A Refined Algorithm for the $\boldsymbol{\eta}_{T}$ Pairing Calculation in Characteristic Three

Jean-Luc Beuchat ${ }^{1}$, Masaaki Shirase ${ }^{2}$, Tsuyoshi Takagi ${ }^{2}$, and Eiji Okamoto ${ }^{1}$
${ }^{1}$ Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
${ }^{2}$ Future University-Hakodate, School of Systems Information Science, 116-2
Kamedanakano-cho, Hakodate, Hokkaido, 041-8655, Japan

Abstract

We describe further improvements of the η_{T} pairing algorithm in characteristic three. Our approach combines the loop unrolling technique introduced by Granger et. al for the Duursma-Lee algorithm, and a novel algorithm for multiplication over $\mathbb{F}_{36 m}$ proposed by Gorla et al. at SAC 2007. For $m=97$, the refined algorithm reduces the number of multiplications over $\mathbb{F}_{3^{m}}$ from 815 to 692 .

Keywords: η_{T} pairing, finite field arithmetic, characteristic three.

1 Introduction

This short paper describes further improvements of the η_{T} pairing algorithm in characteristic three without inverse Frobenius maps proposed in [3] (Algorithm 1). We consider the supersingular elliptic curve $E: y^{2}=x^{3}-x+1$ over $\mathbb{F}_{3^{m}}$ and denote by $E\left(\mathbb{F}_{3^{m}}\right)[\ell]$ the ℓ-torsion subgroup of $E\left(\mathbb{F}_{3^{m}}\right)$. The η_{T} pairing is the map $\eta_{T}: E\left(\mathbb{F}_{3^{m}}\right)[\ell] \times E\left(\mathbb{F}_{3^{m}}\right)[\ell] \rightarrow \mathbb{F}_{36 m}^{*}$ defined by $\eta_{T}(P, Q)=$ $f_{T, P}(\psi(Q))$, where $T \in \mathbb{Z}$ and $f_{T, P}$ is a rational function on the curve with divisor $[T](P)-(T P)-[T-1](\mathcal{O})$. The distortion map $\psi: E\left(\mathbb{F}_{3^{m}}\right) \rightarrow E\left(\mathbb{F}_{3^{6 m}}\right)$ is defined, for all $Q=\left(x_{q}, y_{q}\right) \in E\left(\mathbb{F}_{3^{m}}\right)$, by $\psi(Q)=\left(-x_{q}+\rho, y_{q} \sigma\right)$, where σ and ρ belong to $\mathbb{F}_{3^{6 m}}$ and satisfy $\sigma^{2}=-1$ and $\rho^{3}=\rho+1$ respectively. We construct $\mathbb{F}_{3^{6 m}}$ as an extension of $\mathbb{F}_{3^{m}}$ using the basis $\left(1, \sigma, \rho, \sigma \rho, \rho^{2}, \sigma \rho^{2}\right)$. Hence, arithmetic operations over $\mathbb{F}_{3^{6 m}}$ are replaced by computations over $\mathbb{F}_{3^{m}}$. In order to get a well-defined, non-degenerate, bilinear pairing, a final exponentiation is mandatory: we have to compute $\eta_{T}(P, Q)^{W}$, where $W=\left(3^{3 m}-1\right)\left(3^{m}+1\right)\left(3^{m}-3^{\frac{m+1}{2}}+1\right)$.

In the following, we take advantage of a novel algorithm for multiplication over $\mathbb{F}_{36 m}[4]$ and apply the loop unrolling technique proposed by Granger et al. for the Duursma-Lee algorithm [5]. For $m=97$, the refined algorithm reduces the number of multiplications over $\mathbb{F}_{3^{m}}$ from 815 to 692 , thus improving software and hardware implementations of the η_{T} pairing.

