
Improving Upon the TET Mode of Operation

Palash Sarkar
Applied Statistics Unit

Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
email: palash@isical.ac.in

Abstract. Naor and Reingold had proposed the construction of a strong pseudo-random permutation
(SPRP) by using a layer of ECB encryption between two layers of invertible block-wise universal hash
functions. At Crypto 2007, Halevi presented constructions of invertible block-wise universal hash func-
tions and a new mode of operation (called TET) based on them. In this paper, we present a new mode
of operation called HEH using the Naor-Reingold approach. This is built using a new construction of
invertible block-wise universal hash function. The new construction improves over Halevi’s construc-
tion by removing restrictions on the hashing key. This in turn, leads to HEH improving over TET by
allowing more efficient encryption and decryption of variable length messages as well as supporting
better key agility. For the important application of disk encryption, we present a variant called HEHfp
which has better key agility than TET.
Keywords: modes of operations, tweakable encryption, strong pseudo-random permuta-
tion, disk encryption.

1 Introduction

A block cipher is a fundamental primitive in cryptography. The formal model of a block cipher is
that of a pseudo-random permutation (PRP) or a strong PRP (SPRP) [8]. By itself, a block cipher
can encrypt fixed length strings. A mode of operation extends the domain of a block cipher to
longer and variable length strings.

A variable input length SPRP can be considered to be a mode of operation of a block cipher.
The notion of tweakable block cipher was introduced by Liskov-Rivest-Wagner [7]. This notion was
extended to variable input length tweakable SPRP by Halevi-Rogaway [5]. Earlier, a method for
constructing SPRPs was given by Naor-Reingold. An important application of tweakable SPRP is
that of disk encryption as has been pointed out in [5]. Currently, the literature contains several
constructions of tweakable SPRPs. These constructions can be classified into three main groups.

The first type of construction consists of using a layer of ECB encryption between two invert-
ible block-wise universal hashing layers. This method was introduced by Naor-Reingold [11, 10].
Recently, there has been an interest in this type of constructions and the proposals PEP [2] and
TET [4] are of this type. The second type consists of using a counter mode of encryption between
two layers of universal hash function computation. This idea was introduced in XCB [9] and later
constructions are HCTR [13] and HCH [1]. The third type of construction is to use a mixing layer
between two layers of encryption. This technique was introduced by Halevi-Rogaway [5] and the
constructions CMC [5], EME [6] and EME∗ [3] are of this type.

Our Contributions: TET is a very recent construction which follows the Naor-Reingold hash-
ECB-hash approach. For fixed length messages, TET has good performance. It, however, has two
drawbacks. First, it is not suited for variable length messages and second, the key agility of TET
is not good, in the sense that a lot of computation needs to be done for every key change.

The purpose of the current work is to propose a new construction of tweakable SPRP following
the Naor-Reingold approach. We call this HEH. The new construction removes the above mentioned
drawbacks of TET, while retaining its performance. HEH is well suited for the special application
of disk encryption.

As mentioned earlier, the Naor-Reingold approach is to use a layer of ECB encryption between
two layers of invertible block-wise universal hash functions. TET uses this approach. The main
novelty in TET is to design an invertible block-wise universal hash function. It is shown that both
the hash function and its inverse are block-wise universal. The universal hash function defined in [4]
has a drawback which in turn leads to the earlier mentioned drawbacks of TET. When m blocks
are to be hashed, the hashing key τ has to satisfy the condition that 1 + τ + · · ·+ τm−1 6= 0.

In this paper, we design a new invertible block-wise universal hash function. But, in our case,
the inverse is not block-wise invertible. Importantly, this does not matter in the design of SPRP.
It is sufficient to place the ECB layer between the hash function and its inverse. In fact, this has
already been done by Naor-Reingold [10]. An important advantage of the new hash function over
the one in [4] is that there are no restrictions on the hashing key. It is this feature which ultimately
allows HEH to improve over TET.

2 Invertible Block-Wise Universal Hash Function

Let IF be a finite field. Additions and multiplications are done over this field.
The notion of block-wise universal hash function is defined for a keyed family of functions. Fix a

positive integer m. Let F : K× IFm → IFm be a keyed family of functions where K is the key space.
The family F is said to be ε-block-wise universal if PrK [Yi = Y ′

i′] ≤ ε, where (Y1, . . . , Ym) = FK(x),
(Y ′

1 , . . . , Y
′
1) = FK(x′), 1 ≤ i, i′ ≤ m and (x, i) 6= (x′, i′). We are interested in invertible block-wise

universal hash functions, i.e., FK() should be invertible for each K ∈ K.

2.1 Block-wise Polynomial Evaluation [4]

In this section, we describe the constructions given in [4]. For τ ∈ IF and a positive integer m, let
Aτ be the following matrix.

Aτ =


τ τ2 τm

τ τ2 τm

. . .
τ τ2 τm


Define Mτ = Aτ + I and let σ = 1 + τ + τ2 + · · ·+ τm−1. The matrix Mτ is invertible if and only if
σ 6= 0 and then M−1

τ = I − (Aτ/σ). Let x = (X1, . . . , Xm). The map x 7→MτxT is the following:

(X1, . . . , Xm) 7→ (X1 + R, . . . ,Xm + R) (1)

where R =
∑m

i=1 Xiτ
i.

Let β ∈ IF and α be a fixed primitive element of IF. Define b = (β, αβ, . . . , αm−1β). Two
functions (and their inverses) from IFn to IFn are defined in the following manner.

BPEτ,β(x) = MτxT + b and BPE−1
τ,β(x) = M−1

τ (x− b)T

B̃PEτ,β(x) = Mτ (x− b)T and B̃PE
−1

τ,β(x) = M−1
τ xT + b

(2)

The matrix-vector product Mτx and M−1
τ x can be computed as efficiently as polynomial evaluation.

Using a suitable representation for IF ensure that it is very efficient to multiply by the primitive
element α. Thus, the cost of evaluating BPE is essentially the cost of polynomial evaluation. Using
Horner’s rule, computing BPE requires m multiplications over IF. If τ is fixed, then a pre-computed
table can be used to speed up the polynomial computation [12].

