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Abstract

A major security goal for signature schemes is to prevent an adver-
sary from producing new valid signatures even though he can receive
valid signatures of any messages from the legitimate signer. On the
one hand the security of elliptic curve signature schemes, as ECDSA,
ECGDSA, or ECKCDSA, is based on the elliptic curve discrete loga-
rithm problem, respectively on the security of the used hash function.
On the other hand some special cases for ephemeral keys and signature
components also have to be excluded to guarantee the security of the
signature scheme. In this paper we are going to investigate some ex-
ceptional cases, which are not covered by current signature generation
algorithms, but leak information on the private signature key.

Keywords: Digital Signatures, ECDSA, ECGDSA, ECKCDSA

1 Introduction

A digital signature is a cryptographic primitive to provide data origin au-
thentication, data integrity and non-repudiation. Goldwasser, Micali and
Rivest define the notion of security of a signature scheme (see [2]): A se-
cure signature scheme means that only legitimate signers can generate valid
signatures of a message. No adversary should have the ability to produce
signatures even if he knows arbitrary pairs of messages and valid signatures.

Elliptic curve signature algorithms are very attractive for security sys-
tems based on smart card solutions and embedded systems. The security of
these algorithms is based on the complexity of the discrete logarithm prob-
lem of the corresponding elliptic curve (ECDLP), respectively the security
of the hash function. Even though the underlying elliptic curve and the
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used hash function are cryptographically secure, there are still some excep-
tional cases, concerning the ephemeral keys and the signature components,
in which the private signature key can be recovered.

The digital signature generation standards usually comprise the cases
when signature components equal zero, but in this paper we are going to
investigate further exceptions to be considered for a secure signature gener-
ation.

2 Basic Idea

Let E be a cryptographically strong elliptic curve represented in a Weierstraß-
equation defined over a finite field F of characteristic p with order n (see
[1]). Let P be the generator of the large subgroup of E with order q. In
addition, let H denote a cryptographically secure hash function whose out-
put bitlength is not greater than that of q. According to the latest version
of the standard if this condition cannot be satisfied due to the choice of the
domain parameters of the elliptic curve, a hash function with larger output
length can also be used. Then the output of H has to be truncated.

The Elliptic Curve Digital Signature Algorithm (ECDSA [3]) to perform
a signature generation of the message m, works as follows:

ECDSA Signature Generation

Input: domain parameters (E,P ), private key d,
message m

Output: signature (r, s)

1. pick 0 < k < q randomly
2. (xR, yR)← kP
3. r ← xR mod q
4. if r = 0 then goto 1
5. k ← k−1 mod q
6. e← H(m)
7. s← k(e + rd) mod q
8. if s = 0 then goto 1
9. return (r, s)

In this algorithm there are two cases which lead to a repeated choice of the
ephemeral key k. In the first case, if r = 0 the signature component s would
not depend on the private key d of the signer. In the second case, if s = 0,
the inversion in the signature verification algorithm cannot be performed.
Both cases appear very unlikely, but they have to be treated in the signature
standard.

In order to verify the digital signature (r, s) of the message m the verifier
computes the following steps (Q = dP denotes the public key):
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ECDSA Signature Verification

Input: domain parameters (E,P ), public key Q,
message m, signature (r, s)

Output: acceptance or rejection of the signature

1. verify that 0 < r, s < q
2. s′ ← s−1 mod q
3. e← H(m)
4. h1 ← s′e mod q
5. h2 ← s′r mod q
6. R = (xR, yR)← h1P + h2Q
7. if R = 0 then reject
8. if xR mod q = r then accept else reject

During the signature verification the results of the two scalar multiplications
h1P and h2Q must be added. Since the addition formula of two distinct
points is different from the formula to double a point, the verifier may detect
if h1P = h2Q. This leads to the relation h1 = h2d with known terms h1

and h2. Hence, the secret signature key can be recovered with the cost of
one multiplication and one inversion in Z/qZ. Of course, this special case is
quite rare, since its probability is equal to the probability of the event s = 0
in the signature generation.

In order to avoid these doublings during the signature verification the
signature components must not fulfill h1P = h2Q which is equivalent to

h1 = h2d ⇐⇒ s−1e = rs−1d ⇐⇒ e = rd

Thus, ephemeral keys k producing the condition e = rd have to be discarded
in the signature generation primitive:

Modified ECDSA Signature Generation

Input: domain parameters (E,P ), private key d,
message m

Output: signature (r, s)

1. pick 0 < k < q randomly
2. (xR, yR)← kP
3. r ← xR mod q
4. if r = 0 then goto 1
5. k ← k−1 mod q
6. e← H(m)
7. if e = rd then goto 1

8. s← k(e + rd) mod q
9. if s = 0 then goto 1
10. return (r, s)
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3 Application to ECGDSA and ECKCDSA

In the previous section we have shown that occurring doublings in the sig-
nature verification can reveal information on the private signature key. In
the following we investigate whether this situation can also be applied to
similar elliptic curve signature algorithms, as ECGDSA and ECKCDSA.