2 Refined Algorithm

Granger et al. proposed a loop unrolling technique for the Duursma-Lee algorithm [5]. They exploit the sparsity of R_{1} in order to reduce the number of

```
Algorithm 1 Computation of \(\eta_{T}(P, Q)^{W}\) [3].
Input: \(P=\left(x_{p}, y_{p}\right)\) and \(Q=\left(x_{q}, y_{q}\right) \in E\left(\mathbb{F}_{3^{m}}\right)[l]\). The algorithm requires \(R_{0}\) and
    \(R_{1} \in \mathbb{F}_{36 m}\), as well as \(r_{0} \in \mathbb{F}_{3^{m}}\) and \(d \in \mathbb{F}_{3}\) for intermediate computations.
Output: \(\eta_{T}(P, Q)^{\left(3^{3 m}-1\right)\left(3^{m}+1\right)\left(3^{m}+1-3^{(m+1) / 2}\right)}\).
    for \(i=0\) to \(\frac{m-1}{2}-1\) do
        \(x_{p} \leftarrow x_{p}^{9}-1 ; y_{p} \leftarrow-y_{p}^{9} ;\)
    end for
    \(y_{p} \leftarrow-y_{p} ; d \leftarrow 1 ;\)
    \(r_{0} \leftarrow x_{p}+x_{q}+d ;\)
    \(R_{0} \leftarrow-y_{p} r_{0}+y_{q} \sigma+y_{p} \rho ;\)
    \(R_{1} \leftarrow-r_{0}^{2}+y_{p} y_{q} \sigma-r_{0} \rho-\rho^{2} ;\)
    \(R_{0} \leftarrow\left(R_{0} R_{1}\right)^{3} ;\)
    for \(i=0\) to \(\frac{m-1}{2}-1\) do
        \(y_{p} \leftarrow-y_{p} ; x_{q} \leftarrow x_{q}^{9} ; y_{q} \leftarrow y_{q}^{9} ; d \leftarrow(d-1) \bmod 3 ;\)
        \(r_{0} \leftarrow x_{p}+x_{q}+d ;\)
        \(R_{1} \leftarrow-r_{0}^{2}+y_{p} y_{q} \sigma-r_{0} \rho-\rho^{2} ;\)
        \(R_{0} \leftarrow\left(R_{0} R_{1}\right)^{3} ;\)
    end for
    \(R_{0} \leftarrow R_{0}^{\left(3^{3 m}-1\right)\left(3^{m}+1\right)\left(3^{m}+1-3^{(m+1) / 2}\right)} ;\)
    \(R_{0} \leftarrow \sqrt[3 m]{R_{0}}\)
    return \(R_{0}\);
```

multiplications over $\mathbb{F}_{3^{m}}$. Let $R_{1}[i]$ and $R_{1}[i+1]$ denote the value of R_{1} at steps i and $i+1$ respectively. By noting that $R_{1}[i]^{3}$ is as sparse as $R_{1}[i]$, we can apply the same approach to Algorithm 1. Let $A=a_{0}+a_{1} \sigma+a_{2} \rho+a_{3} \sigma \rho+a_{4} \rho^{2}+a_{5} \sigma \rho^{2}$ and recall that the cubing formula is given by:

$$
\begin{aligned}
A^{3}= & \left(a_{0}^{3}+a_{2}^{3}+a_{4}^{3}\right)+\left(-a_{1}^{3}-a_{3}^{3}-a_{5}^{3}\right) \sigma+\left(a_{2}^{3}-a_{4}^{3}\right) \rho+ \\
& \left(-a_{3}^{3}+a_{5}^{3}\right) \sigma \rho+a_{4}^{3} \rho^{2}+\left(-a_{5}^{3}\right) \sigma \rho^{2} .
\end{aligned}
$$

By substituting $a_{0}=-r_{0}[i]^{2}, a_{1}=y_{p}[i] y_{q}[i], a_{2}=-r_{0}[i], a_{3}=a_{5}=0$, and $a_{4}=-1$ in the above equation, we obtain:

$$
R_{1}[i]^{3}=\left(-r_{0}[i]^{6}-r_{0}[i]^{3}-1\right)-\left(y_{p}[i] y_{q}[i]\right)^{3} \sigma+\left(-r_{0}[i]^{3}+1\right) \rho-\rho^{2} .
$$