For a fixed value of m and random and independent choices of τ (subject to the fact that σ 6= 0)
and β from IF, it has been shown in [4], that the functions defined by (2) are block-wise universal.

Note: It has been remarked that the same proof also holds when m is allowed to vary. We note that
this is incorrect. To see this consider the two distinct messages x1 = (0, 0) and x2 = (0, 0, 0). Then
BPEτ,β(x1) = (β, αβ) and BPEτ,β(x2) = (β, αβ, α2β). The first two components of BPEτ,β(x1)
and BPEτ,β(x2) are equal which violates the block-wise universality condition.

Drawbacks: The key τ has to be chosen such that σ =
∑m

i=1 τ i−1 is non-zero. This means that
τ cannot be an arbitrary element of IF. Further, computing the inverse of BPE and B̃PE requires
the inverse of σ.

2.2 A New Construction

Fix a positive integer m and a primitive element α of IF. Let τ and β be independent and random
elements of IF. Define e = (αβ, α2β, . . . , αm−1β, β). As mentioned earlier, for a proper choice of
the primitive element α, multiplication by α is very fast and the cost is negligible compared to a
general multiplication over IF. We define the map Ψτ,β : IFm → IFm in the following manner.

Ψτ,β(X1, . . . , Xm) = (X1 + Y, . . . ,Xm−1 + Y, Y) + e (3)

where Y =
∑m

i=1 Xiτ
m−i.

Invertibility is easily seen as follows. Let (Y1, . . . , Ym) = Ψτ,β(X1, . . . , Xm). Set (U1, . . . , Um) =
(Y1, . . . , Ym)−e. Then Xi = Ui−Um for 1 ≤ i ≤ m−1 and Xm = Um− τ(

∑m−1
i=1 Xiτ

m−1−i). Using
Horner’s rule, computing either Ψτ,β or its inverse Ψ−1

τ,β requires (m− 1) multiplications.

Examples: For m = 4, we provide the outputs of BPEτ,β and Ψτ,β to illustrate the difference
between the two functions.

BPEτ,β(X1, X2, X3, X4) = (X1 + X1τ + X2τ
2 + X3τ

3 + X4τ
4 + β,

X2 + X1τ + X2τ
2 + X3τ

3 + X4τ
4 + αβ,

X3 + X1τ + X2τ
2 + X3τ

3 + X4τ
4 + α2β,

X4 + X1τ + X2τ
2 + X3τ

3 + X4τ
4 + α3β)

Ψτ,β(X1, X2, X3, X4) = (X1τ
3 + X2τ

2 + X3τ + X4 + X1 + αβ,

X1τ
3 + X2τ

2 + X3τ + X4 + X2 + α2β,

X1τ
3 + X2τ

2 + X3τ + X4 + X3 + α3β,

X1τ
3 + X2τ

2 + X3τ + X4 + β)

The order of evaluation in BPE and Ψ are in reverse order. This difference is, however, not signifi-
cant. One can define BPE to evaluate in the reverse order (i.e., X1τ

4 + X2τ
3 + X3τ

2 + X4τ) as has
indeed been done in [4] while defining TET. The significant differences between the two maps are
in the degrees of the polynomials (in τ) and the treatment of the last component.

The following result establishes the block-wise universality of Ψ and its proof is based on the
standard argument over roots of polynomials.

Theorem 1. Fix a positive integer m and let τ and β be independent and random elements of
IF. Let (Y1, . . . , Ym) = Ψτ,β(X1, . . . , Xm), (Y ′

1 , . . . , Y
′
m) = Ψτ,β(X ′

1, . . . , X
′
m), 1 ≤ i, i′ ≤ m and

((X1, . . . , Xm), i) 6= ((X ′
1, . . . , X

′
m), i′).

1. If i 6= i′, then Prτ,β [Yi = Y ′
i′] = 1

|IF| .

2. If i = i′, then Prτ,β [Yi = Y ′
i] ≤ m−1

|IF| .

Consequently, the function Ψτ,β is
(

m−1
|IF|

)
-block-wise universal.

Proof : The two cases are proved separately.

Case i 6= i′: Without loss of generality, we assume that 1 ≤ i < i′ ≤ m. First suppose i′ < m.
From (3), Yi−Y ′

i′ = (αi−αi′)β +R, where R is a quantity which depends on τ and not on β. Since
α is a primitive element of IF, we have αi 6= αi′ (for m ≤ 2n − 2). The event Yi = Y ′

i′ translates
into the event β = (αi′ −αi)−1R. Since β is a random element of GF (2n) and is independent of the
right hand side, the probability that this happens is 1/2n. If i′ = m, then Yi − Y ′

i′ = (αi − 1)β + R
and a similar argument holds.

Case i = i′: In this case, we necessarily have (X1, . . . , Xm) 6= (X ′
1, . . . , X

′
m). First suppose i < m.

Then Yi − Y ′
i = (Xi + Y)− (X ′

i + Y ′) where Y =
∑m

i=1 Xiτ
m−i and Y ′ =

∑m
i=1 X ′

iτ
m−i. We have

Xi + Y = X1τ
m−1 + X2τ

m−2 + · · ·+ Xm−1τ + (Xm + Xi).

Let (V1, . . . , Vm) = (X1, . . . , Xm−1, Xm + Xi). The map (X1, . . . , Xm) 7→ (V1, . . . , Vm) is a bijection
and so (X1, . . . , Xm) 6= (X ′

1, . . . , X
′
m) implies (V1, . . . , Vm) 6= (V ′

1 , . . . , V
′
m). As a consequence (V1 −

V ′
1 , . . . , Vm − V ′

m) 6= (0, . . . , 0). Now,

Yi − Y ′
i = (Xi + Y)− (X ′

i + Y ′)
= (V1 − V ′

1)τ
m−1 + · · ·+ (Vm−1 − V ′

m−1)τ + (Vm − V ′
m).