In the German version of elliptic curve signature standard (ECGDSA
[4]) the signer generates the private signature key d and derives the public
signature key by Q = d−1P . The inversion of the private signature key
d results in a simplified signature generation algorithm, in particular, the
ephemeral key k needn’t be inverted anymore.

ECGDSA Signature Generation

Input: domain parameters (E,P ), private key d,
message m

Output: signature (r, s)

1. pick 0 < k < q randomly
2. (xR, yR)← kP
3. r ← xr mod q
4. If r = 0 then goto 1
5. e← H(m)
6. s← d(kr − e) mod q
7. If s = 0 then goto 1
8. return (r, s)

The corresponding signature verification works as follows:

ECGDSA Signature Verification

Input: domain parameters (E,P ), public key Q,
message m, signature (r, s)

Output: acceptance or rejection of the signature

1. verify that 0 < r, s < q
2. r′ ← r−1 mod q
3. e← H(m)
4. h1 ← r′e mod q
5. h2 ← r′s mod q
6. (xR, yR)← h1P + h2Q
7. If xR mod q = r then accept else reject

If the verifier identifies the case h1P = h2Q, he is also able to recover the
ephemeral key k immediately from e = H(m) and r:

h1 = h2d ⇐⇒ e = d(kr − e)d−1
⇐⇒ 2e = kr ⇐⇒ k = 2er−1.
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By obtaing the ephemeral key k the secret key d can be deduced from the
second signature component s. To avoid the doubling in the ECGDSA signa-
ture verification, the ephemeral key k must not solve the equation 2e = kr.
Hence, we obtain the following extended version of the signature generation:

Modified ECGDSA Signature Generation

Input: domain parameters (E,P ), private key d,
message m

Output: signature (r, s)

1. pick 0 < k < q randomly
2. (xR, yR)← kP
3. r ← xr mod q
4. If r = 0 goto 1
5. e← H(m)
6. If 2e = kr goto 1

7. s← d(kr − e) mod q
8. If s = 0 goto 1
9. return (r, s)

Finally, we also study the ECKCDSA which is the elliptic curve analog
of the Korean Certificate-Based Digital Signature Standard (KCDSA [5]).
In this algorithm a cryptographically secure hash function H is used with
output length of ℓ bit. It is recommended that the order q of the large
subgroup is greater than 2ℓ. Furthermore a hash value hcert of the signer’s
certificate is inlcuded.

ECKCDSA Signature Generation

Input: domain parameters (E,P ), private key d,
hashed certificate hcert, message m

Output: signature (r, s)

1. pick 0 < k < q randomly
2. (xR, yR)← kP
3. r ← H(xR)
4. e← H(m,hcert)
5. w ← r ⊕ e mod q
6. s← d(k −w) mod q
7. if s = 0 then goto 1
8. return (r, s)

Similiar to the ECGDSA the public key Q is generated by Q = d−1P , such
that no modular inversion is neccessary neither in the signature generation
nor in the verification primitive.

The corresponding signature verification works as follows:
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ECKCDSA Signature Verification

Input: domain parameters (E,P ), public key Q,
hashed certificate hcert, message m, signature (r, s)

Output: acceptance or rejection of the signature

1. verify that 0 < s < q
2. verify that r < 2ℓ

2. e← H(m,hcert)
3. w ← r ⊕ e mod q
4. (xR, yR)← sQ + wP
5. v ← H(xR)
7. If v = r then accept else reject

Detecting a doubling in the verfication scheme, the equation sQ = wP leads
to the ephemeral key k = 2w and thus the private key d can be reconstructed.
Finally, testing the condition k = 2w prevents this doubling.

4 Conclusion

In this paper we have investigated some particular values of the ephemeral
key, satisfying a certain condition, where the private signature key can be
deduced only from the signature components. The occurrence of such an ex-
ceptional case can be identified during the signature verification by detecting
a doubling of points. By extenting the signature generation primitive by one
further equation which requires a modular multiplication these exceptions
can be prevented.

This situation can also be applied to DSA signatures. In this case if
a squaring can be detected during the signature verification the private
signature key can be recovered.

References

[1] S. Vanstone D. Hankerson, A. Menezes. Guide to Elliptic Curve Cryp-

tography. Springer-Verlag, 2004.

[2] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme
Secure Against Adaptive Chosen Message Attacks. In SIAM Journal of

Computing, volume 17, April 1988.

[3] American National Standards Institute. Public Key Cryptography for
the Financial Services Industry — The Elliptic Curve Digital Signature
Algorithm (ECDSA). ANSI X9.62 — 2005, 2005.

6



[4] ISO/IEC 15946-2. Information Technology — Security Techniques —
Cryptographic Techniques Based on Elliptic Curves — Part 2: Digital
Signatures, 2002.

[5] KCDSA Task Force Team. The Korean Certificate-Based
Digital Signature Algorithm, August 1988. available at
http://grouper.ieee.org/groups/1363/P1363a/PSSigs.html.

7

http://grouper.ieee.org/groups/1363/P1363a/PSSigs.html

	Introduction
	Basic Idea
	Application to ECGDSA and ECKCDSA
	Conclusion