By unrolling the main loop of Algorithm 1, we get:

$$
\begin{aligned}
R_{0}[i+1] & =\left(R_{0}[i] \cdot R_{1}[i+1]\right)^{3} \\
& =\left(\left(R_{0}[i-1] \cdot R_{1}[i]\right)^{3} \cdot R_{1}[i+1]\right)^{3} \\
& =\left(R_{0}[i-1]^{3} \cdot R_{1}[i]^{3} \cdot R_{1}[i+1]\right)^{3} .
\end{aligned}
$$

The product $R_{1}[i]^{3} \cdot R_{1}[i+1]^{3}$ can be computed by means of six multiplications over $\mathbb{F}_{3^{m}}$ (Algorithm 2). Note that neither $R_{0}[i+1]$ nor $R_{1}[i]^{3} \cdot R_{1}[i+1]^{3}$ are sparse in general. Their multiplication can be performed according to a novel algorithm introduced by Gorla et al. [4]. This approach is based on the fast Fourier transform and reduces the number of multiplications over $\mathbb{F}_{3^{m}}$ from 18
(see for instance [6]) to 15 (Algorithm 3). Note that we rewrote the algorithm in order to save additions. Therefore, $R_{0}[i+1]$ can be computed by means of 25 multiplications over $\mathbb{F}_{3^{m}}$ (Table 1). Algorithm 4 summarizes the η_{T} pairing calculation with loop unrolling. The first multiplication over $\mathbb{F}_{3^{6 m}}$ (lines 7 and 8) involves 8 multiplications over $\mathbb{F}_{3^{m}}[1]$. The final exponentiation features a single multiplication over $\mathbb{F}_{3^{6 m}}[2]$. Thus, only three multiplications over $\mathbb{F}_{3^{m}}$ can be saved here. Table 2 summarizes the number of multiplications over $\mathbb{F}_{3^{m}}$ requested for the full pairing. When $m=97$, we have to carry out $8+25 \cdot(m-1) / 4+84=692$ multiplications over $\mathbb{F}_{3^{m}}$ instead of 815 as in [1].

```
Algorithm 2 Computation of \(R_{1}[i]^{3} \cdot R_{1}[i+1]\).
Input: \(r_{0}[i], r_{0}[i+1], y_{p}[i], y_{p}[i+1], y_{q}[i]\), and \(y_{q}[i+1] \in \mathbb{F}_{3^{m}}\).
Output: \(c_{0}+c_{1} \sigma+c_{2} \rho+c_{3} \sigma \rho+c_{4} \rho^{2}+c_{5} \sigma \rho^{2}=R_{1}[i]^{3} \cdot R_{1}[i+1]\).
    \(a_{0} \leftarrow-r_{0}[i]^{6}-r_{0}[i]^{3}-1 ; a_{1} \leftarrow-\left(y_{p}[i] y_{q}[i]\right)^{3}=\left(y_{p}[i+1] y_{q}[i]\right)^{3} ; a_{2} \leftarrow-r_{0}[i]^{3}+1 ;\)
    \(b_{0} \leftarrow r_{0}[i+1]^{2} ; b_{1} \leftarrow y_{p}[i+1] y_{q}[i+1] ; b_{2} \leftarrow r_{0}[i+1] ;\)
    \(e_{0} \leftarrow a_{0}+a_{1} ; e_{1} \leftarrow a_{0}+a_{2} ; e_{2} \leftarrow a_{1}+a_{2} ;\)
    \(e_{3} \leftarrow-b_{0}+b_{1} ; e_{4} \leftarrow-b_{0}-b_{2} ; e_{5} \leftarrow b_{1}-b_{2} ;\)
    \(e_{6} \leftarrow a_{0} \cdot b_{0} ; e_{7} \leftarrow a_{1} \cdot b_{1} ; e_{8} \leftarrow a_{2} \cdot b_{2} ;\)
    \(e_{9} \leftarrow e_{0} \cdot e_{3} ; e_{10} \leftarrow e_{1} \cdot e_{4} ; e_{11} \leftarrow e_{2} \cdot e_{5} ;\)
    \(c_{0} \leftarrow-e_{6}-e_{7}+b_{2}-a_{2} ;\)
    \(c_{1} \leftarrow e_{9}+e_{6}-e_{7} ;\)
    \(c_{2} \leftarrow e_{10}+e_{6}+e_{8}-a_{2}+b_{2}+1 ;\)
    \(c_{3} \leftarrow e_{11}+e_{8}-e_{7}\);
    \(c_{4} \leftarrow-e_{8}-a_{0}+b_{0}+1 ;\)
    \(c_{5} \leftarrow-a_{1}-b_{1} ;\)
```