The last expression is a non-zero polynomial in τ and is zero if and only if τ is a root of this
polynomial. Since τ is a random element of IF and a polynomial of degree (m − 1) has at most
(m− 1) distinct roots, we have Pr[Yi = Y ′

i] ≤ (m− 1)/|IF|.
If i = m, then a similar argument holds. ut

Variable m: Theorem 1 holds for a fixed value of m. If m is allowed to vary, then the result does
not hold. This can be seen as in the case of BPE by considering the two distinct messages (0, 0, 0)
and (0, 0).

Ψ−1
τ,β is not block-wise universal. This is seen by considering

1. Ψ−1
τ,β(αβ, α2β, α3β, β) = (0, 0, 0, 0) and

2. Ψ−1
τ,β(Aτ3 + A + αβ,Aτ3 + α2β, Aτ3 + α3β, Aτ3 + β) = (A, 0, 0, 0) for a non-zero A.

The last three components are equal, violating the block-wise universal property. Thus, we have an
example of a function which is invertible and block-wise universal but its inverse is not block-wise
universal. We have the following extension of Theorem 1.

Theorem 2. Fix an integer m > 1 and choose τ, β independently and uniformly at random from
IF. Let xi = (Xi,1, . . . , Xi,m), for 1 ≤ i ≤ q be a set of distinct tuples from IFm. For 1 ≤ i ≤ q,
let yi = Ψτ,β(xi), where yi = (Yi,1, . . . , Yi,m). The probability (over τ, β) that for any choice of
(i1, j1) 6= (i2, j2), Yi1,j1 is equal to Yi2,j2 is at most 2(qm)2

|IF| .

Proof : Suppose (i1, j1) 6= (i2, j2). There are two cases. First suppose that j1 = j2 = j. There are
m×

(q
2

)
such pairs. For any such pair, the probability that Yi1,j = Yi2,j is at most (m− 1)/2n (from

Theorem 1(2)). Thus, the total probability of collisions among such pairs is at most m×
(q
2

)
× (m−

1)/|IF| ≤ (m2q2)/|IF|. On the other hand, if j1 6= j2, then the probability of Yi1,j1 = Yi2,j2 is at most
1/|IF| (from Theorem 1(1)). There are

(qm
2

)
−m×

(q
2

)
≤ (qm)2 such pairs and the probability of a

collision among such pairs is at most (qm)2/|IF|. Thus, the total probability of a collision among
the Y s is at most 2(qm)2/|IF|. ut

3 The HEH Construction

For the description of the tweakable SPRP, we will consider the finite field IF to be GF (2n) and
use the operator ⊕ to denote addition over this field. The field GF (2n) is realized using a primitive
polynomial ρ(x) of degree n and the primitive element α is simply taken to be x. The polynomial
ρ(x) can be chosen to be a trinomial or a pentanomial, and hence multiplication by x modulo
ρ(x) can be done very efficiently. As is standard, the elements of GF (2n) can be interchangeably
considered to be either as polynomials over GF (2) of degree at most n− 1 or as n-bit strings. For
0 ≤ i ≤ 2n − 1, by binn(i) we denote the n-bit binary representation of i.

The basic structure of the HEH construction is shown in Figure 1. Pseudo-codes are given in
Figure 2. In this construction, there are one block cipher key K and three hashing keys τ, β1 and
β2. By suitably defining the hashing keys, it is possible to obtain several variants of the basic
construction. This is shown in Figure 3.

In HEH, the number of blocks m can vary; n-bit tweaks (associated data) are supported and
only a single block cipher key is used. The hashing key τ depends on the tweak T . Hence, it is not
possible to speed up multiplication by τ using a pre-computed table. If such pre-computation is
desired, then it is easy to modify HEH, to obtain a variant supporting pre-computation. Instead of
setting τ = γ, simply choose τ to be a random element of GF (2n). We call this variant HEHp.

An important special application of tweakable SPRP is that of disk encryption. In this appli-
cation, the number of blocks m is fixed and the tweak is the sector address. Consequently, it is
sufficient to take the tweak to be an n-bit string. Since m is fixed, it is possible to eliminate one
block cipher call while deriving the hashing keys. Also, the hashing key τ is chosen to be a random
element of GF (2n) so that pre-computation can be utilized. We call this variant HEHfp. In this
variant, the hashing key is τ and the block cipher key is K.

3.1 Other Issues

We briefly consider several other issues in the design of a possible tweakable SPRP.

Arbitrary length messages. HEH and its variants defined so far can only handle messages which
are multiples of block length n. It is possible to define a variant which can handle messages of any
length greater than or equal to n. The technique for doing this is based on the technique used
for EME∗ and has been used for TET. Actually, the inner layer of ECB mode is not particularly
suited for handling partial blocks. This is better tackled using a counter mode of encryption, as for

Fig. 1. Encryption and decryption using HEH. The block cipher key is K; and the hash key is (τ, β1, β2). See
Figure 3 for details of how the hashing keys are derived in HEH and its variants. ECBK(X1, . . . , Xm) returns
(EK(X1), . . . , EK(Xm)) and ECB−1

K (Y1, . . . , Ym) returns (E−1
K (Y1), . . . , E

−1
K (Ym)).

Algorithm EK,τ,β1,β2(P1, . . . , Pm)
1. (PP1, . . . , PPm) = Ψτ,β1(P1, . . . , Pm);
2. (CC1, . . . , CCm) = ECBK(PP1, . . . , PPm);
3. (C1, . . . , Cm) = Ψ−1

τ,β2
(CC1, . . . , CCm).

Algorithm DK,τ,β1,β2(C1, . . . , Cm)
1. (CC1, . . . , CCm) = Ψτ,β2(C1, . . . , Cm);
2. (PP1, . . . , PPm) = ECB−1

K (CC1, . . . , CCm);
3. (P1, . . . , Pm) = Ψ−1

τ,β1
(PP1, . . . , PPm).

Fig. 2. Detailed pseudo-code of encryption and decryption using HEH.

