8}^{\prime}=Q_{8}$, and $Q_{7}^{\prime}=Q_{7}$.
We want: $\Delta f_{9}= \pm 1$, i.e., $f_{9}^{\prime}-f_{9}= \pm 1$.

$$
\begin{array}{ll}
f_{9}^{\prime}=F\left[Q_{9}^{\prime}, Q_{8}^{\prime}, Q_{7}^{\prime}\right] & f_{9}=F\left[Q_{9}, Q_{8}, Q_{7}\right] \\
f_{9}^{\prime}=\left[\left(Q_{9}^{\prime} \wedge Q_{8}^{\prime}\right) \vee\left(\neg Q_{9}^{\prime} \wedge Q_{7}^{\prime}\right)\right] & f_{9}=\left[\left(Q_{9} \wedge Q_{8}\right) \vee\left(\neg Q_{9} \wedge Q_{7}\right)\right]
\end{array}
$$

To calculate Δf_{9}, no requirements are necessary. Now, since $\Delta Q_{7}=0$ and $Q_{7}=0, Q_{7}^{\prime}=Q_{7}=0$, and since $\Delta Q_{8}=0$ and $Q_{8}=0, Q_{8}^{\prime}=Q_{8}=0$. We consider two possibilities. First, when $Q_{9}^{\prime}=0$ and $Q_{9}=1$, then

$$
\begin{array}{ll}
f_{9}^{\prime}=\left[\left(Q_{9}^{\prime} \wedge Q_{8}^{\prime}\right) \vee\left(\neg Q_{9}^{\prime} \wedge Q_{7}^{\prime}\right)\right] & f_{9}=\left[\left(Q_{9} \wedge Q_{8}\right) \vee\left(\neg Q_{9} \wedge Q_{7}\right)\right] \\
f_{9}^{\prime}=[(0 \wedge 0) \vee(1 \wedge 0)] & f_{9}=[(1 \wedge 0) \vee(0 \wedge 0)] \\
f_{9}^{\prime}=[0 \vee 0] & f_{9}=[1 \vee 0] \\
f_{9}^{\prime}=0 . & f_{9}=0 .
\end{array}
$$

Second, when $Q_{9}^{\prime}=1$ and $Q_{9}=0$, then

$$
\begin{array}{ll}
f_{9}^{\prime}=\left[\left(Q_{9}^{\prime} \wedge Q_{8}^{\prime}\right) \vee\left(\neg Q_{9}^{\prime} \wedge Q_{7}^{\prime}\right)\right] & f_{9}=\left[\left(Q_{9} \wedge Q_{8}\right) \vee\left(\neg Q_{9} \wedge Q_{7}\right)\right] \\
f_{9}^{\prime}=[(1 \wedge 0) \vee(0 \wedge 0)] & f_{9}=[(0 \wedge 0) \vee(1 \wedge 0)] \\
f_{9}^{\prime}=[1 \vee 0] & f_{9}=[0 \vee 0] \\
f_{9}^{\prime}=0 . & f_{9}=0 .
\end{array}
$$

For both possibilities, $\Delta f_{9}=0$, not $\Delta f_{9}= \pm 1$, which was desired. Thus, using the values of $Q_{7}[31]$ and $Q_{8}[31]$ calculated in steps 7 and 8 , we cannot obtain the desired value of $\Delta f_{9}[31]$, and we cannot meet all of the necessary conditions for collision differential to hold. If we had chosen Case One and propagated the add-difference $\left(-2^{27}\right)$ in Q_{7} to bit 31, as required in [7], we would have obtained the appropriate condition for
$Q_{7}[31]$, and therefore we would have been able to obtain the desired value for $\Delta f_{9}[31]$. As we have illustrated in section 7, Case One clearly succeeds in meeting every condition required for the collision differential to hold.

10 Conclusion

This paper has presented a new approach to the recent successful differential attack by Wang et al. on the MD5 Message Digest Algorithm. It has built on the work of Hawkes, Paddon, and Rose by adding proofs, examples, illustrations, and corrections to make the attack on MD5 more accessible to the mathematically literate reader.

This paper has made seven original contributions. First, it has compared the unorthodox description of MD5 by Hawkes, Paddon, and Rose to the original description by Ron Rivest. Second, it has supplied examples for conditions that they present for the T_{t}. Third, it has expanded on the description of the first block of the differential by explaining the conditions on the T_{t} in each step. Fourth, it has presented an original step by step analysis of the description of the second block based only on the table that Hawkes, Paddon, and Rose provide. Fifth, it has supplied original proofs of their assertions regarding the conditions for the propagation of the differences through the f_{t} functions for the first block. Sixth, it has provided both assertions and proofs for the conditions for the propagation of the differences through the f_{t} functions for the second block. Finally, it has corrected two significant errors in the work of Hawkes, Paddon, and Rose, demonstrating that the complexity of the attack was only about half as great as they believed and that their Case Two did not succeed in fulfilling the conditions required for the collision differential to hold.

11 Acknowledgements

I am grateful for the suggestions and advice that Philip Hawkes and Gregory Rose have given me. I am also thankful for the motivation and support that John Edman and John Noerenberg provided throughout the process of writing this paper.

References

1. R. Rivest. The md5 message-digest algorithm. 1992.
2. X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions md4, md5, haval-128 and ripemd. Cryptology ePrint Archive, 2000.
3. P. Hawkes, M. Paddon, and G. Rose. Musings on the wang et al. md5 collision. Cryptology ePrint Archive, 2004.
4. R. Rivest. The md4 message-digest algorithm. 1992.
5. B. den Boer and A. Bosselaers. Collisions for the compression function of md5. Advances in Cryptology - Eurocrypt '93, (vol. 773):293-304, 1994.
6. H. Dobbertin. Cryptanalysis of md5 compress.
7. X. Wang and H. Yu. How to break md5 and other hash functions. http://www.infosec.sdu.edu.cn/paper/md5attack.pdf, 2005.
8. Jie Liang and Xuejia Lai. Improved collision attack on hash function md5. Cryptology ePrint Archive, 2005.
9. John Black, Martin Cochran, and Trevor Highland. A study of the md5 attacks: Insights and improvements. In FSE, pages 262-277, 2006.
10. Vlastimil Klima. Finding md5 collisions on a notebook pc using multi-message modifications. Cryptology ePrint Archive, 2005.
11. Marc Stevens. Fast collision attack on md5. Cryptology ePrint Archive, 2006.
12. Vlastimil Klima. Tunnels in hash functions: Md5 collisions within a minute. Cryptology ePrint Archive, 2006.