Table 1. Number of multiplications over $\mathbb{F}_{3^{m}}$ to compute $R_{0}[i+1]$.

Operation	\# multiplications
$r_{0}[i]^{2}, r_{0}[i+1]^{2}, y_{p}[i] y_{q}[i]$, and $y_{p}[i+1] y_{q}[i+1]$	4
$S=R_{1}[i]^{3} \cdot R_{1}[i+1]$	6 (Algorithm 2)
$R_{0}[i+1]=R_{0}[i-1]^{3} \cdot S$	$15[4]$

Acknowledgments

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

Table 2. Number of multiplications over $\mathbb{F}_{3^{m}}$ to compute the full η_{T} pairing.

Operation	\# multiplications
$\eta_{T}(P, Q)$	$25 \cdot \frac{m-1}{4}+8$
Final exponentiation	$84[2,4]$

References

1. J.-L. Beuchat, N. Brisebarre, J. Detrey, and E. Okamoto. Arithmetic operators for pairing-based cryptography. Cryptology ePrint Archive, Report 2007/091, 2007.
2. J.-L. Beuchat, N. Brisebarre, M. Shirase, T. Takagi, and E. Okamoto. A coprocessor for the final exponentiation of the η_{T} pairing in characteristic three. In C. Carlet and B. Sunar, editors, Proceedings of Waifi 2007, number 4547 in Lecture Notes in Computer Science, pages 25-39. Springer, 2007.
3. J.-L. Beuchat, M. Shirase, T. Takagi, and E. Okamoto. An algorithm for the η_{T} pairing calculation in characteristic three and its hardware implementation. In P. Kornerup and J.-M. Muller, editors, Proceedings of the 18th IEEE Symposium on Computer Arithmetic, pages 97-104. IEEE Computer Society, 2007.
4. E. Gorla, C. Puttmann, and J. Shokrollahi. Explicit formulas for efficient multiplication in $\mathbb{F}_{36 \mathrm{~m}}$. In Proceedings of SAC 2007, Lecture Notes in Computer Science. Springer, 2007.
5. R. Granger, D. Page, and M. Stam. On small characteristic algebraic tori in pairingbased cryptography. Cryptology ePrint Archive, Report 2004/132, 2004.
6. T. Kerins, W. P. Marnane, E. M. Popovici, and P.S.L.M. Barreto. Efficient hardware for the Tate Pairing calculation in characteristic three. In J. R. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded Systems - CHES 2005, number 3659 in Lecture Notes in Computer Science, pages 412-426. Springer, 2005.
```
Algorithm 3 Multiplication over \(\mathbb{F}_{3^{6 m}}\) [4].
Input: \(A, B \in \mathbb{F}_{36 m}\) with \(A=a_{0}+a_{1} \sigma+a_{2} \rho+a_{3} \sigma \rho+a_{4} \rho^{2}+a_{5} \sigma \rho^{2}\) and \(B=\)