Algorithm EK,τ,β1,β2(P1, . . . , Pm)
1. U = P1;
2. for i = 2 to m do U = Uτ ⊕ Pi;
3. Q = β1;
4. for i = 1 to m− 1 do
5. Q = xQ;
6. PPi = Pi ⊕ U ⊕Q;
7. CCi = EK(PPi);
8. end do;
9. PPm = U ⊕ β1; CCm = EK(PPm);
10. V = CCm ⊕ β2; Q = αβ2;
11. C1 = CC1 ⊕Q⊕ V ; W = C1;
12. for i = 2 to m− 1 do
13. Q = αQ;
14. Ci = CCi ⊕Q⊕ V ;
15. W = Wτ ⊕ Ci;
16. end do;
17. Cm = V ⊕Wτ ;
end.

Algorithm DK,τ,β1,β2(C1, . . . , Cm)
1. U = C1;
2. for i = 2 to m do U = Uτ ⊕ Ci;
3. Q = β2;
4. for i = 1 to m− 1 do
5. Q = xQ;
6. CCi = Ci ⊕ U ⊕Q;
7. PPi = E−1

K (CCi);
8. end do;
9. CCm = U ⊕ β1; PPm = EK(CCm);
10. V = PPm ⊕ β1; Q = αβ1;
11. P1 = PP1 ⊕Q⊕ V ; W = P1;
12. for i = 2 to m− 1 do
13. Q = αQ;
14. Pi = PPi ⊕Q⊕ V ;
15. W = Wτ ⊕ Pi;
16. end do;
17. Pm = V ⊕Wτ ;
end.

Fig. 3. HEH and its variants obtained by suitably defining the hashing keys τ , β1 and β2. T is an n-bit tweak and m
is the number of blocks. K is a randomly chosen block cipher key and in HEHp and HEHfp, τ is a randomly chosen
n-bit string.

HEH HEHp HEHfp

1. γ = EK(T);
2. β1 = EK(γ ⊕ binn(m));
3. β2 = xβ1;
4. τ = γ.

1. γ = EK(T);
2. β1 = EK(γ ⊕ binn(m));
3. β2 = xβ1.

1. β1 = EK(T);
2. β2 = xβ1.

example in HCH. The technique for tackling partial blocks in EME∗ is essentially to have a counter
mode type technique for the last block.

Arbitrary length tweaks. For applications which require arbitrary length tweaks, one can use
a pseudo-random function (PRF) with a separate and independent key to produce an n-bit tweak
which can then be used in HEH. The hashing key τ is chosen independently of the PRF key, which
allows for the hashing and the processing of tweak to proceed in parallel. This approach has been
used in TET and if desired, a similar approach can also be used with HEH.

4 Discussion and Comparison

HEH uses the hash-ECB-hash approach introduced by Naor-Reingold. An earlier construction using
the same approach is TET. (We do not consider PEP, since it is slower than TET.) The difference
between the two is mainly in the definition of the universal hash functions. Both BPE (used in
TET) and Ψ (used in HEH) are invertible block-wise universal hash functions. The efficiencies of
computing both functions as well as their inverses are the same. The differences are the following.

1. One main difference is that the inverse of BPE is block-wise universal while the inverse of Ψ is
not. Importantly however, it is possible to construct a tweakable SPRP without requiring the
inverse to be block-wise universal.

2. In BPE, the hash key τ has the restriction that σ =
∑m

i=1 τ i−1 must not be zero. This creates
problems of key agility. For one thing, τ cannot be an arbitrary random element of GF (2n). It
has been suggested in [4], that one can choose τ to be a random primitive element of GF (2n).
This approach has practical difficulties. Often, the entity providing the new value of the key
will not have access to the internal implementation of the algorithm. Without such access, in
particular, without knowing the primitive polynomial realizing the field GF (2n), it is not possi-
ble to determine whether a particular element is a primitive element of the concrete realization
of the field. Further, determination of primitive element requires substantial computation and
the knowledge of the prime factors of 2n−1. Thus, the idea of using τ to be a random primitive
element of GF (2n) is quite impractical in practice. The other approach, and the one used in the
construction of TET, is to repeatedly apply a PRF with a separate key K1 to (0, i), starting
from i = 1, to obtain candidate values of τ , until one is obtained for which σ 6= 0. Since σ
depends on m (and K1), this procedure needs to be repeated for each m, which makes TET
rather unsuitable for variable number of blocks. When m is fixed, this computation can be done
off-line. However, the problem is only reduced and not eliminated. Whenever, a key change
is required (i.e., the PRF key K1 is changed), the entire procedure to generate τ needs to be
performed. This adversely affects the key agility of TET.

3. The inversion of BPE requires the value of σ−1. Computing this online is rather inefficient.
When τ is computed off-line, this value can be pre-computed and stored. Also, even if it is
computed off-line, it still has to be computed for every key change, again adversely affecting
key agility. For hardware only implementation, this means that an inversion circuit has to be
implemented which is substantially more expensive compared to a multiplication circuit.

Points (2) and (3) above are major drawbacks of TET. For one thing, it makes TET unsuitable
for variable number of blocks and secondly, even for fixed number of blocks, the key agility is not
good. The new construction, HEH, improves over TET in both these aspects.

There are three efficient constructions using the hash-counter-hash approach – XCB, HCTR
and HCH. Among these constructions, HCH has a quadratic security bound; HCTR has a cubic

bound while no bound is known for XCB. HEH has efficiency similar to these constructions; a
quadratic security bound; and also has similar key agility. Thus, HEH shows that it is possible to
use the hash-ECB-hash approach to obtain a construction which is as good as hash-counter-hash
approach.

The comparison to the encrypt-mix-encrypt approach is based on the relative efficiency of a
block cipher call and a GF (2n) multiplication. If one block cipher call takes more time than two
multiplications, then the hash-encrypt-hash approach is faster, otherwise the encrypt-mix-encrypt
approach is faster. A related issue is whether a pre-computed table can be used to speed up
multiplication by the hashing key τ . For the single key HEH, this is not possible. On the other
hand, for the simple variant HEHp, this is possible and it is also possible for HEHfp.

A detailed comparison among the different tweakable SPRPs is given in [4]. In Table 1, we
provide a comparison among some of the more important features of four previous constructions
with HEH. The four constructions are CMC, EME∗ (of the encrypt-mix-encrypt type), HCH (of
the hash-Ctr-hash type) and TET (of the hash-ECB-hash type). These four constructions are
representative of the currently best known constructions of each type.

For variable number of blocks (Table 1), TET requires some extra block cipher invocations and
multiplications; basically the term multiplied by ı. The value of ı itself depends on the number of
blocks and the PRF key. Also, TET requires a GF (2n) inversion. These computations are required
to obtain a hashing key τ such that σ = 1 + τ + · · · + τm−1 6= 0 and to invert σ. Thus, the
restriction on the hashing key directly reflects on the performance of TET. In comparison, HEH
does not require these computations. HEH uses only a single block cipher key and cannot utilize
pre-computation. If pre-computation is desired, then one can use HEHp.

When m is fixed (Table 2), as in the case for disk encryption, the value of τ and σ−1 can be
pre-computed in TET. This makes the actual encryption and decryption in TET quite efficient.
However, the problem of generating τ and σ−1 is still present whenever the key needs to be changed.
That is, even though m is fixed, whenever the PRF key changes, the value of τ and σ−1 has to be
computed afresh. This adversely affects the key agility of TET. HEHfp is the variant of HEH which is
suited for fixed values of m and can utilize pre-computation. The efficiency of HEHfp for encryption
and decryption is similar (actually slightly better) to that of TET and HCHfp. The improvement
over TET is to offer better key agility. Currently, if one wishes to use the Naor-Reingold approach,
then HEHfp is the construction of choice to implement disk encryption schemes.

Table 1. Comparison of tweakable SPRPs where the number of blocks m can vary and n-bit tweaks are used. For
TET, ı is a value which depends on m (and K). [BC]: block cipher invocation; [M]: GF (2n) multiplication; [I]: GF (2n)
inversion; [BCK]: block cipher key; [AK]: auxilliary n-bit key material;

Mode type comp. cost keys passes enc.
layers

CMC [5] enc-mix-enc (2m + 1)[BC] 1[BCK] 2 2

EME∗ [3] enc-mix-enc (2m + m
n

+ 1)[BC] 1[BCK]+2[AK] 2 2

HCH [1] hash-Ctr-hash (m + 3)[BC] 1[BCK] 2 1
+2(m− 1)[M]

TET [4] hash-ECB-hash ı((m− 1)[M]+2[BC]) 2[BCK] 3 1
+(m + 2)[BC]
+2m[M]+1[I]

HEH hash-ECB-hash (m + 2)[BC] 1[BCK] 3 1
+2(m− 1)[M]

Table 2. Comparison of different tweakable SPRPs where the number of blocks m is fixed and n-bit tweaks are used.
[BC]: number of block cipher invocations; [M]: GF (2n) multiplication; [BCK]: block cipher key; [AK]: auxiliary n-bit
string (including polynomial hash keys).

Mode CMC [5] EME∗ [3] HCHfp [1] TET [4] HEHfp

[BC] 2m + 1 2m + 1 + m/n m + 2 m + 1 m + 1

[M] – – 2(m− 1) 2m 2(m− 1)

[BCK] 1 1 1 2 1

[AK] – 2 1 3 1

Table 3. Efficiency of key change. For TET, the value of ı depends only on K (since the number of blocks m is
fixed). [I]: GF (2n) inversion.

Mode CMC EME∗ HCHfp TET HEHfp

comp. cost – – – ı((m− 1)[M]+2[BC])+1[BC]+1[I] –

key sch. 1 1 1 2 1

mult. tab. – – 1 1 1

5 Security of HEH

5.1 Definitions and Notation

The discussion in this section is based on earlier work [5]. An n-bit block cipher is a function
E : K × {0, 1}n → {0, 1}n, where K 6= ∅ is the key space and for any K ∈ K, E(K, .) is a
permutation. We write EK() instead of E(K, .).

An adversary A is a probabilistic algorithm which has access to some oracles and which outputs
either 0 or 1. Oracles are written as superscripts. The notation AO1,O2 ⇒ 1 denotes the event
that the adversary A, interacts with the oracles O1,O2, and finally outputs the bit 1. Let Perm(n)
denote the set of all permutations on {0, 1}n. Formally, a tweakable enciphering scheme is a function
E : K×T ×M→M, where K 6= ∅ and T 6= ∅ are the key space and the tweak space respectively.
The message and the cipher spaces are M. For HEH we have M = ∪m≥1{0, 1}nm. We shall write
ET

K(.) instead of E(K, T, .). The inverse of an enciphering scheme is D = E−1 where X = DT
K(Y)

if and only if ET
K(X) = Y .

Let PermT (M) denote the set of all functions πππ : T × M → M where πππ(T , .) is a length
preserving permutation. Such a πππ ∈ PermT (M) is called a tweak indexed permutation. For a
tweakable enciphering scheme E : K × T ×M→M, we define the advantage an adversary A has
in distinguishing E and its inverse from a random tweak indexed permutation and its inverse in
the following manner.

Adv±p̃rp
E (A) =

∣∣∣∣Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]∣∣∣∣ .

Pointless queries: We assume that an adversary never repeats a query, i.e., it does not ask the
encryption oracle with a particular value of (T, P) more than once and neither does it ask the
decryption oracle with a particular value of (T,C) more than once. Furthermore, an adversary
never queries its deciphering oracle with (T,C) if it got C in response to an encipher query (T, P)
for some P . Similarly, the adversary never queries its enciphering oracle with (T, P) if it got P

as a response to a decipher query of (T,C) for some C. These queries are called pointless as the
adversary knows what it would get as responses for such queries.