    \(b_{0}+b_{1} \sigma+b_{2} \rho+b_{3} \sigma \rho+b_{4} \rho^{2}+b_{5} \sigma \rho^{2}\).
Output: \(C=A B\). The algorithm requires 15 multiplications and 67 additions over
    \(\mathbb{F}_{3^{m}}\).
    1: \(r_{0} \leftarrow a_{0}+a_{4} ; e_{0} \leftarrow r_{0}+a_{2} ; e_{12} \leftarrow r_{0}-a_{2} ;\)
    \(r_{0} \leftarrow b_{0}+b_{4} ; e_{3} \leftarrow r_{0}+b_{2} ; e_{15} \leftarrow r_{0}-b_{2} ;\)
    \(r_{0} \leftarrow a_{0}-a_{4} ; e_{6} \leftarrow r_{0}-a_{3} ; e_{18} \leftarrow r_{0}+a_{3} ;\)
    \(r_{0} \leftarrow b_{0}-b_{4} ; e_{9} \leftarrow r_{0}-b_{3} ; e_{21} \leftarrow r_{0}+b_{3} ;\)
    \(r_{0} \leftarrow a_{1}+a_{5} ; e_{1} \leftarrow r_{0}+a_{3} ; e_{13} \leftarrow r_{0}-a_{3} ;\)
    \(r_{0} \leftarrow b_{1}+b_{5} ; e_{4} \leftarrow r_{0}+b_{3} ; e_{16} \leftarrow r_{0}-b_{3} ;\)
    \(r_{0} \leftarrow a_{1}-a_{5} ; e_{7} \leftarrow r_{0}+a_{2} ; e_{19} \leftarrow r_{0}-a_{2} ;\)
    \(r_{0} \leftarrow b_{1}-b_{5} ; e_{10} \leftarrow r_{0}+b_{2} ; e_{22} \leftarrow r_{0}-b_{2} ;\)
    \(e_{2} \leftarrow e_{0}+e_{1} ; e_{5} \leftarrow e_{3}+e_{4} ; e_{8} \leftarrow e_{6}+e_{7} ; e_{11} \leftarrow e_{9}+e_{10} ;\)
    \(e_{14} \leftarrow e_{12}+e_{13} ; e_{17} \leftarrow e_{15}+e_{16} ; e_{20} \leftarrow e_{18}+e_{19} ; e_{23} \leftarrow e_{21}+e_{22} ;\)
    \(e_{24} \leftarrow a_{4}+a_{5} ; e_{25} \leftarrow b_{4}+b_{5} ;\)
    \(m_{0} \leftarrow e_{0} \cdot e_{3} ; m_{1} \leftarrow e_{2} \cdot e_{5} ; m_{2} \leftarrow e_{1} \cdot e_{4} ;\)
    \(m_{3} \leftarrow e_{6} \cdot e_{9} ; m_{4} \leftarrow e_{8} \cdot e_{11} ; m_{5} \leftarrow e_{7} \cdot e_{10} ;\)
    \(m_{6} \leftarrow e_{12} \cdot e_{15} ; m_{7} \leftarrow e_{14} \cdot e_{17} ; m_{8} \leftarrow e_{13} \cdot e_{16} ;\)
    \(m_{9} \leftarrow e_{18} \cdot e_{21} ; m_{10} \leftarrow e_{20} \cdot e_{23} ; m_{11} \leftarrow e_{19} \cdot e_{22} ;\)
    \(m_{12} \leftarrow a_{4} \cdot b_{4} ; m_{13} \leftarrow e_{24} \cdot e_{25} ; m_{14} \leftarrow a_{5} \cdot b_{5} ;\)
    \(e_{0} \leftarrow m_{0}+m_{4}+m_{12} ; e_{1} \leftarrow m_{2}+m_{10}+m_{14} ;\)
    \(e_{2} \leftarrow m_{6}+m_{12} ; e_{3} \leftarrow-m_{8}-m_{14} ; e_{4} \leftarrow m_{7}+m_{13} ;\)