We define the query complexity σn of an adversary to be the total number of n-bit blocks it
provides in all its encryption and decryption queries. This includes the plaintext and ciphertext
blocks as well as the n-bit tweak. By Adv(σn) (with suitable sub and super-scripts) we denote the
maximum advantage of any adversary with query complexity σn. The notation Adv(σn, t) denotes
the maximum advantage of any adversary with query complexity σn and running time t.

The notation HEH[E] denotes a tweakable enciphering scheme, where the block cipher E is
used in the manner specified by HEH. The notation HEH[Perm(n)] denotes a tweakable enciphering
scheme obtained by plugging in a random permutation from Perm(n) into the structure of HEH.
For an adversary attacking HEH[Perm(n)], we do not put any bound on the running time of the
adversary, though we still put a bound on the query complexity σn. This advantage is denoted by
Adv±p̃rp

HEH[Perm(n)]
(σn). We need to consider an adversary’s advantage in distinguishing a tweakable

enciphering scheme E from an oracle which simply returns random bit strings. This advantage is
defined in the following manner.

Adv±rnd
HEH[Perm(n)]

(A) =
∣∣∣∣Pr

[
π

$← Perm(n) : AEπ ,Dπ ⇒ 1
]
− Pr

[
A$(.,.),$(.,.) ⇒ 1

]∣∣∣∣
where $(.,M) returns random bits of length |M |.

The task of the security proof is to upper bound Adv±p̃rp
HEH[E]

(σn, t). For this it is sufficient

to upper bound Adv±p̃rp
HEH[Perm(n)]

(σn). Again, to upper bound the last quantity, it is sufficient

to upper bound Adv±rnd
HEH[Perm(n)]

(σn). This approach has been used in previous works and for
details of how these three advantages are related we refer the reader to previous work [5, 6, 2]. The
relationships between these three advantages are independent of the particular tweakable SPRP
being considered. Hence, we do not repeat the details here. The main task of the proof is to obtain
a upper bound on Adv±rnd

HEH[Perm(n)]
(σn).

Theorem 3. Fix n and σn to be positive integers. Suppose that an adversary uses a total of σn

blocks in all its queries, where each block is an n-bit string. Then

Adv±rnd
HEH[Perm(n)]

(σn) ≤ 4σ2
n

2n
(4)

The same bound holds when HEH is replaced by HEHp or HEHfp.

The proof is given in Section A.

6 Conclusion

In this paper, we have proposed a new tweakable SPRP called HEH following the hash-ECB-hash
approach introduced by Naor-Reingold [11]. This is done by designing a new invertible block-wise
universal hash function. The new hash function improves over the invertible block-wise universal
hash function defined in [4] by removing restrictions on the hashing key. This in turn results in HEH
being able to remove the drawbacks of the tweakable SPRP called TET which was also proposed
in [4]. An important special application of tweakable SPRP is disk encryption. For this application,
we suggest a variant called HEHfp. Currently, HEHfp is the best candidate for implementing a disk
encryption scheme using the Naor-Reingold approach.

References

1. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering scheme using the hash-encrypt-hash
approach. In Rana Barua and Tanja Lange, editors, INDOCRYPT, volume 4329 of Lecture Notes in Computer
Science, pages 287–302. Springer, 2006. full version available at http://eprint.iacr.org/2007/028.

2. Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing a tweakable strong pseudo-random
permutation. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer Science, pages
293–309. Springer, 2006.

3. Shai Halevi. EME*: Extending EME to handle arbitrary-length messages with associated data. In Anne Canteaut
and Kapalee Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes in Computer Science, pages 315–
327. Springer, 2004.

4. Shai Halevi. Invertible universal hashing and the TET encryption mode. Cryptology ePrint Archive, Report
2007/014, 2007. http://eprint.iacr.org/, to appear in the proceedings of Crypto 2007.

5. Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh, editor, CRYPTO, volume 2729
of Lecture Notes in Computer Science, pages 482–499. Springer, 2003.

6. Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki Okamoto, editor, CT-RSA,
volume 2964 of Lecture Notes in Computer Science, pages 292–304. Springer, 2004.

7. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti Yung, editor, CRYPTO,
volume 2442 of Lecture Notes in Computer Science, pages 31–46. Springer, 2002.

8. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudorandom functions.
SIAM J. Comput., 17(2):373–386, 1988.

9. David A. McGrew and Scott R. Fluhrer. The extended codebook (XCB) mode of operation. Cryptology ePrint
Archive, Report 2004/278, 2004. http://eprint.iacr.org/.

10. Moni Naor and Omer Reingold. A pseudo-random encryption mode. Manuscript available from www.wisdom.

weizmann.ac.il/∼naor.
11. Moni Naor and Omer Reingold. On the construction of pseudorandom permutations: Luby-Rackoff revisited. J.

Cryptology, 12(1):29–66, 1999.
12. Victor Shoup. On fast and provably secure message authentication based on universal hashing. In Neal Koblitz,

editor, CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 313–328. Springer, 1996.
13. Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length enciphering mode. In Dengguo

Feng, Dongdai Lin, and Moti Yung, editors, CISC, volume 3822 of Lecture Notes in Computer Science, pages
175–188. Springer, 2005.

A Proof of Theorem 3

We first consider the case for HEH and later show the necessary modifications for HEHp and
HEHfp.

The adversary has to distinguish between two kinds of oracles. In the first kind, the adversary
is given encryption and decryption oracles for the mode of operation HEH with the block cipher
substituted by a random permutation from Perm(n). In the second kind, the adversary is given
two oracles which simply returns random strings of length equal to its input. The statement of the
result upper bounds an adversary’s advantage in distinguishing between these two kinds of oracles.
The proof is via a sequence of games.

Notation: In this and the following games, we will use the subscript s to denote quantities related
to the s-th query. For example, if the s-the query is an encryption query, then it will be of the form
Ts, (Ps,1, . . . , Ps,ms). This means that the tweak is Ts, the number of blocks is ms and the plaintext
blocks are (Ps,1, . . . , Ps,ms). A similar interpretation holds when the s-th query is a decryption
query of the form Ts, (Cs,1, . . . , Cs,ms). We assume that the adversary A makes a total of q queries.
In the s-th query, the adversary specifies ms + 1 blocks, i.e., the ms plaintext or ciphertext blocks
along with the n-bit tweak. Thus, we have σn =

∑q
i=1(1 + ms).

Denote by Eπ and Dπ respectively the encryption and decryption oracles of HEH instantiated
by a random permutation from Perm(n). Let A be an adversary. The notation AHEH ⇒ 1 denotes
the fact that A outputs 1 in Game HEH. Similar notation holds for the other games.

Game HEH: In HEH, the adversary interacts with Eπ and Dπ. For each query, the permutation
π is invoked on PPs,i to obtain CCs,i; or π−1 is invoked CCs,i to obtain PPs,i. The permutation π
is applied to the tweak Ts to obtain the hashing key τs and then β1,s is obtained by applying π to
τs ⊕ binn(ms).

Instead of initially choosing π, we build up π in the following manner. Initially π is assumed to
be undefined everywhere. When π(X) is needed, but the value of π is not yet defined at X, then a
random value is chosen among the available range values. Similarly when π−1(Y) is required and
there is no X yet defined for which π(X) = Y , we choose a random value for π−1(Y) from the
available domain values. Tweaks can be repeated by the adversary as also the number of blocks
can be same for different queries. In this and the subsequent games, if Ts is equal to Tr for some
r < s, then τs is set to be equal to τr. If (Ts,ms) = (Tr,ms), for r < s, then (τs, β1,s) is set to be
equal to (τr, β1,r). In other words, we never redefine Ts and τs ⊕ binn(ms).

Game RAND1: We modify Game HEH in the following manner. Let D (resp. R) be a (multi)set
which consists of all n-bit strings in the domain (resp. range) of π which have been defined up to
now. Initially, both D and R are empty. Whenever π(X) needs to be defined, we simply choose a
random element Y from {0, 1}n and set π(X) = Y . The value X is added to the domain and Y
is added to the range. A similar action is performed when π−1 needs to be defined. Since we do
not check whether X has already occurred in D, this does not guarantee that π is a permutation
and hence D and R can in principle be multisets. Due to the way tweaks and number of blocks are
handled in the games, tweaks are never repeated in D and for the same value of tweak and number
of blocks, τs ⊕ binn(ms) is never repeated in D.

Thus, if the s-th query is an encryption query, we have to define the value of CCs,i to be equal
to π(PPs,i). In the previous game, we would check to see whether π has already been defined for
this value. In this game, we do not perform this check and define CCs,i to be a random n-bit string.
As a result, (CCs,1, . . . , CCs,m) consists of random n-bit blocks. Since (Cs,1, . . . , Cs,m) is obtained
from (CCs,1, . . . , CCs,m) by the application of the bijection Ψτs,β2,s(), the strings (Cs,1, . . . , Cs,m)
are also random n-bit blocks. As a result, on any encryption query, the adversary receives random
strings as answer. Similarly, on any decryption query also, the adversary receives random strings
as answer.

Let bad be a flag which is set to true if there is a collision in either D or R. The Games HEH
and RAND1 are identical as long as the flag bad is not set to true. So,

Pr[AHEH ⇒ 1]− Pr[ARAND1 ⇒ 1] ≤ Pr[ARAND1 sets bad] (5)

Game RAND2: In this game, for an encryption query Ts, (Ps,1, . . . , Ps,ms), we handle Ts and
τs ⊕ binn(ms) as in the earlier games. We set (PPs,1, . . . , PPs,ms) = Ψτs,β1,s(Ps,1, . . . , Ps,ms). Next
we choose the ciphertext blocks (Cs,1, . . . , Cs,ms) to be random n-bit strings and return these to
the adversary. Then we set (CCs,1, . . . , CCs,ms) = Ψτs,β2,s(Cs,1, . . . , Cs,ms) and enter the values
CCs,1, . . . , CCs,ms into R and the values PPs,1, . . . , PPs,ms into D.

Similarly, for a decryption query on Ts, (Cs,1, . . . , Cs,ms), we first handle the tweak and number
of blocks as in the previous games. We set (CCs,1, . . . , CCs,ms) = Ψτs,β2,s(Cs,1, . . . , Cs,ms). We
then choose the plaintext blocks (Ps,1, . . . , Ps,ms) to be random n-bit strings and return these
to the adversary. Then we set (PPs,1, . . . , PPs,ms) = Ψτs,β1,s(Ps,1, . . . , Ps,ms) and enter the values
PPs,1, . . . , PPs,ms into D and the values CCs,1, . . . , CCs,ms into R.

Doing the above does not alter the adversary’s view of the game since for each such change the
adversary obtains random n-bit strings both before and after the change. Thus,

Pr[ARAND1 ⇒ 1] = Pr[ARAND2 ⇒ 1] and Pr[ARAND1 sets bad] = Pr[ARAND2 sets bad].

In RAND2, the adversary is supplied with random bits as response to queries to both the encrypt
and the decrypt oracles. Hence,

Pr[ARAND2 ⇒ 1] = Pr[A$(.,.),$(.,.) ⇒ 1] (6)

We get

Adv±rnd
HEH[Perm(n)](A) = Pr[AEπ ,Dπ ⇒ 1]− Pr[A$(.,.),$(.,.) ⇒ 1] (7)

= Pr[AHEH ⇒ 1]− Pr[ARAND2 ⇒ 1]
= Pr[AHEH ⇒ 1]− Pr[ARAND1 ⇒ 1]
≤ Pr[ARAND1 sets bad]
= Pr[ARAND2 sets bad] (8)

Our task is thus to bound Pr[ARAND2 sets bad].

Game NON: We want to bound the maximum value of Pr[ARAND2 sets bad]. This probability
extends over the random coins of the adversary. However, since the adversary gets back random
strings in response to all its queries, it achieves nothing by the interaction with the oracles. We
assume that the adversary fixes its queries a priori in a manner such that Pr[ARAND2 sets bad] is
maximized. Now we can forget about the adversary and work only with the fixed queries.