    \(e_{5} \leftarrow e_{3}+m_{2} ; e_{6} \leftarrow e_{2}-m_{0} ;\)
    \(e_{7} \leftarrow e_{3}-m_{2}+m_{5}+m_{11} ; e_{8} \leftarrow e_{2}+m_{0}-m_{3}-m_{9} ;\)
    \(c_{0} \leftarrow-e_{0}+e_{1}-m_{3}+m_{11} ;\)
    \(c_{1} \leftarrow e_{0}+e_{1}-m_{1}+m_{5}+m_{9}-m_{13} ;\)
    \(c_{2} \leftarrow e_{5}+e_{6} ;\)
    \(c_{3} \leftarrow e_{5}-e_{6}+e_{4}-m_{1} ;\)
    \(c_{4} \leftarrow e_{7}+e_{8} ;\)
    \(c_{5} \leftarrow e_{7}-e_{8}+e_{4}+m_{1}-m_{4}-m_{10} ;\)
```

```
Algorithm 4 Computation of \(\eta_{T}(P, Q)^{W}\).
Input: \(P=\left(x_{p}, y_{p}\right)\) and \(Q=\left(x_{q}, y_{q}\right) \in E\left(\mathbb{F}_{3^{m}}\right)[l]\). The algorithm requires \(R_{0}\) and
    \(R_{1} \in \mathbb{F}_{3^{6 m}}\), as well as \(r_{0} \in \mathbb{F}_{3^{m}}\) and \(d \in \mathbb{F}_{3}\) for intermediate computations.
Output: \(\eta_{T}(P, Q)^{\left(3^{3 m}-1\right)\left(3^{m}+1\right)\left(3^{m}+1-3^{(m+1) / 2}\right)}\).
    for \(i=0\) to \(\frac{m-1}{2}-1\) do
        \(x_{p} \leftarrow x_{p}^{9}-1 ; y_{p} \leftarrow-y_{p}^{9} ;\)
    end for
    \(y_{p} \leftarrow-y_{p} ; d \leftarrow 1 ;\)
    \(r_{0} \leftarrow x_{p}+x_{q}+d ;\)
    \(R_{0} \leftarrow-y_{p} r_{0}+y_{q} \sigma+y_{p} \rho ;\)
    \(R_{1} \leftarrow-r_{0}^{2}+y_{p} y_{q} \sigma-r_{0} \rho-\rho^{2} ;\)
    \(R_{0} \leftarrow\left(R_{0} R_{1}\right)^{3} ;\)
    for \(i=0\) to \(\frac{m-1}{4}-1\) do
        \(x_{q} \leftarrow x_{q}^{9} ; y_{q} \leftarrow y_{q}^{9} ; d \leftarrow(d-1) \bmod 3 ;\)
        \(r_{0} \leftarrow x_{p}+x_{q}+d ;\)
        \(R_{1} \leftarrow\left(-r_{0}^{6}-r_{0}^{3}-1\right)+\left(y_{p} y_{q}\right)^{3} \sigma+\left(-r_{0}^{3}+1\right) \rho-\rho^{2} ;\)
        \(R_{0} \leftarrow R_{0}^{3} ;\)
        \(x_{q} \leftarrow x_{q}^{9} ; y_{q} \leftarrow y_{q}^{9} ; d \leftarrow(d-1) \bmod 3 ;\)
        \(r_{0} \leftarrow x_{p}+x_{q}+d ;\)
        \(R_{1} \leftarrow R_{1} \cdot\left(-r_{0}^{2}+y_{p} y_{q} \sigma-r_{0} \rho-\rho^{2}\right) ;\)
        \(R_{0} \leftarrow\left(R_{0} R_{1}\right)^{3} ;\)
    end for
    \(R_{0} \leftarrow R_{0}^{\left(3^{3 m}-1\right)\left(3^{m}+1\right)\left(3^{m}+1-3^{(m+1) / 2}\right)} ;\)
    ): \(R_{0} \leftarrow \sqrt[3 m]{R_{0}} ;\)
    : return \(R_{0}\);
```