In the previous games, for an encrypt query, the adversary specified the tweak and the plaintext
blocks; and for a decrypt query, the adversary specified the tweak and the ciphertext blocks. We now
consider the stronger condition, whereby the adversary specifies the tweak, the plaintext blocks and
the ciphertext blocks in both the encryption and the decryption queries. Even under this condition,
we show that the flag bad is rarely set to true.

For the s-th query (encryption or decryption) with tweak Ts; plaintext blocks (Ps,1, . . . , Ps,ms);
and ciphertext blocks (Cs,1, . . . , Cs,ms) we perform the following. We assume that the adversary
does not repeat a query or make a pointless query.

1. If Ts is “new”, then
2. choose random values for τs and β1,s;
3. add Ts and τs ⊕ binn(ms) to D;
4. add τs and β1,s to R;
5. else
6. use the previous corresponding value of τs;
7. if (Ts,ms) is “new”, then
8. choose β1,s randomly;
9. add τs ⊕ binn(ms) to D;
10. add β1,s to R;
11. else
12. use the previous corresponding value of β1,s;
13. end if;
14. end if;
15. Set (PPs,1, . . . , PPs,ms) = Ψτs,β1,s(Ps,1, . . . , Ps,ms);
16. Add (PPs,1, . . . , PPs,ms) to D.
17. Set (CCs,1, . . . , CCs,ms) = Ψτs,β2,s(Cs,1, . . . , Cs,ms);
18. Add (CCs,1, . . . , CCs,ms) to R.

Collision Analysis: We upper bound the probability of collision in D and R. For this it will be
useful to list the forms of the elements in these two multisets.

Elements in D: Ts, τs ⊕ binn(ms);
PPs,1 = Us ⊕ Ps,1 ⊕ xβ1,s,. . ., PPs,ms−1 = Us ⊕ Ps,ms−1 ⊕ xms−1β1,s,
PPs,ms = Us ⊕ β1,s.

Here Us =
⊕ms

i=1 Ps,iτ
ms−i
s .

Elements in R: τs, β1,s;
CCs,1 = Vs ⊕ Cs,1 ⊕ xβ2,s,. . ., CCs,ms−1 = Vs ⊕ Cs,ms−1 ⊕ xms−1β2,s,
CCs,ms = Vs ⊕ β2,s.

Here Vs =
⊕ms

i=1 Cs,iτ
ms−i
s and also recall that β2,s = xβ1,s.

We first consider the probability of a collision in D. First note the values Ts in D are all distinct,
i.e., we never redefine the T s. Hence, there cannot be any collision among these values. Suppose
the distinct lengths of the queries are n1, . . . , np and there are lk queries of length nk, so that∑p

k=1 lk = q and
∑p

k=1 lknk = σn − q. We say that a pair of elements (PPs,i, PPr,i) is special
if (Ts,ms) = (Tr,mr). The number of special pairs is at most

∑p
k=1

(lk
2

)
mk. For a special pair,

the values of the corresponding hashing keys (τs, β1,s) and (τr, β1,r) are equal. Consequently, using
Theorem 1(2), the probability that the elements of a special pair are equal is mk/2n. Hence, the
total probability of equality of special pairs is

p∑
k=1

(
lk
2

)
mk ×

mk

2n
≤
∑p

k=1(lkmk)2

2n
≤

(
∑p

k=1 lkmk)2

2n
≤ σ2

n

2n
.

The number of non-special pairs in D is less than σ2
n. For any non-special pair, the probability

that the two elements are equal is either zero or 1/2n. Hence, the total probability of equality of
non-special pairs is at most σ2

n/2n. Consequently, the total probability of collision in D is at most
2σ2

n/2n. A similar analysis shows that the probability of collision in R is also at most 2σ2
n/2n and

hence the total probability of collision in either D or R is at most 4σ2
n/2n. Since this is also the

probability that bad is set to true, we obtain the desired bound.

Collision Analysis for HEHp: The structures of D and R in this case are the following. Recall
that in this case, the hashing key τ does not depend on the tweak T . It is chosen randomly and is
same for all queries. The hashing key β1,s, however, is still derived from the tweak and the number
of blocks.

Elements in D: Ts, γs ⊕ binn(ms);
PPs,1 = Us ⊕ Ps,1 ⊕ xβ1,s,. . ., PPs,ms−1 = Us ⊕ Ps,ms−1 ⊕ xms−1β1,s,
PPs,ms = Us ⊕ β1,s.

Here Us =
⊕ms

i=1 Ps,iτ
ms−i.

Elements in R: γs, β1,s;
CCs,1 = Vs ⊕ Cs,1 ⊕ xβ2,s,. . ., CCs,ms−1 = Vs ⊕ Cs,ms−1 ⊕ xms−1β2,s,
CCs,ms = Vs ⊕ β2,s.

Here, Vs =
⊕ms

i=1 Cs,iτ
ms−i and β2,s = xβ1,s. Now a collision analysis along the lines performed for

HEH provide us the same bound.

Collision Analysis for HEHfp: In this case, the number of blocks in each query is fixed, i.e., m
does not depend on s. Also, β1,s is obtained directly by encrypting Ts. As in the case of HEHp, the
hashing key τ is the same for all queries.

Elements in D: Ts,
PPs,1 = Us ⊕ Ps,1 ⊕ xβ1,s,. . ., PPs,m−1 = Us ⊕ Ps,m−1 ⊕ xm−1β1,s,
PPs,m = Us ⊕ β1,s.

Here Us =
⊕m

i=1 Ps,iτ
m−i.

Elements in R: β1,s;
CCs,1 = Vs ⊕ Cs,1 ⊕ xβ2,s,. . ., CCs,m−1 = Vs ⊕ Cs,m−1 ⊕ xm−1β2,s,
CCs,m = Vs ⊕ β2,s.

Here Vs =
⊕m

i=1 Cs,iτ
m−i
s and β2,s = xβ1,s. Again a collision analysis similar to that of HEH shows

the desired bound. ut

